JP2004203224A - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
JP2004203224A
JP2004203224A JP2002375015A JP2002375015A JP2004203224A JP 2004203224 A JP2004203224 A JP 2004203224A JP 2002375015 A JP2002375015 A JP 2002375015A JP 2002375015 A JP2002375015 A JP 2002375015A JP 2004203224 A JP2004203224 A JP 2004203224A
Authority
JP
Japan
Prior art keywords
housing
gear
wall portion
receiving wall
bottom portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002375015A
Other languages
Japanese (ja)
Other versions
JP4226893B2 (en
Inventor
Kazuhiro Toyama
和宏 外山
Toshio Makino
登志雄 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2002375015A priority Critical patent/JP4226893B2/en
Publication of JP2004203224A publication Critical patent/JP2004203224A/en
Application granted granted Critical
Publication of JP4226893B2 publication Critical patent/JP4226893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Gear Transmission (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a miniaturized actuator to turn an output shaft. <P>SOLUTION: An actuator 1 comprises a stepping motor to rotate a rotary shaft 21 by a predetermined angle based on a pulse signal, and a second intermediate gear 16 to rotate an output gear 17 to be integrally turned with an output shaft 26 by a predetermined angle in an interlocking manner with the rotational angle of a drive gear 14 integrally rotated with the rotary shaft 21. The actuator 1 rotates the second intermediate gear 16 to engage a receiving wall part 27 formed in a first housing 12 with a regulation part 34 formed in the second intermediate gear 16, and directs the output shaft 26 in the reference direction. The actuator 1 controls the turn of the output shaft 26 by rotating the output shaft 26 by a predetermined angle from the reference direction based on the pulse signal. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、出力軸を回動させるアクチュエータに関するものである。
【0002】
【従来の技術】
従来、車両用ランプの照射方向を制御するアクチュエータは、該車両用ランプの照射方向を変化させるための駆動力を提供するブラシレスモータを使用していた(例えば、特許文献1)。
【0003】
詳述すると、ブラシレスモータの回転軸は、減速機構を介して、車両用ランプが一体的に回動するように取付けられた出力軸に駆動連結されており、該回転軸の回転により車両用ランプの照射方向が変更される。
【0004】
しかし、車両用ランプの照射方向を所定角度だけ回動させる制御には、車両用ランプの照射方向を検出するためのセンサが必要であり、製造コストが高くなる原因となっていた。
【0005】
そこで、パルス信号のパルス数によって回転軸を所定角度回転させることができるステッピングモータを使用して、車両用ランプの照射方向を制御する方法が考えられる。
【0006】
図6に、ステッピングモータを用いたアクチュエータ90を示す。このアクチュエータ90は、ステッピングモータの回転軸91に一体回動可能に取着されたギヤ92が第1及び第2減速ギヤ93、94を介して出力軸95に一体回動可能に取着された出力ギヤ96に駆動連結されている。アクチュエータ90のハウジング97には、出力ギヤ96の端部96aと係合する受壁部98が設けられている。図示しない制御装置は、出力ギヤ96の端部96aが受壁部98と係合するようにステッピングモータにパルス信号を印加した後、車両の進行方向に応じてステッピングモータを正方向又は逆方向に回転させるようにパルス信号を印加する。このように、受壁部98に出力ギヤ96を押し当てて出力軸95の回動位置を初期化した後、車両の進行方向に応じて印加するパルス信号により出力軸95を正方向及び逆方向に回転させることで、その出力軸95に取着された図示しない車両用ランプの照射方向を制御する。
【0007】
【特許文献1】
特開2002−160581号公報
【0008】
【発明が解決しようとする課題】
ところで、ステッピングモータの回転軸91から伝達された駆動力は、第1及び第2減速ギヤ93、94を用いているため、出力ギヤ96において最も回転トルクが大きくなり、受壁部98に出力ギヤ96を押し当てたときの負荷が大きい。このため、出力軸95の回動方向、即ち車両ランプの照射方向を精度良く制御するためには、出力ギヤ96の強度及びハウジング97に設けた受壁部98の強度を確保しなければならず、出力ギヤ96やハウジング97の厚みを増すことによりアクチュエータの大型化を招いていた。
【0009】
本発明は上記問題点を解決するためになされたものであって、その目的は、小型のアクチュエータを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、出力軸に取着される被回動部材の基準位置からの回動位置を制御するために用いられるアクチュエータであって、パルス信号に基づいて回動駆動するステッピングモータにより駆動ギヤ及び中間ギヤを介して前記出力軸に一体回動可能に取着された出力ギヤが減速回動され、前記中間ギヤ及び前記出力ギヤがハウジング内に軸支収容されたアクチュエータにおいて、前記中間ギヤ及び前記ハウジングには、該中間ギヤ回動により互いに係合する規制部及び受壁部が備えられ、前記受壁部と前記規制部とが係合したときの前記出力軸の回動を基準方向として、前記出力軸の回動方向が前記パルス信号により制御される。
【0011】
請求項2に記載の発明は、前記規制部は、前記中間ギヤに備えられた円盤状のギヤ部の内径側であって該ギヤ部の回動軸の周方向に沿って形成された環状の凹部内に形成されており、前記受壁部は、その先端部分が前記凹部に挿入され、かつ、前記規制部と係合するまで前記中間ギヤが回転可能な形状に形成された。
【0012】
請求項3に記載の発明は、前記ハウジングは、前記受壁部が形成された第1のハウジングと、前記第1のハウジングを閉塞する第2のハウジングと、から構成され、前記第1のハウジングに前記ステッピングモータを固定した。
【0013】
請求項4に記載の発明は、前記第1のハウジングは、底部とその底部の外縁を囲む側壁部とからなり、前記第2のハウジングは、前記第1のハウジングの側壁部に固定される平板からなり、前記第1のハウジングの底部は、前記第2のハウジングからの距離が異なる浅底部と深底部とからなり、第2のハウジングからの距離が深底部より短い浅底部の内側面に前記受壁部を形成した。
【0014】
請求項5に記載の発明は、前記受壁部は、前記浅底部から前記深底部までを繋ぐ壁部と前記浅底部により形成される角に備えられた。
請求項6に記載の発明は、前記浅底部の外側面に前記ステッピングモータを固定した。
【0015】
請求項7に記載の発明は、前記規制部と前記受壁部は、その係合する面を平坦面にした。
(作用)
請求項1に記載の発明によれば、受壁部に中間ギヤに備えた規制部を係合させることにより、出力軸の基準方向を決定することができる。このため、回転させたとき回転トルクの大きい出力ギヤの回転を規制するときに加わる負荷より、中間ギヤに加わる負荷の方が小さくなる。
【0016】
請求項2に記載の発明によれば、規制部を中間ギヤに形成された凹部内に形成し、受壁部を凹部に挿入することにより、ハウジング内に受壁部と規制部とを備えるためのスペースが必要なくなり、アクチュエータが小さくなる。
【0017】
請求項3に記載の発明によれば、受壁部が形成された第1のハウジングにステッピングモータを固定した。このため、受壁部と規制部とが係合したときの衝撃で第1のハウジングと第2のハウジングの位置関係がずれることが無くなるので、受壁部とステッピングモータの位置関係がずれることが無くなる。このため、確実に基準方向を決定することができる。
【0018】
請求項4に記載の発明によれば、浅底部に受壁部を備えたので、受壁部の突出幅が小さくなり、受壁部の剛性が向上する。また、2段底にすることにより、第1のハウジングの剛性が向上する。
【0019】
請求項5に記載の発明によれば、壁部と浅底部とにより形成される角に前記受壁部を備えたので、受壁部及び第1のハウジングの剛性が向上する。
請求項6に記載の発明によれば、ステッピングモータを第1のハウジングの外に固定したことにより、ステッピングモータが各種ギヤの配置に干渉しなくなり、各種ギヤが密にして配置することができる。また、浅底部と壁部によって形成された凹みにステッピングモータを取付けたので、アクチュエータの全長が小さくなる。
【0020】
請求項7に記載の発明によれば、受壁部は、規制部の平坦面と係合するので、係合したときの負荷が小さくなる。
【0021】
【発明の実施の形態】
以下、本発明を具体化した一実施形態を図面に従って説明する。
図1は、本実施形態のアクチュエータ1を取付けた車両2の概略平面図である。
【0022】
車両2の進行方向を制御するハンドル3には、そのハンドル3の回転量を検知するセンサ4が取付けられ、該センサ4には、制御装置5が接続されている。該制御装置5には、被回動部材としての車両用ランプ6の照射方向を変更するアクチュエータ1が接続されている。該車両用ランプ6は、車両2の先端に取付けられている。
【0023】
図2は、本実施形態におけるアクチュエータ1の各ギヤの軸に沿って切断した断面図である。図3は、アクチュエータ1の内部の構成を説明するための平面図である。
【0024】
アクチュエータ1は、第1のハウジング12及び第2のハウジング13を備え、その内部に駆動ギヤ14、第1中間ギヤ15、第2中間ギヤ16及び出力ギヤ17等が収容され、第1のハウジング12の外部にステッピングモータ18が取着されている。
【0025】
第1のハウジング12は、略四角形状の底部12aと、該底部12aの外縁を囲むように、その外縁から該底部12aに対して垂直方向に沿って延出形成された側壁部12bと、からなる。このように構成された第1のハウジング12を閉塞するように平板状の第2のハウジング13が側壁部12bに取付けられる。また、第1のハウジング12の底部12aは、2段底になっている。つまり、第1のハウジング12の底部12aは、第2のハウジング13から底部12aまでの距離が短い浅底部19と、第2のハウジング13から底部12aまでの距離が長い深底部20とから構成されている。
【0026】
浅底部19には、第1上側軸受22aが固定され、該第1上側軸受22a及びカップ状のモータケース11の底部に固定されたモータ内軸受22bにより、ステッピングモータ18の回転軸21を回転可能に軸支している。また、浅底部19の内側面19aには、第2上側軸受23aが形成され、第2のハウジング13には、該第2上側軸受23aに対応する第2下側軸受23bが形成されており、該第2上側軸受23a及び第2下側軸受23bが、第1中間ギヤ15を回転可能に軸支している。深底部20には、第3上側軸24a受けが形成され、第2のハウジング13には、該第3上側軸受24aに対応する第3下側軸受24bが形成されており、該第3上側軸受24a及び第3下側軸受24bが、第2中間ギヤ16を回転可能に軸支している。そして、深底部20には、第4上側軸受25aが形成され、第2のハウジング13には、該第4上側軸受25aに対応する第4下側軸受25bが形成されており、該第4上側軸受25a及び第4下側軸受25bが、出力軸26を回動可能に軸支している。
【0027】
また、浅底部19には、浅底部19から第2のハウジング13に向かって突出している受壁部27が延出形成されている。該受壁部27は、図4に示すように、第3上側軸受24aの軸心を中心とした扇形形状をしており、その周方向両端には、径方向に沿った平坦面27aが形成されている。また、受壁部27は、浅底部19と深底部20とを繋ぐ壁部28の反対側近傍に位置する。即ち、受壁部27は、浅底部19と壁部28により形成される角の付近に形成される。尚、図4は、第1のハウジング12を、第2のハウジング13側からみたときの様子を示す平面図である。
【0028】
そして、この浅底部19の外側面19bからステッピングモータ18が取着されている。ステッピングモータ18は、図1に示す制御装置5から入力されるパルス信号により、回転軸21を所定角度回転する。尚、本実施形態においては、車両2のハンドル3に接続されたセンサ4は、ハンドル3の回動量を検知し、その値を制御装置5に送信する。そして、制御装置5は、ハンドル3の回動量に比例して、ステッピングモータ18の回転軸21が所定角度回転するようにパルス信号を出力する。即ち、ハンドル3を回転させることにより、車両2の方向及び車両用ランプ6の照射方向が制御され、車両用ランプ6が車両2の進行方向を照射する。
【0029】
ステッピングモータ18の回転軸21は、第1上側軸受22a及びモータ内軸受22bにより回転可能に軸支されている。該回転軸21の先端付近には、回転軸21と一体的に回転する駆動ギヤ14が備えられている。
【0030】
第1中間ギヤ15は、第2上側軸受23a及び第2下側軸受23bにより、回転可能に軸支されている。該第1中間ギヤ15は、円盤状の大径ギヤ29と小径ギヤ30とが一体に形成されており、該大径ギヤ29が前記駆動ギヤ14と噛合している。
【0031】
第2中間ギヤ16は、第3上側軸受24a及び第3下側軸受24bにより、回転可能に軸支されている。該第2中間ギヤ16は、ギヤ部として円盤状の大径ギヤ31と小径ギヤ32とが一体に形成されており、該大径ギヤ31が前記第1中間ギヤ15の小径ギヤ30と噛合している。
【0032】
図5(a)及び図5(b)に示すように、第2中間ギヤ16の大径ギヤ31の内径側には、環状の凹部33が形成されている。そして、該凹部33の底部から軸線方向に沿って延びるように規制部34が突設されている。該規制部34は、図5(b)に示すように、第2中間ギヤ16の軸心を中心とする扇形形状に形成され、その周方向両端には、径方向に沿った平坦面34aが形成されている。
【0033】
以上のように構成された第2中間ギヤ16は、図2に示すように、該凹部33が第1のハウジング12の底部12aに対向するように取付けられ、第3上側軸受24aと第3下側軸受24bにより軸支される。また、このとき、浅底部19に備えられた受壁部27が規制部34と周方向に係合するように凹部33に挿入される。
【0034】
即ち、受壁部27は、凹部33の形状に合わせて扇形状をしており、さらに、その先端部が凹部33に形成された規制部34と係合可能なように突出している。また、受壁部27の外径面から内径面までの幅が凹部33の外径面から内径面までの幅より小さく形成されている。このため、第2中間ギヤ16は、受壁部27が凹部33に挿入された状態で、凹部33から突出形成された規制部34の平坦面34aが受壁部27の平坦面27aに係合するまで回動することができる。
【0035】
深底部20に形成された第4上側軸受25aに対応して第2のハウジング13には、第4下側軸受25bが形成され、該第4上側軸受25a及び第4下側軸受25bにより、出力軸26が回転可能に軸支されている。該出力軸26は、出力ギヤ17が一体に形成されている。該出力ギヤ17は、円弧状に形成された出力ギヤ部17aを有しており、該出力ギヤ部17aが第2中間ギヤ16の小径ギヤ32と噛合している。また、出力軸26の先端は第1のハウジング12から突出し、その先端には、車両用ランプ6が一体的に回動するように連結される。
【0036】
該出力軸26の第1のハウジング12から突出していない一端には、出力軸26の軸心を中心とする円筒形状の収容凹部35が形成されている。該収容凹部35には円筒形状のリング36が収容されている。尚、該リング36は、該収容凹部35の開口端に形成されたかしめ部35aにより固定されている。そして、該リング36の内周面には、対向する一対の磁石37が固定されている。リング36の中心、即ち、出力軸26の中心には、第2のハウジング13に固定された磁気センサ38が配置されている。該磁気センサ38は、磁石37により発生する磁束量を計測しており、磁束量の変化により出力ギヤ17の位置、即ち、車両用ランプ6の照射方向を検知する。この磁気センサ38は、車両用ランプ6を基準方向に向ける際に、ステッピングモータ18が脱調したか否か、及び、確実に車両用ランプ6が基準方向に向いたか否かを確認するために使用される。
【0037】
ここで、車両用ランプ6の照射方向を制御する方法について説明する。
車両2のハンドル3を動かして車両2及び車両用ランプ6を制御する前に、制御装置5は、初期設定を行う旨のパルス信号をステッピングモータ18に出力する。ステッピングモータ18は、制御装置5からそのパルス信号を受け取り、回転軸21を回転させる。回転軸21と共に駆動ギヤ14が回転し、その回転に連動して第1中間ギヤ15及び第2中間ギヤ16が回転する。そして、第2中間ギヤ16は、第2中間ギヤ16に設けられた規制部34が受壁部27によってその回動運動が規制されるまで第2中間ギヤ16を回動する。このとき、出力ギヤ17は、第2中間ギヤ16の小径ギヤ32と噛合しているので、第2中間ギヤ16が所定角度回動すると、その動きに連動して出力軸26及び車両用ランプ6も所定角度回動する。このため、出力軸26及び車両用ランプ6は、第2中間ギヤ16の規制部34が受壁部27と係合するまで回動する。尚、制御装置5は、初期設定を行うためのパルス信号出力後、磁気センサ38により車両用ランプ6の照射方向が基準方向に向いたか否かを確認し、初期設定が終了したか否かを判断する。
【0038】
そして、規制部34と受壁部27とが係合したときの車両用ランプ6の照射方向を基準方向として制御装置5に予め記憶させておけば、制御装置5は、初期設定後、基準方向から所定角度回転させるパルス信号を出力することにより、車両用ランプ6を指定した方向に向けるように制御できる。即ち、制御装置5は、車両2のハンドル3の回転角度に基づいて、パルス信号をアクチュエータ1に出力し、車両2の進行方向に合わせて車両用ランプ6の照射方向を変更することができる。
【0039】
以上詳述したように本実施の形態は、以下の特徴を有する。
(1)第1のハウジング12に受壁部27を備え、該受壁部27に第2中間ギヤ16に備えられた規制部34を押し当てて、出力軸26の基準方向、即ち、車両用ランプ6の基準とする照射方向を決定する。第2中間ギヤ16の回転トルクは、出力ギヤ17の回転トルクより小さいので、受壁部27に規制部34を押し当てたときの負荷が、従来における負荷と比べて少ない。即ち、受壁部27及び規制部34の強度の剛性を大きくする必要が無くなる。このため、第1のハウジング12、出力ギヤ17及び第2中間ギヤ16を小型化することができ、アクチュエータ1を小型化することが可能となる。
【0040】
(2)第2中間ギヤ16の凹部33内に規制部34を設け、受壁部27を該凹部33に挿入するようにしたので、受壁部27及び規制部34を設けるために余分なスペースを必要とせず、アクチュエータ1を小型化することができる。
【0041】
(3)受壁部27を備えた第1のハウジング12にステッピングモータ18を固定した。このため、第2のハウジング13にステッピングモータ18を取付けて受壁部27に規制部34を押し当てた場合に、押し当てたときの衝撃によって生じる第1のハウジング12と第2のハウジング13とのずれを防止する。このため、初期設定を行う際、車両用ランプ6の照射方向を確実に基準方向に向けることが可能となる。
【0042】
(4)第1のハウジング12の底部12aを段付きにしたことにより、第1のハウジング12自体の剛性を向上することができる。また、浅底部19に受壁部27を設けたことにより、深底部20に設けた場合よりも、受壁部27が突出する長さを短くすることができ、受壁部27の剛性が向上する。また、深底部20と浅底部19とを繋ぐ壁部28近傍に受壁部27を設けたので、受壁部27の剛性が向上する。このため、第1のハウジング12及び受壁部27の剛性を確保しつつ、第1のハウジング12を小型化することができる。
【0043】
(5)ステッピングモータ18を浅底部19の外側面19bに固定した。このため、ステッピングモータ18に干渉されずに、各種ギヤを余分なスペースを空けずに配置することができ、アクチュエータ1を小型化することが可能となる。また、浅底部19の外側面19bに固定したので、アクチュエータ1の全長を短くすることができ、アクチュエータ1を小型化することが可能となる。
【0044】
(6)規制部34は、第2中間ギヤ16の軸心を中心とした扇形状をしており、その周方向両端に径方向に沿って受壁部27の平坦面27aに押し当てられる平坦面34aを備えている。平坦面27a、34a同士を係合することにより、係合したときの面圧が小さくなり、受壁部27と規制部34との間に生じる負荷を小さくすることができる。このため、受壁部27及び規制部34の耐久性を向上することができる。また、規制部34及び受壁部27を扇形状にしたことにより、それらの周方向の長さにより、車両用ランプ6の回動範囲を決定することが可能となる。
【0045】
なお、上記以外に次の形態にて具体化できる。
○上記実施形態において、出力ギヤ17が予め決められた所定の回動範囲内で回動するように規制する一対の受壁部を、出力ギヤ17の両端に設けてもよい。
【0046】
○上記実施形態では、出力軸26を基準方向に向ける際に、ステッピングモータ18が脱調したか否か、及び、確実に出力軸26が基準方向に向いたか否かを確認するために使用する磁気センサ38を設けたが、設けなくても良い。尚、この場合も、上記実施形態と同様の効果を得ることができる。
【0047】
○上記実施形態では、規制部34及び受壁部27にそれぞれ平坦面34a、27aを設けたが、常に一定の場所で受壁部27に規制部34が係合するならば、平坦面34a、27aでなくても良い。
【0048】
○上記実施形態では、駆動ギヤ14の駆動力を出力ギヤ17に伝達するために、第1中間ギヤ15及び第2中間ギヤ16の2個のギヤを介していたが、複数のギヤを介して出力ギヤ17に駆動力を伝えても良い。また、1個のギヤを介して駆動ギヤ14の駆動力を出力ギヤ17に伝達してもよい。また、この場合、第2中間ギヤ16に規制部34を備えずに、第1中間ギヤ15等の他の中間ギヤに規制部34を備えても良い。
【0049】
上記の実施形態及び別例から把握できる技術的思想を以下に記載する。
(イ)前記出力軸に、出力軸と一体的に回転する車両用ランプを取付けたことを特徴とする請求項1〜7のいずれか一項に記載のアクチュエータ。
【0050】
【発明の効果】
以上詳述したように、本発明によれば、アクチュエータを小型化することができる。
【図面の簡単な説明】
【図1】アクチュエータを取付けた車両2の概略平面図。
【図2】アクチュエータの各ギヤの軸に沿って切断した断面図。
【図3】アクチュエータの内部を説明するための平面図。
【図4】第1のハウジングの平面図。
【図5】(a)は、第2中間ギヤの側断面図、(b)は、第2中間ギヤの縦断面図。
【図6】従来のアクチュエータの内部を説明するための平面図。
【符号の説明】
1…アクチュエータ、12…第1のハウジング、12a…第1のハウジングの底部、12b…第1のハウジングの側壁部、13…第2のハウジング、14…駆動ギヤ、15…第1中間ギヤ、16…第2中間ギヤ、17…出力ギヤ、18…ステッピングモータ、19…浅底部、19a…浅底部の内側面、20…深底部、21…回転軸、26…出力軸、27…受壁部、27a…受壁部の平坦面、28…壁部、31…第2中間ギヤの大径ギヤ、33…凹部、34…規制部、34a…規制部の平坦面。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an actuator that rotates an output shaft.
[0002]
[Prior art]
Conventionally, an actuator that controls the irradiation direction of a vehicle lamp has used a brushless motor that provides a driving force for changing the irradiation direction of the vehicle lamp (for example, Patent Document 1).
[0003]
More specifically, the rotating shaft of the brushless motor is drivingly connected to an output shaft attached so that the vehicle lamp rotates integrally through a reduction mechanism, and the rotation of the rotating shaft causes the vehicle lamp to rotate. The irradiation direction is changed.
[0004]
However, the control for rotating the irradiation direction of the vehicle lamp by a predetermined angle requires a sensor for detecting the irradiation direction of the vehicle lamp, which increases the manufacturing cost.
[0005]
Therefore, a method of controlling the irradiation direction of the vehicle lamp by using a stepping motor capable of rotating the rotation shaft by a predetermined angle depending on the number of pulses of the pulse signal is conceivable.
[0006]
FIG. 6 shows an actuator 90 using a stepping motor. In this actuator 90, a gear 92 attached to a rotary shaft 91 of a stepping motor so as to be integrally rotatable is attached to an output shaft 95 via first and second reduction gears 93 and 94. Drive coupled to the output gear 96. The housing 97 of the actuator 90 is provided with a receiving wall 98 that engages with the end 96 a of the output gear 96. A control device (not shown) applies a pulse signal to the stepping motor so that the end 96a of the output gear 96 engages with the receiving wall 98, and then moves the stepping motor forward or backward depending on the traveling direction of the vehicle. A pulse signal is applied so as to rotate. Thus, after the output gear 96 is pressed against the receiving wall 98 to initialize the rotation position of the output shaft 95, the output shaft 95 is moved in the forward direction and the reverse direction by the pulse signal applied according to the traveling direction of the vehicle. , The irradiation direction of a vehicle lamp (not shown) attached to the output shaft 95 is controlled.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-160581
[Problems to be solved by the invention]
By the way, since the driving force transmitted from the rotary shaft 91 of the stepping motor uses the first and second reduction gears 93 and 94, the rotational torque is the largest in the output gear 96 and the output gear 96 receives the output gear. The load when 96 is pressed is large. Therefore, in order to accurately control the rotation direction of the output shaft 95, that is, the irradiation direction of the vehicle lamp, the strength of the output gear 96 and the strength of the receiving wall portion 98 provided in the housing 97 must be ensured. Increasing the thickness of the output gear 96 and the housing 97 leads to an increase in the size of the actuator.
[0009]
The present invention has been made to solve the above problems, and an object thereof is to provide a small actuator.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is an actuator used for controlling a rotation position from a reference position of a member to be rotated attached to an output shaft. The output gear attached to the output shaft through the drive gear and the intermediate gear so as to rotate integrally is reduced and rotated by the stepping motor that rotates based on the rotation, and the intermediate gear and the output gear are placed in the housing. In the actuator accommodated in the shaft support, the intermediate gear and the housing are provided with a restriction portion and a receiving wall portion that are engaged with each other by the rotation of the intermediate gear, and the receiving wall portion and the restriction portion are engaged with each other. The rotation direction of the output shaft is controlled by the pulse signal with the rotation of the output shaft as a reference direction.
[0011]
According to a second aspect of the present invention, the restricting portion is an annular shape formed on the inner diameter side of the disc-shaped gear portion provided in the intermediate gear and along the circumferential direction of the rotation shaft of the gear portion. It is formed in a recess, and the receiving wall portion is formed in such a shape that the intermediate gear can rotate until the tip portion is inserted into the recess and engages with the restricting portion.
[0012]
According to a third aspect of the present invention, the housing includes a first housing in which the receiving wall portion is formed, and a second housing that closes the first housing, and the first housing. The stepping motor was fixed to.
[0013]
According to a fourth aspect of the present invention, the first housing includes a bottom portion and a side wall portion surrounding an outer edge of the bottom portion, and the second housing is a flat plate fixed to the side wall portion of the first housing. The bottom portion of the first housing is composed of a shallow bottom portion and a deep bottom portion having different distances from the second housing, and the distance from the second housing is on the inner surface of the shallow bottom portion shorter than the deep bottom portion. A receiving wall was formed.
[0014]
According to a fifth aspect of the present invention, the receiving wall portion is provided at a corner formed by the wall portion connecting the shallow bottom portion to the deep bottom portion and the shallow bottom portion.
According to a sixth aspect of the present invention, the stepping motor is fixed to the outer surface of the shallow bottom portion.
[0015]
In the invention according to claim 7, the restricting portion and the receiving wall portion have flat surfaces that engage with each other.
(Function)
According to the first aspect of the present invention, the reference direction of the output shaft can be determined by engaging the restricting portion provided in the intermediate gear with the receiving wall portion. For this reason, the load applied to the intermediate gear is smaller than the load applied when the rotation of the output gear having a large rotational torque when it is rotated.
[0016]
According to the second aspect of the present invention, the restricting portion is formed in the recess formed in the intermediate gear, and the receiving wall portion is inserted into the recess, thereby providing the receiving wall portion and the restricting portion in the housing. Space is not required, and the actuator becomes smaller.
[0017]
According to the invention described in claim 3, the stepping motor is fixed to the first housing in which the receiving wall portion is formed. For this reason, since the positional relationship between the first housing and the second housing is not shifted due to an impact when the receiving wall portion and the regulating portion are engaged, the positional relationship between the receiving wall portion and the stepping motor may be shifted. Disappear. For this reason, a reference direction can be determined reliably.
[0018]
According to the invention described in claim 4, since the receiving wall portion is provided in the shallow bottom portion, the protruding width of the receiving wall portion is reduced, and the rigidity of the receiving wall portion is improved. Moreover, the rigidity of the first housing is improved by using the two-stage bottom.
[0019]
According to the invention described in claim 5, since the receiving wall portion is provided at the corner formed by the wall portion and the shallow bottom portion, the rigidity of the receiving wall portion and the first housing is improved.
According to the invention described in claim 6, since the stepping motor is fixed outside the first housing, the stepping motor does not interfere with the arrangement of the various gears, and the various gears can be arranged densely. Moreover, since the stepping motor is attached to the recess formed by the shallow bottom and the wall, the overall length of the actuator is reduced.
[0020]
According to the invention described in claim 7, since the receiving wall portion engages with the flat surface of the restricting portion, the load when engaged is reduced.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
FIG. 1 is a schematic plan view of a vehicle 2 to which an actuator 1 according to this embodiment is attached.
[0022]
A sensor 4 that detects the amount of rotation of the handle 3 is attached to the handle 3 that controls the traveling direction of the vehicle 2, and a control device 5 is connected to the sensor 4. The control device 5 is connected to an actuator 1 that changes the irradiation direction of a vehicle lamp 6 as a pivoted member. The vehicle lamp 6 is attached to the tip of the vehicle 2.
[0023]
FIG. 2 is a cross-sectional view taken along the axis of each gear of the actuator 1 in the present embodiment. FIG. 3 is a plan view for explaining the internal configuration of the actuator 1.
[0024]
The actuator 1 includes a first housing 12 and a second housing 13, in which a drive gear 14, a first intermediate gear 15, a second intermediate gear 16, an output gear 17, and the like are accommodated. A stepping motor 18 is attached to the outside.
[0025]
The first housing 12 includes a substantially rectangular bottom portion 12a and a side wall portion 12b formed so as to extend from the outer edge along the vertical direction to the bottom portion 12a so as to surround the outer edge of the bottom portion 12a. Become. A flat plate-like second housing 13 is attached to the side wall portion 12b so as to close the first housing 12 thus configured. The bottom portion 12a of the first housing 12 has a two-step bottom. That is, the bottom portion 12a of the first housing 12 includes a shallow bottom portion 19 that has a short distance from the second housing 13 to the bottom portion 12a, and a deep bottom portion 20 that has a long distance from the second housing 13 to the bottom portion 12a. ing.
[0026]
A first upper bearing 22 a is fixed to the shallow bottom portion 19, and the rotary shaft 21 of the stepping motor 18 can be rotated by the first upper bearing 22 a and the motor inner bearing 22 b fixed to the bottom of the cup-shaped motor case 11. It is pivotally supported. A second upper bearing 23a is formed on the inner side surface 19a of the shallow bottom portion 19, and a second lower bearing 23b corresponding to the second upper bearing 23a is formed on the second housing 13. The second upper bearing 23a and the second lower bearing 23b pivotally support the first intermediate gear 15 in a rotatable manner. The deep bottom portion 20 is formed with a third upper shaft 24a support, and the second housing 13 is formed with a third lower bearing 24b corresponding to the third upper bearing 24a. 24a and the third lower bearing 24b pivotally support the second intermediate gear 16 in a rotatable manner. The deep bottom portion 20 is formed with a fourth upper bearing 25a, and the second housing 13 is formed with a fourth lower bearing 25b corresponding to the fourth upper bearing 25a. The bearing 25a and the fourth lower bearing 25b pivotally support the output shaft 26 so as to be rotatable.
[0027]
In addition, the shallow bottom portion 19 is formed with a receiving wall portion 27 that extends from the shallow bottom portion 19 toward the second housing 13. As shown in FIG. 4, the receiving wall portion 27 has a sector shape centered on the axis of the third upper bearing 24a, and flat surfaces 27a along the radial direction are formed at both ends in the circumferential direction. Has been. Further, the receiving wall portion 27 is located in the vicinity of the opposite side of the wall portion 28 that connects the shallow bottom portion 19 and the deep bottom portion 20. That is, the receiving wall portion 27 is formed near the corner formed by the shallow bottom portion 19 and the wall portion 28. FIG. 4 is a plan view showing a state when the first housing 12 is viewed from the second housing 13 side.
[0028]
A stepping motor 18 is attached from the outer side surface 19 b of the shallow bottom portion 19. The stepping motor 18 rotates the rotating shaft 21 by a predetermined angle in response to a pulse signal input from the control device 5 shown in FIG. In the present embodiment, the sensor 4 connected to the handle 3 of the vehicle 2 detects the amount of rotation of the handle 3 and transmits the value to the control device 5. Then, the control device 5 outputs a pulse signal so that the rotation shaft 21 of the stepping motor 18 rotates by a predetermined angle in proportion to the rotation amount of the handle 3. That is, by rotating the handle 3, the direction of the vehicle 2 and the irradiation direction of the vehicle lamp 6 are controlled, and the vehicle lamp 6 irradiates the traveling direction of the vehicle 2.
[0029]
The rotation shaft 21 of the stepping motor 18 is rotatably supported by a first upper bearing 22a and a motor inner bearing 22b. A drive gear 14 that rotates integrally with the rotary shaft 21 is provided near the tip of the rotary shaft 21.
[0030]
The first intermediate gear 15 is rotatably supported by a second upper bearing 23a and a second lower bearing 23b. In the first intermediate gear 15, a disk-shaped large-diameter gear 29 and a small-diameter gear 30 are integrally formed, and the large-diameter gear 29 meshes with the drive gear 14.
[0031]
The second intermediate gear 16 is rotatably supported by a third upper bearing 24a and a third lower bearing 24b. The second intermediate gear 16 includes a disk-shaped large-diameter gear 31 and a small-diameter gear 32 integrally formed as a gear portion, and the large-diameter gear 31 meshes with the small-diameter gear 30 of the first intermediate gear 15. ing.
[0032]
As shown in FIGS. 5A and 5B, an annular recess 33 is formed on the inner diameter side of the large diameter gear 31 of the second intermediate gear 16. And the control part 34 is protrudingly provided so that it may extend along the axial direction from the bottom part of this recessed part 33. As shown in FIG. As shown in FIG. 5B, the restricting portion 34 is formed in a sector shape centered on the axis of the second intermediate gear 16, and flat surfaces 34a along the radial direction are formed at both ends in the circumferential direction. Is formed.
[0033]
As shown in FIG. 2, the second intermediate gear 16 configured as described above is attached so that the recess 33 faces the bottom 12a of the first housing 12, and the third upper bearing 24a and the third lower gear 16 It is pivotally supported by the side bearing 24b. At this time, the receiving wall portion 27 provided in the shallow bottom portion 19 is inserted into the concave portion 33 so as to engage with the regulating portion 34 in the circumferential direction.
[0034]
That is, the receiving wall portion 27 has a fan shape in accordance with the shape of the concave portion 33, and further protrudes so that the tip end portion can be engaged with the regulating portion 34 formed in the concave portion 33. Further, the width from the outer diameter surface to the inner diameter surface of the receiving wall portion 27 is formed smaller than the width from the outer diameter surface to the inner diameter surface of the recess 33. Therefore, in the second intermediate gear 16, the flat surface 34 a of the restricting portion 34 protruding from the concave portion 33 is engaged with the flat surface 27 a of the receiving wall portion 27 in a state where the receiving wall portion 27 is inserted into the concave portion 33. It can be rotated until
[0035]
A fourth lower bearing 25b is formed in the second housing 13 corresponding to the fourth upper bearing 25a formed in the deep bottom portion 20, and an output is generated by the fourth upper bearing 25a and the fourth lower bearing 25b. The shaft 26 is rotatably supported. The output shaft 17 is formed integrally with the output gear 17. The output gear 17 has an output gear portion 17 a formed in an arc shape, and the output gear portion 17 a meshes with the small diameter gear 32 of the second intermediate gear 16. Further, the distal end of the output shaft 26 protrudes from the first housing 12, and the vehicle lamp 6 is connected to the distal end so as to rotate integrally.
[0036]
At one end of the output shaft 26 that does not protrude from the first housing 12, a cylindrical housing recess 35 centering on the axis of the output shaft 26 is formed. A cylindrical ring 36 is accommodated in the accommodating recess 35. The ring 36 is fixed by a caulking portion 35 a formed at the opening end of the receiving recess 35. A pair of opposing magnets 37 are fixed to the inner peripheral surface of the ring 36. A magnetic sensor 38 fixed to the second housing 13 is disposed at the center of the ring 36, that is, at the center of the output shaft 26. The magnetic sensor 38 measures the amount of magnetic flux generated by the magnet 37 and detects the position of the output gear 17, that is, the irradiation direction of the vehicle lamp 6 based on the change in the amount of magnetic flux. This magnetic sensor 38 is used to confirm whether or not the stepping motor 18 has stepped out when the vehicle lamp 6 is directed in the reference direction, and whether or not the vehicle lamp 6 has been directed in the reference direction. used.
[0037]
Here, a method for controlling the irradiation direction of the vehicle lamp 6 will be described.
Prior to moving the handle 3 of the vehicle 2 to control the vehicle 2 and the vehicle lamp 6, the control device 5 outputs a pulse signal for initial setting to the stepping motor 18. The stepping motor 18 receives the pulse signal from the control device 5 and rotates the rotating shaft 21. The drive gear 14 rotates together with the rotating shaft 21, and the first intermediate gear 15 and the second intermediate gear 16 rotate in conjunction with the rotation. Then, the second intermediate gear 16 rotates the second intermediate gear 16 until the restricting portion 34 provided on the second intermediate gear 16 is restricted in its rotational movement by the receiving wall portion 27. At this time, since the output gear 17 meshes with the small-diameter gear 32 of the second intermediate gear 16, when the second intermediate gear 16 rotates by a predetermined angle, the output shaft 26 and the vehicle lamp 6 are interlocked with the movement. Also rotate a predetermined angle. For this reason, the output shaft 26 and the vehicle lamp 6 rotate until the restricting portion 34 of the second intermediate gear 16 is engaged with the receiving wall portion 27. The control device 5 confirms whether or not the irradiation direction of the vehicle lamp 6 is directed to the reference direction by the magnetic sensor 38 after outputting the pulse signal for performing the initial setting, and determines whether or not the initial setting is completed. to decide.
[0038]
If the control device 5 stores the irradiation direction of the vehicle lamp 6 when the restricting portion 34 and the receiving wall portion 27 are engaged in the control device 5 in advance as a reference direction, the control device 5 may perform the reference direction after the initial setting. The vehicle lamp 6 can be controlled to be directed in a designated direction by outputting a pulse signal for rotating the vehicle at a predetermined angle. That is, the control device 5 can output a pulse signal to the actuator 1 based on the rotation angle of the handle 3 of the vehicle 2, and change the irradiation direction of the vehicle lamp 6 in accordance with the traveling direction of the vehicle 2.
[0039]
As described above in detail, the present embodiment has the following features.
(1) The first housing 12 is provided with a receiving wall portion 27, and the regulating portion 34 provided on the second intermediate gear 16 is pressed against the receiving wall portion 27, so that the reference direction of the output shaft 26, that is, the vehicle An irradiation direction as a reference of the lamp 6 is determined. Since the rotational torque of the second intermediate gear 16 is smaller than the rotational torque of the output gear 17, the load when the restricting portion 34 is pressed against the receiving wall portion 27 is smaller than the conventional load. That is, it is not necessary to increase the rigidity of the strength of the receiving wall portion 27 and the restricting portion 34. For this reason, the 1st housing 12, the output gear 17, and the 2nd intermediate gear 16 can be reduced in size, and the actuator 1 can be reduced in size.
[0040]
(2) Since the restricting portion 34 is provided in the recessed portion 33 of the second intermediate gear 16 and the receiving wall portion 27 is inserted into the recessed portion 33, an extra space is provided for providing the receiving wall portion 27 and the restricting portion 34. Therefore, the actuator 1 can be reduced in size.
[0041]
(3) The stepping motor 18 is fixed to the first housing 12 provided with the receiving wall portion 27. For this reason, when the stepping motor 18 is attached to the second housing 13 and the restricting portion 34 is pressed against the receiving wall portion 27, the first housing 12 and the second housing 13 generated by the impact when pressed Prevents deviation. For this reason, when performing the initial setting, the irradiation direction of the vehicle lamp 6 can be surely directed to the reference direction.
[0042]
(4) Since the bottom portion 12a of the first housing 12 is stepped, the rigidity of the first housing 12 itself can be improved. Further, since the receiving wall portion 27 is provided on the shallow bottom portion 19, the protruding length of the receiving wall portion 27 can be made shorter than when the receiving wall portion 27 is provided, and the rigidity of the receiving wall portion 27 is improved. To do. In addition, since the receiving wall portion 27 is provided in the vicinity of the wall portion 28 that connects the deep bottom portion 20 and the shallow bottom portion 19, the rigidity of the receiving wall portion 27 is improved. For this reason, the first housing 12 can be reduced in size while ensuring the rigidity of the first housing 12 and the receiving wall portion 27.
[0043]
(5) The stepping motor 18 is fixed to the outer side surface 19 b of the shallow bottom portion 19. For this reason, without interfering with the stepping motor 18, various gears can be arranged without leaving an extra space, and the actuator 1 can be downsized. Moreover, since it fixed to the outer side surface 19b of the shallow bottom part 19, the full length of the actuator 1 can be shortened and the actuator 1 can be reduced in size.
[0044]
(6) The restricting portion 34 has a fan shape centered on the axis of the second intermediate gear 16, and is flat against the flat surface 27a of the receiving wall portion 27 along the radial direction at both ends in the circumferential direction. A surface 34a is provided. By engaging the flat surfaces 27a and 34a, the surface pressure when engaged is reduced, and the load generated between the receiving wall portion 27 and the restricting portion 34 can be reduced. For this reason, durability of the receiving wall part 27 and the control part 34 can be improved. Further, since the restricting portion 34 and the receiving wall portion 27 are fan-shaped, the rotation range of the vehicle lamp 6 can be determined based on the circumferential length thereof.
[0045]
In addition to the above, it can be embodied in the following form.
In the above embodiment, a pair of receiving wall portions that restrict the output gear 17 to rotate within a predetermined rotation range determined in advance may be provided at both ends of the output gear 17.
[0046]
In the above embodiment, when turning the output shaft 26 in the reference direction, it is used to confirm whether or not the stepping motor 18 has stepped out and whether or not the output shaft 26 has been directed in the reference direction. Although the magnetic sensor 38 is provided, it may not be provided. In this case as well, the same effect as in the above embodiment can be obtained.
[0047]
In the above embodiment, the regulating portion 34 and the receiving wall portion 27 are provided with the flat surfaces 34a and 27a, respectively. However, if the regulating portion 34 is always engaged with the receiving wall portion 27 at a fixed place, the flat surface 34a, It does not have to be 27a.
[0048]
In the above embodiment, in order to transmit the driving force of the driving gear 14 to the output gear 17, two gears, the first intermediate gear 15 and the second intermediate gear 16, are used. A driving force may be transmitted to the output gear 17. Further, the driving force of the driving gear 14 may be transmitted to the output gear 17 through one gear. In this case, the second intermediate gear 16 may not be provided with the restriction portion 34, but the other intermediate gear such as the first intermediate gear 15 may be provided with the restriction portion 34.
[0049]
The technical ideas that can be grasped from the above embodiment and other examples will be described below.
(A) The actuator according to any one of claims 1 to 7, wherein a vehicular lamp that rotates integrally with the output shaft is attached to the output shaft.
[0050]
【The invention's effect】
As described above in detail, according to the present invention, the actuator can be miniaturized.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of a vehicle 2 to which an actuator is attached.
FIG. 2 is a cross-sectional view taken along the axis of each gear of the actuator.
FIG. 3 is a plan view for explaining the inside of the actuator.
FIG. 4 is a plan view of a first housing.
5A is a side sectional view of a second intermediate gear, and FIG. 5B is a longitudinal sectional view of a second intermediate gear.
FIG. 6 is a plan view for explaining the inside of a conventional actuator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Actuator, 12 ... 1st housing, 12a ... Bottom part of 1st housing, 12b ... Side wall part of 1st housing, 13 ... 2nd housing, 14 ... Drive gear, 15 ... 1st intermediate | middle gear, 16 2nd intermediate gear, 17 ... Output gear, 18 ... Stepping motor, 19 ... Shallow bottom, 19a ... Shallow bottom inner surface, 20 ... Deep bottom, 21 ... Rotating shaft, 26 ... Output shaft, 27 ... Receiving wall, 27a: flat surface of the receiving wall portion, 28 ... wall portion, 31 ... large diameter gear of the second intermediate gear, 33 ... concave portion, 34 ... regulating portion, 34a ... flat surface of the regulating portion.

Claims (7)

出力軸に取着される被回動部材の基準位置からの回動位置を制御するために用いられるアクチュエータであって、
パルス信号に基づいて回動駆動するステッピングモータにより駆動ギヤ及び中間ギヤを介して前記出力軸に一体回動可能に取着された出力ギヤが減速回動され、前記中間ギヤ及び前記出力ギヤがハウジング内に軸支収容されたアクチュエータにおいて、
前記中間ギヤ及び前記ハウジングには、該中間ギヤ回動により互いに係合する規制部及び受壁部が備えられ、
前記受壁部と前記規制部とが係合したときの前記出力軸の回動を基準方向として、前記出力軸の回動方向が前記パルス信号により制御されることを特徴とするアクチュエータ。
An actuator used to control a rotation position from a reference position of a rotated member attached to an output shaft,
An output gear attached to the output shaft so as to rotate integrally with the output shaft via a drive gear and an intermediate gear is decelerated and rotated by a stepping motor that rotates based on a pulse signal, and the intermediate gear and the output gear are housings. In the actuator accommodated in the shaft,
The intermediate gear and the housing are provided with a restricting portion and a receiving wall portion that are engaged with each other by the rotation of the intermediate gear,
The actuator, wherein the rotation direction of the output shaft is controlled by the pulse signal, with the rotation of the output shaft when the receiving wall portion and the restricting portion are engaged as a reference direction.
前記規制部は、前記中間ギヤに備えられた円盤状のギヤ部の内径側であって該ギヤ部の回動軸の周方向に沿って形成された環状の凹部内に形成されており、
前記受壁部は、その先端部分が前記凹部に挿入され、かつ、前記規制部と係合するまで前記中間ギヤが回転可能な形状に形成されたことを特徴とする請求項1に記載のアクチュエータ。
The restricting portion is formed on an inner diameter side of a disc-like gear portion provided in the intermediate gear and in an annular recess formed along a circumferential direction of a rotation shaft of the gear portion,
2. The actuator according to claim 1, wherein the receiving wall portion is formed in a shape that allows the intermediate gear to rotate until a tip portion thereof is inserted into the concave portion and engages with the restriction portion. .
前記ハウジングは、前記受壁部が形成された第1のハウジングと、前記第1のハウジングを閉塞する第2のハウジングと、から構成され、前記第1のハウジングに前記ステッピングモータを固定したことを特徴とする請求項1又は2に記載のアクチュエータ。The housing includes a first housing in which the receiving wall portion is formed, and a second housing that closes the first housing, and the stepping motor is fixed to the first housing. The actuator according to claim 1 or 2, characterized in that: 前記第1のハウジングは、底部とその底部の外縁を囲む側壁部とからなり、前記第2のハウジングは、前記第1のハウジングの側壁部に固定される平板からなり、前記第1のハウジングの底部は、前記第2のハウジングからの距離が異なる浅底部と深底部とからなり、第2のハウジングからの距離が深底部より短い浅底部の内側面に前記受壁部を形成したことを特徴とする請求項1〜3のいずれか一項に記載のアクチュエータ。The first housing includes a bottom portion and a side wall portion surrounding an outer edge of the bottom portion, and the second housing includes a flat plate fixed to the side wall portion of the first housing. The bottom portion is composed of a shallow bottom portion and a deep bottom portion having different distances from the second housing, and the receiving wall portion is formed on the inner surface of the shallow bottom portion whose distance from the second housing is shorter than the deep bottom portion. The actuator according to any one of claims 1 to 3. 前記受壁部は、前記浅底部から前記深底部までを繋ぐ壁部と前記浅底部により形成される角に備えられたことを特徴とする請求項4に記載のアクチュエータ。The actuator according to claim 4, wherein the receiving wall portion is provided at a corner formed by a wall portion connecting the shallow bottom portion to the deep bottom portion and the shallow bottom portion. 前記浅底部の外側面に前記ステッピングモータを固定したことを特徴とする請求項4又は5に記載のアクチュエータ。The actuator according to claim 4 or 5, wherein the stepping motor is fixed to an outer surface of the shallow bottom portion. 前記規制部と前記受壁部は、その係合する面を平坦面にしたことを特徴とする請求項1〜6のいずれか一項に記載のアクチュエータ。The actuator according to any one of claims 1 to 6, wherein the restricting portion and the receiving wall portion have flat surfaces engaged with each other.
JP2002375015A 2002-12-25 2002-12-25 Actuator Expired - Fee Related JP4226893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375015A JP4226893B2 (en) 2002-12-25 2002-12-25 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375015A JP4226893B2 (en) 2002-12-25 2002-12-25 Actuator

Publications (2)

Publication Number Publication Date
JP2004203224A true JP2004203224A (en) 2004-07-22
JP4226893B2 JP4226893B2 (en) 2009-02-18

Family

ID=32812874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375015A Expired - Fee Related JP4226893B2 (en) 2002-12-25 2002-12-25 Actuator

Country Status (1)

Country Link
JP (1) JP4226893B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150989A (en) * 2004-10-28 2006-06-15 Asmo Co Ltd Turning drive device and vehicular headlamp device
JP2006160244A (en) * 2004-11-11 2006-06-22 Nissan Motor Co Ltd Headlight control device for vehicle and headlight controlling method
KR100828263B1 (en) 2006-04-11 2008-05-07 주식회사 모아텍 Step actuator for automobile
JP2011084151A (en) * 2009-10-15 2011-04-28 Koito Mfg Co Ltd Head lamp system
US8075171B2 (en) 2009-08-10 2011-12-13 Asmo Co., Ltd. Lamp device
CN104097563A (en) * 2013-04-11 2014-10-15 齐扎拉光系统有限责任公司 Adjusting device for vehicle headlamp
WO2017002465A1 (en) * 2015-06-30 2017-01-05 並木精密宝石株式会社 Motor unit
US9598691B2 (en) 2008-04-29 2017-03-21 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US9764145B2 (en) 2009-05-28 2017-09-19 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10154874B2 (en) 2008-04-29 2018-12-18 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US10245105B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Electroporation with cooling to treat tissue
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
US10292755B2 (en) 2009-04-09 2019-05-21 Virginia Tech Intellectual Properties, Inc. High frequency electroporation for cancer therapy
US10463426B2 (en) 2001-08-13 2019-11-05 Angiodynamics, Inc. Method for treating a tubular anatomical structure
US10471254B2 (en) 2014-05-12 2019-11-12 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US10470822B2 (en) 2008-04-29 2019-11-12 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
WO2022185824A1 (en) * 2021-03-04 2022-09-09 株式会社不二工機 Flow rate control valve
US11453873B2 (en) 2008-04-29 2022-09-27 Virginia Tech Intellectual Properties, Inc. Methods for delivery of biphasic electrical pulses for non-thermal ablation
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US11723710B2 (en) 2016-11-17 2023-08-15 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US11779395B2 (en) 2011-09-28 2023-10-10 Angiodynamics, Inc. Multiple treatment zone ablation probe
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11931096B2 (en) 2010-10-13 2024-03-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648587B1 (en) 2010-01-26 2016-08-16 엘지이노텍 주식회사 Shield actuator

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10463426B2 (en) 2001-08-13 2019-11-05 Angiodynamics, Inc. Method for treating a tubular anatomical structure
JP4520282B2 (en) * 2004-10-28 2010-08-04 アスモ株式会社 Rotating drive device and vehicle headlamp device
JP2006150989A (en) * 2004-10-28 2006-06-15 Asmo Co Ltd Turning drive device and vehicular headlamp device
JP2006160244A (en) * 2004-11-11 2006-06-22 Nissan Motor Co Ltd Headlight control device for vehicle and headlight controlling method
JP4569433B2 (en) * 2004-11-11 2010-10-27 日産自動車株式会社 Vehicle headlamp control device and vehicle headlamp control method
KR100828263B1 (en) 2006-04-11 2008-05-07 주식회사 모아텍 Step actuator for automobile
US11607271B2 (en) 2008-04-29 2023-03-21 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US10959772B2 (en) 2008-04-29 2021-03-30 Virginia Tech Intellectual Properties, Inc. Blood-brain barrier disruption using electrical energy
US11974800B2 (en) 2008-04-29 2024-05-07 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US9598691B2 (en) 2008-04-29 2017-03-21 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US11952568B2 (en) 2008-04-29 2024-04-09 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of biphasic electrical pulses for non-thermal ablation
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US11890046B2 (en) 2008-04-29 2024-02-06 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US11737810B2 (en) 2008-04-29 2023-08-29 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using electroporation
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US10154874B2 (en) 2008-04-29 2018-12-18 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US10245105B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Electroporation with cooling to treat tissue
US10245098B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Acute blood-brain barrier disruption using electrical energy based therapy
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
US10286108B2 (en) 2008-04-29 2019-05-14 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US11655466B2 (en) 2008-04-29 2023-05-23 Virginia Tech Intellectual Properties, Inc. Methods of reducing adverse effects of non-thermal ablation
US11453873B2 (en) 2008-04-29 2022-09-27 Virginia Tech Intellectual Properties, Inc. Methods for delivery of biphasic electrical pulses for non-thermal ablation
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US10470822B2 (en) 2008-04-29 2019-11-12 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US10537379B2 (en) 2008-04-29 2020-01-21 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US10828085B2 (en) 2008-04-29 2020-11-10 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US10828086B2 (en) 2008-04-29 2020-11-10 Virginia Tech Intellectual Properties, Inc. Immunotherapeutic methods using irreversible electroporation
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US10292755B2 (en) 2009-04-09 2019-05-21 Virginia Tech Intellectual Properties, Inc. High frequency electroporation for cancer therapy
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US10448989B2 (en) 2009-04-09 2019-10-22 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US9764145B2 (en) 2009-05-28 2017-09-19 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US11707629B2 (en) 2009-05-28 2023-07-25 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US8075171B2 (en) 2009-08-10 2011-12-13 Asmo Co., Ltd. Lamp device
JP2011084151A (en) * 2009-10-15 2011-04-28 Koito Mfg Co Ltd Head lamp system
US11931096B2 (en) 2010-10-13 2024-03-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US11779395B2 (en) 2011-09-28 2023-10-10 Angiodynamics, Inc. Multiple treatment zone ablation probe
CN104097563A (en) * 2013-04-11 2014-10-15 齐扎拉光系统有限责任公司 Adjusting device for vehicle headlamp
US11957405B2 (en) 2013-06-13 2024-04-16 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US11406820B2 (en) 2014-05-12 2022-08-09 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US10471254B2 (en) 2014-05-12 2019-11-12 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
US11903690B2 (en) 2014-12-15 2024-02-20 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
JPWO2017002465A1 (en) * 2015-06-30 2018-04-19 アダマンド並木精密宝石株式会社 Motor unit
WO2017002465A1 (en) * 2015-06-30 2017-01-05 並木精密宝石株式会社 Motor unit
US11723710B2 (en) 2016-11-17 2023-08-15 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
WO2022185824A1 (en) * 2021-03-04 2022-09-09 株式会社不二工機 Flow rate control valve

Also Published As

Publication number Publication date
JP4226893B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4226893B2 (en) Actuator
JP6686966B2 (en) Rotary actuator
EP1968169B1 (en) Sensor magnet device, gear mechanism and speed reducing electric motor
US7242390B2 (en) Electric switch
JP2010159828A (en) Rotary actuator and method of manufacturing the same
JP5984898B2 (en) Range switching device
JP2009065742A (en) Electric motor
JP4279702B2 (en) Rotation drive
KR20190081794A (en) Actuator and Transmission for Vehicle including the Actuator
US11193841B2 (en) Sensor for smooth assembly
JP2006002805A (en) Variable transfer ratio unit, gear ratio variable power steering equipment using it and control method of the equipment
JP2006273295A (en) Steering device for vehicle
JP2005114676A (en) Electric power steering system
JP2006017031A (en) Actuator for valve lift control device
JP2003185013A (en) Gear shift control device for vehicle
JP2000085610A (en) Steering control device for vehicle
JP2012197825A (en) Rotational position detecting device and transmission actuating device equipped with the same
JP2011229197A (en) Rotary actuator
JP2010203543A (en) Rotary actuator
EP2235403B1 (en) Vehicle range change apparatus
JP7155767B2 (en) electric actuator
JP4149799B2 (en) Rotating drive device and vehicle lamp
JP5359520B2 (en) Steering device
JP2006213213A (en) Transmission ratio variable steering device
JP4520282B2 (en) Rotating drive device and vehicle headlamp device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4226893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees