JP2004221315A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2004221315A
JP2004221315A JP2003006784A JP2003006784A JP2004221315A JP 2004221315 A JP2004221315 A JP 2004221315A JP 2003006784 A JP2003006784 A JP 2003006784A JP 2003006784 A JP2003006784 A JP 2003006784A JP 2004221315 A JP2004221315 A JP 2004221315A
Authority
JP
Japan
Prior art keywords
flow path
refrigerant
cooling member
flow
reducing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003006784A
Other languages
Japanese (ja)
Other versions
JP4165232B2 (en
Inventor
Yasusuke Sugiura
庸介 杉浦
Tetsushi Ishikawa
哲史 石川
Kunifumi Matsuo
邦史 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003006784A priority Critical patent/JP4165232B2/en
Publication of JP2004221315A publication Critical patent/JP2004221315A/en
Application granted granted Critical
Publication of JP4165232B2 publication Critical patent/JP4165232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling member for indirectly cooling electronic equipment mounted with an electronic component inside capable of reducing a temperature difference between the inner surface of a cooling board and a cooling medium, and setting the temperature of the electronic component within an allowable value. <P>SOLUTION: This cooling medium is thermally and indirectly connected to an exothermic electronic component, and equipped with an internal wall surface forming an internal channel through which a cooling medium flows on which a channel reducing part is constituted. The shape of the channel reducing part is formed asymmetrically to the center of the channel so that a heat transfer rate between the cooling board internal surface and the medium can be improved, and that a temperature difference between the cooling board internal surface and the cooling medium can be reduced. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品を内部に実装した電子機器を間接冷却する冷却部材に関する。
【0002】
【従来の技術】
従来の電子機器冷却用の冷却板においては、冷却板は冷媒の流れる流路溝を加工した薄肉平板と均一厚さの極めて薄い平板を接合して構成される。したがって、上記冷却板内には薄肉平板で囲まれた矩形断面の流路が構成されこの内部を冷媒が流れる。流路に冷媒が流れだすと冷却板内の内圧が上昇し内圧上昇により平板が膨張してその表面がエレクトロニクスモジュールに密着しエレクトロニクスモジュールと冷却板間の空気層を減じ、接触熱抵抗を減じ、エレクトロニクスモジュール内の電子部品の発生した熱を放熱することができる。(例えば特許文献1参照)
【0003】
【特許文献1】
特公平3−22074号公報(第3頁、図3)
【0004】
【発明が解決しようとする課題】
従来の電子機器冷却用の冷却板は、冷却板内面は平坦な矩形の断面を有するため、冷媒の流れは乱流に発達せず層流状態の流れとなり、冷媒の流れと冷却板内面は剥離した状態であり、冷却板内面と冷媒間の熱伝達率は大きくない状態であった。
そのため、従来の電子機器に搭載される電子部品からの発熱量を移送するためには十分な熱伝達率であるものの、電子部品の高出力化、高密度実装化、稼動率向上などに伴い増大した発熱量を移送するには不十分であり、冷却板内面と冷媒間に許容できない温度差が生じ、結果として電子部品の温度が許容できない温度に上昇するという問題があった。
【0005】
この発明はこのような問題点を解決するためになされたものであり、冷却板内面と冷媒間の温度差をより小さく抑え、電子部品の温度を許容値内にとどめる電子部品の冷却部材を得ることを目的とする。
【0006】
【課題を解決するための手段】
課題を解決するために、本発明の冷却部材は、発熱性の電子部品と熱的に間接的に接続され、冷媒の流れる内部流路を形成する内壁面を有し、その内壁面に流路縮小部が構成された冷却部材において、流路縮小部の形状を流路の中心に対して非対象に形成するものである。
【0007】
【発明の実施の形態】
実施の形態1.
図1(a)はこの本発明の実施の形態1において、例えば電子走査アンテナ装置のようにモジュール1が規則正しく配列された電子装置の斜視図であり、図1(b)は図1(a)のA−Aにおける断面図、図1(c)は図1(a)のB−Bにおける断面図である。高出力増幅器、低雑音増幅器等の電子部品2を内蔵したモジュール1は、シャーシ5の上にアレイ状に配置されている。
【0008】
冷却板3は、長尺の平板2枚を対向させて並べ、平板の短手方向の2つの端面を他の長尺の平板で夫々接合して形成される。これによって、冷媒4の流れる長方形状断面の内部流路を形成する内壁面を有し、断面が長方形の枠型形状を成すと共に、側面が帯状に長い外壁面(の長手方向)は冷却面を形成している。
【0009】
電子部品2を内蔵し電子部品2の保護や所定の性能を得るために冷却が必要なモジュール1は、冷却板3の冷却面に接触して配置される。冷却板3の内部を流れる冷媒4は、冷却板に沿って、冷却面の長手方向に流れる。冷媒4は冷却面の長手方向に流れ、同方向を図1(c)に流れ方向41bとして示す。冷却板の長手方向へ垂直に流入流出する冷媒4は図1(b)に示す流れ方向41aに流れる。モジュール1の内部の電子部品2で発生した熱は冷却板3の壁面を通過し冷媒に伝達され、冷媒の流れ方向41aに冷媒4を介して移送される。この実施の形態による冷却板3は、その内壁面に流路縮小部を構成し、流路縮小部の形状を流路の中心に対して非対象に形成している。
【0010】
一方、近年、実装される電子部品2の高出力化、モジュール1内に実装される電子部品2の高密度実装化に伴い、モジュール1の発熱量が増大する傾向にある。これに対応して冷却性能を向上させるために、冷却板3の内部に例えば図2の比較例に示すような冷却構造を設けることも検討されている。図2の冷却板3は、流路に所定の間隔で突起31を設け、流路を急縮小させる流路縮小部32bを形成する。これにより、冷媒4の流れを乱流化させ、冷却板3内面と冷媒4との間の熱伝達率を向上させる。
しかし、このように構成された電子機器の間接冷却構造では、乱流化した冷媒の流れは冷却板3の内面に向かわないため、冷媒の流れと冷却板内面は依然として剥離状態であって、冷却板3内面と冷媒4との間の熱伝達率を向上させる効果は不十分であった。
【0011】
図3は実施の形態1による冷却板の断面構造を示す図であり、この図に示す冷却構造では上述の比較例で示したような問題点を解消している。
冷却板3の内面の流路と接する面には複数の突起(第1の突起7及び第2の突起8)が設けられ、第1の突起7及び第2の突起8は冷媒の流れ方向において断面が矩形形状を有している。冷却板を構成する平板それぞれからの第1の突起7及び第2の突起8により流路の幅が縮小される複数の流路縮小部32が構成される。流路縮小部32において、第1の突起7の冷媒流入側の面と、第2の突起8の冷媒流入側の面とが、互いに対向するように配置される。第1の突起7は第2の突起8よりも長さが長い。
【0012】
ここで、第1の突起7の冷媒流入側の面の位置と、第2の突起8の冷媒流入側の面の位置とが、異なる位置になるように配置している。流路縮小部32において冷媒は乱流化し、乱流化した冷媒の流れは、突起の冷媒流入側の面の位置の違いによって流路縮小部32に侵入するときに、流れに偏りを生じさせる。
【0013】
これにより、或る流路縮小部32と冷媒の流れ方向41bに配置された別の流路縮小部32との間で冷媒4の流れに偏りが生じる。この偏った流れは、第2の突起8の側の冷却板3の内面に衝突することにより、冷媒4の冷却板3の内面への付着領域が更に増える。その結果、冷却板3の内面と冷媒4との間の熱伝達率を向上させる効果を得る。
【0014】
このように、冷媒4の流れる内部流路を形成する内壁面を有し、その内壁面に流路縮小部32が構成され、流路縮小部32の形状を流路の中心に対して非対称に形成した冷却板3では、冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、電子部品2の温度をより低減できる。
【0015】
冷媒の流れる内部流路を形成する内壁面に複数の突起を設け、当該突起により流路の幅が縮小される複数の流路縮小部が構成され、流路縮小部の形状を流路の中心に対して非対称に形成した冷却板では、冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、電子部品の温度をより低減できる。
【0016】
少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成された複数の突起を有し、当該突起は冷媒流れ方向において矩形形状を有し、当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部が構成され、当該流路縮小部において対向する少なくとも2つの突起の冷媒流入側の面の位置を異なる位置に配置した冷却板では、冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、電子部品の温度を低減できる。
【0017】
実施の形態2.
図4は、実施の形態2による冷却板の断面を示す図であり、冷却板3の内面の流路と接する面には複数の突起を有し、当該突起は冷媒流れ方向において矩形形状を有している。当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部32が構成され、流路縮小部32において、第1の突起9の冷媒排出側の面の位置と対向して配置された第2の突起10の冷媒排出側の面の位置を、異なる位置に配置している。流路縮小部32において冷媒は乱流化し、乱流化した冷媒の流れは突起の冷媒排出側の面の位置の違いにより、流路縮小部32から排出するときに流れに偏りが生じる。
【0018】
これにより、或る流路縮小部と冷媒の流れ方向に配置された別の流路縮小部との間の冷媒の流れに偏りが生じ、冷却板内面に衝突することにより冷媒の冷却板3の内面への付着領域が増え、その結果、冷却板3内面と冷媒4との間の熱伝達率を向上させる効果を得る。
【0019】
少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成された複数の突起を有し、当該突起は冷媒流れ方向において矩形形状を有し、当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部が構成され、当該流路縮小部において対向する突起の冷媒排出側の面の位置を異なる位置に配置した冷却板では、冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、電子部品の温度を低減できる。
【0020】
実施の形態3.
図5は、実施の形態3による冷却板の断面を示す図であり、冷却板3の内面の流路と接する面には複数の突起を有し、当該突起は冷媒流れ方向において矩形形状を有している。当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部32が構成される。
【0021】
流路縮小部32において、第1の突起 11の冷媒の流れ方向の長さと、第1の突起 11と対向して配置された第2の突起12の冷媒の流れ方向の長さを異なるように設定している。流路縮小部32において冷媒は乱流化し、乱流化した冷媒の流れは第1の突起 11と第2の突起12の冷媒の流れ方向の長さの違いにより、流路縮小部に侵入するとき及び流路縮小部から排出するときに流れに偏りが生じる。
【0022】
これより、或る流路縮小部と冷媒の流れ方向に配置された別の流路縮小部の間の冷媒の流れに偏りが生じ、冷却板内面に衝突することにより冷媒の冷却板3の内面への付着領域が増え、その結果、冷却板3内面と冷媒4との間の熱伝達率を向上させる効果を得る。また、第1の突起 11と第2の突起12の冷媒の流れ方向の長さの違いにより、流路縮小部の冷媒の侵入する側の開口と排出する側の開口は両者とも冷媒の流れの方向に拡く開口していることになり、冷媒の流れの抵抗はより小さくなり、結果として圧力損失が小さくなる効果を得る。
【0023】
少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成された複数の突起を有し、当該突起は冷媒流れ方向において矩形形状を有し、当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部が構成される。流路縮小部において対向する突起の冷媒の流れ方向の長さを異なるように設定した冷却板では、冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、電子部品の温度を低減できる。
【0024】
実施の形態4.
図6は、実施の形態4による冷却板の断面を示す図であり、冷却板3の内面の流路と接する面には複数の突起を有し、当該突起は冷媒流れ方向において矩形形状を有している。当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部が構成される。
【0025】
第1の流路縮小部33においては、第1の突起3の冷媒流入側の面はそれに対向して配置される第1の突起4の冷媒流入側の面の位置に対して冷媒の流れ方向に対して前に位置し、第2の流路縮小部34においては、第3の突起15の冷媒流入側の面はそれに対向して配置される第4の突起16の冷媒流入側の面の位置に対して冷媒の流れ方向に対して前に位置するように、冷媒の流れ方向に対して対向する突起の位置を交互に変化させる。流路縮小部33,34において冷媒は乱流化し、乱流化した冷媒の流れは突起の冷媒流入面及び排出側の面の位置の違いにより、流路縮小部から排出するときに流れに偏りが生じる。
【0026】
これより、或る流路縮小部と冷媒の流れ方向に配置された別の流路縮小部の間の冷媒の流れに偏りが生じ、冷却板内面に衝突することにより冷媒の冷却板3の内面への付着領域が増え、その結果、冷却板3内面と冷媒4との間の熱伝達率を向上させる効果を得る。さらに、冷媒の流れ方向に対して対向する突起の位置を交互に変化させることにより、冷媒の流れの偏り方向が交互に変化し、冷媒の衝突する冷却板内面が交互に規則的に変化することにより、冷却板3内面と冷媒4との間の熱伝達率は冷却板内面の両面に対して均等に向上し、冷却板3の両面に接触固定した電子部品の温度を同様に低減できる。
【0027】
少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成された複数の突起を有し、当該突起は冷媒流れ方向において矩形形状を有し、当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部が構成される。流路縮小部において対向する突起の形状もしくは位置関係を冷媒の流れ方向に沿って変化する冷却板では、冷却板の少なくとも2面において冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、冷却板の2面に接触固定した電子部品の温度を低減できる。
【0028】
少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成された複数の突起を有し、当該突起は冷媒流れ方向において矩形形状を有し、当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部が構成される。流路縮小部において対向する突起の形状もしくは位置関係を冷媒の流れ方向に沿って交互に規則的に配置する冷却板では、冷却板の少なくとも2面において冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、冷却板の2面に接触固定した電子部品の温度を低減できる。
【0029】
実施の形態5.
図7は、実施の形態5による冷却板の断面を示す図であり、冷却板3の内面の流路と接する面には複数の突起を有する。当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部32が構成され、当該流路縮小部32において、第1の突起17は冷媒流れ方向において矩形断面形状を有し、対向して配置された第2の突起18の冷媒流れ方向における断面形状は冷媒流入側に傾斜面を有する断面形状を有する。当該流路縮小部32において冷媒は乱流化し、乱流化した冷媒の流れは突起の冷媒流れ方向における断面形状の違いにより、当該流路縮小部に侵入するときに流れに偏りが生じる。これより当該流路縮小部と冷媒の流れ方向に配置された別の流路縮小部の間の冷媒の流れに偏りが生じ、冷却板内面に衝突することにより冷媒の冷却板3の内面への付着領域が増え、その結果、冷却板3内面と冷媒4との間の熱伝達率を向上させる効果を得る。なお第2の突起18の傾斜面が比較的大きい例を示したが、面取り程度の傾斜面を適用する場合もある。
【0030】
少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成された複数の突起を有し、当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部が構成され、当該流路縮小部において対向する突起の冷媒流れ方向における断面形状が異なる冷却板では、冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、電子部品の温度を低減できる。
【0031】
実施の形態6.
図8(a)は、実施の形態6による冷却板の断面を示す図であり、冷却板3の内面の流路と接する面には複数の突起を有し、当該突起は冷媒流れ方向において矩形形状を有している。当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部32が構成される。
【0032】
図8(b)は、図8(a)に示される冷却板をA方向から見た図であり、第1の突起19には当該流路縮小部と交差する方向にスリット21が、第2の突起20にはスリット22が設けられており、当該スリットにおいても、流路は縮小し冷媒は乱流化する。図8(c)は、図8(a)に示される冷却板をB方向から見た図であり、突起には、第1の突起19,第2の突起20とは異なる位置関係の箇所にスリット21、22が設けられている。冷媒の流れは、流路縮小部32及びスリットにより乱流化し、スリットの位置関係の違いにより、或る流路縮小部と冷媒の流れ方向に配置された別の流路縮小部との間の冷媒の流れに偏りが生じ、冷却板内面に衝突することにより冷媒の冷却板3の内面への付着領域が増え、その結果、冷却板3内面と冷媒4との間の熱伝達率を向上させる効果を得る。
【0033】
少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成された複数の突起を有し、当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部が構成されるとともに、当該突起に当該流路縮小部と交差する方向に少なくとも1つ以上のスリットを設けた冷却板では冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、電子部品の温度を低減できる。
【0034】
少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成された複数の突起を有し、当該平板それぞれからの突起により流路の幅が縮小される複数の流路縮小部が構成されるとともに、当該突起に当該流路縮小部と交差する方向に少なくとも1つ以上のスリットを設け、スリットの位置を冷媒流れ方向に沿ったそれぞれの突起ごとに変化させた冷却板では冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくし、電子部品の温度を低減できる。
【0035】
【発明の効果】
以上説明したように本発明によれば、発熱性の電子部品と熱的に間接的に接続され、冷媒の流れる内部流路を形成する内壁面を有し、その内壁面に流路縮小部が構成された冷却部材において、流路縮小部の形状を流路の中心に対して非対象に形成したことにより、冷却板内面と冷媒間の熱伝達率を向上し、冷却板内面と冷媒間の温度差を小さくできる。
【図面の簡単な説明】
【図1】この発明の実施の形態1を示す図である。
【図2】この発明の比較例として示す冷却板の断面図である。
【図3】この発明の実施の形態1における冷却板の断面図である。
【図4】この発明の実施の形態2における冷却板の断面図である。
【図5】この発明の実施の形態3における冷却板の断面図である。
【図6】この発明の実施の形態4における冷却板の断面図である。
【図7】この発明の実施の形態5における冷却板の断面図である。
【図8】この発明の実施の形態6における冷却板の断面図である。
【符号の説明】
1 モジュール、2 電子部品、3 冷却板、4 冷媒、5 シャーシ、7 第1の突起、8 第2の突起、9 第1の突起、10 第2の突起、11 第1の突起、12 第2の突起、13 第1の突起、 14 第2の突起、15 第3の突起、16 第4の突起、17 第1の突起、18 第2の突起、19 第1の突起、20第2の突起、21 スリット、22 スリット、31 突起、32 流路縮小部、33 流路縮小部、34 流路縮小部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling member for indirectly cooling an electronic device having an electronic component mounted therein.
[0002]
[Prior art]
In a conventional cooling plate for cooling an electronic device, the cooling plate is formed by joining a thin plate having a processed flow passage groove for a coolant and an extremely thin plate having a uniform thickness. Therefore, a flow path having a rectangular cross section surrounded by a thin flat plate is formed in the cooling plate, and the refrigerant flows through the flow path. When the refrigerant starts flowing into the flow path, the internal pressure in the cooling plate rises, and the flat plate expands due to the rise in the internal pressure, and the surface closely adheres to the electronics module, reducing the air layer between the electronics module and the cooling plate, reducing the contact thermal resistance, The heat generated by the electronic components in the electronic module can be radiated. (For example, see Patent Document 1)
[0003]
[Patent Document 1]
Japanese Patent Publication No. 3-22074 (page 3, FIG. 3)
[0004]
[Problems to be solved by the invention]
In the conventional cooling plate for cooling electronic equipment, the cooling plate has a flat rectangular cross section, so that the flow of the refrigerant does not develop into turbulent flow and becomes a laminar flow, and the flow of the refrigerant and the inner surface of the cooling plate separate. In this state, the heat transfer coefficient between the inner surface of the cooling plate and the refrigerant was not large.
Therefore, although the heat transfer rate is sufficient to transfer the heat generated from the electronic components mounted on the conventional electronic equipment, it increases with the increase in the output, the high-density mounting, and the improvement of the operation rate of the electronic components. However, there is a problem that an unacceptable temperature difference occurs between the inner surface of the cooling plate and the refrigerant, and as a result, the temperature of the electronic component rises to an unacceptable temperature.
[0005]
The present invention has been made in order to solve such a problem, and a cooling member for an electronic component in which the temperature difference between an inner surface of a cooling plate and a refrigerant is suppressed to be smaller and the temperature of the electronic component is kept within an allowable value is obtained. The purpose is to:
[0006]
[Means for Solving the Problems]
In order to solve the problem, a cooling member of the present invention has an inner wall surface that is indirectly thermally connected to a heat-generating electronic component and forms an internal flow path through which a refrigerant flows. In the cooling member having the reduced portion, the shape of the channel reduced portion is formed asymmetrically with respect to the center of the channel.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1A is a perspective view of an electronic device in which modules 1 are regularly arranged, for example, an electronic scanning antenna device according to the first embodiment of the present invention, and FIG. 1A is a cross-sectional view taken along a line AA, and FIG. 1C is a cross-sectional view taken along a line BB in FIG. Modules 1 containing electronic components 2 such as a high-output amplifier and a low-noise amplifier are arranged on a chassis 5 in an array.
[0008]
The cooling plate 3 is formed by arranging two long flat plates so as to face each other, and joining two short end faces of the flat plates with other long flat plates. This has an inner wall surface that forms an internal flow path having a rectangular cross section through which the refrigerant 4 flows, the cross section forms a rectangular frame shape, and the outer wall surface (longitudinal direction) whose side surface is long in a strip shape serves as a cooling surface. Has formed.
[0009]
The module 1 which contains the electronic component 2 and needs to be cooled in order to protect the electronic component 2 and obtain predetermined performance is arranged in contact with the cooling surface of the cooling plate 3. The refrigerant 4 flowing inside the cooling plate 3 flows in the longitudinal direction of the cooling surface along the cooling plate. The refrigerant 4 flows in the longitudinal direction of the cooling surface, and this direction is shown as a flow direction 41b in FIG. The refrigerant 4 flowing in and out of the cooling plate in the vertical direction flows in the flow direction 41a shown in FIG. Heat generated in the electronic components 2 inside the module 1 passes through the wall surface of the cooling plate 3 and is transmitted to the refrigerant, and is transferred via the refrigerant 4 in the refrigerant flow direction 41a. In the cooling plate 3 according to this embodiment, a flow passage reducing portion is formed on the inner wall surface, and the shape of the flow passage reducing portion is formed asymmetrically with respect to the center of the flow passage.
[0010]
On the other hand, in recent years, with an increase in the output of the electronic component 2 mounted and an increase in the density of the electronic component 2 mounted in the module 1, the amount of heat generated by the module 1 tends to increase. In order to improve the cooling performance in response to this, it has been considered to provide a cooling structure as shown in, for example, a comparative example in FIG. 2 inside the cooling plate 3. The cooling plate 3 shown in FIG. 2 is provided with protrusions 31 at predetermined intervals in the flow path, and forms a flow path reduction portion 32b for rapidly reducing the flow path. Thereby, the flow of the refrigerant 4 is made turbulent, and the heat transfer coefficient between the inner surface of the cooling plate 3 and the refrigerant 4 is improved.
However, in the indirect cooling structure of the electronic device configured as described above, since the flow of the turbulent refrigerant does not flow toward the inner surface of the cooling plate 3, the flow of the refrigerant and the inner surface of the cooling plate are still separated from each other, The effect of improving the heat transfer coefficient between the inner surface of the plate 3 and the refrigerant 4 was insufficient.
[0011]
FIG. 3 is a diagram showing a cross-sectional structure of the cooling plate according to the first embodiment, and the cooling structure shown in FIG. 3 solves the problems as described in the comparative example.
A plurality of projections (a first projection 7 and a second projection 8) are provided on the inner surface of the cooling plate 3 which is in contact with the flow path, and the first projection 7 and the second projection 8 are arranged in the flow direction of the refrigerant. The cross section has a rectangular shape. A plurality of flow passage reducing portions 32 in which the width of the flow passage is reduced by the first protrusion 7 and the second protrusion 8 from each of the flat plates constituting the cooling plate are configured. In the flow passage reducing portion 32, the surface of the first protrusion 7 on the refrigerant inflow side and the surface of the second protrusion 8 on the refrigerant inflow side are arranged to face each other. The first projection 7 is longer than the second projection 8.
[0012]
Here, the position of the surface of the first protrusion 7 on the refrigerant inflow side and the position of the surface of the second protrusion 8 on the refrigerant inflow side are different from each other. The refrigerant is turbulent in the flow passage reducing portion 32, and the flow of the turbulent refrigerant causes a bias in the flow when the refrigerant flows into the flow passage reducing portion 32 due to a difference in the position of the protrusion on the refrigerant inflow side surface. .
[0013]
As a result, the flow of the refrigerant 4 is biased between a certain flow passage reduction portion 32 and another flow passage reduction portion 32 arranged in the flow direction 41b of the refrigerant. The unbalanced flow collides with the inner surface of the cooling plate 3 on the side of the second protrusion 8, so that the area where the refrigerant 4 adheres to the inner surface of the cooling plate 3 further increases. As a result, an effect of improving the heat transfer coefficient between the inner surface of the cooling plate 3 and the refrigerant 4 is obtained.
[0014]
As described above, the inner wall surface forming the internal flow path through which the refrigerant 4 flows is provided, and the flow path reducing portion 32 is formed on the inner wall surface, and the shape of the flow path reducing portion 32 is asymmetric with respect to the center of the flow path. In the formed cooling plate 3, the heat transfer coefficient between the cooling plate inner surface and the refrigerant is improved, the temperature difference between the cooling plate inner surface and the refrigerant is reduced, and the temperature of the electronic component 2 can be further reduced.
[0015]
A plurality of projections are provided on an inner wall surface that forms an internal flow path through which the refrigerant flows, and the projections form a plurality of flow path reduction sections in which the width of the flow path is reduced. In the cooling plate formed asymmetrically with respect to the above, the heat transfer coefficient between the cooling plate inner surface and the refrigerant is improved, the temperature difference between the cooling plate inner surface and the refrigerant is reduced, and the temperature of the electronic component can be further reduced.
[0016]
At least two or more flat plates are arranged to face each other to form an inner wall surface of the internal flow path, and have a plurality of projections formed on a surface of the flat plate that is in contact with the flow path, and the projections have a rectangular shape in the refrigerant flow direction. A plurality of flow passage reducing portions in which the width of the flow passage is reduced by the protrusions from each of the flat plates, and the positions of at least two protrusions facing each other in the flow passage reducing portion on the refrigerant inflow side. With the cooling plates arranged at different positions, the heat transfer coefficient between the cooling plate inner surface and the coolant can be improved, the temperature difference between the cooling plate inner surface and the coolant can be reduced, and the temperature of the electronic component can be reduced.
[0017]
Embodiment 2 FIG.
FIG. 4 is a diagram showing a cross section of a cooling plate according to the second embodiment. The cooling plate 3 has a plurality of projections on a surface in contact with a flow path, and the projections have a rectangular shape in the coolant flow direction. are doing. A plurality of flow passage reducing portions 32 in which the width of the flow passage is reduced by the protrusions from each of the flat plates are formed, and the flow passage reducing portion 32 faces the position of the surface of the first protrusion 9 on the refrigerant discharge side. The positions of the arranged second protrusions 10 on the refrigerant discharge side are arranged at different positions. The refrigerant is turbulent in the flow passage reducing portion 32, and the flow of the turbulent refrigerant flow is biased when discharged from the flow passage reducing portion 32 due to a difference in the position of the protrusion on the refrigerant discharge side surface.
[0018]
As a result, the flow of the refrigerant between a certain flow passage reduction portion and another flow passage reduction portion arranged in the flow direction of the refrigerant is biased, and collides with the inner surface of the cooling plate. The area of attachment to the inner surface increases, and as a result, an effect of improving the heat transfer coefficient between the inner surface of the cooling plate 3 and the coolant 4 is obtained.
[0019]
At least two or more flat plates are arranged to face each other to form an inner wall surface of the internal flow path, and have a plurality of projections formed on a surface of the flat plate that is in contact with the flow path, and the projections have a rectangular shape in the refrigerant flow direction. A plurality of flow passage reducing portions in which the width of the flow passage is reduced by the protrusions from each of the flat plates, and the positions of the surfaces on the refrigerant discharge side of the opposing protrusions in the flow passage reducing portions are located at different positions. In the disposed cooling plate, the heat transfer coefficient between the inner surface of the cooling plate and the refrigerant can be improved, the temperature difference between the inner surface of the cooling plate and the refrigerant can be reduced, and the temperature of the electronic component can be reduced.
[0020]
Embodiment 3 FIG.
FIG. 5 is a view showing a cross section of a cooling plate according to the third embodiment. The cooling plate 3 has a plurality of projections on a surface in contact with a flow path, and the projections have a rectangular shape in the coolant flow direction. are doing. A plurality of flow channel reduction portions 32 are formed, in which the width of the flow channel is reduced by the projections from each of the flat plates.
[0021]
In the flow passage reducing portion 32, the length of the first protrusion 11 in the flow direction of the refrigerant is different from the length of the second protrusion 12 arranged opposite to the first protrusion 11 in the flow direction of the refrigerant. You have set. The refrigerant is turbulent in the flow passage reducing portion 32, and the flow of the turbulent refrigerant flows into the flow passage reducing portion due to a difference in length of the first protrusion 11 and the second protrusion 12 in the flow direction of the refrigerant. At the time and when discharging from the flow channel reduction part, the flow is biased.
[0022]
As a result, the flow of the refrigerant between a certain flow passage reduction portion and another flow passage reduction portion arranged in the flow direction of the refrigerant is biased, and collides with the inner surface of the cooling plate. As a result, an effect of improving the heat transfer coefficient between the inner surface of the cooling plate 3 and the coolant 4 is obtained. Also, due to the difference in the length of the first protrusion 11 and the second protrusion 12 in the flow direction of the refrigerant, both the opening on the side where the refrigerant enters and the opening on the side where the refrigerant flows out of the flow path reducing portion are both used for the flow of the refrigerant. As a result, the flow resistance of the refrigerant is reduced, and as a result, the pressure loss is reduced.
[0023]
At least two or more flat plates are arranged to face each other to form an inner wall surface of the internal flow path, and have a plurality of projections formed on a surface of the flat plate that is in contact with the flow path, and the projections have a rectangular shape in the refrigerant flow direction. , And a plurality of flow passage reducing portions in which the width of the flow passage is reduced by the projections from each of the flat plates. In the cooling plate in which the lengths of the opposed protrusions in the flow channel reducing portion in the flow direction of the refrigerant are set to be different, the heat transfer coefficient between the cooling plate inner surface and the refrigerant is improved, and the temperature difference between the cooling plate inner surface and the refrigerant is reduced. The temperature of the electronic component can be reduced by reducing the size.
[0024]
Embodiment 4 FIG.
FIG. 6 is a diagram showing a cross section of a cooling plate according to the fourth embodiment. The cooling plate 3 has a plurality of projections on a surface in contact with a flow path, and the projections have a rectangular shape in the refrigerant flow direction. are doing. A plurality of flow channel reducing portions in which the width of the flow channel is reduced by the projections from the respective flat plates are configured.
[0025]
In the first flow passage reducing portion 33, the surface of the first protrusion 3 on the refrigerant inflow side is in the flow direction of the refrigerant with respect to the position of the surface of the first protrusion 4 on the refrigerant inflow side disposed opposite thereto. In the second flow path reducing portion 34, the surface of the third protrusion 15 on the refrigerant inflow side is the same as the surface of the fourth protrusion 16 disposed on the refrigerant inflow side. The positions of the protrusions facing the flow direction of the refrigerant are alternately changed so as to be located before the position in the flow direction of the refrigerant. The refrigerant is turbulent in the flow passage reducing portions 33 and 34, and the flow of the turbulent refrigerant is biased toward the flow when the refrigerant is discharged from the flow passage reducing portion due to a difference in the position of the protrusion between the refrigerant inflow surface and the discharge side surface. Occurs.
[0026]
As a result, the flow of the refrigerant between a certain flow passage reduction portion and another flow passage reduction portion arranged in the flow direction of the refrigerant is biased, and collides with the inner surface of the cooling plate. As a result, an effect of improving the heat transfer coefficient between the inner surface of the cooling plate 3 and the coolant 4 is obtained. Furthermore, by alternately changing the position of the projection facing the flow direction of the refrigerant, the bias direction of the flow of the refrigerant changes alternately, and the inner surface of the cooling plate against which the refrigerant collides alternately changes regularly. As a result, the heat transfer coefficient between the inner surface of the cooling plate 3 and the coolant 4 is evenly improved with respect to both surfaces of the inner surface of the cooling plate 3, and the temperature of the electronic components that are fixed to both surfaces of the cooling plate 3 can be similarly reduced.
[0027]
At least two or more flat plates are arranged to face each other to form an inner wall surface of the internal flow path, and have a plurality of projections formed on a surface of the flat plate that is in contact with the flow path, and the projections have a rectangular shape in the refrigerant flow direction. , And a plurality of flow passage reducing portions in which the width of the flow passage is reduced by the projections from each of the flat plates. In the cooling plate in which the shape or positional relationship of the opposed projections in the flow passage reducing portion changes along the flow direction of the coolant, the heat transfer coefficient between the inner surface of the cooling plate and the coolant is improved on at least two surfaces of the cooling plate, The temperature difference between the inner surface and the cooling medium can be reduced, and the temperature of the electronic component contacted and fixed to the two surfaces of the cooling plate can be reduced.
[0028]
At least two or more flat plates are arranged to face each other to form an inner wall surface of the internal flow path, and have a plurality of projections formed on a surface of the flat plate that is in contact with the flow path, and the projections have a rectangular shape in the refrigerant flow direction. , And a plurality of flow passage reducing portions in which the width of the flow passage is reduced by the projections from each of the flat plates. In a cooling plate in which the shape or positional relationship of the opposing projections in the flow passage reducing portion is regularly arranged alternately along the flow direction of the refrigerant, the heat transfer coefficient between the inner surface of the cooling plate and the refrigerant on at least two surfaces of the cooling plate. The temperature difference between the inner surface of the cooling plate and the cooling medium can be reduced, and the temperature of the electronic component contacted and fixed to the two surfaces of the cooling plate can be reduced.
[0029]
Embodiment 5 FIG.
FIG. 7 is a diagram showing a cross section of a cooling plate according to the fifth embodiment. The cooling plate 3 has a plurality of protrusions on a surface of the cooling plate 3 which is in contact with the flow path. A plurality of flow passage reducing portions 32 in which the width of the flow passage is reduced by the protrusions from each of the flat plates are formed. In the flow passage reducing portion 32, the first protrusion 17 has a rectangular cross-sectional shape in the refrigerant flow direction. The cross-sectional shape of the second protrusion 18 disposed opposite to the flow direction of the refrigerant has a cross-sectional shape having an inclined surface on the refrigerant inflow side. The refrigerant is turbulent in the flow channel reducing portion 32, and the flow of the turbulent refrigerant flow is biased when entering the flow channel reducing portion due to a difference in cross-sectional shape of the protrusion in the refrigerant flow direction. This causes a bias in the flow of the refrigerant between the flow passage reducing portion and another flow passage reducing portion arranged in the flow direction of the refrigerant, and the refrigerant collides with the inner surface of the cooling plate, thereby causing the refrigerant to flow to the inner surface of the cooling plate 3. As a result, the heat transfer coefficient between the inner surface of the cooling plate 3 and the coolant 4 is improved. Although the example in which the inclined surface of the second projection 18 is relatively large has been described, an inclined surface with a degree of chamfering may be applied.
[0030]
At least two or more flat plates are arranged to face each other to form an inner wall surface of the internal flow path, and have a plurality of projections formed on a surface of the flat plate in contact with the flow path. A plurality of flow passage reducing portions in which the width of the flow passage is reduced is configured, and in the cooling plate having different cross-sectional shapes in the refrigerant flow direction of the opposing protrusions in the flow passage reducing portion, the heat transfer coefficient between the cooling plate inner surface and the refrigerant is improved. In addition, the temperature difference between the cooling plate inner surface and the coolant can be reduced, and the temperature of the electronic component can be reduced.
[0031]
Embodiment 6 FIG.
FIG. 8A is a diagram showing a cross section of a cooling plate according to the sixth embodiment. The cooling plate 3 has a plurality of projections on a surface in contact with a flow path, and the projections are rectangular in the refrigerant flow direction. It has a shape. A plurality of flow channel reduction portions 32 are formed, in which the width of the flow channel is reduced by the projections from each of the flat plates.
[0032]
FIG. 8B is a view of the cooling plate shown in FIG. 8A as viewed from the direction A. The first projection 19 has a slit 21 in a direction intersecting with the channel reduction portion. The projection 20 is provided with a slit 22, and also in this slit, the flow path is reduced and the refrigerant is turbulent. FIG. 8C is a diagram of the cooling plate shown in FIG. 8A as viewed from the direction B. The projections have a different positional relationship from the first projection 19 and the second projection 20. Slits 21 and 22 are provided. The flow of the refrigerant is turbulent by the flow passage reducing portion 32 and the slit, and a difference in the positional relationship between the slits causes a flow between the certain flow passage reducing portion and another flow passage reducing portion arranged in the flow direction of the refrigerant. The flow of the refrigerant is deviated and collides with the inner surface of the cooling plate to increase the area where the refrigerant adheres to the inner surface of the cooling plate 3, thereby improving the heat transfer coefficient between the inner surface of the cooling plate 3 and the refrigerant 4. Get the effect.
[0033]
At least two or more flat plates are arranged to face each other to form an inner wall surface of the internal flow path, and have a plurality of projections formed on a surface of the flat plate in contact with the flow path. A plurality of flow passage reducing portions whose width is reduced are formed, and at least one slit is provided in the projection in a direction intersecting the flow passage reducing portion. The heat transfer coefficient can be improved, the temperature difference between the inner surface of the cooling plate and the coolant can be reduced, and the temperature of the electronic component can be reduced.
[0034]
At least two or more flat plates are arranged to face each other to form an inner wall surface of the internal flow path, and have a plurality of projections formed on a surface of the flat plate in contact with the flow path. A plurality of flow passage reducing portions whose width is reduced are formed, and at least one slit is provided in the projection in a direction intersecting with the flow passage reducing portion, and the position of the slit is set along the refrigerant flow direction. With the cooling plate changed for each projection, the heat transfer coefficient between the cooling plate inner surface and the coolant can be improved, the temperature difference between the cooling plate inner surface and the coolant can be reduced, and the temperature of the electronic component can be reduced.
[0035]
【The invention's effect】
As described above, according to the present invention, the heat-generating electronic component is indirectly connected to the heat-generating electronic component, and has an inner wall surface that forms an internal flow path through which the refrigerant flows. In the configured cooling member, the heat transfer coefficient between the inner surface of the cooling plate and the refrigerant is improved by forming the shape of the flow passage reducing portion asymmetrically with respect to the center of the flow passage, and the space between the cooling plate inner surface and the refrigerant is improved. Temperature difference can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a cooling plate shown as a comparative example of the present invention.
FIG. 3 is a cross-sectional view of the cooling plate according to the first embodiment of the present invention.
FIG. 4 is a sectional view of a cooling plate according to a second embodiment of the present invention.
FIG. 5 is a sectional view of a cooling plate according to Embodiment 3 of the present invention.
FIG. 6 is a sectional view of a cooling plate according to a fourth embodiment of the present invention.
FIG. 7 is a sectional view of a cooling plate according to a fifth embodiment of the present invention.
FIG. 8 is a sectional view of a cooling plate according to a sixth embodiment of the present invention.
[Explanation of symbols]
1 module, 2 electronic components, 3 cooling plate, 4 refrigerant, 5 chassis, 7 first projection, 8 second projection, 9 first projection, 10 second projection, 11 first projection, 12 second Projections, 13 first projections, 14 second projections, 15 third projections, 16 fourth projections, 17 first projections, 18 second projections, 19 first projections, 20 second projections , 21 slits, 22 slits, 31 projections, 32 flow path reduction section, 33 flow path reduction section, 34 flow path reduction section.

Claims (9)

発熱性の電子部品と熱的に間接的に接続され、冷媒の流れる内部流路を形成する内壁面を有し、その内壁面に流路の幅を縮小する流路縮小部の構成された冷却部材であって、当該流路縮小部の形状が流路の中心に対して非対象に形成されたことを特徴とする冷却部材。Cooling having an inner wall surface that is indirectly thermally connected to the heat-generating electronic component and forms an internal flow path through which a coolant flows, and a flow path reducing portion configured to reduce the width of the flow path on the inner wall surface A cooling member, wherein the shape of the flow passage reducing portion is formed asymmetrically with respect to the center of the flow passage. 冷却部材の流路縮小部は、上記内壁面に配置された複数の突起で形成されたことを特徴とする請求項1記載の冷却部材。The cooling member according to claim 1, wherein the channel reducing portion of the cooling member is formed by a plurality of protrusions arranged on the inner wall surface. 上記冷却部材は、少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成されて流路縮小部を構成する複数の突起を有し、
当該複数の突起は、少なくとも2つの対向する突起の冷媒流入側もしくは排出側の面の位置を異なる位置に配置したことを特徴とする請求項1記載の冷却部材。
The cooling member has at least two or more flat plates arranged opposite to each other to form an inner wall surface of the internal flow path, and a plurality of projections formed on a surface of the flat plate that is in contact with the flow path to form a flow path reducing portion. Have
2. The cooling member according to claim 1, wherein the plurality of protrusions are arranged at different positions on at least two opposing protrusions on a refrigerant inflow side or a discharge side surface. 3.
上記冷却部材は、少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成されて流路縮小部を構成する複数の突起を有し、
当該複数の突起は、少なくとも2つの対向する突起の冷媒の流れ方向における長さを異なるように形成したことを特徴とする請求項1記載の冷却部材。
The cooling member has at least two or more flat plates arranged opposite to each other to form an inner wall surface of the internal flow path, and a plurality of projections formed on a surface of the flat plate that is in contact with the flow path to form a flow path reducing portion. Have
The cooling member according to claim 1, wherein the plurality of protrusions are formed so that at least two opposing protrusions have different lengths in a flow direction of the coolant.
上記冷却部材は、少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成されて流路縮小部を構成する複数の突起を有し、
当該複数の突起は、少なくとも2つの対向する突起の形状もしくは位置関係が冷媒の流れ方向に沿って変化するように形成したことを特徴とする請求項1記載の冷却部材。
The cooling member has at least two or more flat plates arranged opposite to each other to form an inner wall surface of the internal flow path, and a plurality of projections formed on a surface of the flat plate that is in contact with the flow path to form a flow path reducing portion. Have
The cooling member according to claim 1, wherein the plurality of protrusions are formed such that a shape or a positional relationship of at least two opposed protrusions changes along a flow direction of the coolant.
上記冷却部材は、少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成されて流路縮小部を構成する複数の突起を有し、
当該複数の突起は、少なくとも2つの対向する突起の形状もしくは位置関係が冷媒の流れ方向に沿って交互に規則的に配置することを特徴とする請求項1記載の冷却部材。
The cooling member has at least two or more flat plates arranged opposite to each other to form an inner wall surface of the internal flow path, and a plurality of projections formed on a surface of the flat plate that is in contact with the flow path to form a flow path reducing portion. Have
The cooling member according to claim 1, wherein the plurality of protrusions are arranged such that at least two opposed protrusions have a shape or a positional relationship alternately and regularly along a flow direction of the refrigerant.
上記冷却部材は、少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成されて流路縮小部を構成する複数の突起を有し、
当該複数の突起は、少なくとも2つの対向する突起の冷媒流れ方向における断面形状が異なることを特徴とする請求項1記載の冷却部材。
The cooling member has at least two or more flat plates arranged opposite to each other to form an inner wall surface of the internal flow path, and a plurality of projections formed on a surface of the flat plate that is in contact with the flow path to form a flow path reducing portion. Have
The cooling member according to claim 1, wherein the plurality of protrusions have different cross-sectional shapes in at least two opposing protrusions in a coolant flow direction.
上記冷却部材は、少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成されて流路縮小部を構成する複数の突起を有し、
当該複数の突起は、当該流路縮小部と交差する方向に少なくとも1つ以上のスリットを設けたことを特徴とする請求項1記載の冷却部材。
The cooling member has at least two or more flat plates arranged opposite to each other to form an inner wall surface of the internal flow path, and a plurality of projections formed on a surface of the flat plate that is in contact with the flow path to form a flow path reducing portion. Have
The cooling member according to claim 1, wherein the plurality of projections have at least one slit provided in a direction intersecting the flow path reducing portion.
上記冷却部材は、少なくとも2つ以上の平板が対向配置されて内部流路の内壁面を構成するとともに、当該平板の流路と接する面に形成されて流路縮小部を構成する複数の突起を有し、
当該複数の突起は、当該流路縮小部と交差する方向に少なくとも1つ以上のスリットを設け、当該スリットの位置を冷媒流れ方向に沿った夫々の突起毎に変化させたことを特徴とする請求項1記載の冷却部材。
The cooling member has at least two or more flat plates arranged opposite to each other to form an inner wall surface of the internal flow path, and a plurality of projections formed on a surface of the flat plate that is in contact with the flow path to form a flow path reducing portion. Have
The plurality of protrusions are provided with at least one slit in a direction intersecting with the flow path reducing portion, and the position of the slit is changed for each protrusion along the refrigerant flow direction. Item 2. The cooling member according to Item 1.
JP2003006784A 2003-01-15 2003-01-15 Cooling member Expired - Fee Related JP4165232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006784A JP4165232B2 (en) 2003-01-15 2003-01-15 Cooling member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006784A JP4165232B2 (en) 2003-01-15 2003-01-15 Cooling member

Publications (2)

Publication Number Publication Date
JP2004221315A true JP2004221315A (en) 2004-08-05
JP4165232B2 JP4165232B2 (en) 2008-10-15

Family

ID=32897060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006784A Expired - Fee Related JP4165232B2 (en) 2003-01-15 2003-01-15 Cooling member

Country Status (1)

Country Link
JP (1) JP4165232B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034641A1 (en) * 2007-09-14 2009-03-19 Advantest Corporation Water jacket
JP2009135524A (en) * 2009-03-12 2009-06-18 Mitsubishi Electric Corp Heat sink
KR101459204B1 (en) * 2011-06-07 2014-11-07 도요타지도샤가부시키가이샤 Cooler
CN105658027A (en) * 2015-10-22 2016-06-08 浙江大学 Liquid cooling plate used for electronic component cooling
US20160372805A1 (en) * 2014-02-25 2016-12-22 Lg Electronics Inc. Battery pack
CN110610909A (en) * 2018-06-14 2019-12-24 大众汽车有限公司 Electronic component with improved cooling power and motor vehicle with electronic component

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034641A1 (en) * 2007-09-14 2009-03-19 Advantest Corporation Water jacket
JP4934199B2 (en) * 2007-09-14 2012-05-16 株式会社アドバンテスト Water jacket
US8391006B2 (en) 2007-09-14 2013-03-05 Advantest Corporation Water jacket for cooling an electronic device on a board
JP2009135524A (en) * 2009-03-12 2009-06-18 Mitsubishi Electric Corp Heat sink
KR101459204B1 (en) * 2011-06-07 2014-11-07 도요타지도샤가부시키가이샤 Cooler
US20160372805A1 (en) * 2014-02-25 2016-12-22 Lg Electronics Inc. Battery pack
US10547093B2 (en) * 2014-02-25 2020-01-28 Lg Electronics Inc. Battery pack
CN105658027A (en) * 2015-10-22 2016-06-08 浙江大学 Liquid cooling plate used for electronic component cooling
CN105658027B (en) * 2015-10-22 2018-04-13 浙江大学 Liquid cooling plate for electronic unit cooling
CN110610909A (en) * 2018-06-14 2019-12-24 大众汽车有限公司 Electronic component with improved cooling power and motor vehicle with electronic component

Also Published As

Publication number Publication date
JP4165232B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
US8472193B2 (en) Semiconductor device
JP5397543B2 (en) Heat exchanger and manufacturing method thereof
US20040000393A1 (en) High performance fan tail heat exchanger
KR101029173B1 (en) Heat­exchanging device
US11502022B2 (en) Heatsink, and semiconductor module including the heatsink
JP6462737B2 (en) heatsink
JP2008004667A (en) Cooling structure, and manufacturing method thereof
WO2018123387A1 (en) Radiator for liquid cooling type cooling device and manufacturing method therefor
JP2011071386A (en) Cooling apparatus
JP5344994B2 (en) Heat sink device
JP2007250753A (en) Cooling plate
US20050145379A1 (en) Flat tube cold plate assembly
JP2008177314A (en) Motor controller
JP2004221315A (en) Cooling device
JP5589647B2 (en) Cooling system
US20230044486A1 (en) Liquid cooling jacket and cooling device
JP4228680B2 (en) Cooling member
JPH08125366A (en) Device for cooling electronic part
JP2013229461A (en) Servo amplifier including heat sink with fins having wall thickness and pitch dependent on distance from heat source
JP2005123260A (en) Water-cooled heatsink
US20230324129A1 (en) Cooling device
JP2005203466A (en) Heatsink
JP2990462B2 (en) Aluminum heat sink
KR870001342Y1 (en) Heat exchanger
JPH0983164A (en) Heat sink and its manufacture

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080721

R151 Written notification of patent or utility model registration

Ref document number: 4165232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees