JP2004224715A - Method for producing formic acid from carbon dioxide and hydrogen and method for fixing carbon dioxide and method for accelerating the reactions by irradiation of light - Google Patents

Method for producing formic acid from carbon dioxide and hydrogen and method for fixing carbon dioxide and method for accelerating the reactions by irradiation of light Download PDF

Info

Publication number
JP2004224715A
JP2004224715A JP2003012839A JP2003012839A JP2004224715A JP 2004224715 A JP2004224715 A JP 2004224715A JP 2003012839 A JP2003012839 A JP 2003012839A JP 2003012839 A JP2003012839 A JP 2003012839A JP 2004224715 A JP2004224715 A JP 2004224715A
Authority
JP
Japan
Prior art keywords
carbon dioxide
group
hydrogen
formic acid
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003012839A
Other languages
Japanese (ja)
Other versions
JP3968431B2 (en
Inventor
Yuichiro Himeda
雄一郎 姫田
Nobuko Onozawa
伸子 小野澤
Hideki Sugihara
秀樹 杉原
Hironori Arakawa
裕則 荒川
Kazuyuki Kasuga
和行 春日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003012839A priority Critical patent/JP3968431B2/en
Publication of JP2004224715A publication Critical patent/JP2004224715A/en
Application granted granted Critical
Publication of JP3968431B2 publication Critical patent/JP3968431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing formic acid, comprising reacting carbon dioxide with hydrogen in the presence of a compound useful as a catalyst for reacting the carbon dioxide with hydrogen, and to provide a method for fixing the carbon dioxide. <P>SOLUTION: This method for producing the formic acid comprises reacting carbon dioxide with hydrogen in the presence of one of compounds represented by general formulas (I) to (IV) [R<SB>1</SB>groups are each identically or differently H, an alkyl, an aromatic group, OH, COOR, CONRR', halogen (X), OR, SR, NRR', or PRR'R"; M<SB>1</SB>groups are each identically or differently Ir, Rh or Ru; R is H, an alkyl, an aromatic group, OH, COOR, CONRR', X, OR, SR, or the like; Y is a halogen or H; X is a counter anion for forming a metal complex], and the method for fixing the carbon dioxide comprises utilizing the above-described reaction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【本発明の属する技術分野】
本発明は、二酸化炭素と水素を反応させる蟻酸の製造方法、及び二酸化炭素の固定化方法及び光を照射させることによってそれらを促進させる方法に関する。
【0002】
【従来の技術】
従来から、二酸化炭素と水素を反応させることは自体は知られていた。例えば、従来反応としては、Chem. Lett. p.863 (1976) Chem. Commun. p. 1465 (1993) 、特開昭51−138614号、特開昭56−166146号などが挙げられるが、これらの反応にはいずれも有機溶媒を用いたり、アミン等の添加物が必要である。(特許文献1、特許文献2及び非特許文献1参照)
また、超臨界中で反応させることは、特開平7−173098号、特開2001−288137号、
有機化合化学協会誌、第52巻第12号 pp.1032−1043(1994)、 Nature Vol 368,p. 231 (1994)、 Chem. Lett. p.1016 (2001)、 J. Am. Chem. Soc. p. 7963 (2002)、 J. Am. Chem. Soc. p. 344 (1996)、Inorg.Chem. p. 1606 (2002)などに記載されている。(特許文献3〜4及び非特許文献2〜7参照)
さらに、水溶液中で反応させることは、特開昭56−140948、 Chem. Commun. p.971 (1999)、 Appl. Organomeal. Chem. p 857 (2000)、 Inorg. Chem. p. 5083 (2000)に記載されている。(特許文献5及び非特許文献8〜10参照)
さらにまた、常温常圧下水溶液中で固体触媒を用いた反応は、 J. Am. Chem. Soc. p.6319 (1983) その他固体触媒を用いた二酸化炭素の接触水素化反応は数多く知られている。(非特許文献11参照)
また、これまでに知られている二酸化炭素の接触水素化反応の均一系金属錯体触媒は、ほとんどがリン配位子を用いられており、窒素配位子を用いたものはこれまで少なかった。(非特許文献12及び非特許文献13参照)
一方、光を照射させながら二酸化炭素の水素化反応は、これまで知られていなかった。光による二酸化炭素の還元反応は、たとえば、Helv. Chim. Acta p. 1065 (1986)の様に、古くから知られていたが、有機溶媒中の反応で、アミン等の犠牲試薬が必須であり、反応速度が極めて遅く、また生成物の単離精製の煩雑さなど実用化には向かなかった。(非特許文献14参照)
【特許文献1】特開昭51−138614号公報
【特許文献2】特開昭56−166146号公報
【特許文献3】特開平7−173098号公報
【特許文献4】特開2001−288137号公報
【特許文献5】特開昭56−140948公報
【非特許文献1】Chem. Lett. p.863 (1976) Chem. Commun. p. 1465 (1993)
【非特許文献2】有機化合化学協会誌、第52巻第12号 pp.1032−1043(1994)
【非特許文献3】Nature Vol 368, p. 231 (1994)
【非特許文献4】Chem. Lett. p.1016 (2001)
【非特許文献5】J. Am. Chem. Soc. p. 7963 (2002)
【非特許文献6】J. Am. Chem. Soc. p. 344 (1996)
【非特許文献7】Inorg.Chem. p. 1606 (2002)
【非特許文献8】Chem. Commun. p. 971 (1999)
【非特許文献9】Appl. Organomeal. Chem. p 857 (2000)
【非特許文献10】Inorg. Chem. p. 5083 (2000)
【非特許文献11】J. Am. Chem. Soc. p.6319 (1983)
【非特許文献12】J. Mol. Cata. A 1995, v. 101, p. 33
【非特許文献13】J. Mol. Cata. 1989, v. 57, p. 47
【非特許文献14】Helv. Chim. Acta 1986, v. 69, p. 1065
【0003】
【発明が解決しようとする課題】
二酸化炭素の大気中における濃度は年々増大しており、その固定法の開発は急務の課題である。当面は海中ないしは地中へ廃棄されると思うが、将来的にはできるだけ多くの部分を炭素資源として再利用でき、かつ貯蔵が容易な液体又は固体の有機化合物への化学変換が望まれている。また、その工程で新たな二酸化炭素の発生が抑えられるようなエネルギー消費量少ない変換法の開発が不可欠である。
近年、水素化反応による二酸化炭素の化学的固定化に有効な高活性な遷移金属錯体触媒の開発が望まれている。
これまで、遷移金属錯体を用いる二酸化炭素の水素化反応によって、主にギ酸もしくはその誘導体を生成することが知られている。代表的な例を挙げると、(1)Chem. Lett. p.863 (1976)などのように、有機溶媒もしくは水との混合溶媒中、トリエチルアミン等の有機アミンの存在下、ギ酸を製造する方法。(2)特開平7−173098号では、超臨界状態にある二酸化炭素と水素をアミン等の塩基性物質存在下反応させる方法。(3)特開昭56−140948、Chem. Commun. p. 971 (1999)に記載された炭酸塩の水溶液中二酸化炭素と水素からギ酸を製造する方法。(4)J. Am. Chem. Soc. p.6319 (1983)に記載された担持パラジウムを用いた炭酸塩の水溶液中常温常圧で水素を通じさせることよってギ酸を製造する方法等が知られている。(1)−(3)については、J. Am. Chem. Soc. p. 7963 (2001)にまとめられている。
前記(1)(2)の方法では、アミンやアルコール等の有機物を添加する必要があること、また生成するギ酸の量はアミン等の添加量の最大2倍程度に限られていること、さらに生成物であるギ酸と添加した有機物の分離等の問題がある。(3),(4)の方法は、水媒体中での反応であり、有機物を用いないという特徴を有しており、特に(4)は、常圧反応又は低圧での反応であるが、何れも触媒回転数もしくは触媒回転効率が十分とは言えず、実用には適さない。(2)は他の方法に比べ触媒効率が高いが、超臨界状態を発生させる必要があり、高圧反応システムと煩雑な操作が必要となる。
一方、これまでの二酸化炭素の水素化反応において、ギ酸生成の駆動力は圧力もしくは熱によるものであった。圧力や熱の代わりに光エネルギーの利用できることは、極めて意義深いものである。従来知られている二酸化炭素の光還元反応は、有機溶媒中の反応で、アミン等の犠牲試薬が必須であり、反応速度が極めて遅く、また生成物の単離生成の煩雑さなど実用化には向かなかった。
本発明が解決しようとする課題は、遷移金属錯体触媒存在下、有機物を全く用いない水媒体中、温和な条件または光を照射することで二酸化炭素の水素化によってギ酸へと導く二酸化炭素の固定化法を提供することである。
【0004】
【課題を解決するための手段】
本発明は、イリジウム、ロジウム、ルテニウム等の金属錯体の化合物の触媒存在下、有機物を全く用いない水溶液中温和な条件下、場合によっては可視光を照射しながら二酸化炭素の水素化することを特徴とする。
本発明は、二酸化炭素と水素の反応を行わせるために触媒の探索及び反応系の検討を行った結果、特定の有機窒素化合物配位子を有する新規の金属錯体が、水および無機塩の水溶液中、場合によっては可視光を照射しながら、二酸化炭素の水素化反応が起こることが確認でき、蟻酸の製造方法、及びこの反応を利用して二酸化炭素の固定化法を提供することである。
すなわち、
二酸化炭素と水素を反応させるに際して、水と一般式(I)〜(IV)
【化3】

Figure 2004224715
(式中、Rは水素原子、アルキル基、芳香族基、水酸基(−OH)、エステル基(−COOR) 、アミド基(−CONRR’) 、ハロゲン(−X)、酸素官能基(−OR)、硫黄官能基(−SR)、窒素官能基(−NRR’)、リン官能基(−PRR’R’’)であり同一でも異なってもよい。MはIr、Rh若しくはRuであり、Rは、水素原子、アルキル基、芳香族基、水酸基(−OH)、エステル基(−COOR) 、アミド基(−CONRR’) 、ハロゲン(−X)、酸素官能基(−OR)、硫黄官能基(−SR)、窒素官能基(−NRR’)、リン官能基(−PRR’R’’)であり同一でも異なってもよい。Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で表されるいずれかの化合物の存在下で、二酸化炭素と水素を反応させる蟻酸の製造方法、および、この反応を利用して二酸化炭素の固定化法を提供することができた。
【0005】
【発明の実施の形態】
本発明において用いている「錯体」とは、一般式(I)〜(IV)で示されるイリジウム、ロジウム、ルテニウム金属錯体触媒を用いる。
本発明で用いる金属錯体のシクロペンタジエニル配位子及びアレーン配位子は、脂肪族(アルキル基)基、脂環族基、芳香族基、エステル基(−COR)、アミド基(−CONRR’)、ハロゲン(−X)、酸素官能基(−OR)、硫黄官能基(−SR)、窒素官能基(−NRR’)、リン官能基(−PRR’R’’)などが、1個又は複数置換していてもよい。複数置換する場合、同じであっても異なっていてもかまわない。なかでも、ロジウム、イリジウムにはペンタメチルシクロペンタジエニル配位子、ルテニウムにはヘキサメチルベンゼン配位子の活性が高い。
本発明で用いる金属錯体には、有機窒素化合物配位子を用いる。特にビピリジンまたはフェナントロリン誘導体が好ましい。式中のRは、水素原子、アルキル基、芳香族基、水酸基(−OH)、エステル基(−COOR) 、アミド基(−CONRR’) 、ハロゲン(−X)、酸素官能基(−OR)、硫黄官能基(−SR)、窒素官能基(−NRR’)、リン官能基(−PRR’R’’)などの置換基を示す。またRは同一又は異なった置換基でもよい。本発明で用いる金属錯体の金属原子と結合する配位子は、水素分子存在下ヒドリド錯体(Y=H)を形成し得るものであればどんなものでも構わない。例えば、ハロゲンイオン、アクア配位子(HO)などが挙げられる。ここで、ヒドリド錯体(Y=H)は、本反応の触媒として機能する。
本発明で用いる金属錯体のカウンターアニオンは特にその種類を限定しない。例えば、ハロゲンアニオンや過塩素酸アニオンなど、反応液に溶解すればどんなものでも構わない。
【0006】
本発明で用いる金属錯体で用いたポリピリジン配位子の一例として次のようなものがある。
【化4】
Figure 2004224715
また、本発明で用いる金属錯体で用いたシクロペンタジエニル配位子およびアレーン配位子の一例として次のようなものがある。(下記式中で、Rは水素又はアルキル基であり、同一でも異なってもよい。)
【化5】
Figure 2004224715
本発明で用いる媒体としては、水を用いる。純水もしくは無機塩の水溶液で反応は進行する。好ましくは、水溶液中アルカリ性を呈する無機塩が望ましい。特に、第I族または第II族の炭酸塩又は炭酸水素塩が好ましく、その例としては、LiCO 、LiHCO 、NaCO 、NaHCO 、KCO、KHCO 、CaCO 、BaCO 、SrCOなどが挙げられる。又は二酸化炭素を圧入もしくはバブリングすることによって炭酸塩又は炭酸水素塩を生成する第I族または第II族の水酸化物も好ましく、その例としては、LiOH, NaOH, KOH, Ca(OH), Ba(OH), Sr(OH)などが適当である。また、アルコールやアミン等の有機物を混合させてもなんら反応を妨げることはないため、水ー有機物の混合溶媒を用いてもよい。
本発明における上記の金属錯体の使用量については、上限及び下限はなく、反応液への溶解性及び経済性などに依存する。適切な触媒濃度は1x10−8〜1x10−3 Mで、好ましくは1x10−7〜1x10−4 Mとする。
本発明における反応に用いられる圧力は、特に上限及び下限はないが、一般に常圧以上が用いられる。圧力は高いほうが好ましいが、装置及び運転コスト等の経済的な理由に依存する。
本発明における反応温度は、充分な反応速度で反応が進行する方が有利である。好ましくは40度以上200度以下が好ましい。
本発明における光源は500Wのキセノンランプ(400 nm 以下および 750 nm以上の波長はカットした可視光)を用いたが、太陽光でもよい。
【0007】
本発明の蟻酸の製造方法および二酸化炭素と水素を反応させる二酸化炭素の固定化方法は、光を照射しつつ行うと反応が促進される。
また、興味深いことには、紫外線、赤外線を除いた可視光線でも効果があることが確認されている。
【0008】
実施例1〜14
内容積20 ml オートクレーブに所定の金属錯体と充分に脱気した無機塩の水溶液(10 ml)を仕込み、二酸化炭素と水素ガスの1対1の混合ガスを所定の圧力で圧入又はバブリングし、所定の温度、時間で反応を行った。生成したギ酸の分析は液体クロマトグラフィーにより行なった。すなわち、反応生成物の一部を採取し、これを2 mMリン酸水溶液を展開液とするカラム(TSKgel SCX(H):TOSOH)に通し、流出する液について波長210 nmにおける吸光度を測定し、得られた測定値と検量線から算出した。その結果を表1に示した。
【0009】
【表1】
Figure 2004224715
実施例15〜20
内容積20 ml のステンレスオートクレーブおよび硝子製オートクレーブにそれぞれ所定の金属錯体(10μmol)と充分に脱気したph 6.86のリン酸緩衝溶液(10 ml)を仕込み、二酸化炭素と水素ガスの1対1の混合ガスを4MPaで圧入した。硝子製オートクレーブに500Wのキセノンランプ(400 nm 以下および 750 nm以上の波長はカットした可視光)で照射した。これらの装置を室温で20時間撹拌を行った。生成したギ酸の分析は液体クロマトグラフィーにより行い、その結果を表2に示した。
【表2】
Figure 2004224715
【0010】
表1に示すように、一般式(I)〜(IV)で示される金属錯体触媒について二酸化炭素の水素化を水媒体で行ったところ、ギ酸が生成することを見いだした。このポリピリジン系配位子を用いた反応では、塩基性条件下だけではなく、従来法では知られていなかった中性、酸性条件下でも、反応は進行する(実施例2,3,5,7,8、10)。また、ルテニウム、イリジウム錯体も同様に触媒活性を有することがわかった(実施例12−14)。特に、ピリジン環上にヒドロキシ基を有する配位子をもつ錯体の触媒活性は飛躍的に向上することがわかった(実施例11,14)。
表2では、可視光による二酸化炭素の水素化反応の促進効果を示した。実施例15−20で明らかなように、室温では暗反応はほとんど進行しないが、可視光を照射することで反応が促進される。
【0011】
【発明の効果】
以上述べた通り本発明によれば、二酸化炭素と水素を反応させる触媒を用いて、二酸化炭素と水素を反応させる蟻酸の製造方法、及び二酸化炭素の固定化方法を提供することができた。本発明の特徴は、これまでの二酸化炭素の水素化法に比べ、比較的低圧条件で、アミン等の有機物を必要とせず、塩基性条件以外にも、中性又は酸性条件下でも反応が進行する特徴を有する。
また、本反応では触媒の光活性化効果が示され、二酸化炭素の水素化反応では初めての例になる。水素化反応の駆動力として、圧力や熱以外に光エネルギーを利用できることは、二酸化炭素削減に極めて有効な手法となりうる。[0001]
[Technical field to which the present invention pertains]
The present invention relates to a method for producing formic acid by reacting carbon dioxide and hydrogen, a method for immobilizing carbon dioxide, and a method for promoting them by irradiating light.
[0002]
[Prior art]
Conventionally, the reaction of carbon dioxide and hydrogen has been known per se. For example, as a conventional reaction, Chem. Lett. p. 863 (1976) Chem. Commun. p. 1465 (1993), JP-A-51-138614, JP-A-56-166146, and the like. These reactions all require the use of an organic solvent or an additive such as an amine. (See Patent Literature 1, Patent Literature 2, and Non-Patent Literature 1)
Further, the reaction in supercritical state is described in JP-A-7-173098, JP-A-2001-288137,
Journal of Organic Chemistry, Vol. 52, No. 12, pp. 1032-1043 (1994), Nature Vol 368, p. 231 (1994), Chem. Lett. p. 1016 (2001); Am. Chem. Soc. p. 7963 (2002); Am. Chem. Soc. p. 344 (1996), Inorg. Chem. p. 1606 (2002). (See Patent Documents 3 and 4 and Non-Patent Documents 2 to 7)
Further, the reaction in an aqueous solution is described in JP-A-56-140948, Chem. Commun. p. 971 (1999), Appl. Organomeal. Chem. p857 (2000), Inorg. Chem. p. 5083 (2000). (See Patent Document 5 and Non-Patent Documents 8 to 10)
Furthermore, a reaction using a solid catalyst in an aqueous solution under normal temperature and normal pressure is described in J. Am. Am. Chem. Soc. p. 6319 (1983) Many other catalytic hydrogenation reactions of carbon dioxide using solid catalysts are known. (See Non-Patent Document 11)
Further, most of the known homogeneous metal complex catalysts for the catalytic hydrogenation reaction of carbon dioxide use a phosphorus ligand, and few use a nitrogen ligand. (See Non-Patent Documents 12 and 13)
On the other hand, the hydrogenation reaction of carbon dioxide while irradiating light has not been known so far. The reduction reaction of carbon dioxide by light is described, for example, in Helv. Chim. Acta p. 1065 (1986), which has been known for a long time, the reaction in an organic solvent requires a sacrificial reagent such as an amine, and the reaction rate is extremely slow. Further, the isolation and purification of the product are complicated. It was not suitable for practical use. (See Non-Patent Document 14)
[Patent Document 1] JP-A-51-138614 [Patent Document 2] JP-A-56-166146 [Patent Document 3] JP-A-7-173098 [Patent Document 4] JP-A-2001-288137 [Patent Document 5] JP-A-56-140948 [Non-Patent Document 1] Chem. Lett. p. 863 (1976) Chem. Commun. p. 1465 (1993)
[Non-Patent Document 2] Journal of Organic Chemistry, Vol. 52, No. 12, pp. 1032-1043 (1994)
[Non-Patent Document 3] Nature Vol 368, p. 231 (1994)
[Non-Patent Document 4] Chem. Lett. p. 1016 (2001)
[Non-Patent Document 5] Am. Chem. Soc. p. 7963 (2002)
[Non-Patent Document 6] Am. Chem. Soc. p. 344 (1996)
[Non-Patent Document 7] Inorg. Chem. p. 1606 (2002)
[Non-Patent Document 8] Chem. Commun. p. 971 (1999)
[Non-Patent Document 9] Appl. Organomeal. Chem. p857 (2000)
[Non-Patent Document 10] Inorg. Chem. p. 5083 (2000)
[Non-Patent Document 11] Am. Chem. Soc. p. 6319 (1983)
[Non-Patent Document 12] Mol. Cat. A 1995, v. 101, p. 33
[Non-Patent Document 13] Mol. Cat. 1989, v. 57, p. 47
[Non-Patent Document 14] Helv. Chim. Acta 1986, v. 69, p. 1065
[0003]
[Problems to be solved by the invention]
The concentration of carbon dioxide in the atmosphere is increasing year by year, and the development of a fixation method is an urgent issue. For the time being, it will be disposed of in the sea or underground, but in the future, chemical conversion to liquid or solid organic compounds that can be reused as much as possible as carbon resources and are easy to store is desired. . In addition, it is essential to develop a conversion method with low energy consumption such that the generation of new carbon dioxide can be suppressed in the process.
In recent years, development of a highly active transition metal complex catalyst effective for chemical immobilization of carbon dioxide by a hydrogenation reaction has been desired.
Heretofore, it has been known that formic acid or a derivative thereof is mainly produced by a hydrogenation reaction of carbon dioxide using a transition metal complex. Representative examples include (1) Chem. Lett. p. 863 (1976) and a method for producing formic acid in the presence of an organic amine such as triethylamine in an organic solvent or a mixed solvent with water. (2) JP-A-7-173098 discloses a method in which carbon dioxide and hydrogen in a supercritical state are reacted in the presence of a basic substance such as an amine. (3) JP-A-56-140948, Chem. Commun. p. 971 (1999). A method for producing formic acid from carbon dioxide and hydrogen in an aqueous solution of carbonate described in 971 (1999). (4) J.I. Am. Chem. Soc. p. 6319 (1983), a method for producing formic acid by passing hydrogen in an aqueous solution of a carbonate at room temperature and normal pressure using a supported palladium is known. Regarding (1)-(3), J.I. Am. Chem. Soc. p. 7963 (2001).
In the above methods (1) and (2), it is necessary to add an organic substance such as an amine or an alcohol, and the amount of formic acid generated is limited to a maximum of about twice the addition amount of the amine or the like. There are problems such as separation of formic acid, a product, and added organic substances. The methods (3) and (4) are characterized in that they are reactions in an aqueous medium and do not use an organic substance. In particular, (4) is a reaction under normal pressure or a low pressure. In any case, the catalyst rotation speed or the catalyst rotation efficiency cannot be said to be sufficient, and is not suitable for practical use. The method (2) has a higher catalytic efficiency than other methods, but needs to generate a supercritical state, and requires a high-pressure reaction system and complicated operations.
On the other hand, in the conventional hydrogenation reaction of carbon dioxide, the driving force for formic acid generation is based on pressure or heat. The availability of light energy instead of pressure or heat is extremely significant. The conventionally known photoreduction reaction of carbon dioxide is a reaction in an organic solvent and requires a sacrificial reagent such as an amine, and the reaction speed is extremely slow. Did not go.
The problem to be solved by the present invention is to fix carbon dioxide that leads to formic acid by hydrogenation of carbon dioxide by irradiating mild conditions or light in an aqueous medium containing no organic substances in the presence of a transition metal complex catalyst. Is to provide a chemical method.
[0004]
[Means for Solving the Problems]
The present invention is characterized in that in the presence of a catalyst of a compound of a metal complex such as iridium, rhodium, ruthenium, or the like, hydrogenation of carbon dioxide is performed under mild conditions in an aqueous solution containing no organic matter, and in some cases, while irradiating visible light. And
The present invention has conducted a search for a catalyst and a study of a reaction system in order to carry out a reaction between carbon dioxide and hydrogen.As a result, a novel metal complex having a specific organic nitrogen compound ligand is obtained by using an aqueous solution of water and an inorganic salt. It is possible to confirm that a hydrogenation reaction of carbon dioxide occurs while irradiating visible light in some cases, and to provide a method for producing formic acid and a method for immobilizing carbon dioxide using this reaction.
That is,
When reacting carbon dioxide and hydrogen, water is mixed with the general formulas (I) to (IV)
Embedded image
Figure 2004224715
(Wherein R 1 is a hydrogen atom, an alkyl group, an aromatic group, a hydroxyl group (—OH), an ester group (—COOR), an amide group (—CONRR ′), a halogen (—X), an oxygen functional group (—OR ), A sulfur function (—SR), a nitrogen function (—NRR ′), a phosphorus function (—PRR′R ″), which may be the same or different. M 1 is Ir, Rh or Ru; R represents a hydrogen atom, an alkyl group, an aromatic group, a hydroxyl group (-OH), an ester group (-COOR), an amide group (-CONRR '), a halogen (-X), an oxygen functional group (-OR), and a sulfur functional group. Groups (-SR), a nitrogen function (-NRR '), and a phosphorus function (-PRR'R "), which may be the same or different. Y is a halogen or hydrogen, and X forms a metal complex. In the presence of any compound represented by the formula: , A method for producing formic acid by reacting carbon dioxide and hydrogen, and a method for immobilizing carbon dioxide by utilizing this reaction.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
As the “complex” used in the present invention, an iridium, rhodium, or ruthenium metal complex catalyst represented by the general formulas (I) to (IV) is used.
The cyclopentadienyl ligand and the arene ligand of the metal complex used in the present invention include an aliphatic (alkyl) group, an alicyclic group, an aromatic group, an ester group (—CO 2 R), and an amide group ( -CONRR '), a halogen (-X), an oxygen functional group (-OR), a sulfur functional group (-SR), a nitrogen functional group (-NRR'), a phosphorus functional group (-PRR'R "), and the like. One or more may be substituted. When multiple substitutions are made, they may be the same or different. In particular, rhodium and iridium have high activity of pentamethylcyclopentadienyl ligand, and ruthenium has high activity of hexamethylbenzene ligand.
As the metal complex used in the present invention, an organic nitrogen compound ligand is used. Particularly, a bipyridine or phenanthroline derivative is preferable. R in the formula is a hydrogen atom, an alkyl group, an aromatic group, a hydroxyl group (-OH), an ester group (-COOR), an amide group (-CONRR '), a halogen (-X), an oxygen functional group (-OR). , A sulfur functional group (-SR), a nitrogen functional group (-NRR '), and a phosphorus functional group (-PRR'R "). R may be the same or different substituents. The ligand that binds to the metal atom of the metal complex used in the present invention may be any ligand that can form a hydride complex (Y = H) in the presence of a hydrogen molecule. For example, a halogen ion, an aqua ligand (H 2 O), and the like can be given. Here, the hydride complex (Y = H) functions as a catalyst for this reaction.
The kind of the counter anion of the metal complex used in the present invention is not particularly limited. For example, any substance such as a halogen anion or a perchlorate anion may be used as long as it is dissolved in the reaction solution.
[0006]
Examples of the polypyridine ligand used in the metal complex used in the present invention are as follows.
Embedded image
Figure 2004224715
The following are examples of the cyclopentadienyl ligand and the arene ligand used in the metal complex used in the present invention. (In the following formula, R is hydrogen or an alkyl group, and may be the same or different.)
Embedded image
Figure 2004224715
Water is used as the medium used in the present invention. The reaction proceeds with pure water or an aqueous solution of an inorganic salt. Preferably, an inorganic salt exhibiting alkalinity in an aqueous solution is desirable. In particular, Group I or carbonate or bicarbonate of Group II are preferable, and examples thereof, Li 2 CO 3, LiHCO 3 , Na 2 CO 3, NaHCO 3, K 2 CO 3, KHCO 3, CaCO 3 , BaCO 3 , SrCO 3 and the like. Alternatively, Group I or Group II hydroxides that generate carbonate or bicarbonate by injecting or bubbling carbon dioxide are also preferable, such as LiOH, NaOH, KOH, Ca (OH) 2 , Ba (OH) 2 , Sr (OH) 2 and the like are suitable. Further, even if an organic substance such as an alcohol or an amine is mixed, the reaction is not hindered at all. Therefore, a mixed solvent of water and an organic substance may be used.
The amount of the metal complex used in the present invention does not have an upper limit or a lower limit, and depends on solubility in a reaction solution, economy, and the like. Suitable catalyst concentrations are between 1 × 10 −8 and 1 × 10 −3 M, preferably between 1 × 10 −7 and 1 × 10 −4 M.
The pressure used for the reaction in the present invention has no particular upper limit or lower limit, but is generally normal pressure or higher. Higher pressures are preferred, but will depend on economic reasons such as equipment and operating costs.
The reaction temperature in the present invention is more advantageously such that the reaction proceeds at a sufficient reaction rate. Preferably it is 40 degrees or more and 200 degrees or less.
In the present invention, a 500 W xenon lamp (visible light having a wavelength of 400 nm or less and a wavelength of 750 nm or more cut off) is used as the light source, but sunlight may be used.
[0007]
The method of the present invention for producing formic acid and the method for immobilizing carbon dioxide by reacting carbon dioxide and hydrogen promote the reaction when the method is performed while irradiating light.
Interestingly, it has been confirmed that visible light excluding ultraviolet rays and infrared rays is also effective.
[0008]
Examples 1 to 14
An autoclave is charged with an aqueous solution (10 ml) of a predetermined metal complex and a sufficiently degassed inorganic salt, and a mixed gas of carbon dioxide and hydrogen gas at a pressure of 1 to 1 is injected or bubbled at a predetermined pressure. The reaction was carried out at the following temperature and time. Analysis of the formed formic acid was performed by liquid chromatography. That is, a part of the reaction product was collected, passed through a column (TSKgel SCX (H + ): TOSOH) using a 2 mM aqueous phosphoric acid solution as a developing solution, and the absorbance of the effluent at 210 nm was measured. Calculated from the obtained measured values and the calibration curve. The results are shown in Table 1.
[0009]
[Table 1]
Figure 2004224715
Examples 15 to 20
A predetermined metal complex (10 μmol) and a sufficiently degassed phosphate buffer solution (10 ml) of ph 6.86 were charged into a stainless steel autoclave and a glass autoclave having an inner volume of 20 ml, respectively. The mixed gas of No. 1 was injected at 4 MPa. The glass autoclave was irradiated with a 500 W xenon lamp (visible light having a wavelength of 400 nm or less and a wavelength of 750 nm or more cut off). These devices were stirred at room temperature for 20 hours. Analysis of the formed formic acid was performed by liquid chromatography, and the results are shown in Table 2.
[Table 2]
Figure 2004224715
[0010]
As shown in Table 1, when hydrogenation of carbon dioxide was performed in an aqueous medium with respect to the metal complex catalysts represented by the general formulas (I) to (IV), it was found that formic acid was generated. In the reaction using this polypyridine-based ligand, the reaction proceeds not only under basic conditions but also under neutral or acidic conditions which were not known by the conventional method (Examples 2, 3, 5, 7). , 8, 10). It was also found that ruthenium and iridium complexes also have catalytic activity (Examples 12 to 14). In particular, it was found that the catalytic activity of the complex having a ligand having a hydroxy group on the pyridine ring was dramatically improved (Examples 11 and 14).
Table 2 shows the effect of accelerating the hydrogenation reaction of carbon dioxide by visible light. As is clear from Examples 15 to 20, the dark reaction hardly proceeds at room temperature, but the reaction is accelerated by irradiation with visible light.
[0011]
【The invention's effect】
As described above, according to the present invention, a method for producing formic acid by reacting carbon dioxide and hydrogen using a catalyst for reacting carbon dioxide and hydrogen, and a method for immobilizing carbon dioxide can be provided. The feature of the present invention is that, compared with the conventional carbon dioxide hydrogenation method, under relatively low pressure conditions, no organic substance such as amine is required, and in addition to basic conditions, the reaction proceeds even under neutral or acidic conditions. It has the following characteristics.
In addition, this reaction shows a photoactivation effect of the catalyst, which is the first example of a hydrogenation reaction of carbon dioxide. The ability to use light energy other than pressure and heat as a driving force for the hydrogenation reaction can be a very effective method for reducing carbon dioxide.

Claims (4)

二酸化炭素と水素を反応させるに際して、水と一般式(I)〜(IV)
Figure 2004224715
(式中、Rは水素原子、アルキル基、芳香族基、水酸基(−OH)、エステル基(−COOR) 、アミド基(−CONRR’) 、ハロゲン(−X)、酸素官能基(−OR)、硫黄官能基(−SR)、窒素官能基(−NRR’)、リン官能基(−PRR’R’’)であり同一でも異なってもよい。MはIr、Rh若しくはRuであり、Rは、水素原子、アルキル基、芳香族基、水酸基(−OH)、エステル基(−COOR) 、アミド基(−CONRR’) 、ハロゲン(−X)、酸素官能基(−OR)、硫黄官能基(−SR)、窒素官能基(−NRR’)、リン官能基(−PRR’R’’)であり同一でも異なってもよい。Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で表されるいずれかの化合物の存在下で、二酸化炭素と水素を反応させる蟻酸の製造方法。
When reacting carbon dioxide and hydrogen, water is mixed with the general formulas (I) to (IV)
Figure 2004224715
(Wherein R 1 is a hydrogen atom, an alkyl group, an aromatic group, a hydroxyl group (—OH), an ester group (—COOR), an amide group (—CONRR ′), a halogen (—X), an oxygen functional group (—OR ), A sulfur function (—SR), a nitrogen function (—NRR ′), a phosphorus function (—PRR′R ″), which may be the same or different. M 1 is Ir, Rh or Ru; R represents a hydrogen atom, an alkyl group, an aromatic group, a hydroxyl group (-OH), an ester group (-COOR), an amide group (-CONRR '), a halogen (-X), an oxygen functional group (-OR), and a sulfur functional group. Groups (-SR), a nitrogen function (-NRR '), and a phosphorus function (-PRR'R "), which may be the same or different. Y is a halogen or hydrogen, and X forms a metal complex. In the presence of any compound represented by the formula: , A method for producing formic acid by reacting carbon dioxide and hydrogen.
光を照射しつつ、二酸化炭素と水素を反応させる請求項1に記載した蟻酸の製造方法。The method for producing formic acid according to claim 1, wherein carbon dioxide and hydrogen are reacted while irradiating light. 二酸化炭素と水素を反応させるに際して、水と一般式(I)〜(IV)
Figure 2004224715
(式中、Rは水素原子、アルキル基、芳香族基、水酸基(−OH)、エステル基(−COOR) 、アミド基(−CONRR’) 、ハロゲン(−X)、酸素官能基(−OR)、硫黄官能基(−SR)、窒素官能基(−NRR’)、リン官能基(−PRR’R’’)であり同一でも異なってもよい。MはIr、Rh若しくはRuであり、Rは、水素原子、アルキル基、芳香族基、水酸基(−OH)、エステル基(−COOR) 、アミド基(−CONRR’) 、ハロゲン(−X)、酸素官能基(−OR)、硫黄官能基(−SR)、窒素官能基(−NRR’)、リン官能基(−PRR’R’’)であり同一でも異なってもよい。Yはハロゲン又は水素であり、Xは金属錯体を形成するカウンターアニオンを表わす。)で表されるいずれかの化合物の存在下で、二酸化炭素と水素を反応させる二酸化炭素の固定化方法。
When reacting carbon dioxide and hydrogen, water is mixed with the general formulas (I) to (IV)
Figure 2004224715
(Wherein R 1 is a hydrogen atom, an alkyl group, an aromatic group, a hydroxyl group (—OH), an ester group (—COOR), an amide group (—CONRR ′), a halogen (—X), an oxygen functional group (—OR ), A sulfur function (—SR), a nitrogen function (—NRR ′), a phosphorus function (—PRR′R ″), which may be the same or different. M 1 is Ir, Rh or Ru; R represents a hydrogen atom, an alkyl group, an aromatic group, a hydroxyl group (-OH), an ester group (-COOR), an amide group (-CONRR '), a halogen (-X), an oxygen functional group (-OR), and a sulfur functional group. Groups (-SR), a nitrogen function (-NRR '), and a phosphorus function (-PRR'R "), which may be the same or different. Y is a halogen or hydrogen, and X forms a metal complex. In the presence of any compound represented by the formula: , A method of immobilizing carbon dioxide by reacting carbon dioxide and hydrogen.
光を照射しつつ、二酸化炭素と水素を反応させる請求項3に記載した二酸化炭素の固定化方法。The method for immobilizing carbon dioxide according to claim 3, wherein carbon dioxide and hydrogen are reacted while irradiating light.
JP2003012839A 2003-01-21 2003-01-21 Method for producing formic acid from carbon dioxide and hydrogen, method for immobilizing carbon dioxide and method for promoting them by irradiating light Expired - Lifetime JP3968431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012839A JP3968431B2 (en) 2003-01-21 2003-01-21 Method for producing formic acid from carbon dioxide and hydrogen, method for immobilizing carbon dioxide and method for promoting them by irradiating light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012839A JP3968431B2 (en) 2003-01-21 2003-01-21 Method for producing formic acid from carbon dioxide and hydrogen, method for immobilizing carbon dioxide and method for promoting them by irradiating light

Publications (2)

Publication Number Publication Date
JP2004224715A true JP2004224715A (en) 2004-08-12
JP3968431B2 JP3968431B2 (en) 2007-08-29

Family

ID=32901322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012839A Expired - Lifetime JP3968431B2 (en) 2003-01-21 2003-01-21 Method for producing formic acid from carbon dioxide and hydrogen, method for immobilizing carbon dioxide and method for promoting them by irradiating light

Country Status (1)

Country Link
JP (1) JP3968431B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028408A1 (en) * 2003-09-17 2005-03-31 Japan Science And Technology Agency Process for reduction of carbon dioxide with organometallic complex
JP2009078200A (en) * 2007-09-25 2009-04-16 Japan Science & Technology Agency Catalyst and method for decomposing formic acid, method for producing hydrogen, apparatus for producing and decomposing formic acid and method for absorbing and generating hydrogen
US7550246B2 (en) * 2003-09-29 2009-06-23 Japan Science And Technology Agency Photoacid generator
JP2011529052A (en) * 2008-07-24 2011-12-01 ユニバーシティ オブ サザン カリフォルニア Producing methanol and its products solely from geothermal sources and their energy
JP2015096487A (en) * 2013-10-10 2015-05-21 田中貴金属工業株式会社 Method of producing fluorobenzene by defluorination of hexafluorobenzene
JP2019006741A (en) * 2017-06-28 2019-01-17 国立大学法人九州大学 Metal complex, and fuel cell or solar cell employing the metal complex
JP2019084527A (en) * 2017-11-01 2019-06-06 株式会社豊田中央研究所 Z scheme-type photocatalyst system
JP2021016832A (en) * 2019-07-22 2021-02-15 国立研究開発法人産業技術総合研究所 Dehydrogenation catalyst
CN112409158A (en) * 2020-11-20 2021-02-26 南京延长反应技术研究院有限公司 Enhanced micro-interface preparation system and method for formic acid
CN112521263A (en) * 2020-11-23 2021-03-19 大连理工大学 CO catalyzed by Ir complex supported by MOF2Method for preparing formate/formic acid by hydrogenation reduction
JP2022129732A (en) * 2021-02-25 2022-09-06 株式会社豊田中央研究所 Carbon dioxide reduction catalyst, carbon dioxide reduction device, and artificial photosynthesis device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315381B2 (en) 2012-01-27 2016-04-19 National Institute Of Advanced Industrial Science And Technology Dehydrogenation catalyst for formic acid, method for producing hydrogen, and method for producing heavy-hydrogen gas or heavy-hydrogenated hydrogen
EP3056273B1 (en) 2013-10-11 2019-03-06 National Institute of Advanced Industrial Science and Technology Catalyst used for dehydrogenation of formic acid, method for dehydrogenating formic acid, and method for producing hydrogen

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028408A1 (en) * 2003-09-17 2005-03-31 Japan Science And Technology Agency Process for reduction of carbon dioxide with organometallic complex
JPWO2005028408A1 (en) * 2003-09-17 2007-11-15 独立行政法人科学技術振興機構 Reduction method of carbon dioxide using organometallic complex
US7479570B2 (en) 2003-09-17 2009-01-20 Japan Science And Technology Agency Process for reduction of carbon dioxide with organometallic complex
US7550246B2 (en) * 2003-09-29 2009-06-23 Japan Science And Technology Agency Photoacid generator
JP2009078200A (en) * 2007-09-25 2009-04-16 Japan Science & Technology Agency Catalyst and method for decomposing formic acid, method for producing hydrogen, apparatus for producing and decomposing formic acid and method for absorbing and generating hydrogen
JP2011529052A (en) * 2008-07-24 2011-12-01 ユニバーシティ オブ サザン カリフォルニア Producing methanol and its products solely from geothermal sources and their energy
JP2015096487A (en) * 2013-10-10 2015-05-21 田中貴金属工業株式会社 Method of producing fluorobenzene by defluorination of hexafluorobenzene
JP2019006741A (en) * 2017-06-28 2019-01-17 国立大学法人九州大学 Metal complex, and fuel cell or solar cell employing the metal complex
JP2019084527A (en) * 2017-11-01 2019-06-06 株式会社豊田中央研究所 Z scheme-type photocatalyst system
JP2021016832A (en) * 2019-07-22 2021-02-15 国立研究開発法人産業技術総合研究所 Dehydrogenation catalyst
JP7370040B2 (en) 2019-07-22 2023-10-27 国立研究開発法人産業技術総合研究所 dehydrogenation catalyst
CN112409158A (en) * 2020-11-20 2021-02-26 南京延长反应技术研究院有限公司 Enhanced micro-interface preparation system and method for formic acid
CN112521263A (en) * 2020-11-23 2021-03-19 大连理工大学 CO catalyzed by Ir complex supported by MOF2Method for preparing formate/formic acid by hydrogenation reduction
CN112521263B (en) * 2020-11-23 2022-02-15 大连理工大学 CO catalyzed by Ir complex supported by MOF2Method for preparing formate/formic acid by hydrogenation reduction
JP2022129732A (en) * 2021-02-25 2022-09-06 株式会社豊田中央研究所 Carbon dioxide reduction catalyst, carbon dioxide reduction device, and artificial photosynthesis device
JP7291165B2 (en) 2021-02-25 2023-06-14 株式会社豊田中央研究所 Carbon dioxide reduction catalyst, carbon dioxide reducer, and artificial photosynthesis device

Also Published As

Publication number Publication date
JP3968431B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
García et al. Metal-organic frameworks: Applications in separations and catalysis
Lammert et al. Single-and mixed-linker Cr-MIL-101 derivatives: A high-throughput investigation
JP2004224715A (en) Method for producing formic acid from carbon dioxide and hydrogen and method for fixing carbon dioxide and method for accelerating the reactions by irradiation of light
Hawecker et al. Photochemical reduction of carbon dioxide to formate mediated by ruthenium bipyridine complexes as homogeneous catalysts
Hao et al. Mechanism-guided design of metal–organic framework composites for selective photooxidation of a mustard gas simulant under solvent-free conditions
Hou et al. Thermocatalytic Conversion of CO2 to Valuable Products Activated by Noble‐Metal‐Free Metal‐Organic Frameworks
Yazhini et al. Inner filter effect on amino-functionalized metal-organic framework for the selective detection of tetracycline
López et al. Insights into the stability and activity of MIL-53 (Fe) in solar photocatalytic oxidation processes in water
JP4009728B2 (en) Novel compound, catalyst using the same, method for producing formic acid from carbon dioxide and hydrogen using the same, and method for immobilizing carbon dioxide
Hou et al. Versatile catalysts constructed from hybrid polyoxomolybdates for simultaneously detoxifying sulfur mustard and organophosphate simulants
Al-Terkawi et al. Efficient CO2 Sequestration by a Solid–Gas Reaction Enabled by Mechanochemistry: The Case of l-Lysine
Du et al. Four metal–organic frameworks built from distinct secondary building blocks: Syntheses, structures, photoluminescence and photocatalytical properties
Marino et al. A step toward change: a green alternative for the synthesis of metal–organic frameworks
CN104262275A (en) Silver-azotetrazole metal organic framework material as well as preparation method and application thereof
JP2007055915A (en) Method for producing formic acid from carbon dioxide and hydrogen
CN114907197B (en) Preparation method of biaziridine-based photocrosslinking probe intermediate and derivative
Hua et al. Template-driven construction of [8]-imidazolium macrocycles
Zheng et al. Zr-MOF catalyzed selective oxidation of anilines to azoxybenzenes in aqueous H2O2 solution
CN107936260A (en) Modification and unmodified mesoporous metal organic framework compounds and its preparation method and application
JP2014088380A (en) Method for producing oxamide compound
CN107739334B (en) Application of Cu-MOF type catalyst in preparation of polysubstituted pyridine derivative
Burrows et al. Tuning the Properties of Metal–Organic Frameworks by Post‐synthetic Modification
JP2021104486A (en) Photocatalysis and method for manufacturing the same
JP2020147561A (en) Method for producing formic acid
JP2013173130A (en) Olefin dimerization catalyst, method of manufacturing cyclobutane compound, and dimerization execution method of olefin compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

R150 Certificate of patent or registration of utility model

Ref document number: 3968431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term