JP2004199286A - Travel controller for vehicle - Google Patents

Travel controller for vehicle Download PDF

Info

Publication number
JP2004199286A
JP2004199286A JP2002365701A JP2002365701A JP2004199286A JP 2004199286 A JP2004199286 A JP 2004199286A JP 2002365701 A JP2002365701 A JP 2002365701A JP 2002365701 A JP2002365701 A JP 2002365701A JP 2004199286 A JP2004199286 A JP 2004199286A
Authority
JP
Japan
Prior art keywords
vehicle traveling
vehicle
traveling path
dimensional object
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002365701A
Other languages
Japanese (ja)
Other versions
JP4145644B2 (en
JP2004199286A5 (en
Inventor
Minoru Hiwatari
穣 樋渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2002365701A priority Critical patent/JP4145644B2/en
Publication of JP2004199286A publication Critical patent/JP2004199286A/en
Publication of JP2004199286A5 publication Critical patent/JP2004199286A5/ja
Application granted granted Critical
Publication of JP4145644B2 publication Critical patent/JP4145644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To set an optimum own vehicle advancing route according to actual traveling environment to relaxedly, effectively and maximumly use an automatic steering function without causing uneasiness about contact or collision with a forward vehicle or the like to a driver. <P>SOLUTION: When detecting the presence of a solid object in another position except a forward own vehicle travel lane, the solid object is decided as a target solid object that is a target of decision, and setting of a second own vehicle advancing route in an own vehicle advancing route setting part 7c based on forward information is executed according to the present position of the target solid object and a lane position of the own vehicle travel lane on the present side of the target solid object. A controller 7 sets a torque amount to an electric power steering system such that the first own vehicle advancing route estimated by an own vehicle driving state coincides with the second own vehicle advancing route, and outputs the torque amount. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ステレオカメラ、単眼カメラ、ミリ波レーダ等で前方の自車両走行車線や立体物等を検出し、これら自車両走行車線や立体物等に基づき目標自車進行路を推定して自動操舵制御を行う車両の走行制御装置に関する。
【0002】
【従来の技術】
近年、CCDカメラ等による画像認識装置で認識した左右車線の中央線を、車両中心がトレースするように操舵装置を自動制御する、所謂、車線維持支援装置の研究開発が進められている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2000−142441号公報
【0004】
【発明が解決しようとする課題】
一般に、上述のような車線維持支援装置では、前述の如く、左右の車線情報から目標とする自車進行路を算出している。しかしながら、自車両走行車線以外の他の走行車線を走行する車両が自車両走行車線内に割り込んでいる場合はもとより、割り込まないまでも近接して走行している場合は、ドライバは衝突の危険を感じ、自動操舵状態を維持できず、車線維持支援装置の作動をOFF状態に切り替えてしまうことが多く、車線維持支援装置の機能を十分に発揮させることが難しいという問題があった。また、例えば、前方左右両側の車両が自車両走行車線に割り込んでいる場合等では、これら左右両側の車両により自車両が通り抜ける道を確保することができないため、車線維持支援装置は作動をOFF状態とした方が望ましい場合もある。
【0005】
本発明は上記事情に鑑みてなされたもので、実際の走行環境に応じて最適な自車進行路を設定し、ドライバが前方の車両等との衝突、接触の不安を抱くことなく安心して有効且つ最大限に自動操舵の機能を利用することができる車両の走行制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため請求項1記載の本発明による車両の走行制御装置は、自車両の運転状態を検出する自車両運転状態検出手段と、自車両前方の少なくとも立体物情報と走行路情報を前方情報として検出する前方情報検出手段と、上記自車両運転状態に応じた自車進行路を第1の自車進行路として推定する第1の自車進行路推定手段と、上記前方情報に応じた自車進行路を第2の自車進行路として設定する第2の自車進行路設定手段と、上記第1の自車進行路と上記第2の自車進行路に応じて操舵制御を実行させる操舵制御手段とを備えた車両の走行制御装置において、上記第2の自車進行路設定手段は、上記前方情報検出手段で、前方の自車両走行車線以外の他の位置に立体物が存在することを検出した場合は、該立体物を判定の対象とする対象立体物として定め、上記対象立体物が存在する側の上記自車両走行車線の車線位置と上記対象立体物の存在位置とに応じて上記第2の自車進行路を設定することを特徴としている。
【0007】
また、請求項2記載の本発明による車両の走行制御装置は、請求項1記載の車両の走行制御装置において、上記第2の自車進行路設定手段は、上記対象立体物が上記対象立体物の存在する側の車線位置より上記自車両走行車線内に突出して存在する場合には、少なくとも上記対象立体物の突出している位置を用いて上記第2の自車進行路を設定することを特徴としている。
【0008】
更に、請求項3記載の本発明による車両の走行制御装置は、請求項1又は請求項2記載の車両の走行制御装置において、上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右のどちらかに複数の立体物が存在することを検出した場合は、自車両から前方向に最も近い距離に存在する立体物を上記対象立体物として定めることを特徴としている。
【0009】
また、請求項4記載の本発明による車両の走行制御装置は、請求項1乃至請求項3の何れか一つに記載の車両の走行制御装置において、上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右のどちらかに立体物が存在し、この立体物を対象立体物として定めた場合であっても、該対象立体物が存在する側とは反対側の車線が未検出の場合は上記第2の自車進行路の設定を中止し、上記操舵制御手段による操舵制御を中止させることを特徴としている。
【0010】
更に、請求項5記載の本発明による車両の走行制御装置は、請求項1又は請求項2記載の車両の走行制御装置において、上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右両側に立体物が存在することを検出した場合は、これら左右両側の立体物を判定の対象とする立体物として定め、それぞれの対象立体物が存在する側の車線位置と上記各対象立体物の存在位置とに応じて上記第2の自車進行路を設定することを特徴としている。
【0011】
また、請求項6記載の本発明による車両の走行制御装置は、請求項5記載の車両の走行制御装置において、上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右両側に立体物が存在することを検出し、上記左右の対象立体物が共に上記自車両走行車線内に突出している場合は、上記第2の自車進行路を上記左右の対象立体物の突出している位置の間に設定することを特徴としている。
【0012】
更に、請求項7記載の本発明による車両の走行制御装置は、請求項5又は請求項6記載の車両の走行制御装置において、上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右の少なくともどちらかの側に複数の立体物が存在することを検出した場合は、左右それぞれ自車両から前方向に最も近い距離に存在する立体物を上記対象立体物として定めることを特徴としている。
【0013】
また、請求項8記載の本発明による車両の走行制御装置は、請求項1乃至請求項7の何れか一つに記載の車両の走行制御装置において、上記第2の自車進行路設定手段は、設定した上記第2の自車進行路の走行路の幅が予め設定する閾値より狭い場合は、上記第2の自車進行路の設定を中止し、上記操舵制御手段による操舵制御を中止させることを特徴としている。
【0014】
更に、請求項9記載の本発明による車両の走行制御装置は、請求項8記載の車両の走行制御装置において、上記予め設定する閾値は、少なくとも自車両の車幅を基準に設定し、自車速に応じて可変自在であることを特徴としている。
【0015】
また、請求項10記載の本発明による車両の走行制御装置は、請求項4、8、9の何れか一つに記載の車両の走行制御装置において、報知手段を有し、上記第2の自車進行路の設定を中止し、上記操舵制御手段による操舵制御を中止させる際には、所定の報知を行うことを特徴としている。
【0016】
すなわち、請求項1記載の車両の走行制御装置は、自車両運転状態検出手段で自車両の運転状態を検出し、前方情報検出手段で自車両前方の少なくとも立体物情報と走行路情報を前方情報として検出し、第1の自車進行路推定手段で自車両運転状態に応じた自車進行路を第1の自車進行路として推定し、第2の自車進行路設定手段で前方情報に応じた自車進行路を第2の自車進行路として設定する。そして、操舵制御手段は、第1の自車進行路と第2の自車進行路に応じて操舵制御を実行させる。この際、第2の自車進行路設定手段は、前方情報検出手段で、前方の自車両走行車線以外の他の位置に立体物が存在することを検出した場合は、該立体物を判定の対象とする対象立体物として定め、対象立体物が存在する側の自車両走行車線の車線位置と対象立体物の存在位置とに応じて第2の自車進行路を設定する。このように、左右の車線情報のみならず、立体物の位置をも考慮して実際の走行環境に応じた最適な自車進行路を設定するようにしているので、ドライバが前方の車両等との衝突、接触の不安を抱くことなく安心して有効且つ最大限に自動操舵の機能を利用することができる。
【0017】
ここで、第2の自車進行路設定手段は、具体的には、請求項2記載のように、対象立体物が対象立体物の存在する側の車線位置より自車両走行車線内に突出して存在する場合には、少なくとも対象立体物の突出している位置を用いて第2の自車進行路を設定する。
【0018】
また、第2の自車進行路設定手段は、前方情報検出手段で、前方の自車両走行車線以外の左右のどちらかに複数の立体物が存在することを検出した場合は、請求項3記載のように、自車両から前方向に最も近い距離に存在する立体物を対象立体物として定める。
【0019】
更に、第2の自車進行路設定手段は、前方情報検出手段で、前方の自車両走行車線以外の左右のどちらかに立体物が存在し、この立体物を対象立体物として定めた場合であっても、この対象立体物が存在する側とは反対側の車線が未検出の場合は、請求項4記載のように、第2の自車進行路の設定を中止し、操舵制御手段による操舵制御を中止させ、不確実な操舵制御が行われることを確実に防止する。
【0020】
また、第2の自車進行路設定手段は、前方情報検出手段で、前方の自車両走行車線以外の左右両側に立体物が存在することを検出した場合は、請求項5記載のように、これら左右両側の立体物を判定の対象とする立体物として定め、それぞれの対象立体物が存在する側の車線位置と各対象立体物の存在位置とに応じて第2の自車進行路を設定する。
【0021】
更に、第2の自車進行路設定手段は、前方情報検出手段で、前方の自車両走行車線以外の左右両側に立体物が存在することを検出し、左右の対象立体物が共に自車両走行車線内に突出している場合は、請求項6記載のように、第2の自車進行路を左右の対象立体物の突出している位置の間に設定する。
【0022】
また、第2の自車進行路設定手段は、前方情報検出手段で、前方の自車両走行車線以外の左右の少なくともどちらかの側に複数の立体物が存在することを検出した場合は、請求項7記載のように、左右それぞれ自車両から前方向に最も近い距離に存在する立体物を対象立体物として定める。
【0023】
更に、第2の自車進行路設定手段は、設定した第2の自車進行路の走行路の幅が予め設定する閾値より狭い場合は、請求項8記載のように、第2の自車進行路の設定を中止し、操舵制御手段による操舵制御を中止させる。この際、予め設定する閾値は、請求項9記載のように、少なくとも自車両の車幅を基準に設定し、自車速に応じて可変自在であることが望ましい。そして、この制御により、通行が不可能な通路を通り抜けようとする不要な操舵制御が行われることを確実に防止する。
【0024】
また、請求項4、8、9のような、第2の自車進行路の設定を中止し、操舵制御手段による操舵制御を中止させる際には、請求項10記載のように、報知手段により、所定の報知、例えば、ランプの点滅や音声による警報を発生することにより、ドライバに操舵制御が中止されたことが伝達され、利便性をより一層向上させることができる。
【0025】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。
図1乃至図12は本発明の実施の一形態を示し、図1は走行制御装置を備えた車両の概略構成図、図2は走行制御装置の機能ブロック図、図3は電動パワーステアリング目標値作成を説明する特性図、図4は片側車線に対象立体物が存在する際に設定される前方情報に基づく自車進行路の説明図、図5は片側車線に複数の対象立体物が存在する際に設定される前方情報に基づく自車進行路の説明図、図6は両側車線に対象立体物が存在する際に設定される前方情報に基づく自車進行路の説明図、図7は両側車線に複数の対象立体物が存在する際に設定される前方情報に基づく自車進行路の説明図、図8は前方情報に基づく自車進行路のカーブ曲率半径演算の一例を示す説明図、図9は運転状態に基づく自車進行路と前方情報に基づく自車進行路のずれ量の説明図、図10はずれ量に基づく目標ヨーレート演算の説明図、図11は電動パワーステアリングモータ制御部の機能ブロック図、図12はトルク制御指示値とモータ指示電流の関係を示す説明図である。
【0026】
図1において、符号1は自動車等の車両(自車両)であり、この車両1には、自車進行路(或いは、目標コース)を設定し、車両中心がこの自車進行路をトレースするように操舵装置を自動制御する、走行制御装置2が搭載されている。
【0027】
このため、車両1の前輪操舵部3は、電動パワーステアリングモータ4や図示しないウォームギヤ、リダクションギヤ等を備えた周知の電動パワーステアリング機構で構成されており、左前輪5fl,右前輪5frとリンク機構で接続されている。
【0028】
走行制御装置2は、後述の各センサやその他装置等からの入力により電動パワーステアリングモータ制御部6に出力し、電動パワーステアリングモータ4を駆動制御する制御装置7をメイン制御装置として有しており、この制御装置7には、自車進行路のトレースを中止した際に点灯してドライバに報知する報知ランプ8が接続されている。
【0029】
また、自車両1には、ステレオ光学系として例えば電荷結合素子(CCD)等の固体撮像素子を用いた1組の(左右の)CCDカメラ9L、9Rが前方に向けて搭載されており、これら左右のCCDカメラ9L、9Rは、それぞれ車室内の天井前方に一定の間隔をもって取り付けられ、車外の対象を異なる視点からステレオ撮像し、それぞれ画像データを前方情報認識装置10に入力する。
【0030】
前方情報認識装置10は、CCDカメラ9L、9Rからの画像に基づき自車両1前方の立体物データと白線データの前方情報を検出する。この前方情報認識装置10におけるCCDカメラ9L、9Rからの画像の処理は、例えば以下のように行われる。まず、CCDカメラ9L、9RのCCDカメラで撮像した自車両の進入方向の環境の1組のステレオ画像対に対し、対応する位置のずれ量から三角測量の原理によって画像全体に渡る距離情報を求める処理を行なって、三次元の距離分布を表す距離画像を生成する。そして、このデータを基に、周知のグルーピング処理や、予め記憶しておいた3次元的な道路形状データ、立体物データ等と比較し、白線データ、車両等の立体物データを抽出する。こうして、前方情報認識装置10で認識された白線データ、車両等の立体物データは、制御装置7に入力される。このように、CCDカメラ9L、9R、前方情報認識装置10は、前方情報検出手段として設けられている。
【0031】
また、自車両1には、4輪5fl,5fr,5rl,5rrの車輪速ωfl,ωfr,ωrl,ωrrを検出する車輪速センサ21fl,21fr,21rl,21rrが設けられており、検出した4輪の車輪速の信号は、制御装置7に入力される。更に、自車両1には、前輪舵角δfを検出する舵角センサ22、操舵トルクTdを検出する操舵トルクセンサ23、車両に実際に生じている実ヨーレートγを検出するヨーレートセンサ24が設けられ、これらセンサからの各信号が制御装置7に入力される。
【0032】
制御装置7は、前方情報認識装置10で認識された白線データ、車両等の立体物データ、及び、各センサ21fl,21fr,21rl,21rr、22、23、24で検出された各センサ信号が入力される。そして、これら入力信号により、自車両1の運転状態から自車進行路(すなわち、第1の自車進行路)を推定し、また、前方情報から自車進行路(すなわち、第2の自車進行路)を設定して、第1の自車進行路が第2の自車進行路となるように電動パワーステアリングモータ制御部6へトルク制御指示値Ttを出力する。
【0033】
すなわち、制御装置7は、操舵制御手段としての機能を有し、マイクロコンピュータとその周辺回路で構成され、図2に示すように、車速演算部7a、電動パワーステアリング目標値作成部7b、前方情報に基づく自車進行路設定部7c、報知制御部7d、カーブ曲率半径演算部7e、ずれ量に基づく目標ヨーレート演算部7f、カーブ曲率に基づく目標ヨーレート演算部7g、キープレーン制御トルク演算部7h、電動パワーステアリング制御トルク出力部7iから主要に構成されている。
【0034】
車速演算部7aは、4輪の車輪速センサ、すなわち各車輪速度センサ21fl,21fr,21rl,21rrから4輪5fl,5fr,5rl,5rrの各車輪速度ωfl,ωfr,ωrl,ωrrが入力され、例えばこれらの平均を演算することにより車速V(=(ωfl,ωfr,ωrl,ωrr)/4)を演算し、電動パワーステアリング目標値作成部7b、ずれ量に基づく目標ヨーレート演算部7f、カーブ曲率に基づく目標ヨーレート演算部7g、キープレーン制御トルク演算部7hに出力する。この車速演算部7aは、車輪速度センサ21fl,21fr,21rl,21rrと共に、自車両運転状態検出手段を構成している。
【0035】
電動パワーステアリング目標値作成部7bは、操舵トルクセンサ23から操舵トルクTdが入力され、車速演算部7aから車速Vが入力される。そして、例えば、図3(a)に示すような、予め記憶しておいた電動パワーステアリング目標値の基本アシスト量Tbと操舵トルクTdの特性マップから基本アシスト量Tbを求める。そして、図3(b)に示すような、予め記憶しておいた車速係数Kbと車速Vの特性マップから車速係数Kbを求め、これら基本アシスト量Tbと車速係数Kbとを乗算してアシストトルクThを演算する(Th=Tb・Kb)。こうして演算したアシストトルクThは電動パワーステアリング制御トルク出力部7iに出力される。
【0036】
前方情報に基づく自車進行路設定部7cは、第2の自車進行路設定手段として設けられており、前方情報認識装置10から白線データ、車両等の立体物データが入力される。自車進行路設定部7cでは、前方の自車両走行車線以外の他の位置に立体物が存在することを検出した場合は、その立体物を判定の対象とする対象立体物として定め、対象立体物が存在する側の自車両走行車線の車線位置と対象立体物の存在位置とに応じて第2の自車進行路を設定する。そして、設定した第2の自車進行路は、カーブ曲率半径演算部7e、及び、ずれ量に基づく目標ヨーレート演算部7fに出力される。
【0037】
前方情報に基づく自車進行路設定部7cにおける第2の自車進行路の設定は、具体的には、以下のようにして行う。
ケース1.対象立体物が検出されておらず、両側白線のみが検出されている場合には、この両側白線の略中央を第2の自車進行路として設定する。
【0038】
ケース2.自車両走行車線の一方の車線側に対象立体物が検出されており、この対象立体物が対象立体物の存在する側の車線位置より自車両走行車線内に突出して存在する場合(図4のような場合)には、少なくとも対象立体物の突出している位置を用いて第2の自車進行路を設定する。この第2の自車進行路は、図4に示すように、対象立体物の突出している位置と、対象立体物が存在する側とは反対側の車線との間の略中央に第2の自車進行路を設定する。
【0039】
ケース3.自車両走行車線の一方の車線側に複数の立体物が検出されている場合は、自車両から前方向に最も近い距離に存在する立体物を対象立体物として定め、この対象立体物が対象立体物の存在する側の車線位置より自車両走行車線内に突出して存在する場合(図5のような場合)には、少なくとも対象立体物の突出している位置を用いて第2の自車進行路を設定する。この第2の自車進行路は、ケース2と同様、図5に示すように、対象立体物の突出している位置と、対象立体物が存在する側とは反対側の車線との間の略中央に第2の自車進行路を設定する。
【0040】
ケース4.自車両走行車線の一方の車線側に立体物が存在し、この立体物が対象立体物として定められた場合であっても、この対象立体物が存在する側とは反対側の車線が未検出の場合は、第2の自車進行路の設定を中止し、第2の自車進行路のデータ出力を中止する(これにより制御装置7における走行制御が停止される)と共に、報知制御部7dに対して信号出力し、報知ランプ8を点灯させる。
【0041】
ケース5.前方の自車両走行車線以外の左右両側に立体物が存在することを検出した場合は、これら左右両側の立体物を判定の対象とする立体物として定め、それぞれの対象立体物が存在する側の車線位置と各対象立体物の存在位置とに応じて第2の自車進行路を設定する。この際、左右の対象立体物が共に自車両走行車線内に突出している場合(図6に示す場合)は、第2の自車進行路を左右の対象立体物の突出している位置の略中央に設定する。
【0042】
ケース6.前方の自車両走行車線以外の左右の少なくともどちらかの側に複数の立体物が存在することを検出した場合は、左右それぞれ自車両から前方向に最も近い距離に存在する立体物を対象立体物として定める。そして、それぞれの対象立体物が存在する側の車線位置と各対象立体物の存在位置とに応じて第2の自車進行路を設定する。この際、左右の対象立体物が共に自車両走行車線内に突出している場合(図7に示す場合)は、第2の自車進行路を左右の対象立体物の突出している位置の略中央に設定する。
【0043】
また、前方情報に基づく自車進行路設定部7cは、上述のケース1、2、3、5、6のそれぞれの場合において、第2の自車進行路を設定した場合、この第2の自車進行路を略中心とする走行路幅dも検出し、この走行路幅dが、予め設定しておいた閾値より小さい場合は、第2の自車進行路の設定を中止し、第2の自車進行路のデータ出力を中止する(これにより制御装置7における走行制御が停止される)と共に、報知制御部7dに対して信号出力し、報知ランプ8を点灯させる。
【0044】
ここで、上述の走行路幅dと比較を行う閾値は、例えば、自車両1の車幅を基準(最低値)に設定され、マップ等を参照して自車速Vが大きくなるほど大きな値に設定される。
【0045】
カーブ曲率半径演算部7eは、前方情報に基づく自車進行路設定部7cから第2の自車進行路が入力され、この第2の自車進行路のカーブ曲率半径Rを演算し、カーブ曲率に基づく目標ヨーレート演算部7gに出力する。
【0046】
このカーブ曲率半径Rの演算は、例えば、以下のようにして行う。
図8に示すように、自車両1を中心とするX(車両の左右方向)−Y(車両の前後方向)座標上で、第2の自車進行路の前方のカーブを構成する3つのノードP1(x1,y1)、P2(x2,y2)、P3(x3,y3)を考える。また、P1−P2間の線分をA、P2−P3間の線分をB、P3−P1間の線分をCとすると、3点P1,P2,P3の外接円の半径は、以下の(1)式で与えられる。
R=(A+B+C)/(4・Sa) …(1)
【0047】
ここで、Saは、三角形P1−P2−P3の面積であり、
Sa=(λ・(λ−A)・(λ−B)・(λ−C))1/2 …(2)
但し、λ=(A+B+C)/2
【0048】
また、各線分A、B、Cは、各座標値より以下の各式により求められる。
A=((y2−y1)+(x2−x1)1/2 …(3)
B=((y3−y2)+(x3−x2)1/2 …(4)
C=((y1−y3)+(x1−x3)1/2 …(5)
尚、ノード間距離は、対応させるカーブの曲率等によって、サンプリングタイムや、隔距離がチューニングされるものである。
【0049】
ずれ量に基づく目標ヨーレート演算部7fは、車速演算部7aから車速Vが、前方情報に基づく自車進行路設定部7cから第2の自車進行路が入力される。そして、図9に示すように、まず、画像で認識した車線左右方向座標位置Xpと自車両1が現在の進路を維持したときの到達点X0(すなわち、第1の自車進行路上の到達点X0)との差を、ずれ量εとして定める。すなわち、ずれ量εは、実際には画像認識で検出した第2の自車進行路の横変位量であり、ずれ量εを検出する前方の注視距離Dは、例えば、以下の(6)式により演算する。
D=Tp・V …(6)
ここで、Tpは、例えば2秒等の予見時間である。尚、前方注視距離Dは、他の方法で定めるようにしても良い。このように、ずれ量に基づく目標ヨーレート演算部7fは、第1の自車進行路推定手段としての機能も有している。
【0050】
次いで、ずれ量に基づく目標ヨーレート演算部7fは、ずれ量εをゼロにするのに必要な目標ヨーレート(ずれ量に基づく目標ヨーレート)γεを、例えば、図10に示す幾何学的関係から、以下の(7)式により演算する。
γε=V/R’ …(7)
ここで、R’=x/sinθであり、
x=(D+ε1/2/2
θ=tan−1(ε/D)
である。
こうして、演算したずれ量に基づく目標ヨーレートγεは、キープレーン制御トルク演算部7hに出力される。
【0051】
カーブ曲率に基づく目標ヨーレート演算部7gは、車速演算部7aから車速Vが、カーブ曲率半径演算部7eからカーブ曲率半径Rが入力される。そして、カーブ曲率半径Rをトレースするための目標ヨーレート(カーブ曲率に基づく目標ヨーレート)γrを、例えば、以下の(8)式により演算し、演算したカーブ曲率に基づく目標ヨーレートγrを、キープレーン制御トルク演算部7hに出力する。
γr=V/R …(8)
【0052】
キープレーン制御トルク演算部7hは、舵角センサ22から前輪舵角δfが、ヨーレートセンサ24から実ヨーレートγが、車速演算部7aから車速Vが、ずれ量に基づく目標ヨーレート演算部7fからずれ量に基づく目標ヨーレートγεが、カーブ曲率に基づく目標ヨーレート演算部7gからカーブ曲率に基づく目標ヨーレートγrが入力される。そして、例えば、以下の手順に従って、目標ハンドル角を実現するための目標ハンドルトルクTaを演算し、電動パワーステアリング制御トルク出力部7iに出力する。
【0053】
まず、ずれ量に基づく目標ヨーレートγεとカーブ曲率に基づく目標ヨーレートγrから、以下の(9)式により、トータルの目標ヨーレートγsを演算する。
γs=kε・γε+kr・γr …(9)
ここで、kε、krは、予め設定しておいたゲインを示す。
【0054】
次いで、目標ヨーレートγsを実現するための目標ハンドル角θhtを演算する。
一般に、車両の目標ヨーレートγtは、車両の運動方程式により、以下の(10)式により得られる。
γt=G(0)・(1/(1+Tr・s))・δf …(10)
ここで、G(0)はヨーレート定常ゲイン、Trは時定数、sはラプラス演算子であり、例えば、時定数Trは以下の(11)式から、ヨーレート定常ゲインG(0)は、以下の(12)式から求められる。
Tr=(m・Lf・V)/(2・L・kre) …(11)
ここで、mは車両質量、Lfは前軸と重心間の距離、Lはホイールベース、kreはリヤ等価コーナリングパワーである。
【0055】
G(0)=1/(1+sf・V)・V/L …(12)
ここで、sfは車両諸元で決まるスタビリティファクタであり、例えば、以下(13)式により演算される。

Figure 2004199286
ここで、kfeはフロント等価コーナリングパワー、Lrは後軸と重心間の距離である。
【0056】
そして、上述の(10)式より、
γt+Tr・s・γt=G(0)・δf
δf=(1/G(0))・γt+(Tr/G(0))・s・γt…(14)
【0057】
上述の(14)式において、s・γtは、γtの微分値であり、δfを目標舵角δftに、γtをトータルの目標ヨーレートγsに置き換えると以下の(15)式を得る。
【0058】
δft=(1/G(0))・γs+(Tr/G(0))・(dγs/dt)…(15)
【0059】
従って、目標ハンドル角θhtは、stgをステアリングギヤ比とすると、以下の(16)式により演算できる。
【0060】
θht=δft・stg …(16)
【0061】
そして、目標ハンドル角θhtを実現するための目標ハンドルトルクTaは、以下の(17)式により演算される。
Ta=Isw・(dθht/dt)+Tst/stg …(17)
ここで、Iswはハンドル慣性モーメント、Tstはセルフアライニングトルクであり、セルフアライニングトルクTstは、以下の(18)式で与えられる。
Tst=nt・Cf …(18)
ここで、ntはニューマチックトレール、Cfは前輪のコーナリングフォースである。
電動パワーステアリング制御トルク出力部7iは、電動パワーステアリング目標値作成部7bからアシストトルクThが、キープレーン制御トルク演算部7hから目標ハンドルトルクTaが入力され、これらを加算してトルク制御指示値Tt(=Th+Ta)とし、トルク制御電動パワーステアリングモータ制御部6に出力する。
【0062】
電動パワーステアリングモータ制御部6は、図11に示すように、モータ指示電流変換部6a、電流制御部6b、駆動信号発生部6c、電流検出部6dから主要に構成されている。
【0063】
そして、制御装置7からトルク制御指示値Ttが入力されると、モータ指示電流変換部6aにおいて、図12に示すような、予め設定しておいたマップを参照してモータ指示電流に変換し、電流制御部6b、駆動信号発生部6cを介して電動パワーステアリングモータ4に電流を出力する。尚、駆動信号発生部6cから出力される電流値は、電流検出部6dにより検出され、モータ指示電流変換部6aで変換した電流値が出力されているかモニタリングされる。
【0064】
このように、本発明の実施の形態によれば、単に、左右の車線情報から目標とする自車進行路を設定することなく、自車両走行車線以外の立体物情報をも考慮して様々な状況毎に自車進行路を設定するので、ドライバが前方の車両等との衝突、接触の不安を抱くことなく安心して有効且つ最大限に自動操舵の機能を利用することが可能となる。
【0065】
尚、本実施の形態では、CCDカメラ9L、9Rからの画像情報を基に、自車両前方の立体物情報と走行路情報を得るようにしているが、単眼カメラとミリ波レーダ或いはレーザレーダまた或いは赤外線レーダ装置とを組み合わせたシステム等の他のシステムから自車両前方の立体物情報と走行路情報を得るようにしても本発明は適用できることは云うまでもない。
【0066】
【発明の効果】
以上説明したように本発明によれば、実際の走行環境に応じて最適な自車進行路を設定し、ドライバが前方の車両等との衝突、接触の不安を抱くことなく安心して有効且つ最大限に自動操舵の機能を利用することが可能となる。
【図面の簡単な説明】
【図1】走行制御装置を備えた車両の概略構成図
【図2】走行制御装置の機能ブロック図
【図3】電動パワーステアリング目標値作成を説明する特性図
【図4】片側車線に対象立体物が存在する際に設定される前方情報に基づく自車進行路の説明図
【図5】片側車線に複数の対象立体物が存在する際に設定される前方情報に基づく自車進行路の説明図
【図6】両側車線に対象立体物が存在する際に設定される前方情報に基づく自車進行路の説明図
【図7】両側車線に複数の対象立体物が存在する際に設定される前方情報に基づく自車進行路の説明図
【図8】前方情報に基づく自車進行路のカーブ曲率半径演算の一例を示す説明図
【図9】運転状態に基づく自車進行路と前方情報に基づく自車進行路のずれ量の説明図
【図10】ずれ量に基づく目標ヨーレート演算の説明図
【図11】電動パワーステアリングモータ制御部の機能ブロック図
【図12】トルク制御指示値とモータ指示電流の関係を示す説明図
【符号の説明】
1 自車両
2 走行制御装置
3 前輪操舵部
4 電動パワーステアリングモータ
5fl,5fr,5rl,5rr 車輪
6 電動パワーステアリングモータ制御部
7 制御装置(操舵制御手段)
7a 車速演算部(自車両運転状態検出手段)
7b 電動パワーステアリング目標値作成部
7c 前方情報に基づく自車進行路設定部(第2の自車進行路設定手段)
7d 報知制御部
7e カーブ曲率半径演算部
7f ずれ量に基づく目標ヨーレート演算部(第1の自車進行路推定手段)
7g カーブ曲率に基づく目標ヨーレート演算部
7h キープレーン制御トルク演算部
7i 電動パワーステアリング制御トルク出力部
8 報知ランプ
9L,9R CCDカメラ(前方情報検出手段)
10 前方情報認識装置(前方情報検出手段)
21fl,21fr,21rl,21rr 車輪速度センサ(自車両運転状態検出手段)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention detects a traveling lane or a three-dimensional object in front of a host vehicle using a stereo camera, a monocular camera, a millimeter wave radar, or the like, and estimates a target self-vehicle traveling path based on the traveling lane or a three-dimensional object in the vehicle. The present invention relates to a travel control device for a vehicle that performs steering control.
[0002]
[Prior art]
In recent years, research and development of a so-called lane keeping assist device that automatically controls a steering device so that the center of the vehicle traces the center line of the left and right lanes recognized by an image recognition device such as a CCD camera (for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-142441 A
[0004]
[Problems to be solved by the invention]
Generally, in the above-described lane keeping assist device, a target vehicle traveling path is calculated from left and right lane information as described above. However, if a vehicle traveling in another driving lane other than the own vehicle driving lane interrupts into the own vehicle driving lane, and if it is running close to the vehicle lane, the driver may be at risk of collision. It was felt that the automatic steering state could not be maintained, and the operation of the lane keeping assist device was often switched to the OFF state, so that there was a problem that it was difficult to fully exert the function of the lane keeping assist device. Further, for example, when the vehicles on the left and right sides of the front are interrupting the own vehicle traveling lane, it is not possible to secure a road through which the own vehicle can pass by the vehicles on the left and right sides, and the lane keeping assist device is turned off. In some cases, it is desirable to use
[0005]
The present invention has been made in view of the above circumstances, and sets an optimal own vehicle traveling path according to an actual driving environment, and is effective without a driver having a fear of collision with a vehicle ahead or contact with a vehicle in front. It is another object of the present invention to provide a travel control device for a vehicle that can utilize the function of automatic steering to the maximum.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a driving control apparatus for a vehicle according to the first aspect of the present invention includes a driving state detecting means for detecting a driving state of the own vehicle, and at least three-dimensional object information and traveling road information ahead of the own vehicle. Forward information detecting means for detecting as the forward information; first own vehicle traveling path estimating means for estimating the own vehicle traveling path according to the own vehicle driving state as a first own vehicle traveling path; Second self-vehicle traveling route setting means for setting the self-vehicle traveling route as a second self-vehicle traveling route, and performing steering control according to the first and second self-vehicle traveling routes. A second vehicle traveling path setting means, wherein the three-dimensional object is located at a position other than the preceding vehicle traveling lane by the forward information detecting means. If it is detected, the three-dimensional object is determined. And determining the second traveling path of the own vehicle according to the lane position of the own vehicle traveling lane on the side where the target three-dimensional object exists and the position of the target three-dimensional object. And
[0007]
According to a second aspect of the present invention, in the vehicle travel control device according to the first aspect, the second vehicle traveling path setting means may include the target three-dimensional object. In the case where the vehicle protrudes from the lane position on the side where the vehicle exists, the second vehicle traveling path is set using at least the position where the target three-dimensional object protrudes. And
[0008]
Further, the vehicle travel control device according to the present invention according to claim 3 is the vehicle travel control device according to claim 1 or 2, wherein the second own vehicle traveling path setting means includes the forward information detecting means. In the case where it is detected that a plurality of three-dimensional objects are present on either the left or right other than the preceding vehicle traveling lane, the three-dimensional object existing at the closest distance from the own vehicle in the forward direction is regarded as the target three-dimensional object. It is characterized by defining.
[0009]
According to a fourth aspect of the present invention, there is provided a vehicle travel control device according to any one of the first to third aspects, wherein the second host vehicle traveling path setting means is provided. Even if the three-dimensional object is present on the left or right other than the vehicle lane ahead in the forward information detecting means, and the three-dimensional object is determined as the target three-dimensional object, the target three-dimensional object does not exist. When the lane on the side opposite to the side on which the vehicle is to be driven is not detected, the setting of the second own vehicle traveling path is stopped, and the steering control by the steering control means is stopped.
[0010]
According to a fifth aspect of the present invention, there is provided the vehicle travel control device according to the first or second aspect, wherein the second vehicle traveling path setting means includes the forward information detection means. When it is detected that three-dimensional objects are present on the left and right sides other than the preceding vehicle traveling lane, the three-dimensional objects on the left and right sides are determined as three-dimensional objects to be determined, and the respective three-dimensional objects are present. The second self-vehicle traveling route is set according to the lane position on the side of the vehicle and the position of each of the target three-dimensional objects.
[0011]
According to a sixth aspect of the present invention, in the vehicle traveling control apparatus according to the fifth aspect, the second vehicle traveling path setting means is the forward information detecting means, and The three-dimensional object is present on the left and right sides other than the own vehicle traveling lane, and if both the left and right target three-dimensional objects protrude into the own vehicle traveling lane, the second own vehicle traveling path is It is characterized in that it is set between the protruding positions of the left and right target three-dimensional objects.
[0012]
Furthermore, the vehicle traveling control device according to the present invention according to claim 7 is the vehicle traveling control device according to claim 5 or 6, wherein the second host vehicle traveling path setting means includes the forward information detecting means. In the case where it is detected that a plurality of three-dimensional objects are present on at least one of the left and right sides other than the preceding vehicle traveling lane, the left and right three-dimensional objects existing at the closest distance from the own vehicle in the forward direction are determined. It is characterized in that it is determined as the target three-dimensional object.
[0013]
According to an eighth aspect of the present invention, there is provided a vehicle travel control device according to any one of the first to seventh aspects, wherein the second host vehicle traveling path setting means is provided. When the width of the set traveling path of the second host vehicle is narrower than a preset threshold value, the setting of the second host vehicle traveling path is stopped, and the steering control by the steering control means is stopped. It is characterized by:
[0014]
Further, according to a ninth aspect of the present invention, in the vehicle traveling control device according to the eighth aspect, the preset threshold value is set based on at least a vehicle width of the own vehicle. It is characterized by being variable according to
[0015]
According to a tenth aspect of the present invention, there is provided the vehicle travel control device according to any one of the fourth, eighth, and ninth aspects, further comprising a notifying unit, and When the setting of the vehicle traveling route is stopped and the steering control by the steering control means is stopped, a predetermined notification is performed.
[0016]
That is, the vehicle running control device according to the first aspect detects the driving state of the own vehicle by the own vehicle operating state detecting means, and at least the three-dimensional object information and the traveling road information ahead of the own vehicle by the forward information detecting means. And the first host vehicle traveling path estimating means estimates the own vehicle traveling path according to the own vehicle driving state as the first host vehicle traveling path, and the second own vehicle traveling path setting means sets the forward information as the forward information. The corresponding own vehicle traveling path is set as a second own vehicle traveling path. Then, the steering control means causes the steering control to be executed according to the first own vehicle traveling path and the second own vehicle traveling path. At this time, the second host vehicle traveling path setting means, when the front information detecting means detects that the three-dimensional object is present at a position other than the front vehicle traveling lane, determines the three-dimensional object. The target three-dimensional object is determined, and the second self-vehicle traveling route is set according to the lane position of the own vehicle traveling lane on the side where the target three-dimensional object exists and the position of the target three-dimensional object. As described above, since the optimal traveling path is set in accordance with the actual traveling environment in consideration of not only the left and right lane information but also the position of the three-dimensional object, the driver can communicate with the vehicle ahead. The automatic steering function can be used effectively and maximally without worrying about the collision and contact of the vehicle.
[0017]
Here, the second own vehicle traveling path setting means may be configured such that the target three-dimensional object projects into the own vehicle traveling lane from the lane position on the side where the target three-dimensional object exists, as described in claim 2. If there is, the second own vehicle traveling path is set using at least the position where the target three-dimensional object protrudes.
[0018]
The second vehicle traveling path setting means may be configured to detect the presence of a plurality of three-dimensional objects on the left or right other than the vehicle traveling lane ahead of the vehicle by the forward information detecting means. The three-dimensional object existing at the closest distance from the host vehicle in the forward direction is determined as the target three-dimensional object.
[0019]
Further, the second vehicle traveling path setting means is a forward information detecting means, in which a three-dimensional object exists on either the left or right other than the own vehicle traveling lane ahead, and this three-dimensional object is determined as a target three-dimensional object. Even if there is no detected lane on the side opposite to the side where the target three-dimensional object is present, the setting of the second self-vehicle traveling route is stopped and the steering control means The steering control is stopped to surely prevent uncertain steering control from being performed.
[0020]
Further, the second host vehicle traveling path setting means, when the front information detecting means detects the presence of a three-dimensional object on both the left and right sides other than the host vehicle traveling lane ahead, These three-dimensional objects on both the left and right sides are determined as three-dimensional objects to be determined, and the second own vehicle traveling route is set according to the lane position on the side where the respective three-dimensional objects exist and the position of each of the three-dimensional objects. I do.
[0021]
Further, the second own vehicle traveling path setting means detects the presence of a three-dimensional object on both the left and right sides other than the own vehicle traveling lane ahead by the forward information detecting means, and both the left and right target three-dimensional objects travel on the own vehicle. In the case where the vehicle protrudes into the lane, the second own vehicle traveling path is set between the positions where the left and right target three-dimensional objects protrude.
[0022]
Further, the second host vehicle traveling path setting means, when the front information detecting means detects that a plurality of three-dimensional objects are present on at least one of the left and right sides other than the host vehicle traveling lane ahead, As described in item 7, the three-dimensional object existing at the closest distance in the forward direction from the left and right own vehicles is determined as the target three-dimensional object.
[0023]
Further, when the width of the set traveling path of the second self-vehicle traveling path is smaller than a preset threshold value, the second self-vehicle traveling path setting means may set the second self-vehicle traveling path. The setting of the traveling path is stopped, and the steering control by the steering control means is stopped. At this time, it is preferable that the preset threshold is set based on at least the width of the host vehicle and can be changed according to the host vehicle speed. By this control, unnecessary steering control for trying to pass through a passage that cannot be passed is reliably prevented.
[0024]
Further, when the setting of the second self-vehicle traveling path is stopped and the steering control by the steering control means is stopped, the notification means may be used. By issuing a predetermined notification, for example, an alarm by blinking a lamp or sound, the driver is notified that the steering control has been stopped, and the convenience can be further improved.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 12 show an embodiment of the present invention. FIG. 1 is a schematic configuration diagram of a vehicle provided with a travel control device, FIG. 2 is a functional block diagram of the travel control device, and FIG. 3 is an electric power steering target value. FIG. 4 is a characteristic diagram for explaining the creation, FIG. 4 is an explanatory diagram of the own vehicle traveling path based on the forward information set when the target three-dimensional object exists in one lane, and FIG. 5 is a diagram in which a plurality of target three-dimensional objects exist in one lane. FIG. 6 is an explanatory diagram of the own vehicle traveling route based on the forward information set at the time, FIG. 6 is an explanatory diagram of the own vehicle traveling route based on the forward information set when the target three-dimensional object is present on both side lanes, and FIG. FIG. 8 is an explanatory diagram of an own vehicle traveling path based on forward information set when a plurality of target three-dimensional objects are present in a lane; FIG. 8 is an explanatory diagram showing an example of a curve curvature radius calculation of the own vehicle traveling path based on forward information; FIG. 9 shows the own vehicle traveling path based on the driving state and the own vehicle traveling based on the forward information. 10 is an explanatory diagram of a target yaw rate calculation based on the deviation amount, FIG. 11 is a functional block diagram of an electric power steering motor control unit, and FIG. 12 is a description showing a relationship between a torque control instruction value and a motor instruction current. FIG.
[0026]
In FIG. 1, reference numeral 1 denotes a vehicle such as an automobile (own vehicle). The vehicle 1 has an own vehicle traveling path (or a target course), and the center of the vehicle traces the own vehicle traveling path. A traveling control device 2 for automatically controlling the steering device is mounted on the vehicle.
[0027]
For this reason, the front wheel steering section 3 of the vehicle 1 is configured by a well-known electric power steering mechanism including an electric power steering motor 4, a worm gear, a reduction gear, and the like (not shown), and a left front wheel 5fl, a right front wheel 5fr, and a link mechanism. Connected.
[0028]
The travel control device 2 has a control device 7 that outputs to the electric power steering motor control unit 6 based on an input from each sensor and other devices to be described later and drives and controls the electric power steering motor 4 as a main control device. The control device 7 is connected to a notification lamp 8 which lights up when the tracing of the own vehicle traveling route is stopped and notifies the driver.
[0029]
The host vehicle 1 has a set of (left and right) CCD cameras 9L and 9R using a solid-state imaging device such as a charge-coupled device (CCD) as a stereo optical system. The left and right CCD cameras 9L and 9R are respectively mounted at a predetermined interval in front of the ceiling in the vehicle compartment, stereoscopically image an object outside the vehicle from different viewpoints, and input image data to the forward information recognition device 10, respectively.
[0030]
The forward information recognition device 10 detects forward information of three-dimensional object data and white line data ahead of the vehicle 1 based on images from the CCD cameras 9L and 9R. Processing of images from the CCD cameras 9L and 9R in the forward information recognition device 10 is performed, for example, as follows. First, for a pair of stereo images of the environment in the approach direction of the vehicle captured by the CCD cameras 9L and 9R, distance information over the entire image is obtained from the amount of displacement of the corresponding position by the principle of triangulation. Processing is performed to generate a distance image representing a three-dimensional distance distribution. Then, based on this data, a well-known grouping process is performed, and three-dimensional object data such as white line data and vehicles are extracted by comparing the data with three-dimensional road shape data and three-dimensional object data stored in advance. Thus, the white line data and the three-dimensional object data such as the vehicle recognized by the forward information recognition device 10 are input to the control device 7. As described above, the CCD cameras 9L and 9R and the forward information recognition device 10 are provided as forward information detecting means.
[0031]
The vehicle 1 is provided with wheel speed sensors 21fl, 21fr, 21rl, 21rr for detecting wheel speeds ωfl, ωfr, ωrl, ωrr of the four wheels 5fl, 5fr, 5rl, 5rr. Is input to the control device 7. Further, the host vehicle 1 is provided with a steering angle sensor 22 for detecting a front wheel steering angle δf, a steering torque sensor 23 for detecting a steering torque Td, and a yaw rate sensor 24 for detecting an actual yaw rate γ actually occurring in the vehicle. The signals from these sensors are input to the control device 7.
[0032]
The control device 7 receives the white line data recognized by the forward information recognition device 10, the three-dimensional object data such as a vehicle, and the sensor signals detected by the sensors 21fl, 21fr, 21rl, 21rr, 22, 23, and 24. Is done. Based on these input signals, the own vehicle traveling path (that is, the first own vehicle traveling path) is estimated from the driving state of the own vehicle 1, and the own vehicle traveling path (that is, the second own vehicle A travel path) is set, and a torque control instruction value Tt is output to the electric power steering motor control unit 6 so that the first vehicle travel path becomes the second vehicle travel path.
[0033]
That is, the control device 7 has a function as a steering control means, and is configured by a microcomputer and its peripheral circuits. As shown in FIG. 2, the vehicle speed calculation unit 7a, the electric power steering target value creation unit 7b, the front information , The vehicle travel path setting unit 7c, the notification control unit 7d, the curve curvature radius calculation unit 7e, the target yaw rate calculation unit 7f based on the deviation, the target yaw rate calculation unit 7g based on the curve curvature, the key plane control torque calculation unit 7h, It mainly comprises an electric power steering control torque output section 7i.
[0034]
The vehicle speed calculation unit 7a receives the wheel speed sensors of four wheels, that is, the wheel speed sensors 21fl, 21fr, 21rl, 21rr, and the wheel speeds ωfl, ωfr, ωrl, ωrr of the four wheels 5fl, 5fr, 5rl, 5rr, respectively. For example, the vehicle speed V (= (ωfl, ωfr, ωrl, ωrr) / 4) is calculated by calculating the average of these, the electric power steering target value creation unit 7b, the target yaw rate calculation unit 7f based on the amount of deviation, the curve curvature Is output to the target yaw rate calculation unit 7g and the key plane control torque calculation unit 7h based on. The vehicle speed calculation unit 7a, together with the wheel speed sensors 21fl, 21fr, 21rl, and 21rr, constitutes an own vehicle driving state detection unit.
[0035]
The electric power steering target value creation unit 7b receives the steering torque Td from the steering torque sensor 23 and the vehicle speed V from the vehicle speed calculation unit 7a. Then, for example, as shown in FIG. 3A, the basic assist amount Tb is obtained from a characteristic map of the basic assist amount Tb of the electric power steering target value and the steering torque Td stored in advance. Then, as shown in FIG. 3B, a vehicle speed coefficient Kb is determined from a previously stored characteristic map of the vehicle speed coefficient Kb and the vehicle speed V, and the basic assist amount Tb and the vehicle speed coefficient Kb are multiplied to obtain an assist torque. Th is calculated (Th = Tb · Kb). The assist torque Th thus calculated is output to the electric power steering control torque output unit 7i.
[0036]
The host vehicle traveling path setting unit 7c based on the forward information is provided as second host vehicle traveling path setting means, and receives white line data and three-dimensional object data such as vehicles from the front information recognition device 10. When detecting that a three-dimensional object exists at a position other than the own vehicle traveling lane ahead, the own vehicle traveling route setting unit 7c determines the three-dimensional object as a target three-dimensional object to be determined, and A second host vehicle traveling path is set according to the lane position of the host vehicle traveling lane on the side where the object exists and the target position of the target three-dimensional object. Then, the set second vehicle traveling path is output to the curve curvature radius calculator 7e and the target yaw rate calculator 7f based on the deviation amount.
[0037]
The setting of the second host vehicle traveling route in the host vehicle traveling route setting unit 7c based on the forward information is specifically performed as follows.
Case 1. When the target three-dimensional object is not detected and only the white lines on both sides are detected, the approximate center of the white lines on both sides is set as the second vehicle traveling path.
[0038]
Case 2. When the target three-dimensional object is detected on one lane side of the own vehicle traveling lane, and the target three-dimensional object protrudes into the own vehicle traveling lane from the lane position on the side where the target three-dimensional object exists (see FIG. 4). In such a case), the second own vehicle traveling path is set using at least the position where the target three-dimensional object protrudes. As shown in FIG. 4, the second self-vehicle traveling path is located at a substantially center between a position where the target three-dimensional object protrudes and a lane opposite to the side where the target three-dimensional object exists. Set your own path.
[0039]
Case 3. When a plurality of three-dimensional objects are detected on one lane side of the own vehicle traveling lane, the three-dimensional object existing at the closest distance from the own vehicle in the forward direction is determined as the target three-dimensional object, and the target three-dimensional object is determined as the target three-dimensional object. In the case where the vehicle protrudes from the lane position on the side where the object is present in the own vehicle traveling lane (as shown in FIG. 5), at least the position where the target three-dimensional object protrudes is used as the second vehicle traveling path. Set. Like the case 2, as shown in FIG. 5, the second self-vehicle traveling path is substantially between a position where the target three-dimensional object protrudes and a lane opposite to the side where the target three-dimensional object exists. A second vehicle traveling path is set at the center.
[0040]
Case 4. Even if a three-dimensional object exists on one lane side of the own vehicle traveling lane and this three-dimensional object is determined as the target three-dimensional object, the lane opposite to the side where the target three-dimensional object exists is not detected. In the case of, the setting of the second host vehicle traveling path is stopped, the data output of the second host vehicle traveling path is stopped (the traveling control in the control device 7 is stopped), and the notification control unit 7d is released. , And the notification lamp 8 is turned on.
[0041]
Case 5. When it is detected that three-dimensional objects are present on the left and right sides other than the own vehicle traveling lane ahead, these three-dimensional objects on the left and right sides are determined as three-dimensional objects to be determined, and the three-dimensional objects on the side where the respective three-dimensional objects exist are determined. A second self-vehicle traveling path is set according to the lane position and the position where each target three-dimensional object exists. At this time, when both the left and right target three-dimensional objects protrude into the own vehicle traveling lane (the case shown in FIG. 6), the second own vehicle traveling path is substantially at the center of the position where the left and right target three-dimensional objects protrude. Set to.
[0042]
Case 6. If it is detected that a plurality of three-dimensional objects are present on at least one of the left and right sides other than the own vehicle traveling lane in front, the three-dimensional object present at the closest distance from the own vehicle in the forward direction from the left and right own vehicles is the target three-dimensional object. Determined as Then, the second own vehicle traveling path is set according to the lane position on the side where the respective target three-dimensional objects exist and the position where the respective target three-dimensional objects exist. At this time, when both the left and right target three-dimensional objects protrude into the own vehicle traveling lane (in the case shown in FIG. 7), the second own vehicle traveling path is substantially at the center of the position where the left and right target three-dimensional objects protrude. Set to.
[0043]
In each of the cases 1, 2, 3, 5, and 6, the own vehicle traveling path setting unit 7c based on the forward information sets the second own vehicle traveling path when the second own vehicle traveling path is set. A travel path width d substantially centered on the vehicle travel path is also detected. If the travel path width d is smaller than a preset threshold, the setting of the second own vehicle travel path is stopped, and The data output of the own vehicle traveling path is stopped (the traveling control in the control device 7 is stopped), a signal is output to the notification control unit 7d, and the notification lamp 8 is turned on.
[0044]
Here, the threshold value for comparison with the travel road width d is set, for example, based on the vehicle width of the host vehicle 1 (the lowest value), and is set to a larger value as the host vehicle speed V increases with reference to a map or the like. Is done.
[0045]
The curve curvature radius calculation unit 7e receives the second vehicle travel path from the vehicle travel path setting unit 7c based on the forward information, calculates the curve curvature radius R of the second vehicle travel path, and calculates the curve curvature. Is output to the target yaw rate calculator 7g based on.
[0046]
The calculation of the curve radius of curvature R is performed, for example, as follows.
As shown in FIG. 8, three nodes forming a curve ahead of the second host vehicle traveling path on X (horizontal direction of the vehicle) -Y (horizontal direction of the vehicle) coordinate centering on the host vehicle 1. Consider P1 (x1, y1), P2 (x2, y2), and P3 (x3, y3). If the line segment between P1 and P2 is A, the line segment between P2 and P3 is B, and the line segment between P3 and P1 is C, the radius of the circumcircle of the three points P1, P2, and P3 is as follows. It is given by equation (1).
R = (A + B + C) / (4 · Sa) (1)
[0047]
Here, Sa is the area of the triangle P1-P2-P3,
Sa = (λ · (λ−A) · (λ−B) · (λ−C)) 1/2 … (2)
Where λ = (A + B + C) / 2
[0048]
The line segments A, B, and C are obtained from the respective coordinate values by the following equations.
A = ((y2-y1) 2 + (X2-x1) 2 ) 1/2 … (3)
B = ((y3-y2) 2 + (X3-x2) 2 ) 1/2 … (4)
C = ((y1-y3) 2 + (X1-x3) 2 ) 1/2 … (5)
The distance between nodes is such that the sampling time and the separation distance are tuned according to the curvature of the corresponding curve.
[0049]
The target yaw rate calculation unit 7f based on the shift amount receives the vehicle speed V from the vehicle speed calculation unit 7a and the second vehicle travel path from the vehicle travel path setting unit 7c based on the forward information. Then, as shown in FIG. 9, first, the lane left-right coordinate position Xp recognized in the image and the arrival point X0 when the own vehicle 1 maintains the current course (that is, the arrival point on the first own vehicle traveling path). X0) is determined as a shift amount ε. That is, the shift amount ε is actually the lateral displacement amount of the second vehicle traveling path detected by the image recognition, and the front gaze distance D for detecting the shift amount ε is, for example, the following equation (6). Is calculated by
D = Tp · V (6)
Here, Tp is a preview time such as 2 seconds. Note that the front gaze distance D may be determined by another method. As described above, the target yaw rate calculation unit 7f based on the amount of deviation also has a function as first host vehicle traveling path estimation means.
[0050]
Next, the target yaw rate calculation unit 7f based on the deviation amount calculates a target yaw rate (a target yaw rate based on the deviation amount) γε required to make the deviation amount ε zero from the geometric relationship shown in FIG. (7) is calculated.
γε = V / R ′ (7)
Here, R ′ = x / sin θ,
x = (D 2 + Ε 2 ) 1/2 / 2
θ = tan -1 (Ε / D)
It is.
Thus, the target yaw rate γε based on the calculated shift amount is output to the key plane control torque calculation unit 7h.
[0051]
The target yaw rate calculation unit 7g based on the curve curvature receives the vehicle speed V from the vehicle speed calculation unit 7a and the curve curvature radius R from the curve curvature radius calculation unit 7e. Then, a target yaw rate (target yaw rate based on curve curvature) γr for tracing the curve curvature radius R is calculated by, for example, the following equation (8), and a target yaw rate γr based on the calculated curve curvature is calculated by key plane control. Output to the torque calculation unit 7h.
γr = V / R (8)
[0052]
The key plane control torque calculation unit 7h calculates the front wheel steering angle δf from the steering angle sensor 22, the actual yaw rate γ from the yaw rate sensor 24, the vehicle speed V from the vehicle speed calculation unit 7a, and the deviation amount from the target yaw rate calculation unit 7f based on the deviation amount. And the target yaw rate γr based on the curve curvature is input from the target yaw rate calculation unit 7g based on the curve curvature. Then, for example, according to the following procedure, the target steering wheel torque Ta for realizing the target steering wheel angle is calculated and output to the electric power steering control torque output unit 7i.
[0053]
First, a total target yaw rate γs is calculated from the target yaw rate γε based on the deviation amount and the target yaw rate γr based on the curve curvature by the following equation (9).
γs = kε · γε + kr · γr (9)
Here, kε and kr indicate gains set in advance.
[0054]
Next, a target steering wheel angle θht for realizing the target yaw rate γs is calculated.
In general, the target yaw rate γt of the vehicle is obtained by the following equation (10) from the equation of motion of the vehicle.
γt = G (0) · (1 / (1 + Tr · s)) · δf (10)
Here, G (0) is a yaw rate steady gain, Tr is a time constant, and s is a Laplace operator. For example, the time constant Tr is obtained from the following equation (11), and the yaw rate steady gain G (0) is It is obtained from equation (12).
Tr = (m · Lf · V) / (2 · L · kre) (11)
Here, m is the vehicle mass, Lf is the distance between the front shaft and the center of gravity, L is the wheelbase, and kre is the rear equivalent cornering power.
[0055]
G (0) = 1 / (1 + sf · V 2 ) · V / L (12)
Here, sf is a stability factor determined by vehicle specifications, and is calculated, for example, by the following equation (13).
Figure 2004199286
Here, kfe is the front equivalent cornering power, and Lr is the distance between the rear shaft and the center of gravity.
[0056]
Then, from the above equation (10),
γt + Tr · s · γt = G (0) · δf
δf = (1 / G (0)) · γt + (Tr / G (0)) · s · γt (14)
[0057]
In the above equation (14), s · γt is a differential value of γt, and the following equation (15) is obtained by replacing δf with the target steering angle δft and γt with the total target yaw rate γs.
[0058]
δft = (1 / G (0)) · γs + (Tr / G (0)) · (dγs / dt) (15)
[0059]
Therefore, the target steering wheel angle θht can be calculated by the following equation (16), where stg is the steering gear ratio.
[0060]
θht = δft · stg (16)
[0061]
The target steering wheel torque Ta for realizing the target steering wheel angle θht is calculated by the following equation (17).
Ta = Isw · (d 2 θht / dt 2 ) + Tst / stg (17)
Here, Isw is a steering moment of inertia, Tst is a self-aligning torque, and the self-aligning torque Tst is given by the following equation (18).
Tst = nt · Cf (18)
Here, nt is the pneumatic trail, and Cf is the cornering force of the front wheels.
The electric power steering control torque output unit 7i receives the assist torque Th from the electric power steering target value creation unit 7b and the target steering wheel torque Ta from the key plane control torque calculation unit 7h, and adds these to the torque control instruction value Tt. (= Th + Ta), and outputs the result to the torque control electric power steering motor control unit 6.
[0062]
As shown in FIG. 11, the electric power steering motor control unit 6 mainly includes a motor instruction current conversion unit 6a, a current control unit 6b, a drive signal generation unit 6c, and a current detection unit 6d.
[0063]
When the torque control instruction value Tt is input from the control device 7, the motor instruction current conversion unit 6a converts the torque control instruction value Tt into a motor instruction current with reference to a preset map as shown in FIG. The current controller 6b outputs a current to the electric power steering motor 4 via the drive signal generator 6c. The current value output from the drive signal generation unit 6c is detected by the current detection unit 6d, and it is monitored whether the current value converted by the motor instruction current conversion unit 6a is output.
[0064]
As described above, according to the embodiment of the present invention, without simply setting the target vehicle traveling route from the left and right lane information, various types of information are considered in consideration of three-dimensional object information other than the vehicle traveling lane. Since the own-vehicle traveling route is set for each situation, it is possible for the driver to use the automatic steering function effectively and to the maximum without worrying about the driver not having to worry about collision or contact with the vehicle ahead.
[0065]
In the present embodiment, three-dimensional object information and travel path information in front of the host vehicle are obtained based on image information from the CCD cameras 9L and 9R. However, a monocular camera and a millimeter-wave radar or a laser radar are used. Alternatively, it is needless to say that the present invention can be applied to a case where three-dimensional object information and travel path information in front of the own vehicle are obtained from another system such as a system combining an infrared radar device.
[0066]
【The invention's effect】
As described above, according to the present invention, the optimal own vehicle traveling path is set according to the actual traveling environment, and the driver can safely and effectively use the vehicle without worrying about collision with the vehicle ahead or the like and contact with the vehicle. It is possible to use the function of automatic steering only to the extent possible.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a vehicle including a traveling control device.
FIG. 2 is a functional block diagram of a travel control device.
FIG. 3 is a characteristic diagram for explaining creation of an electric power steering target value.
FIG. 4 is an explanatory diagram of a vehicle traveling path based on forward information set when a target three-dimensional object is present in one lane;
FIG. 5 is an explanatory diagram of a vehicle traveling path based on forward information set when a plurality of three-dimensional objects are present in one lane;
FIG. 6 is an explanatory diagram of a vehicle traveling path based on forward information set when a target three-dimensional object is present in both lanes;
FIG. 7 is an explanatory diagram of a vehicle traveling path based on forward information set when a plurality of target three-dimensional objects are present on both side lanes;
FIG. 8 is an explanatory diagram showing an example of calculating a curve radius of curvature of the own vehicle traveling path based on forward information.
FIG. 9 is an explanatory diagram of a deviation amount between the own vehicle traveling path based on a driving state and the own vehicle traveling path based on forward information.
FIG. 10 is an explanatory diagram of a target yaw rate calculation based on a shift amount.
FIG. 11 is a functional block diagram of an electric power steering motor control unit.
FIG. 12 is an explanatory diagram showing a relationship between a torque control instruction value and a motor instruction current.
[Explanation of symbols]
1 own vehicle
2 Travel control device
3 Front wheel steering
4 Electric power steering motor
5fl, 5fr, 5rl, 5rr wheels
6 Electric power steering motor controller
7 control device (steering control means)
7a Vehicle speed calculation unit (own vehicle operation state detection means)
7b Electric power steering target value creation unit
7c Self-vehicle traveling route setting unit based on forward information (second self-vehicle traveling route setting means)
7d notification control unit
7e Curvature radius calculator
7f Target yaw rate calculation unit based on deviation amount (first own vehicle traveling path estimation means)
7g Target yaw rate calculator based on curve curvature
7h Key plane control torque calculation unit
7i Electric power steering control torque output unit
8 Information lamp
9L, 9R CCD camera (forward information detection means)
10. Forward information recognition device (forward information detecting means)
21fl, 21fr, 21rl, 21rr Wheel speed sensor (own vehicle operating state detecting means)

Claims (10)

自車両の運転状態を検出する自車両運転状態検出手段と、
自車両前方の少なくとも立体物情報と走行路情報を前方情報として検出する前方情報検出手段と、
上記自車両運転状態に応じた自車進行路を第1の自車進行路として推定する第1の自車進行路推定手段と、
上記前方情報に応じた自車進行路を第2の自車進行路として設定する第2の自車進行路設定手段と、
上記第1の自車進行路と上記第2の自車進行路に応じて操舵制御を実行させる操舵制御手段とを備えた車両の走行制御装置において、
上記第2の自車進行路設定手段は、上記前方情報検出手段で、前方の自車両走行車線以外の他の位置に立体物が存在することを検出した場合は、該立体物を判定の対象とする対象立体物として定め、上記対象立体物が存在する側の上記自車両走行車線の車線位置と上記対象立体物の存在位置とに応じて上記第2の自車進行路を設定することを特徴とする車両の走行制御装置。
Own-vehicle driving state detecting means for detecting the driving state of the own vehicle;
Forward information detecting means for detecting at least three-dimensional object information and travel path information ahead of the own vehicle as forward information,
First host vehicle traveling path estimating means for estimating the host vehicle traveling path according to the host vehicle driving state as a first host vehicle traveling path;
Second host vehicle traveling path setting means for setting the host vehicle traveling path according to the forward information as a second host vehicle traveling path;
A travel control device for a vehicle, comprising: a first self-vehicle traveling path; and a steering control unit that performs steering control according to the second self-vehicle traveling path.
The second host vehicle traveling path setting means, when the front information detecting means detects that a three-dimensional object is present at a position other than the front vehicle traveling lane, determines the three-dimensional object as an object to be determined. And setting the second self-vehicle traveling path in accordance with the lane position of the own vehicle traveling lane on the side where the target three-dimensional object exists and the existence position of the target three-dimensional object. Characteristic vehicle travel control device.
上記第2の自車進行路設定手段は、上記対象立体物が上記対象立体物の存在する側の車線位置より上記自車両走行車線内に突出して存在する場合には、少なくとも上記対象立体物の突出している位置を用いて上記第2の自車進行路を設定することを特徴とする請求項1記載の車両の走行制御装置。The second self-vehicle traveling route setting means, if the target three-dimensional object protrudes from the lane position on the side where the target three-dimensional object exists in the own vehicle traveling lane, at least the target three-dimensional object The travel control device for a vehicle according to claim 1, wherein the second own vehicle traveling path is set using a protruding position. 上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右のどちらかに複数の立体物が存在することを検出した場合は、自車両から前方向に最も近い距離に存在する立体物を上記対象立体物として定めることを特徴とする請求項1又は請求項2記載の車両の走行制御装置。The second host vehicle traveling path setting means, when the front information detecting means detects that a plurality of three-dimensional objects are present on either the left or right other than the front host vehicle traveling lane, from the host vehicle. 3. The travel control device for a vehicle according to claim 1, wherein a three-dimensional object existing at a distance closest to a front direction is determined as the target three-dimensional object. 上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右のどちらかに立体物が存在し、この立体物を対象立体物として定めた場合であっても、該対象立体物が存在する側とは反対側の車線が未検出の場合は上記第2の自車進行路の設定を中止し、上記操舵制御手段による操舵制御を中止させることを特徴とする請求項1乃至請求項3の何れか一つに記載の車両の走行制御装置。The second self-vehicle traveling route setting means may include a case where a three-dimensional object is present on the left or right other than the front vehicle traveling lane by the front information detecting means, and the three-dimensional object is determined as a target three-dimensional object. Even if the lane on the side opposite to the side where the target three-dimensional object exists is not detected, the setting of the second own vehicle traveling path is stopped, and the steering control by the steering control means is stopped. The travel control device for a vehicle according to any one of claims 1 to 3, wherein: 上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右両側に立体物が存在することを検出した場合は、これら左右両側の立体物を判定の対象とする立体物として定め、それぞれの対象立体物が存在する側の車線位置と上記各対象立体物の存在位置とに応じて上記第2の自車進行路を設定することを特徴とする請求項1又は請求項2記載の車両の走行制御装置。The second host vehicle traveling path setting means, when the front information detecting means detects the presence of three-dimensional objects on both left and right sides other than the front host vehicle traveling lane, the three-dimensional objects on both left and right sides. Determining the three-dimensional object to be determined, and setting the second self-vehicle traveling path according to the lane position on the side where the respective three-dimensional object exists and the existence position of each of the three-dimensional objects. The vehicle travel control device according to claim 1 or 2, wherein: 上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右両側に立体物が存在することを検出し、上記左右の対象立体物が共に上記自車両走行車線内に突出している場合は、上記第2の自車進行路を上記左右の対象立体物の突出している位置の間に設定することを特徴とする請求項5記載の車両の走行制御装置。The second host vehicle traveling path setting means detects the presence of a three-dimensional object on both left and right sides other than the front host vehicle traveling lane by the front information detecting means, and the left and right target three-dimensional objects are both 6. The vehicle according to claim 5, wherein when the vehicle protrudes into the own vehicle traveling lane, the second vehicle traveling path is set between positions where the left and right target three-dimensional objects protrude. Control device. 上記第2の自車進行路設定手段は、上記前方情報検出手段で、上記前方の自車両走行車線以外の左右の少なくともどちらかの側に複数の立体物が存在することを検出した場合は、左右それぞれ自車両から前方向に最も近い距離に存在する立体物を上記対象立体物として定めることを特徴とする請求項5又は請求項6記載の車両の走行制御装置。The second host vehicle traveling path setting means, when the front information detecting means detects that a plurality of three-dimensional objects exist on at least one of the left and right sides other than the front host vehicle traveling lane, The travel control device for a vehicle according to claim 5 or 6, wherein a three-dimensional object existing at a distance closest to the front of the left and right vehicles in the forward direction is determined as the target three-dimensional object. 上記第2の自車進行路設定手段は、設定した上記第2の自車進行路の走行路の幅が予め設定する閾値より狭い場合は、上記第2の自車進行路の設定を中止し、上記操舵制御手段による操舵制御を中止させることを特徴とする請求項1乃至請求項7の何れか一つに記載の車両の走行制御装置。The second host vehicle traveling path setting means stops the setting of the second host vehicle traveling path when the width of the set traveling path of the second host vehicle traveling path is smaller than a preset threshold. The vehicle travel control device according to any one of claims 1 to 7, wherein the steering control by the steering control means is stopped. 上記予め設定する閾値は、少なくとも自車両の車幅を基準に設定し、自車速に応じて可変自在であることを特徴とする請求項8記載の車両の走行制御装置。9. The travel control device for a vehicle according to claim 8, wherein the preset threshold value is set based on at least a vehicle width of the own vehicle, and is variable according to the own vehicle speed. 報知手段を有し、上記第2の自車進行路の設定を中止し、上記操舵制御手段による操舵制御を中止させる際には、所定の報知を行うことを特徴とする請求項4、8、9の何れか一つに記載の車両の走行制御装置。The system according to claim 4, further comprising a notification unit, wherein when the setting of the second vehicle traveling path is stopped and the steering control by the steering control unit is stopped, a predetermined notification is performed. 10. The travel control device for a vehicle according to any one of 9).
JP2002365701A 2002-12-17 2002-12-17 Vehicle travel control device Expired - Fee Related JP4145644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365701A JP4145644B2 (en) 2002-12-17 2002-12-17 Vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365701A JP4145644B2 (en) 2002-12-17 2002-12-17 Vehicle travel control device

Publications (3)

Publication Number Publication Date
JP2004199286A true JP2004199286A (en) 2004-07-15
JP2004199286A5 JP2004199286A5 (en) 2006-02-09
JP4145644B2 JP4145644B2 (en) 2008-09-03

Family

ID=32763183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365701A Expired - Fee Related JP4145644B2 (en) 2002-12-17 2002-12-17 Vehicle travel control device

Country Status (1)

Country Link
JP (1) JP4145644B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247231A (en) * 2004-03-08 2005-09-15 Hitachi Ltd Steering control system
JP2005324782A (en) * 2004-04-13 2005-11-24 Nissan Motor Co Ltd Lane departure prevention device
JP2006027532A (en) * 2004-07-20 2006-02-02 Aisin Seiki Co Ltd Lane travel support device for vehicle
JP2007094716A (en) * 2005-09-28 2007-04-12 Fuji Heavy Ind Ltd Vehicle driving support device
WO2007142345A1 (en) 2006-06-07 2007-12-13 Toyota Jidosha Kabushiki Kaisha Travel assistance device
JP2008143263A (en) * 2006-12-07 2008-06-26 Mazda Motor Corp Vehicular traveling controller
JP2009096402A (en) * 2007-10-18 2009-05-07 Fuji Heavy Ind Ltd Operation support device of vehicle
JPWO2007102405A1 (en) * 2006-03-01 2009-07-23 トヨタ自動車株式会社 Own vehicle route determination method and own vehicle route determination device
WO2010005049A1 (en) * 2008-07-11 2010-01-14 トヨタ自動車株式会社 Travel supporting control system
JP2010023756A (en) * 2008-07-23 2010-02-04 Nissan Motor Co Ltd Supporting device and method for lane keeping
WO2010032556A1 (en) * 2008-09-19 2010-03-25 日立オートモティブシステムズ株式会社 Vehicle control apparatus
JP2011134071A (en) * 2009-12-24 2011-07-07 Denso Corp Virtual white line setting method, virtual white line setting apparatus, and course change support apparatus using the same
JP2013056576A (en) * 2011-09-07 2013-03-28 Nissan Motor Co Ltd Steering assist device and method for vehicle
KR101262921B1 (en) * 2009-11-10 2013-05-09 한국전자통신연구원 Apparatus for keeping a traffic lane for a vehicle and method thereof
US8682500B2 (en) 2009-04-21 2014-03-25 Toyota Jidosha Kabushiki Kaisha Driving assistance apparatus
DE102014112601A1 (en) 2013-09-09 2015-03-12 Fuji Jukogyo Kabushiki Kaisha Vehicle environment detection device
JP2016167188A (en) * 2015-03-10 2016-09-15 トヨタ自動車株式会社 Collision avoidance control unit
JP2018062272A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Vehicle lane maintenance support device
CN109017773A (en) * 2017-06-09 2018-12-18 株式会社斯巴鲁 Controller of vehicle
WO2020062034A1 (en) * 2018-09-28 2020-04-02 Baidu.Com Times Technology (Beijing) Co., Ltd. A tunnel-based planning system for autonomous driving vehicles
US20220281523A1 (en) * 2021-03-04 2022-09-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and apparatus for lane control of a vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012079118A (en) * 2010-10-01 2012-04-19 Toyota Motor Corp Drive-supporting apparatus and drive-supporting method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550934A (en) * 1991-08-22 1993-03-02 Mazda Motor Corp Automatic steering device of vehicle
JPH0558319A (en) * 1991-08-27 1993-03-09 Mazda Motor Corp Contact preventive device for vehicle
JPH09315180A (en) * 1996-05-27 1997-12-09 Nissan Motor Co Ltd Inter-vehicle distance control device
JPH1029554A (en) * 1996-07-12 1998-02-03 Toyota Motor Corp Vehicular steering controller
JPH1116097A (en) * 1997-06-25 1999-01-22 Fuji Heavy Ind Ltd Operation supporting device for vehicle
JPH1178948A (en) * 1997-09-13 1999-03-23 Honda Motor Co Ltd Steering unit of vehicle
JPH11240431A (en) * 1997-12-12 1999-09-07 Honda Motor Co Ltd Integrated control unit for vehicle
JPH11348598A (en) * 1998-06-09 1999-12-21 Nissan Motor Co Ltd Control device for vehicle
JP2000142441A (en) * 1998-09-11 2000-05-23 Honda Motor Co Ltd Vehicular steering control device
JP2001048036A (en) * 1999-08-10 2001-02-20 Nissan Motor Co Ltd Lane following device
JP2001076298A (en) * 1999-09-07 2001-03-23 Mazda Motor Corp On-vehicle display device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550934A (en) * 1991-08-22 1993-03-02 Mazda Motor Corp Automatic steering device of vehicle
JPH0558319A (en) * 1991-08-27 1993-03-09 Mazda Motor Corp Contact preventive device for vehicle
JPH09315180A (en) * 1996-05-27 1997-12-09 Nissan Motor Co Ltd Inter-vehicle distance control device
JPH1029554A (en) * 1996-07-12 1998-02-03 Toyota Motor Corp Vehicular steering controller
JPH1116097A (en) * 1997-06-25 1999-01-22 Fuji Heavy Ind Ltd Operation supporting device for vehicle
JPH1178948A (en) * 1997-09-13 1999-03-23 Honda Motor Co Ltd Steering unit of vehicle
JPH11240431A (en) * 1997-12-12 1999-09-07 Honda Motor Co Ltd Integrated control unit for vehicle
JPH11348598A (en) * 1998-06-09 1999-12-21 Nissan Motor Co Ltd Control device for vehicle
JP2000142441A (en) * 1998-09-11 2000-05-23 Honda Motor Co Ltd Vehicular steering control device
JP2001048036A (en) * 1999-08-10 2001-02-20 Nissan Motor Co Ltd Lane following device
JP2001076298A (en) * 1999-09-07 2001-03-23 Mazda Motor Corp On-vehicle display device

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005247231A (en) * 2004-03-08 2005-09-15 Hitachi Ltd Steering control system
JP2005324782A (en) * 2004-04-13 2005-11-24 Nissan Motor Co Ltd Lane departure prevention device
JP2006027532A (en) * 2004-07-20 2006-02-02 Aisin Seiki Co Ltd Lane travel support device for vehicle
JP4576914B2 (en) * 2004-07-20 2010-11-10 アイシン精機株式会社 Vehicle lane travel support device
JP2007094716A (en) * 2005-09-28 2007-04-12 Fuji Heavy Ind Ltd Vehicle driving support device
JPWO2007102405A1 (en) * 2006-03-01 2009-07-23 トヨタ自動車株式会社 Own vehicle route determination method and own vehicle route determination device
US8457892B2 (en) 2006-03-01 2013-06-04 Toyota Jidosha Kabushiki Kaisha Own-vehicle-path determining method and own-vehicle-path determining apparatus
JP4743275B2 (en) * 2006-03-01 2011-08-10 トヨタ自動車株式会社 Own vehicle route determination method and own vehicle route determination device
JP2007326447A (en) * 2006-06-07 2007-12-20 Toyota Motor Corp Travel supporting device
WO2007142345A1 (en) 2006-06-07 2007-12-13 Toyota Jidosha Kabushiki Kaisha Travel assistance device
US8521363B2 (en) 2006-06-07 2013-08-27 Toyota Jidosha Kabushiki Kaisha Driving assist system
JP4582052B2 (en) * 2006-06-07 2010-11-17 トヨタ自動車株式会社 Driving support device
JP2008143263A (en) * 2006-12-07 2008-06-26 Mazda Motor Corp Vehicular traveling controller
JP2009096402A (en) * 2007-10-18 2009-05-07 Fuji Heavy Ind Ltd Operation support device of vehicle
WO2010005049A1 (en) * 2008-07-11 2010-01-14 トヨタ自動車株式会社 Travel supporting control system
EP2298626A1 (en) * 2008-07-11 2011-03-23 Toyota Jidosha Kabushiki Kaisha Travel supporting control system
EP2298626A4 (en) * 2008-07-11 2014-04-16 Toyota Motor Co Ltd Travel supporting control system
US8626431B2 (en) 2008-07-11 2014-01-07 Toyota Jidosha Kabushiki Kaisha Travel supporting control system
JP2010018207A (en) * 2008-07-11 2010-01-28 Toyota Motor Corp Travel supporting control system
JP2010023756A (en) * 2008-07-23 2010-02-04 Nissan Motor Co Ltd Supporting device and method for lane keeping
US8600657B2 (en) 2008-09-19 2013-12-03 Hitachi Automotive Systems, Ltd. Vehicle control apparatus
WO2010032556A1 (en) * 2008-09-19 2010-03-25 日立オートモティブシステムズ株式会社 Vehicle control apparatus
JP2010070069A (en) * 2008-09-19 2010-04-02 Hitachi Automotive Systems Ltd Vehicle control apparatus
US8682500B2 (en) 2009-04-21 2014-03-25 Toyota Jidosha Kabushiki Kaisha Driving assistance apparatus
KR101262921B1 (en) * 2009-11-10 2013-05-09 한국전자통신연구원 Apparatus for keeping a traffic lane for a vehicle and method thereof
US8498782B2 (en) 2009-11-10 2013-07-30 Electronics And Telecommunications Research Institute Apparatus for keeping a traffic lane and preventing lane-deviation for a vehicle and method thereof
JP2011134071A (en) * 2009-12-24 2011-07-07 Denso Corp Virtual white line setting method, virtual white line setting apparatus, and course change support apparatus using the same
JP2013056576A (en) * 2011-09-07 2013-03-28 Nissan Motor Co Ltd Steering assist device and method for vehicle
DE102014112601A1 (en) 2013-09-09 2015-03-12 Fuji Jukogyo Kabushiki Kaisha Vehicle environment detection device
JP2016167188A (en) * 2015-03-10 2016-09-15 トヨタ自動車株式会社 Collision avoidance control unit
JP2018062272A (en) * 2016-10-13 2018-04-19 トヨタ自動車株式会社 Vehicle lane maintenance support device
CN109017773A (en) * 2017-06-09 2018-12-18 株式会社斯巴鲁 Controller of vehicle
WO2020062034A1 (en) * 2018-09-28 2020-04-02 Baidu.Com Times Technology (Beijing) Co., Ltd. A tunnel-based planning system for autonomous driving vehicles
CN111712417A (en) * 2018-09-28 2020-09-25 百度时代网络技术(北京)有限公司 Tunnel-based planning system for autonomous vehicles
US11561546B2 (en) 2018-09-28 2023-01-24 Baidu Usa Llc Tunnel-based planning system for autonomous driving vehicles
CN111712417B (en) * 2018-09-28 2023-09-01 百度时代网络技术(北京)有限公司 Tunnel-based planning system for an autonomous vehicle
US20220281523A1 (en) * 2021-03-04 2022-09-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method and apparatus for lane control of a vehicle
US11820370B2 (en) * 2021-03-04 2023-11-21 Dr. Ing. H. C. F. Porsche Ag Method and apparatus for lane control of a vehicle

Also Published As

Publication number Publication date
JP4145644B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
JP4145644B2 (en) Vehicle travel control device
EP1538068B1 (en) Collision avoidance control for vehicles
JP5711721B2 (en) Vehicle driving support control device
JP3358709B2 (en) Driving support device for vehicles
JP6115576B2 (en) Vehicle travel control device
US7663475B2 (en) Vehicle surrounding monitoring system
JP4021344B2 (en) Vehicle driving support device
JP3917241B2 (en) Vehicle driving support device
US11338801B2 (en) Collision avoidance device
CN109455137B (en) Driving support device and driving support method
JP2011148479A (en) Vehicle-driving support device
JP2008179251A (en) Traveling support device for vehicle and traveling support method for vehicle
JP2012123495A (en) Traveling environment recognition device
JP2015005193A (en) Vehicle drive support device
JP2009286279A (en) Drive support device for vehicle
JP2004038245A (en) Obstacle detector for vehicle
JP2007320458A (en) Intervehicular distance controller
JP2004314843A (en) Operation assisting device for vehicles
JP3993316B2 (en) Vehicle travel safety device
JP5210064B2 (en) Vehicle collision prevention device
US20190375401A1 (en) Vehicle control system
JP2005149200A (en) Risk notification apparatus, and vehicle and driver&#39;s seat equipped with risk notification apparatus
JP2009018621A (en) Running control device and transport system using this
CN210258393U (en) Vehicle control system
JP2016175567A (en) Steering assist device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080618

R150 Certificate of patent or registration of utility model

Ref document number: 4145644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees