JP2004198312A - Radar equipment - Google Patents

Radar equipment Download PDF

Info

Publication number
JP2004198312A
JP2004198312A JP2002368591A JP2002368591A JP2004198312A JP 2004198312 A JP2004198312 A JP 2004198312A JP 2002368591 A JP2002368591 A JP 2002368591A JP 2002368591 A JP2002368591 A JP 2002368591A JP 2004198312 A JP2004198312 A JP 2004198312A
Authority
JP
Japan
Prior art keywords
transmission
antenna
array
transmitting
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002368591A
Other languages
Japanese (ja)
Other versions
JP2004198312A5 (en
JP3833606B2 (en
Inventor
Noriyuki Inaba
敬之 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002368591A priority Critical patent/JP3833606B2/en
Publication of JP2004198312A publication Critical patent/JP2004198312A/en
Publication of JP2004198312A5 publication Critical patent/JP2004198312A5/ja
Application granted granted Critical
Publication of JP3833606B2 publication Critical patent/JP3833606B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide radar equipment dealing with a narrow beam by enlarging the equivalent aperture even in the case that an array antenna with small number of elements is used. <P>SOLUTION: One of two element antennas positioned at the opposite ends of arrangement of the array antenna is made a transmission element antenna, the other is made a transmitting and receiving element antenna, a plurality of the residual element antennas are made receiving element antennas, and radar transmission waves are successively transmitted from the transmission antenna. Respective reflective waves are received in order of the receiving element antennas of corresponding order and the transmitting and receiving antenna. Next, the radar transmission waves are successively transmitted from the transmitting and receiving element antenna, and the respective reflective waves are received with the receiving element antennas of the corresponding order. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明はアレーアンテナを使用してレーダ送信波を送信し、目標からの反射電波を受信するレーダ装置に関するのものである。
【0002】
【従来の技術】
自動車に周波数変調レーダやパルス変調レーダ等のミリ波レーダを搭載して先行車両との車間距離や相対速度あるいは障害物を検出して自動車の安全性や自動運転などの利便性を図るシステムの開発が進められている。このような車載レーダは、多重波や他レーダ干渉波など、レーダの中でも比較的電波環境の悪い状況で運用されることになる。これらの対策の一つとして、アレーアンテナを用いた空間ダイバーシティや各種適応アレー信号処理の適用が効果的である。しかし、車載レーダは民生需要を目的とする一般車両に搭載するため、小型化、かつ簡素化による経済性が求められている。この種の従来の車載レーダとして、送信機、および受信機を1個のみ使用し、複数の受信素子アンテナとスイッチにより受信機との接続を切り替えるようにした構成がある(例えば、特許文献1)。
【0003】
1次元アレーを例として、この従来のレーダ装置のアレーアンテナを1個の送信素子アンテナと9個の受信素子アンテナで構成した場合について考察する。送受信のタイミングチャートは図11に示されるようになる。まず、送信素子アンテナT1から送信し、その目標反射波を受信素子アンテナR1で受信する。次に、同様に送信素子アンテナT1で送信し、その目標反射波は受信素子アンテナR2で受信する。以下同様に、送信素子アンテナT1で送信し、その目標反射波を受信素子アンテナR9で受信する。この送受信動作を、便宜上(T1,R1)、(T1,R2)、…、(T1,R9)と表すことにする。こうすることで、目標の方向をθとし、受信素子アンテナR1で受信した信号位相を基準として0とすると、位相が0,φ,2φ,3φ,4φ,5φ,6φ,7φ,8φだけ異なる信号が得られる。ここで、信号位相φは、
【数1】

Figure 2004198312
となる。ここで、受信のアレーアンテナは、素子アンテナ間隔dのリニアアレーとした。このように、送信パルスの繰り返し時間間隔PRI(Pulse Repetition Interval)をTとすると、9Tの時間で9素子のアレーアンテナとしての受信信号が得られることになる。
【0004】
このアンテナ装置では、n個の受信素子アンテナを用いた場合、nTの時間で、n個のアレーアンテナ信号が得られることがわかる。図12にはn=9とした場合に得られたビーム形成例を示す。ここでは、±20degを捜査範囲要求とみたてて、送信および受信素子アンテナ1個のパターン(Tx and Rx elemnt Pattern)(破線)の幅は、それと同等の約40degとした。図12において20deg方向へビーム指向させた場合の、9個の受信素子アンテナによる受信合成ビームパターン(beam pattern(θd=20deg))を実線で示す。また、素子間隔dを1.3λ(λは波長)としており、グレーティングローブは捜索範囲外の−25deg方向となっている。この時、1.3λ×10の開口径が必要となり、ビーム幅は約4degが得られる。
【0005】
【特許文献1】
特開2000−284047公報
【0006】
【発明が解決しようとする課題】
従来の車載用のレーダ装置は以上のように構成されているので、車に装備する場合の省スペース化には限界がある。すなわちアレーアンテナの素子数を低減した場合、その分開口が小さくなってしまい、また、遠方の並走する複数車両の分離を容易とするための狭ビーム化を損なうという問題があった。
また、サブアレー構成にした大規模アレーアンテナを用い、比較的遠方を捜索対象として全素子アンテナから送信する艦載用レーダや航空管制レーダなどがある。この大規模アレーアンテナでは、各素子アンテナは、個別に移相器を持ち、サブアレー合成ビームを形成するため送信位相あるいは受信位相を制御できるようにしている。しかし、多くの大規模アレーアンテナは、受信系数を低減し装置規模を削減するために、RF段で幾つかのサブアレーに合成する合成器を持つ構成が採用されている。このようなレーダにおいても運用状況によっては、電力的には十分であるが、より狭ビームが必要とされ、また、アレーアンテナの空間方向の自由度を要求されることが課題として考えられる。
【0007】
この発明は上記のような課題を解決するためになされたもので、少ない素子数のアレーアンテナを用いて等価開口を大きくすることができ、一方、狭ビーム化にも対応可能なレーダ装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係るレーダ装置は、複数の素子アンテナを所定の間隔で配列したアレーアンテナを用いて、レーダ送信波を一定間隔で順次に送信し、目標からの反射電波を受信し、受信した受信信号を合成して合成開口アレー信号として処理するレーダ装置において、アレーアンテナの配列の相対する端部に位置する2つの素子アンテナに送信および/もしくは送受信の機能を持たせ、2つの素子アンテナ間に位置する複数の素子アンテナを受信素子アンテナとし、送信素子アンテナおよび/もしくは送受信素子アンテナを用いて所定の送信信号に基づいてレーダ送信波を所定の順序で送信し、送受信素子アンテナの機能がある場合にはその送受信素子アンテナを含めた受信素子アンテナを用いてそれぞれの反射電波を対応させた順序で受信するよう送受信のサイクルを制御するようにしたものである。
【0009】
【発明の実施の形態】
以下、この発明の各実施の形態について説明する。
実施の形態1.
図1はこの発明の実施の形態1によるレーダ装置の構成を示すブロック図である。図において、第1の送信機1はアレーアンテナ2から送出するレーダ送信波のための送信信号を一定間隔で生成し出力する。複数の素子アンテナを所定の間隔dで配列したアレーアンテナ2は、アレー配列の一端に位置し空間に電波を送出する送信素子アンテナT1、他端に位置し電波の送信と受信を行う送受信素子アンテナTR2およびT1とTR2の間に位置し目標から反射した電波を受信する4個の受信素子アンテナR1〜R4を形成している。送信スイッチ6は、送信素子アンテナT1と送受信素子アンテナTR2へ供給する第1の送信機1の送信信号を振分ける切り替え動作を行う。サーキュレータ7は、送信信号を送受信素子アンテナTR2へ与え、また、この送受信素子アンテナTR2で受信した受信信号を、受信スイッチ3を介して受信機4へ与えるように設けられている。この受信スイッチ3は、受信素子アンテナR1〜R4と送受信素子アンテナTR2で順次に受信した受信信号を受信機4へ入力する動作を行う。送信スイッチ6と受信スイッチ3は、アレーアンテナ2による送受信の組み合わせ動作を時分割で制御するよう互いに連動して動作する。受信機4は、受信信号を増幅、周波数変換して信号処理器5に出力し、信号処理器5は得られた信号から合成開口アレー信号を生成し、例えば、後段で車間距離、相対速度、障害物等のデータを算出させるために出力する。
【0010】
次に、アレーアンテナ2を中心とした送受信の動作について説明する。図2は図1のアンテナ構成による送受信動作を示すタイミングチャートである。
まず、送信スイッチ6が、第1の送信機1からの送信信号を送信素子アンテナT1に供給するように切り替えられているとする。また、目標で反射して戻ってきた反射電波を受信素子アンテナR1が受信して、その受信信号を受信機4に与えられるよう受信スイッチ3を切り替えておくものとする。ここで、送信素子アンテナT1で送信し、受信素子アンテナR1で受信する場合の動作を、便宜上(T1,R1)のように表現することにし、他の素子アンテナについても同様とする。
【0011】
まず、送信スイッチ6と受信スイッチ3の切り替えを制御し、送信素子アンテナT1からのレーダ送信波を順次に送信し、目標からのそれぞれの反射波を対応させた順序の受信素子アンテナR1,…,R4および送受信素子アンテナTR2の順で受信する。次に、送受信素子アンテナTR2からの送信に対して、それぞれの反射波を対応させた順序の受信素子アンテナR1,…,R4で順次に受信する。このようにして得た送受信動作は、(T1,R1)、(T1,R2)、(T1,R3)、(T1,R4)、(T1,TR2)、(TR2,R1)、(TR2,R2)、(TR2,R3)、(TR2,R4)の順になり、この送受信動作のサイクルを繰り返す。ここで、受信素子アンテナR1で受信した信号位相を基準にとると、位相が0,φ,2φ,3φ,4φ,5φ,6φ,7φ,8φだけ異なる信号が得られる。このことは、1個の送信素子アンテナと9素子の受信素子アンテナを持つ前述した従来のアンテナ装置が9T(Tは一組の送受信の時間とする)という計測時間内で得る受信信号と同じ信号を得ることができることを示している。すなわち、実施の形態1では、アレーアンテナの開口径が9素子に匹敵する。
【0012】
一般に、従来のアンテナ構成では、等価開口nを実現するために、送信素子アンテナを含めてn+1の素子数が必要となり、また実際の開口(以下、実開口とする。)はn×dとなる。一方、これに対し、この実施の形態1では、同じ等価開口nを実現するために、(n+1)/2の素子アンテナ数で、内訳として送受信素子アンテナ1+送信素子アンテナ1+受信素子アンテナ(n+1)/2−2とし、{(n+1)/2+1}×dの実開口により、従来と同等の信号が得られることになる。
前述の従来の方法では、各送信の位相中心は送信素子アンテナT1で一定であった。しかし、素子の送信アンテナ機能をもう一つ増やして送受信を切り替えることで、送信の位相中心を含めた受信アレーに入力する信号の信号位相が決まることを利用して、実開口より大きな等価開口を得ることが可能となる。
【0013】
また、この実施の形態1による方法で、送受信素子アンテナ1個、送信素子アンテナ1個、受信素子アンテナ8個として動作させた場合に得られた合成ビームパターンを図3に示す。図から分かるように、図12に示した従来の受信素子アンテナと同等の実開口とした場合には、約2deg(従来の半分)のビーム幅が実現可能となる。ビーム内の多重波を分離するためには、MUSIC(MUltiple SIgnal Classification)などの超分解能到来方向推定法などが知られているが、実施の形態1のビーム形成法は、この推定法に比べて素子間の振幅位相のキャリブレーション精度に対しても比較的寛容であるという良い特徴を持つ。
【0014】
以上のように、この実施の形態1によれば、アレーアンテナ2の配列の相対する端部に位置する2つの素子アンテナの一方を送信素子アンテナT1とし、他方にサーキュレータ7を接続して送受信素子アンテナTR2とすると共に、2つの素子アンテナT1、TR2間に位置する複数の素子アンテナを受信素子アンテナR1〜R4とし、送信素子アンテナT1からレーダ送信波を順次に送信して、それぞれの反射電波を対応させた順序の受信素子アンテナR1〜R4および送受信素子アンテナTR2の順で受信し、次に、送受信素子アンテナTR2からレーダ送信波を順次に送信して、それぞれの反射電波を対応させた順序の受信素子アンテナR1〜R4により受信するよう送受信のサイクルを制御するようにしているので、少ない受信素子アンテナ数のアレーアンテナ構成でその実開口の約2倍の等価開口を得ることができ、車載用レーダ装置として搭載されるアンテナの小型化に寄与する効果が得られる。また、この実施の形態1のアンテナ構成によれば、従来の構成と同じ実開口、すなわち同じ素子アンテナ数を持たせた場合には、ビーム幅を約半分に狭くできる効果が得られる。
【0015】
実施の形態2.
この実施の形態2では、パルス変調レーダを想定しており、レーダ捜索対象とする目標の距離が比較的遠方であり、送信と受信を同一の素子アンテナで時分割制御できる状況を想定している。
図4はこの発明の実施の形態2によるレーダ装置の構成を示すブロック図である。図において、図1と異なる構成は、送信素子アンテナT1の代わりに送受信素子アンテナTR1とサーキュレータ7’を設けた点である。すなわち、この実施の形態2は、アレーアンテナの配列の一端だけではなく、両端にサーキュレータ7’,7を接続した送受信素子アンテナTR1、TR2を備える構成としたものである。
【0016】
図5は実施の形態2に係る送受信動作を示すタイミングチャートである。図に示すように、この実施の形態2の場合、まず送受信素子アンテナTR1で送信し、次の送信までの受信タイミング区間に、同じ送受信素子アンテナTR1でも受信を行うようにしている。また、送受信のサイクルの最終段階では、送受信素子アンテナTR2で送信して、自身でも受信を行うようにしている。送信スイッチ6と受信スイッチ3を時分割で制御することにより、送受信動作は、(TR1,TR1)、(TR1,R1)、(TR1,R2)、(TR1,R3)、(TR1,R4)、(TR1,TR2)、(TR2,R1),(TR2,R2)、(TR2,R3)、(TR2,R4)、(TR2,TR2)の順になり、この送受信動作のサイクルを繰り返す。送受信素子アンテナTR1で受信した信号位相を基準にとると、位相が0,φ,2φ,3φ,4φ,5φ,6φ,7φ,8φ,9φ,10φだけ異なる信号が得られる。したがって、全素子アンテナ数が実施の形態1と同数のとき、実施の形態1よりも2素子分だけ大きな開口が得られる。また、このときは計測時間11Tが必要となる。
【0017】
以上のように、この実施の形態2によれば、アレーアンテナ2の配列の相対する端部に位置する2つの素子アンテナにそれぞれサーキュレータを接続して送受信素子アンテナTR1,TR2とすると共に、当該2つの素子アンテナTR1,TR2間に位置する複数の素子アンテナを受信素子アンテナR1〜R4とし、一方の送受信素子アンテナTR1からレーダ送信波を順次に送信して、それぞれの反射電波を当該一方の送受信素子アンテナTR1、対応させた順序の受信素子アンテナR1〜R4および他方の送受信素子アンテナTR2の順で受信し、次に、他方の送受信素子アンテナTR2からレーダ送信波を順次に送信して、それぞれの反射電波を対応させた順序の受信素子アンテナR1〜R4および当該他方の送受信素子アンテナTR2の順で受信するよう送受信のサイクルを制御するようにしているので、送受信素子アンテナTR1,TR2による送受信を時分割制御することにより、少ない受信素子アンテナ数のアレーアンテナ構成で実開口の約2倍の等価開口を得ることができ、車載用レーダ装置として搭載されるアンテナとして小型化を実現する効果が得られる。また、受信素子アンテナ数を増やした場合には、狭ビーム化が図れる効果が得られる。なお、このようにして等価開口を大きくする方法を、以下、合成開口アレー構成と呼ぶこととする。
【0018】
実施の形態3.
実施の形態1および実施の形態2では、アレーアンテナの素子数が比較的小さい場合を想定して説明してきたが、この実施の形態3では、大規模アレーアンテナをサブアレー構成にし、サブアレー間に実施の形態2で述べたような合成開口アレー構成を適用する場合について示す。
【0019】
図6はこの発明の実施の形態3によるレーダ装置の構成を示すブロック図である。図において、図1と異なる部分について説明すると、アレーアンテナ2の配列の一端側の送受信素子アンテナTR11,TR12,…,TR1m(ただし、mは正の整数)で送受信用サブアレーSA1を形成し、他端側の送受信素子アンテナTR21,TR22,…,TR2mで送受信用サブアレーSA4を形成する。また、受信素子アンテナR11,R12,…,R1mで受信用サブアレーSA2を形成し、受信素子アンテナR21,R22,…,R2mで受信用サブアレーSA3を形成している。各送受信素子アンテナおよび受信素子アンテナには移相器8が設けられている。受信信号を取り出す場合には各サブアレーに対してサブアレーを形成する素子アンテナの出力を合成する合成器9がそれぞれ設けられている。この例では、受信用サブアレーは2個であるが、その数は限定されるものではない。
【0020】
送受信の動作の順序においては、送受信用サブアレーSA1の送受信素子アンテナTR11,TR12,…,TR1mで一斉に、かつ順次にレーダ送信波を送信し、反射波を送受信用サブアレーSA1自身の送受信素子アンテナTR11,TR12,…,TR1mで受信し、各受信信号を対応する合成器9で合成する。次に、反射波を対応させた順序の受信用サブアレーSA2,SA3および送受信用サブアレーSA4の順でそれぞれ受信して対応するそれぞれの合成器9で合成する。さらに、今度は送受信用サブアレーSA4でレーダ送信波を順次に送信し、それぞれの反射波を受信用サブアレーSA2,SA3および送受信用サブアレーSA4自身の順で受信して対応するそれぞれの合成器9で合成し、送受信動作の1サイクルを形成する。したがって、送信スイッチ6と受信スイッチ3で制御されるサブアレーとしての送受信動作は、(SA1,SA1)、(SA1,SA2)、(SA1,SA3)、(SA1,SA4)、(SA4,SA1)、(SA4,SA2)、(SA4,SA3)、(SA4,SA4)の順になり、この送受信動作のサイクルを繰り返す。このように、大規模アレーアンテアンにおいても、サブアレーを構成要素として、実施の形態2と同様に、時分割送信により等価開口を大きくすることが可能となる。
【0021】
以上のように、この実施の形態3によれば、アレーアンテナ2を、それぞれ移相器8を設けた所定数の素子アンテナからなる複数のサブアレーSA1〜SA4で構成し、アレーアンテナ2の配列の相対する端部に位置する2つのサブアレーを、各素子アンテナにそれぞれサーキュレータを接続して送受信素子アンテナにした送受信用サブアレーSA1,SA4とし、当該2つのサブアレーSA1,SA4間に位置する複数のサブアレーを、各素子アンテナを受信素子アンテナとする受信用サブアレーSA2,SA3とし、一方の送受信用サブアレーSA1からレーダ送信波を順次に送信して、それぞれの反射電波を当該一方の送受信用サブアレーSA1自身、対応させた順序の受信用サブアレーSA2,SA3および他方の送受信用サブアレーSA4の順で受信し、次に、他方の送受信用サブアレーSA4からレーダ送信波を順次に送信して、それぞれの反射電波を対応させた受信用サブアレーSA2,SA3および当該他方の送受信用サブアレーSA4自身の順で受信するよう送受信のサイクルを制御し、サブアレー毎に素子アンテナで受信した受信信号を合成し、合成された各サブアレーの信号をさらに合成して合成開口アレー信号として処理するようにしているので、大規模アレーアンテアンに適用して少ない受信用サブアレー数のアレーアンテナ構成でその実開口に対して等価開口を十分大きくすることが可能となるため、空間方向の自由度に対する要求に対応できる効果がある。また、素子数を増やすことにより、狭ビーム化にも対応できる効果が得られる。
【0022】
実施の形態4.
図7はこの発明の実施の形態4によるレーダ装置の構成を示すブロック図である。図において、図1と異なる部分について説明すると、第1の送信機1で発生する符合信号と直交する符号信号を発生する第2の送信機10が設けられ、その出力が送信素子アンテナT1に供給されるようになっている。また、ここでは図1の送信スイッチ6を用いず第1の送信機1の出力がサーキュレータ7を介して送受信素子アンテナTR2に与えられるように構成されている。加えて、受信機4で検波された直交する符号信号をそれぞれ復調する第1の復調器11と第2復調器12が設けられている。
【0023】
図8は実施の形態4の送受信動作を示すタイミングチャートである。
まず、アレーアンテナ2の配列の両端にある送信素子アンテナT1と送受信素子アンテナTR2から符号変調された直交信号によるレーダ送信波がそれぞれ同じタイミングで順次に送信され、反射波を受信素子アンテナR1,R2,R3,R4で受信する。次に、サーキュレータ7の切り替えタイミングにより、送信素子アンテナT1だけのレーダ送信波に対する反射波を送受信素子アンテナTR2だけが受信する。したがって、送受信動作は、(T1+TR2,R1),(T1+TR2,R2),(T1+TR2,R3),(T1+TR2,R4),(T1,TR2)の順になり、この送受信動作のサイクルを繰り返す。
【0024】
受信素子アンテナR1,R2,R3,R4で受信された信号は、受信機4で検波されて直交する符号信号となり、これら符号信号は第1の復調器11と第2復調器12によりそれぞれ復調される。復調された各信号は、送信素子アンテナT1および送受信素子アンテナTR2から送信された信号の受信成分であり、それぞれの位相情報を含んでいる。その結果として、(0,5φ),(φ,6φ),(2φ,7φ),(3φ,8φ)の位相をもつ信号が得られる。最後に、(T1,TR2)の送受信動作で送受信素子アンテナTR2により受信した信号は第1の復調器11で復調され、4φの位相の信号として得られる。このように、合計5Tの時間内において、9素子アレーに相当する信号が得られるため、より高いデータレートが得られる制御方法となる。
【0025】
以上のように、この実施の形態4によれば、アレーアンテナ2の配列の相対する端部に位置する2つの素子アンテナの一方を送信素子アンテナT1とし、他方にサーキュレータ7を接続して送受信素子アンテナTR2とすると共に、2つの素子アンテナT1,TR2間に位置する複数の素子アンテナを受信素子アンテナR1〜R4とし、送信素子アンテナT1と送受信素子アンテナTR2に対して互いに直交する送信信号を供給してレーダ送信波を同じタイミングで、かつ順次に送信し、それぞれの反射電波を対応させた順序の受信素子アンテナR1〜R4により受信し、次に、送信素子アンテナT1だけからレーダ送信波を送信し、その反射波を送受信素子アンテナTR2で受信するよう送受信のサイクルを制御し、受信素子アンテナR1〜R4および送受信素子アンテナTR2で受信された直交する受信信号をそれぞれ復調した後、復調した信号を合成して合成開口アレー信号として処理するようにしているので、少ない受信素子アンテナ数のアレーアンテナ構成で、その実開口に対し約2倍の等価開口を得ることができ、車載用レーダ装置として搭載されるアンテナの小型化に寄与する効果が得られる。また、受信素子アンテナ数を増やした場合には、狭ビーム化が図れる効果が得られる。
【0026】
実施の形態5.
図9はこの発明の実施の形態5によるレーダ装置の構成を示すブロック図である。図において、図1と異なる部分は、送受信素子アンテナTR2とサーキュレータ7を用いず、代わりに送信素子アンテナT2を設け、また受信素子アンテナR5を設けていることである。すなわち、この実施の形態5は、アレーアンテナ2の両端に送信専用の素子アンテナT1,T2を設ける構成を持つ。
【0027】
図10は実施の形態5に係る送受信動作を示すタイムチャートである。まず、送信素子アンテナT1からレーダ送信波を順次に送信し、それぞれの反射電波を対応させた順序の受信素子アンテナR1〜R5により順次に受信する。次に、送信素子アンテナT2からレーダ送信波を順次に送信し、それぞれの反射電波を対応させた順序の受信素子アンテナR1〜R5により順次に受信する。したがって、送信スイッチ6と受信スイッチ3の制御により送受信動作は、(T1,R1)、(T1,R2)、(T1,R3)、(T1,R4)、(T1,R5)、(T2,R1)、(T2,R2)、(T2,R3)、(T2,R4)、(T2,R5)の順になり、この送受信動作のサイクルを繰り返す。この実施の形態5の場合、実施の形態1と比較すると、素子数を1個増やすことで実開口が少し大きくなるが、サーキュレータを用いない分、装置の実装上有利な点が得られる。
【0028】
以上のように、この実施の形態5によれば、アレーアンテナ2の配列の相対する端部に位置する2つの素子アンテナを送信素子アンテナT1,T2とすると共に、この2つの送信素子アンテナT1,T2間に位置する複数の素子アンテナを受信素子アンテナR1〜R5とし、一方の送信素子アンテナT1からレーダ送信波を順次に送信して、それぞれの反射電波を対応させた順序の受信素子アンテナR1〜R5により受信し、次に、他方の送信素子アンテナT2からレーダ送信波を順次に送信して、それぞれの反射電波を対応させた順序の受信素子アンテナR1〜R5により受信するよう送受信のサイクルを制御するようにしているので、実施の形態1よりは実開口が若干増えるが、少ない素子数のアレーアンテナ構成でその実開口に対し約2倍の等価開口を得ることができ、車載用レーダ装置として搭載されるアンテナの小型化に寄与する効果が得られる。また、受信素子アンテナ数を増やした場合には、狭ビーム化が図れる効果が得られる。
【0029】
以上の各実施の形態においては1次元アレーについての例を説明してきたが、この発明は、2次元アレーに対しても、アレーアンテナの配列の相対する端部に送信機能を有する素子を配置することにより拡張可能であり、上記各実施の形態で述べたように、同様な効果が得られる。
【0030】
【発明の効果】
以上のように、この発明によれば、アレーアンテナの配列の相対する端部の素子アンテナに送信機能をもたせ、時分割あるいは同期した直交符号信号を送信することで、送受信を含めたレーダ信号の位相差から時分割あるいは符号分割による合成開口アンテナ構成を実現し、実開口に対し大きな等価開口を得ることができ、アレーアンテナの構成の大幅な小型化が図れる効果がある。また、実開口を増やした場合には、より狭ビーム化が図れる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1によるレーダ装置の構成を示すブロック図である。
【図2】この発明の実施の形態1に係る送受信動作を示すタイミングチャートである。
【図3】この発明の実施の形態1に係る合成ビームパターンを示す説明図である。
【図4】この発明の実施の形態2によるレーダ装置の構成を示すブロック図である。
【図5】この発明の実施の形態2に係る送受信動作を示すタイミングチャートである。
【図6】この発明の実施の形態3によるレーダ装置の構成を示すブロック図である。
【図7】この発明の実施の形態4によるレーダ装置の構成を示すブロック図である。
【図8】この発明の実施の形態4に係る送受信動作を示すタイミングチャートである。
【図9】この発明の実施の形態5によるレーダ装置の構成を示すブロック図である。
【図10】この発明の実施の形態5に係る送受信動作を示すタイミングチャートである。
【図11】従来のアンテナ装置の送受信動作を説明するタイミングチャートである。
【図12】従来のアンテナ装置に係る合成ビームパターンを示す説明図である。
【符号の説明】
1 第1の送信機、2 アレーアンテナ、3 受信スイッチ、4 受信機、5信号処理器、6 送信スイッチ、7 サーキュレータ、8 移相器、9 合成器、10 第2の送信機、11 第1の復調器、12 第2の復調器、R1〜R5,R11〜R1m,R21〜R2m 受信素子アンテナ、SA1,SA4 送受信用サブアレー、SA2,SA3 受信用サブアレー、T1,T2 送信素子アンテナ、TR1,TR2,TR11〜TR1m,TR21〜TR2m 送受信素子アンテナ。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radar device that transmits a radar transmission wave using an array antenna and receives a reflected radio wave from a target.
[0002]
[Prior art]
Development of a system that mounts millimeter-wave radar such as frequency-modulated radar and pulse-modulated radar on an automobile and detects the distance between vehicles, the relative speed with respect to the preceding vehicle, and obstacles to improve vehicle safety and convenience such as automatic driving Is being promoted. Such an in-vehicle radar is operated in a relatively poor radio wave environment among radars, such as a multiplex wave and another radar interference wave. As one of these countermeasures, it is effective to apply spatial diversity using an array antenna and various kinds of adaptive array signal processing. However, since the on-vehicle radar is mounted on a general vehicle for consumer demand, economical efficiency due to miniaturization and simplification is required. As this type of conventional on-vehicle radar, there is a configuration in which only one transmitter and one receiver are used, and the connection with the receiver is switched by a plurality of receiving element antennas and switches (for example, Patent Document 1). .
[0003]
Taking a one-dimensional array as an example, consider a case where the array antenna of this conventional radar device is configured with one transmitting element antenna and nine receiving element antennas. The timing chart of the transmission and reception is as shown in FIG. First, transmission is performed from the transmitting element antenna T1, and the target reflected wave is received by the receiving element antenna R1. Next, transmission is similarly performed by the transmitting element antenna T1, and the target reflected wave is received by the receiving element antenna R2. Similarly, transmission is performed by the transmitting element antenna T1, and the target reflected wave is received by the receiving element antenna R9. This transmission / reception operation is represented as (T1, R1), (T1, R2),..., (T1, R9) for convenience. In this way, if the target direction is set to θ and the signal phase received by the receiving element antenna R1 is set to 0 as a reference, signals having phases different by 0, φ, 2φ, 3φ, 4φ, 5φ, 6φ, 7φ, and 8φ Is obtained. Here, the signal phase φ is
(Equation 1)
Figure 2004198312
It becomes. Here, the receiving array antenna was a linear array with an element antenna spacing d. As described above, if the repetition time interval PRI (Pulse Repetition Interval) of the transmission pulse is T, a received signal as an array antenna of nine elements can be obtained in a time of 9T.
[0004]
In this antenna device, it can be seen that when n receiving element antennas are used, n array antenna signals can be obtained in nT time. FIG. 12 shows an example of beam formation obtained when n = 9. Here, ± 20 deg is regarded as a search range request, and the width of the pattern (Tx and Rx element Pattern) of one transmitting and receiving element antenna (broken line) is set to approximately 40 deg, which is equivalent to the pattern. In FIG. 12, a solid beam represents a received combined beam pattern (beam pattern (θd = 20 deg)) of the nine receiving element antennas when the beam is directed in the direction of 20 deg. The element interval d is 1.3λ (λ is the wavelength), and the grating lobe is in the −25 deg direction outside the search range. At this time, an aperture diameter of 1.3λ × 10 is required, and a beam width of about 4 deg is obtained.
[0005]
[Patent Document 1]
JP 2000-284047 A
[0006]
[Problems to be solved by the invention]
Since the conventional on-vehicle radar device is configured as described above, there is a limit in saving space when the radar device is mounted on a vehicle. That is, when the number of elements of the array antenna is reduced, there is a problem in that the aperture becomes smaller by that amount, and the beam narrowing for facilitating separation of a plurality of vehicles running in parallel at a distance is impaired.
In addition, there are shipboard radars and air traffic control radars which use a large-scale array antenna having a sub-array configuration and transmit signals from all the element antennas for a relatively distant search target. In this large-scale array antenna, each element antenna has an individual phase shifter so that a transmission phase or a reception phase can be controlled to form a sub-array composite beam. However, many large-scale array antennas adopt a configuration having a combiner that combines several sub-arrays at the RF stage in order to reduce the number of receiving systems and reduce the size of the device. In such a radar, depending on the operation conditions, the power is sufficient, but a narrower beam is required, and the degree of freedom in the spatial direction of the array antenna is required.
[0007]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and provides a radar apparatus which can increase the equivalent aperture by using an array antenna having a small number of elements, and can cope with a narrow beam. The purpose is to:
[0008]
[Means for Solving the Problems]
A radar apparatus according to the present invention uses an array antenna in which a plurality of element antennas are arranged at predetermined intervals, sequentially transmits radar transmission waves at regular intervals, receives reflected radio waves from a target, and receives a received signal. Device that combines the two antennas and processes them as a synthetic aperture array signal, the two element antennas located at the opposite ends of the array of array antennas have transmission and / or transmission / reception functions. A plurality of element antennas to be used as reception element antennas, transmit radar transmission waves in a predetermined order based on predetermined transmission signals using transmission element antennas and / or transmission / reception element antennas, and have a function of transmission / reception element antennas. Receives the reflected radio waves in the corresponding order using the receiving element antennas including the transmitting and receiving element antennas Cormorant is obtained so as to control the transmission and reception cycle.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of a radar apparatus according to Embodiment 1 of the present invention. In the figure, a first transmitter 1 generates and outputs a transmission signal for a radar transmission wave transmitted from an array antenna 2 at regular intervals. An array antenna 2 in which a plurality of element antennas are arranged at a predetermined interval d is a transmitting element antenna T1 located at one end of the array and transmitting a radio wave to a space, and a transmitting / receiving element antenna located at the other end and transmitting and receiving a radio wave. Four receiving element antennas R1 to R4, which are located between TR2 and T1 and TR2 and receive radio waves reflected from the target, are formed. The transmission switch 6 performs a switching operation of distributing the transmission signal of the first transmitter 1 supplied to the transmission element antenna T1 and the transmission / reception element antenna TR2. The circulator 7 is provided so as to supply a transmission signal to the transmission / reception element antenna TR2 and to supply a reception signal received by the transmission / reception element antenna TR2 to the receiver 4 via the reception switch 3. The reception switch 3 performs an operation of inputting, to the receiver 4, reception signals sequentially received by the reception element antennas R1 to R4 and the transmission / reception element antenna TR2. The transmission switch 6 and the reception switch 3 operate in conjunction with each other to control the combined operation of transmission and reception by the array antenna 2 in a time-division manner. The receiver 4 amplifies and frequency-converts the received signal and outputs it to the signal processor 5, which generates a synthetic aperture array signal from the obtained signal. For example, the inter-vehicle distance, relative speed, Output to calculate data of obstacles and the like.
[0010]
Next, transmission and reception operations centered on the array antenna 2 will be described. FIG. 2 is a timing chart showing a transmission / reception operation using the antenna configuration of FIG.
First, it is assumed that the transmission switch 6 has been switched to supply a transmission signal from the first transmitter 1 to the transmission element antenna T1. It is also assumed that the receiving element antenna R1 receives the reflected radio wave reflected back from the target and the receiving switch 3 is switched so that the received signal can be given to the receiver 4. Here, the operation when transmitting by the transmitting element antenna T1 and receiving by the receiving element antenna R1 is expressed as (T1, R1) for convenience, and the same applies to other element antennas.
[0011]
First, switching between the transmission switch 6 and the reception switch 3 is controlled, radar transmission waves from the transmission element antenna T1 are sequentially transmitted, and the reception element antennas R1,. R4 and the transmitting / receiving element antenna TR2 are received in this order. Next, with respect to the transmission from the transmitting / receiving element antenna TR2, the reflected waves are sequentially received by the receiving element antennas R1,. The transmission / reception operations thus obtained include (T1, R1), (T1, R2), (T1, R3), (T1, R4), (T1, TR2), (TR2, R1), (TR2, R2). ), (TR2, R3), (TR2, R4), and the cycle of the transmission / reception operation is repeated. Here, based on the signal phase received by the receiving element antenna R1, signals having phases different by 0, φ, 2φ, 3φ, 4φ, 5φ, 6φ, 7φ, and 8φ are obtained. This is the same signal as the received signal obtained by the above-described conventional antenna apparatus having one transmitting element antenna and nine receiving element antennas within a measurement time of 9T (T is a set of transmission and reception times). It is shown that can be obtained. That is, in the first embodiment, the aperture diameter of the array antenna is equivalent to nine elements.
[0012]
Generally, in the conventional antenna configuration, in order to realize the equivalent aperture n, n + 1 elements including the transmitting element antenna are required, and the actual aperture (hereinafter, referred to as the actual aperture) is n × d. . On the other hand, in the first embodiment, in order to realize the same equivalent aperture n, the number of element antennas is (n + 1) / 2, and the transmission / reception element antenna 1 + transmission element antenna 1 + reception element antenna (n + 1) / 2-2, and an actual aperture of {(n + 1) / 2 + 1} × d provides a signal equivalent to the conventional one.
In the above-described conventional method, the phase center of each transmission is constant at the transmitting element antenna T1. However, by increasing the transmission antenna function of the element and switching between transmission and reception, the signal phase of the signal input to the reception array including the phase center of the transmission is determined. It is possible to obtain.
[0013]
FIG. 3 shows a combined beam pattern obtained when the method according to the first embodiment is operated as one transmitting / receiving element antenna, one transmitting element antenna, and eight receiving element antennas. As can be seen from the drawing, a beam width of about 2 deg (half the conventional width) can be realized when the actual aperture is the same as that of the conventional receiving element antenna shown in FIG. In order to separate the multiple waves in the beam, a super-resolution direction-of-arrival estimation method such as MUSIC (Multiple Signal Classification) is known. However, the beam forming method according to the first embodiment is compared with this estimation method. It has a good feature that it is relatively tolerant to the calibration accuracy of the amplitude and phase between elements.
[0014]
As described above, according to the first embodiment, one of the two element antennas located at the opposite ends of the array of the array antenna 2 is used as the transmitting element antenna T1, and the circulator 7 is connected to the other, so that the transmitting and receiving elements are connected. In addition to the antenna TR2, a plurality of element antennas located between the two element antennas T1 and TR2 are referred to as reception element antennas R1 to R4, and radar transmission waves are sequentially transmitted from the transmission element antenna T1 and reflected radio waves are transmitted. Receiving element antennas R1 to R4 and transmitting and receiving element antenna TR2 are received in this order, and then radar transmission waves are sequentially transmitted from transmitting and receiving element antenna TR2, and the reflected radio waves are made to correspond to each other. Since the transmission / reception cycle is controlled so as to be received by the reception element antennas R1 to R4, the number of reception elements is small. It can be obtained about twice the equivalent aperture of the real aperture array antenna configuration number of antenna, effect contributing to the miniaturization of the antenna to be mounted as a vehicle-mounted radar apparatus is obtained. Further, according to the antenna configuration of the first embodiment, when the same actual aperture as the conventional configuration, that is, the same number of element antennas is provided, an effect that the beam width can be reduced to about half is obtained.
[0015]
Embodiment 2 FIG.
In the second embodiment, a pulse-modulated radar is assumed, a target of a radar search target is relatively long, and a situation in which transmission and reception can be time-divisionally controlled by the same element antenna is assumed. .
FIG. 4 is a block diagram showing a configuration of a radar device according to Embodiment 2 of the present invention. In the figure, the configuration different from FIG. 1 is that a transmitting / receiving element antenna TR1 and a circulator 7 ′ are provided instead of the transmitting element antenna T1. That is, in the second embodiment, not only one end of the array antenna array but also the transmitting and receiving element antennas TR1 and TR2 having circulators 7 'and 7 connected to both ends are provided.
[0016]
FIG. 5 is a timing chart showing a transmission / reception operation according to the second embodiment. As shown in the figure, in the case of the second embodiment, transmission is first performed by the transmission / reception element antenna TR1, and reception is performed by the same transmission / reception element antenna TR1 in a reception timing section until the next transmission. In the last stage of the transmission / reception cycle, transmission / reception is performed by the transmission / reception element antenna TR2 and reception is performed by itself. By controlling the transmission switch 6 and the reception switch 3 in a time-division manner, the transmission / reception operation is (TR1, TR1), (TR1, R1), (TR1, R2), (TR1, R3), (TR1, R4), (TR1, TR2), (TR2, R1), (TR2, R2), (TR2, R3), (TR2, R4), (TR2, TR2), and the cycle of the transmission / reception operation is repeated. With reference to the signal phase received by the transmitting / receiving element antenna TR1, signals having phases different by 0, φ, 2φ, 3φ, 4φ, 5φ, 6φ, 7φ, 8φ, 9φ, and 10φ are obtained. Therefore, when the number of all element antennas is the same as that in the first embodiment, an opening larger by two elements than in the first embodiment can be obtained. In this case, a measurement time of 11T is required.
[0017]
As described above, according to the second embodiment, the circulator is connected to each of the two element antennas located at the opposite ends of the array of the array antenna 2 to form the transmission / reception element antennas TR1 and TR2. A plurality of element antennas located between the two element antennas TR1 and TR2 are called reception element antennas R1 to R4, and radar transmission waves are sequentially transmitted from one transmission / reception element antenna TR1, and each reflected radio wave is transmitted to the one transmission / reception element. The antenna TR1, the receiving element antennas R1 to R4 in the corresponding order, and the other transmitting / receiving element antenna TR2 are received in this order, and then the radar transmitting wave is sequentially transmitted from the other transmitting / receiving element antenna TR2, and the respective reflected waves are reflected. Receiving element antennas R1 to R4 and the other transmitting / receiving element antenna TR in the order corresponding to radio waves The transmission / reception cycle is controlled so as to receive in the order described above, so that transmission / reception by the transmission / reception element antennas TR1 and TR2 is time-divisionally controlled, so that an array antenna configuration with a small number of reception element antennas is about twice as large as the actual aperture. And an effect of realizing miniaturization as an antenna mounted as an on-vehicle radar device can be obtained. Further, when the number of receiving element antennas is increased, an effect of narrowing the beam can be obtained. The method of increasing the equivalent aperture in this manner is hereinafter referred to as a synthetic aperture array configuration.
[0018]
Embodiment 3 FIG.
Although the first and second embodiments have been described on the assumption that the number of elements of the array antenna is relatively small, in the third embodiment, a large-scale array antenna is formed in a sub-array configuration, and is implemented between sub-arrays. A case where the synthetic aperture array configuration as described in the second embodiment is applied will be described.
[0019]
FIG. 6 is a block diagram showing a configuration of a radar device according to Embodiment 3 of the present invention. In the drawing, the parts different from those in FIG. 1 will be described. A transmitting / receiving sub-array SA1 is formed by transmitting / receiving element antennas TR11, TR12,..., TR1m (where m is a positive integer) on one end side of the array antenna 2 array. A transmitting / receiving sub-array SA4 is formed by the transmitting / receiving element antennas TR21, TR22,..., TR2m on the end side. Also, the receiving element antennas R11, R12, ..., R1m form a receiving sub-array SA2, and the receiving element antennas R21, R22, ..., R2m form a receiving sub-array SA3. A phase shifter 8 is provided for each transmitting / receiving element antenna and receiving element antenna. To extract a received signal, a combiner 9 is provided for each sub-array to combine the outputs of the element antennas forming the sub-array. In this example, the number of receiving sub-arrays is two, but the number is not limited.
[0020]
In the order of the transmitting and receiving operations, the transmitting and receiving element antennas TR11, TR12,..., TR1m of the transmitting and receiving sub-array SA1 transmit the radar transmission waves simultaneously and sequentially, and reflect the reflected waves. , TR12,..., TR1m, and the received signals are combined by the corresponding combiner 9. Next, the reflected waves are received in the order of the receiving sub-arrays SA2 and SA3 and the transmitting / receiving sub-array SA4 in the corresponding order, and are combined by the corresponding combiners 9. Further, this time, the radar transmission wave is sequentially transmitted by the transmission / reception sub-array SA4, and the respective reflected waves are received in the order of the reception sub-arrays SA2, SA3 and the transmission / reception sub-array SA4, and are combined by the corresponding combiners 9 respectively. Then, one cycle of the transmission / reception operation is formed. Therefore, the transmission / reception operation as a sub-array controlled by the transmission switch 6 and the reception switch 3 includes (SA1, SA1), (SA1, SA2), (SA1, SA3), (SA1, SA4), (SA4, SA1), (SA4, SA2), (SA4, SA3), (SA4, SA4), and the cycle of the transmission / reception operation is repeated. As described above, even in a large-scale array antenna, it is possible to increase the equivalent aperture by time division transmission using the sub-array as a component, as in the second embodiment.
[0021]
As described above, according to the third embodiment, the array antenna 2 is configured by the plurality of sub-arrays SA1 to SA4 each including a predetermined number of element antennas each provided with the phase shifter 8, and the arrangement of the array antenna 2 is The two sub-arrays located at the opposite ends are respectively defined as transmission / reception sub-arrays SA1 and SA4, each of which is a transmission / reception element antenna by connecting a circulator to each element antenna, and a plurality of sub-arrays located between the two sub-arrays SA1 and SA4. The receiving sub-arrays SA2 and SA3, each of which uses the element antenna as a receiving element antenna, sequentially transmit radar transmission waves from one transmitting / receiving sub-array SA1 and transmit each reflected radio wave to the one transmitting / receiving sub-array SA1 itself. The receiving sub-arrays SA2 and SA3 and the other transmitting / receiving sub-array The receiving sub-arrays SA2 and SA3 corresponding to the respective reflected radio waves and the other receiving / receiving sub-arrays SA4 themselves transmit the radar transmission waves sequentially from the other transmitting / receiving sub-array SA4. The received signal received by the element antenna is combined for each sub-array, and the combined signals of the respective sub-arrays are further combined and processed as a combined aperture array signal. Therefore, by applying to a large-scale array antenna, it is possible to sufficiently increase the equivalent aperture with respect to the actual aperture with an array antenna configuration having a small number of receiving sub-arrays. There is. Further, by increasing the number of elements, an effect that can cope with narrowing of the beam can be obtained.
[0022]
Embodiment 4 FIG.
FIG. 7 is a block diagram showing a configuration of a radar apparatus according to Embodiment 4 of the present invention. In the figure, a portion different from FIG. 1 will be described. A second transmitter 10 that generates a code signal orthogonal to a code signal generated by the first transmitter 1 is provided, and the output is supplied to a transmission element antenna T1. It is supposed to be. In addition, here, the configuration is such that the output of the first transmitter 1 is provided to the transmission / reception element antenna TR2 via the circulator 7 without using the transmission switch 6 of FIG. In addition, a first demodulator 11 and a second demodulator 12 for respectively demodulating orthogonal code signals detected by the receiver 4 are provided.
[0023]
FIG. 8 is a timing chart showing the transmission / reception operation of the fourth embodiment.
First, radar transmission waves based on code-modulated quadrature signals are sequentially transmitted from the transmission element antenna T1 and the transmission / reception element antenna TR2 at both ends of the array of the array antenna 2 at the same timing, and the reflected waves are transmitted to the reception element antennas R1 and R2. , R3, R4. Next, according to the switching timing of the circulator 7, only the transmitting / receiving element antenna TR2 receives a reflected wave with respect to the radar transmission wave of only the transmitting element antenna T1. Therefore, the transmission / reception operation is in the order of (T1 + TR2, R1), (T1 + TR2, R2), (T1 + TR2, R3), (T1 + TR2, R4), (T1, TR2), and the cycle of the transmission / reception operation is repeated.
[0024]
The signals received by the receiving element antennas R1, R2, R3, and R4 are detected by the receiver 4 to become orthogonal code signals, and these code signals are demodulated by the first demodulator 11 and the second demodulator 12, respectively. You. Each demodulated signal is a received component of a signal transmitted from the transmitting element antenna T1 and the transmitting / receiving element antenna TR2, and includes respective phase information. As a result, signals having phases of (0, 5φ), (φ, 6φ), (2φ, 7φ), and (3φ, 8φ) are obtained. Finally, the signal received by the transmission / reception element antenna TR2 in the transmission / reception operation of (T1, TR2) is demodulated by the first demodulator 11, and is obtained as a signal having a phase of 4φ. As described above, since a signal corresponding to a nine-element array is obtained within a total time of 5T, the control method can obtain a higher data rate.
[0025]
As described above, according to the fourth embodiment, one of the two element antennas located at the opposite ends of the array of the array antenna 2 is set as the transmitting element antenna T1, and the circulator 7 is connected to the other, so that the transmitting and receiving elements are connected. A plurality of element antennas located between the two element antennas T1 and TR2 are set as reception element antennas R1 to R4, and transmission signals orthogonal to each other are supplied to the transmission element antenna T1 and the transmission / reception element antenna TR2. And transmits the radar transmission waves at the same timing and sequentially, receives the respective reflected radio waves by the receiving element antennas R1 to R4 in the corresponding order, and then transmits the radar transmission wave only from the transmission element antenna T1. , The transmission / reception cycle is controlled so that the reflected wave is received by the transmission / reception element antenna TR2. After demodulating the orthogonal reception signals received by the R4 and the transmission / reception element antenna TR2, the demodulated signals are combined and processed as a synthetic aperture array signal, so that the array antenna configuration has a small number of reception element antennas. Thus, an equivalent aperture approximately twice as large as the actual aperture can be obtained, and the effect of contributing to miniaturization of the antenna mounted as the on-vehicle radar device can be obtained. Further, when the number of receiving element antennas is increased, an effect of narrowing the beam can be obtained.
[0026]
Embodiment 5 FIG.
FIG. 9 is a block diagram showing a configuration of a radar apparatus according to Embodiment 5 of the present invention. In the figure, the difference from FIG. 1 is that a transmitting / receiving element antenna T2 and a receiving element antenna R5 are provided instead of using the transmitting / receiving element antenna TR2 and the circulator 7. That is, the fifth embodiment has a configuration in which element antennas T1 and T2 dedicated to transmission are provided at both ends of the array antenna 2.
[0027]
FIG. 10 is a time chart showing the transmission / reception operation according to the fifth embodiment. First, radar transmission waves are sequentially transmitted from the transmission element antenna T1, and the respective reflected radio waves are sequentially received by the reception element antennas R1 to R5 in the corresponding order. Next, radar transmission waves are sequentially transmitted from the transmission element antenna T2, and the reflected radio waves are sequentially received by the reception element antennas R1 to R5 in the corresponding order. Therefore, the transmission and reception operation is controlled by the control of the transmission switch 6 and the reception switch 3 as (T1, R1), (T1, R2), (T1, R3), (T1, R4), (T1, R5), (T2, R1). ), (T2, R2), (T2, R3), (T2, R4), (T2, R5), and the cycle of this transmission / reception operation is repeated. In the case of the fifth embodiment, as compared with the first embodiment, although the actual aperture is slightly increased by increasing the number of elements by one, an advantage in mounting the device is obtained because the circulator is not used.
[0028]
As described above, according to the fifth embodiment, the two element antennas located at the opposite ends of the array of the array antenna 2 are the transmission element antennas T1 and T2, and the two transmission element antennas T1 and T2. The plurality of element antennas located between T2 are reception element antennas R1 to R5, and radar transmission waves are sequentially transmitted from one transmission element antenna T1, and the reception element antennas R1 to R1 in the order corresponding to the respective reflected radio waves. R5, then the radar transmission wave is sequentially transmitted from the other transmission element antenna T2, and the transmission / reception cycle is controlled so that each reflected radio wave is received by the reception element antennas R1 to R5 in the corresponding order. Therefore, although the actual aperture is slightly increased as compared with the first embodiment, the actual aperture is reduced with respect to the actual aperture by an array antenna configuration having a small number of elements. It can be obtained twice the equivalent aperture, effect contributing to the miniaturization of the antenna to be mounted as a vehicle-mounted radar apparatus is obtained. Further, when the number of receiving element antennas is increased, an effect of narrowing the beam can be obtained.
[0029]
In each of the above embodiments, an example of a one-dimensional array has been described. However, in the present invention, an element having a transmission function is arranged at an opposite end of an array of an array antenna also in a two-dimensional array. As a result, similar effects can be obtained as described in the above embodiments.
[0030]
【The invention's effect】
As described above, according to the present invention, the element antennas at the opposite ends of the array of array antennas are provided with a transmission function, and time-division or synchronized orthogonal code signals are transmitted, whereby radar signals including transmission and reception are transmitted. By realizing a synthetic aperture antenna configuration by time division or code division from the phase difference, it is possible to obtain a large equivalent aperture with respect to the actual aperture, and there is an effect that the configuration of the array antenna can be significantly reduced in size. When the actual aperture is increased, there is an effect that the beam can be narrowed.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a radar device according to Embodiment 1 of the present invention.
FIG. 2 is a timing chart showing a transmission / reception operation according to Embodiment 1 of the present invention.
FIG. 3 is an explanatory diagram showing a combined beam pattern according to the first embodiment of the present invention.
FIG. 4 is a block diagram showing a configuration of a radar device according to Embodiment 2 of the present invention.
FIG. 5 is a timing chart showing a transmission / reception operation according to Embodiment 2 of the present invention.
FIG. 6 is a block diagram showing a configuration of a radar device according to Embodiment 3 of the present invention.
FIG. 7 is a block diagram showing a configuration of a radar apparatus according to Embodiment 4 of the present invention.
FIG. 8 is a timing chart showing a transmission / reception operation according to Embodiment 4 of the present invention.
FIG. 9 is a block diagram showing a configuration of a radar device according to Embodiment 5 of the present invention.
FIG. 10 is a timing chart showing a transmission / reception operation according to Embodiment 5 of the present invention.
FIG. 11 is a timing chart illustrating a transmission / reception operation of a conventional antenna device.
FIG. 12 is an explanatory diagram showing a combined beam pattern according to a conventional antenna device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st transmitter, 2 array antennas, 3 reception switches, 4 receivers, 5 signal processors, 6 transmission switches, 7 circulators, 8 phase shifters, 9 synthesizers, 10 second transmitters, 11 first , 12 second demodulator, R1 to R5, R11 to R1m, R21 to R2m receiving element antenna, SA1, SA4 transmitting / receiving subarray, SA2, SA3 receiving subarray, T1, T2 transmitting element antenna, TR1, TR2 , TR11-TR1m, TR21-TR2m Transmitting and receiving element antennas.

Claims (6)

複数の素子アンテナを所定の間隔で配列したアレーアンテナを用いて、レーダ送信波を一定間隔で順次に送信し、目標からの反射電波を受信し、受信した受信信号を合成して合成開口アレー信号として処理するレーダ装置において、
前記アレーアンテナの配列の相対する端部に位置する2つの素子アンテナに送信および/もしくは送受信の機能を持たせ、前記2つの素子アンテナ間に位置する複数の素子アンテナを受信素子アンテナとし、
送信素子アンテナおよび/もしくは送受信素子アンテナを用いて所定の送信信号に基づいてレーダ送信波を所定の順序で送信し、前記送受信素子アンテナの機能がある場合にはその送受信素子アンテナを含めた受信素子アンテナを用いてそれぞれの反射電波を対応させた順序で受信するよう送受信のサイクルを制御するようにしたことを特徴とするレーダ装置。
Using an array antenna in which a plurality of element antennas are arranged at predetermined intervals, radar transmission waves are sequentially transmitted at regular intervals, reflected radio waves from a target are received, and the received signals are combined to synthesize a synthetic aperture array signal. In a radar device that processes as
Two element antennas located at opposite ends of the array of the array antennas have transmission and / or transmission / reception functions, and a plurality of element antennas located between the two element antennas are reception element antennas,
A transmitting element antenna and / or a transmitting / receiving element antenna for transmitting radar transmission waves in a predetermined order based on a predetermined transmitting signal, and a receiving element including the transmitting / receiving element antenna if the transmitting / receiving element antenna has a function; A radar apparatus wherein a transmission / reception cycle is controlled so that each reflected radio wave is received in a corresponding order using an antenna.
アレーアンテナの配列の相対する端部に位置する2つの素子アンテナの一方を送信素子アンテナとし、他方にサーキュレータを接続して送受信素子アンテナとすると共に、前記2つの素子アンテナ間に位置する複数の素子アンテナを受信素子アンテナとし、
前記送信素子アンテナからレーダ送信波を順次に送信して、それぞれの反射電波を対応させた順序の受信素子アンテナおよび前記送受信素子アンテナの順で受信し、次に、前記送受信素子アンテナからレーダ送信波を順次に送信して、それぞれの反射電波を前記対応させた順序の受信素子アンテナにより受信するよう送受信のサイクルを制御するようにしたことを特徴とする請求項1記載のレーダ装置。
One of two element antennas located at opposite ends of the array of array antennas is a transmitting element antenna, and the other is connected to a circulator to form a transmitting and receiving element antenna, and a plurality of elements located between the two element antennas The antenna is a receiving element antenna,
A radar transmission wave is sequentially transmitted from the transmission element antenna, and the respective reflected radio waves are received in the order of the corresponding reception element antenna and the transmission / reception element antenna, and then the radar transmission wave is transmitted from the transmission / reception element antenna. 2. The radar apparatus according to claim 1, wherein the transmitting and receiving are sequentially transmitted, and a cycle of transmission and reception is controlled such that each reflected radio wave is received by the receiving element antennas in the corresponding order.
アレーアンテナの配列の相対する端部に位置する2つの素子アンテナにそれぞれサーキュレータを接続して送受信素子アンテナとすると共に、前記2つの素子アンテナ間に位置する複数の素子アンテナを受信素子アンテナとし、
一方の送受信素子アンテナからレーダ送信波を順次に送信して、それぞれの反射電波を当該一方の送受信素子アンテナ、対応させた順序の受信素子アンテナおよび他方の送受信素子アンテナの順で受信し、次に、前記他方の送受信素子アンテナからレーダ送信波を順次に送信して、それぞれの反射電波を前記対応させた順序の受信素子アンテナおよび当該他方の送受信素子アンテナの順で受信するよう送受信のサイクルを制御するようにしたことを特徴とする請求項1記載のレーダ装置。
A circulator is connected to each of the two element antennas located at opposite ends of the array of the array antenna to form a transmitting and receiving element antenna, and a plurality of element antennas located between the two element antennas are defined as a receiving element antenna,
Radar transmission waves are sequentially transmitted from one transmitting / receiving element antenna, and each reflected radio wave is received in the order of the one transmitting / receiving element antenna, the receiving element antenna in the corresponding order, and the other transmitting / receiving element antenna, and then The transmitting and receiving cycle is controlled so that radar transmission waves are sequentially transmitted from the other transmitting / receiving element antenna and the respective reflected radio waves are received in the order of the corresponding receiving element antenna and the other transmitting / receiving element antenna. The radar device according to claim 1, wherein
アレーアンテナの配列の相対する端部に位置する2つの素子アンテナの一方を送信素子アンテナとし、他方にサーキュレータを接続して送受信素子アンテナとすると共に、前記2つの素子アンテナ間に位置する複数の素子アンテナを受信素子アンテナとし、
前記送信素子アンテナと前記送受信素子アンテナに対して互いに直交する送信信号を供給してレーダ送信波を同じタイミングで、かつ順次に送信し、それぞれの反射電波を対応させた順序の受信素子アンテナにより受信し、次に、前記送信素子アンテナだけからレーダ送信波を送信し、その反射波を前記送受信素子アンテナで受信するよう送受信のサイクルを制御し、
前記受信素子アンテナおよび送受信素子アンテナで受信された直交する受信信号をそれぞれ復調した後、復調した信号を合成して合成開口アレー信号として処理するようにしたことを特徴とする請求項1記載のレーダ装置。
One of two element antennas located at opposite ends of the array of array antennas is a transmitting element antenna, and the other is connected to a circulator to form a transmitting and receiving element antenna, and a plurality of elements located between the two element antennas The antenna is a receiving element antenna,
The transmission element antenna and the transmission / reception element antenna are supplied with transmission signals orthogonal to each other to transmit radar transmission waves at the same timing and sequentially, and receive the reflected radio waves by the reception element antennas in the order corresponding to the respective reflected radio waves. Then, the radar transmission wave is transmitted only from the transmission element antenna, and the transmission / reception cycle is controlled so that the reflected wave is received by the transmission / reception element antenna,
The radar according to claim 1, wherein after orthogonally receiving signals received by the receiving element antenna and the transmitting / receiving element antenna are demodulated, the demodulated signals are combined and processed as a synthetic aperture array signal. apparatus.
アレーアンテナの配列の相対する端部に位置する2つの素子アンテナを送信素子アンテナとすると共に、前記2つの送信素子アンテナ間に位置する複数の素子アンテナを受信素子アンテナとし、
一方の送信素子アンテナからレーダ送信波を順次に送信して、それぞれの反射電波を対応させた順序の受信素子アンテナにより受信し、次に、他方の送信素子アンテナからレーダ送信波を順次に送信して、それぞれの反射電波を前記対応させた順序の受信素子アンテナにより受信するよう送受信のサイクルを制御するようにしたことを特徴とする請求項1記載のレーダ装置。
Two element antennas located at opposite ends of the array of array antennas are used as transmitting element antennas, and a plurality of element antennas located between the two transmitting element antennas are used as receiving element antennas,
Radar transmission waves are sequentially transmitted from one transmission element antenna, and the respective reflected radio waves are received by the reception element antennas in the corresponding order, and then the radar transmission waves are sequentially transmitted from the other transmission element antenna. 2. The radar apparatus according to claim 1, wherein a cycle of transmission and reception is controlled so that each reflected radio wave is received by the receiving element antennas in the corresponding order.
複数の素子アンテナを所定の間隔で配列したアレーアンテナを用いて、レーダ送信波を一定間隔で順次に送信し、目標からの反射電波を受信し、受信した受信信号を合成して合成開口アレー信号として処理するレーダ装置において、
前記アレーアンテナを、それぞれ移相器を設けた所定数の素子アンテナからなる複数のサブアレーで構成し、
前記アレーアンテナの配列の相対する端部に位置する2つのサブアレーを、各素子アンテナにそれぞれサーキュレータを接続して送受信素子アンテナにした送受信用サブアレーとし、当該2つのサブアレー間に位置する複数のサブアレーを、各素子アンテナを受信素子アンテナとする受信用サブアレーとし、
一方の送受信用サブアレーからレーダ送信波を順次に送信して、それぞれの反射電波を当該一方の送受信用サブアレー自身、対応させた順序の受信用サブアレーおよび他方の送受信用サブアレーの順で受信し、次に、他方の送受信用サブアレーからレーダ送信波を順次に送信して、それぞれの反射電波を前記対応させた受信用サブアレーおよび当該他方の送受信用サブアレー自身の順で受信するよう送受信のサイクルを制御し、
サブアレー毎に素子アンテナで受信した受信信号を合成し、合成された各サブアレーの信号をさらに合成して合成開口アレー信号として処理するようにしたことを特徴とするレーダのアンテナ装置。
Using an array antenna in which a plurality of element antennas are arranged at predetermined intervals, radar transmission waves are sequentially transmitted at regular intervals, reflected radio waves from a target are received, and the received signals are combined to synthesize a synthetic aperture array signal. In a radar device that processes as
The array antenna comprises a plurality of sub-arrays each consisting of a predetermined number of element antennas provided with a phase shifter,
Two sub-arrays located at opposite ends of the array of the array antennas are used as transmission / reception sub-arrays each having a circulator connected to each element antenna to form a transmission / reception element antenna, and a plurality of sub-arrays located between the two sub-arrays are arranged. A receiving sub-array in which each element antenna is a receiving element antenna,
Radar transmission waves are sequentially transmitted from one transmitting / receiving sub-array, and the respective reflected radio waves are received in the order of the one transmitting / receiving sub-array itself, the receiving sub-array in the corresponding order and the other transmitting / receiving sub-array, and The transmitting / receiving cycle is controlled so that radar transmission waves are sequentially transmitted from the other transmitting / receiving sub-array, and the respective reflected radio waves are received in the order of the corresponding receiving sub-array and the other transmitting / receiving sub-array itself. ,
A radar antenna device, wherein a received signal received by an element antenna is combined for each sub-array, and the combined signals of the respective sub-arrays are further combined and processed as a synthetic aperture array signal.
JP2002368591A 2002-12-19 2002-12-19 In-vehicle radar system Expired - Lifetime JP3833606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368591A JP3833606B2 (en) 2002-12-19 2002-12-19 In-vehicle radar system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368591A JP3833606B2 (en) 2002-12-19 2002-12-19 In-vehicle radar system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005370425A Division JP3878199B2 (en) 2005-12-22 2005-12-22 Radar equipment

Publications (3)

Publication Number Publication Date
JP2004198312A true JP2004198312A (en) 2004-07-15
JP2004198312A5 JP2004198312A5 (en) 2005-04-07
JP3833606B2 JP3833606B2 (en) 2006-10-18

Family

ID=32765119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368591A Expired - Lifetime JP3833606B2 (en) 2002-12-19 2002-12-19 In-vehicle radar system

Country Status (1)

Country Link
JP (1) JP3833606B2 (en)

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098181A (en) * 2004-09-29 2006-04-13 Fujitsu Ltd Radar device
JP2007199085A (en) * 2007-04-13 2007-08-09 Mitsubishi Electric Corp Millimeter-wave radar apparatus
DE102007035368A1 (en) 2006-12-25 2008-07-03 Mitsubishi Electric Corp. radar device
JP2008267909A (en) * 2007-04-18 2008-11-06 Mitsubishi Electric Corp Signal processor and its method
JP2008275382A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Fm-cw polarization radar device
JP2008304417A (en) * 2007-06-11 2008-12-18 Mitsubishi Electric Corp Radar system
JP2009080024A (en) * 2007-09-26 2009-04-16 Fujitsu Ltd Detection and ranging apparatus and method
US7545310B2 (en) 2007-08-17 2009-06-09 Mitsubishi Electric Corporation In-vehicle mount radar device
JP2009168452A (en) * 2008-01-10 2009-07-30 Mitsubishi Electric Corp Radar system
JP2010156708A (en) * 2010-03-08 2010-07-15 Mitsubishi Electric Corp On-vehicle millimeter-wave radar device
DE102010040438A1 (en) 2009-09-10 2011-04-14 Fujitsu Ten Ltd., Kobe-shi radar device
JP2011526371A (en) * 2008-07-02 2011-10-06 アーデーツエー・オートモテイブ・デイスタンス・コントロール・システムズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Radar system with improved angle shaping
JP2012163440A (en) * 2011-02-07 2012-08-30 Fujitsu Ltd Radar apparatus and target searching method
JP2013007756A (en) * 2012-09-05 2013-01-10 Fujitsu Ltd Detection and ranging apparatus, and detection and ranging method
JP2013205043A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Radar device
JP2014502342A (en) * 2010-10-21 2014-01-30 ロケイタ コーポレイション プロプライエタリー リミテッド Method and apparatus for forming a remote beam
US9182476B2 (en) 2009-04-06 2015-11-10 Conti Temic Microelectronic Gmbh Radar system having arrangements and methods for the decoupling of transmitting and receiving signals and for the suppression of interference radiation
JP2016090431A (en) * 2014-11-06 2016-05-23 株式会社東芝 Radar system and radar signal processing method
JP2016166859A (en) * 2014-12-23 2016-09-15 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Rf system having rfic and antenna system
KR101759405B1 (en) * 2014-12-23 2017-07-18 인피니언 테크놀로지스 아게 System and method for radar
WO2018204993A1 (en) 2017-05-12 2018-11-15 Locata Corporation Pty Ltd Methods and apparatus for characterising the environment of a user platform
DE102017213503B4 (en) 2016-08-08 2019-02-07 Infineon Technologies Ag Radio frequency system and portable device method
US10317512B2 (en) 2014-12-23 2019-06-11 Infineon Technologies Ag RF system with an RFIC and antenna system
US10399393B1 (en) 2018-05-29 2019-09-03 Infineon Technologies Ag Radar sensor system for tire monitoring
US10466772B2 (en) 2017-01-09 2019-11-05 Infineon Technologies Ag System and method of gesture detection for a remote device
US10505255B2 (en) 2017-01-30 2019-12-10 Infineon Technologies Ag Radio frequency device packages and methods of formation thereof
US10576328B2 (en) 2018-02-06 2020-03-03 Infineon Technologies Ag System and method for contactless sensing on a treadmill
US10602548B2 (en) 2017-06-22 2020-03-24 Infineon Technologies Ag System and method for gesture sensing
US10705198B2 (en) 2018-03-27 2020-07-07 Infineon Technologies Ag System and method of monitoring an air flow using a millimeter-wave radar sensor
US10746625B2 (en) 2017-12-22 2020-08-18 Infineon Technologies Ag System and method of monitoring a structural object using a millimeter-wave radar sensor
US10761187B2 (en) 2018-04-11 2020-09-01 Infineon Technologies Ag Liquid detection using millimeter-wave radar sensor
US10775482B2 (en) 2018-04-11 2020-09-15 Infineon Technologies Ag Human detection and identification in a setting using millimeter-wave radar
US10794841B2 (en) 2018-05-07 2020-10-06 Infineon Technologies Ag Composite material structure monitoring system
US10795012B2 (en) 2018-01-22 2020-10-06 Infineon Technologies Ag System and method for human behavior modelling and power control using a millimeter-wave radar sensor
US10802599B2 (en) 2016-01-19 2020-10-13 Infineon Technologies Ag Device with mm-wave gesture sensing system
US10823836B2 (en) 2015-11-19 2020-11-03 Conti Temic Microelectronic Gmbh Radar system having interleaved serial transmitting and parallel receiving
US10903567B2 (en) 2018-06-04 2021-01-26 Infineon Technologies Ag Calibrating a phased array system
US10928501B2 (en) 2018-08-28 2021-02-23 Infineon Technologies Ag Target detection in rainfall and snowfall conditions using mmWave radar
US11039231B2 (en) 2018-11-14 2021-06-15 Infineon Technologies Ag Package with acoustic sensing device(s) and millimeter wave sensing elements
US11087115B2 (en) 2019-01-22 2021-08-10 Infineon Technologies Ag User authentication using mm-Wave sensor for automotive radar systems
US11125869B2 (en) 2018-10-16 2021-09-21 Infineon Technologies Ag Estimating angle of human target using mmWave radar
US11126885B2 (en) 2019-03-21 2021-09-21 Infineon Technologies Ag Character recognition in air-writing based on network of radars
US11183772B2 (en) 2018-09-13 2021-11-23 Infineon Technologies Ag Embedded downlight and radar system
US11278241B2 (en) 2018-01-16 2022-03-22 Infineon Technologies Ag System and method for vital signal sensing using a millimeter-wave radar sensor
US11327167B2 (en) 2019-09-13 2022-05-10 Infineon Technologies Ag Human target tracking system and method
US11336026B2 (en) 2016-07-21 2022-05-17 Infineon Technologies Ag Radio frequency system for wearable device
US11346936B2 (en) 2018-01-16 2022-05-31 Infineon Technologies Ag System and method for vital signal sensing using a millimeter-wave radar sensor
US11355838B2 (en) 2019-03-18 2022-06-07 Infineon Technologies Ag Integration of EBG structures (single layer/multi-layer) for isolation enhancement in multilayer embedded packaging technology at mmWave
US11360185B2 (en) 2018-10-24 2022-06-14 Infineon Technologies Ag Phase coded FMCW radar
US11397239B2 (en) 2018-10-24 2022-07-26 Infineon Technologies Ag Radar sensor FSM low power mode
US11416077B2 (en) 2018-07-19 2022-08-16 Infineon Technologies Ag Gesture detection system and method using a radar sensor
US11435443B2 (en) 2019-10-22 2022-09-06 Infineon Technologies Ag Integration of tracking with classifier in mmwave radar
US11454696B2 (en) 2019-04-05 2022-09-27 Infineon Technologies Ag FMCW radar integration with communication system
US11567185B2 (en) 2020-05-05 2023-01-31 Infineon Technologies Ag Radar-based target tracking using motion detection
US11585891B2 (en) 2020-04-20 2023-02-21 Infineon Technologies Ag Radar-based vital sign estimation
US11614516B2 (en) 2020-02-19 2023-03-28 Infineon Technologies Ag Radar vital signal tracking using a Kalman filter
US11614511B2 (en) 2020-09-17 2023-03-28 Infineon Technologies Ag Radar interference mitigation
US11662430B2 (en) 2021-03-17 2023-05-30 Infineon Technologies Ag MmWave radar testing
US11704917B2 (en) 2020-07-09 2023-07-18 Infineon Technologies Ag Multi-sensor analysis of food
US11719787B2 (en) 2020-10-30 2023-08-08 Infineon Technologies Ag Radar-based target set generation
US11719805B2 (en) 2020-11-18 2023-08-08 Infineon Technologies Ag Radar based tracker using empirical mode decomposition (EMD) and invariant feature transform (IFT)
US11774553B2 (en) 2020-06-18 2023-10-03 Infineon Technologies Ag Parametric CNN for radar processing
US11774592B2 (en) 2019-09-18 2023-10-03 Infineon Technologies Ag Multimode communication and radar system resource allocation
US11808883B2 (en) 2020-01-31 2023-11-07 Infineon Technologies Ag Synchronization of multiple mmWave devices
US11950895B2 (en) 2021-05-28 2024-04-09 Infineon Technologies Ag Radar sensor system for blood pressure sensing, and associated method

Cited By (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006098181A (en) * 2004-09-29 2006-04-13 Fujitsu Ltd Radar device
DE102007035368B4 (en) * 2006-12-25 2010-03-18 Mitsubishi Electric Corp. radar device
DE102007035368A1 (en) 2006-12-25 2008-07-03 Mitsubishi Electric Corp. radar device
JP2008157761A (en) * 2006-12-25 2008-07-10 Mitsubishi Electric Corp Radar system
US7511659B2 (en) 2006-12-25 2009-03-31 Mitsubishi Electric Corporation Radar device
JP2007199085A (en) * 2007-04-13 2007-08-09 Mitsubishi Electric Corp Millimeter-wave radar apparatus
JP4615542B2 (en) * 2007-04-13 2011-01-19 三菱電機株式会社 Millimeter wave radar equipment
JP2008267909A (en) * 2007-04-18 2008-11-06 Mitsubishi Electric Corp Signal processor and its method
JP2008275382A (en) * 2007-04-26 2008-11-13 Mitsubishi Electric Corp Fm-cw polarization radar device
JP4545174B2 (en) * 2007-06-11 2010-09-15 三菱電機株式会社 Radar equipment
US7579982B2 (en) 2007-06-11 2009-08-25 Mitsubishi Electric Corporation Radar apparatus
JP2008304417A (en) * 2007-06-11 2008-12-18 Mitsubishi Electric Corp Radar system
US7545310B2 (en) 2007-08-17 2009-06-09 Mitsubishi Electric Corporation In-vehicle mount radar device
JP2009080024A (en) * 2007-09-26 2009-04-16 Fujitsu Ltd Detection and ranging apparatus and method
JP2009168452A (en) * 2008-01-10 2009-07-30 Mitsubishi Electric Corp Radar system
US7812759B2 (en) 2008-01-10 2010-10-12 Mitsubishi Electric Corporation Radar apparatus for detection position information of a target by receiving reflection signals reflected by the target with a plurality of reception antennas
US8665137B2 (en) 2008-07-02 2014-03-04 Adc Automotive Distance Control Systems Gmbh Radar system with improved angle formation
JP2011526371A (en) * 2008-07-02 2011-10-06 アーデーツエー・オートモテイブ・デイスタンス・コントロール・システムズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Radar system with improved angle shaping
JP2011526373A (en) * 2008-07-02 2011-10-06 アーデーツエー・オートモテイブ・デイスタンス・コントロール・システムズ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Radar system with elevation angle measurement capability
US9182476B2 (en) 2009-04-06 2015-11-10 Conti Temic Microelectronic Gmbh Radar system having arrangements and methods for the decoupling of transmitting and receiving signals and for the suppression of interference radiation
DE102010040438A1 (en) 2009-09-10 2011-04-14 Fujitsu Ten Ltd., Kobe-shi radar device
US8264399B2 (en) 2009-09-10 2012-09-11 Fujitsu Ten Limited Radar device
JP2010156708A (en) * 2010-03-08 2010-07-15 Mitsubishi Electric Corp On-vehicle millimeter-wave radar device
US9640865B2 (en) 2010-10-21 2017-05-02 Locata Corporation Pty Ltd Method and apparatus for forming a remote beam
US10608337B2 (en) 2010-10-21 2020-03-31 Locata Corporation Pty Ltd Method and apparatus for forming a remote beam
JP2014502342A (en) * 2010-10-21 2014-01-30 ロケイタ コーポレイション プロプライエタリー リミテッド Method and apparatus for forming a remote beam
KR101822689B1 (en) 2010-10-21 2018-01-26 로카타 코퍼레이션 피티와이 리미티드 Method and apparatus for forming a remote beam
JP2012163440A (en) * 2011-02-07 2012-08-30 Fujitsu Ltd Radar apparatus and target searching method
JP2013205043A (en) * 2012-03-27 2013-10-07 Mitsubishi Electric Corp Radar device
JP2013007756A (en) * 2012-09-05 2013-01-10 Fujitsu Ltd Detection and ranging apparatus, and detection and ranging method
JP2016090431A (en) * 2014-11-06 2016-05-23 株式会社東芝 Radar system and radar signal processing method
KR101905249B1 (en) * 2014-12-23 2018-10-05 인피니언 테크놀로지스 아게 Rf system with an rfic and antenna system
US10725150B2 (en) 2014-12-23 2020-07-28 Infineon Technologies Ag System and method for radar
US10317512B2 (en) 2014-12-23 2019-06-11 Infineon Technologies Ag RF system with an RFIC and antenna system
US11965976B2 (en) 2014-12-23 2024-04-23 Infineon Technologies Ag System and method for radar
US10408919B2 (en) 2014-12-23 2019-09-10 Infineon Technologies Ag RF system with an RFIC and antenna system
KR101759405B1 (en) * 2014-12-23 2017-07-18 인피니언 테크놀로지스 아게 System and method for radar
JP2016166859A (en) * 2014-12-23 2016-09-15 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag Rf system having rfic and antenna system
US10823836B2 (en) 2015-11-19 2020-11-03 Conti Temic Microelectronic Gmbh Radar system having interleaved serial transmitting and parallel receiving
US11216077B2 (en) 2016-01-19 2022-01-04 Infineon Technologies Ag Device with mm-wave gesture sensing system
US10802599B2 (en) 2016-01-19 2020-10-13 Infineon Technologies Ag Device with mm-wave gesture sensing system
US11417963B2 (en) 2016-07-21 2022-08-16 Infineon Technologies Ag Radio frequency system for wearable device
US11336026B2 (en) 2016-07-21 2022-05-17 Infineon Technologies Ag Radio frequency system for wearable device
US10218407B2 (en) 2016-08-08 2019-02-26 Infineon Technologies Ag Radio frequency system and method for wearable device
DE102017213503B4 (en) 2016-08-08 2019-02-07 Infineon Technologies Ag Radio frequency system and portable device method
US10901497B2 (en) 2017-01-09 2021-01-26 Infineon Technologies Ag System and method of gesture detection for a remote device
US10466772B2 (en) 2017-01-09 2019-11-05 Infineon Technologies Ag System and method of gesture detection for a remote device
US10505255B2 (en) 2017-01-30 2019-12-10 Infineon Technologies Ag Radio frequency device packages and methods of formation thereof
JP2020519900A (en) * 2017-05-12 2020-07-02 ロケイタ コーポレイション プロプライエタリー リミテッド Method and apparatus for characterizing the environment of a user platform
JP7403611B2 (en) 2017-05-12 2023-12-22 ロケイタ コーポレイション プロプライエタリー リミテッド Method and apparatus for characterizing user platform environment
JP7179768B2 (en) 2017-05-12 2022-11-29 ロケイタ コーポレイション プロプライエタリー リミテッド Method and apparatus for characterizing user platform environment
US11353571B2 (en) 2017-05-12 2022-06-07 Locata Corporation Pty Ltd Methods and apparatus for characterising the environment of a user platform
US11921184B2 (en) 2017-05-12 2024-03-05 Locata Corporation Pty Ltd Methods and apparatus for characterising the environment of a user platform
KR102647167B1 (en) 2017-05-12 2024-03-13 로카타 코퍼레이션 피티와이 리미티드 Method and apparatus for characterizing the environment of a user platform
KR20200004808A (en) * 2017-05-12 2020-01-14 로카타 코퍼레이션 피티와이 리미티드 Method and apparatus for characterizing the environment of the user platform
WO2018204993A1 (en) 2017-05-12 2018-11-15 Locata Corporation Pty Ltd Methods and apparatus for characterising the environment of a user platform
EP3635435A4 (en) * 2017-05-12 2021-02-24 Locata Corporation Pty Ltd Methods and apparatus for characterising the environment of a user platform
US10973058B2 (en) 2017-06-22 2021-04-06 Infineon Technologies Ag System and method for gesture sensing
US10602548B2 (en) 2017-06-22 2020-03-24 Infineon Technologies Ag System and method for gesture sensing
US10746625B2 (en) 2017-12-22 2020-08-18 Infineon Technologies Ag System and method of monitoring a structural object using a millimeter-wave radar sensor
US11278241B2 (en) 2018-01-16 2022-03-22 Infineon Technologies Ag System and method for vital signal sensing using a millimeter-wave radar sensor
US11346936B2 (en) 2018-01-16 2022-05-31 Infineon Technologies Ag System and method for vital signal sensing using a millimeter-wave radar sensor
US10795012B2 (en) 2018-01-22 2020-10-06 Infineon Technologies Ag System and method for human behavior modelling and power control using a millimeter-wave radar sensor
US10576328B2 (en) 2018-02-06 2020-03-03 Infineon Technologies Ag System and method for contactless sensing on a treadmill
US10705198B2 (en) 2018-03-27 2020-07-07 Infineon Technologies Ag System and method of monitoring an air flow using a millimeter-wave radar sensor
US10775482B2 (en) 2018-04-11 2020-09-15 Infineon Technologies Ag Human detection and identification in a setting using millimeter-wave radar
US10761187B2 (en) 2018-04-11 2020-09-01 Infineon Technologies Ag Liquid detection using millimeter-wave radar sensor
US10794841B2 (en) 2018-05-07 2020-10-06 Infineon Technologies Ag Composite material structure monitoring system
US10399393B1 (en) 2018-05-29 2019-09-03 Infineon Technologies Ag Radar sensor system for tire monitoring
US10903567B2 (en) 2018-06-04 2021-01-26 Infineon Technologies Ag Calibrating a phased array system
US11416077B2 (en) 2018-07-19 2022-08-16 Infineon Technologies Ag Gesture detection system and method using a radar sensor
US10928501B2 (en) 2018-08-28 2021-02-23 Infineon Technologies Ag Target detection in rainfall and snowfall conditions using mmWave radar
US11183772B2 (en) 2018-09-13 2021-11-23 Infineon Technologies Ag Embedded downlight and radar system
US11125869B2 (en) 2018-10-16 2021-09-21 Infineon Technologies Ag Estimating angle of human target using mmWave radar
US11360185B2 (en) 2018-10-24 2022-06-14 Infineon Technologies Ag Phase coded FMCW radar
US11397239B2 (en) 2018-10-24 2022-07-26 Infineon Technologies Ag Radar sensor FSM low power mode
US11039231B2 (en) 2018-11-14 2021-06-15 Infineon Technologies Ag Package with acoustic sensing device(s) and millimeter wave sensing elements
US11087115B2 (en) 2019-01-22 2021-08-10 Infineon Technologies Ag User authentication using mm-Wave sensor for automotive radar systems
US11670110B2 (en) 2019-01-22 2023-06-06 Infineon Technologies Ag User authentication using mm-wave sensor for automotive radar systems
US11355838B2 (en) 2019-03-18 2022-06-07 Infineon Technologies Ag Integration of EBG structures (single layer/multi-layer) for isolation enhancement in multilayer embedded packaging technology at mmWave
US11686815B2 (en) 2019-03-21 2023-06-27 Infineon Technologies Ag Character recognition in air-writing based on network of radars
US11126885B2 (en) 2019-03-21 2021-09-21 Infineon Technologies Ag Character recognition in air-writing based on network of radars
US11454696B2 (en) 2019-04-05 2022-09-27 Infineon Technologies Ag FMCW radar integration with communication system
US11327167B2 (en) 2019-09-13 2022-05-10 Infineon Technologies Ag Human target tracking system and method
US11774592B2 (en) 2019-09-18 2023-10-03 Infineon Technologies Ag Multimode communication and radar system resource allocation
US11435443B2 (en) 2019-10-22 2022-09-06 Infineon Technologies Ag Integration of tracking with classifier in mmwave radar
US11808883B2 (en) 2020-01-31 2023-11-07 Infineon Technologies Ag Synchronization of multiple mmWave devices
US11614516B2 (en) 2020-02-19 2023-03-28 Infineon Technologies Ag Radar vital signal tracking using a Kalman filter
US11585891B2 (en) 2020-04-20 2023-02-21 Infineon Technologies Ag Radar-based vital sign estimation
US11567185B2 (en) 2020-05-05 2023-01-31 Infineon Technologies Ag Radar-based target tracking using motion detection
US11774553B2 (en) 2020-06-18 2023-10-03 Infineon Technologies Ag Parametric CNN for radar processing
US11704917B2 (en) 2020-07-09 2023-07-18 Infineon Technologies Ag Multi-sensor analysis of food
US11614511B2 (en) 2020-09-17 2023-03-28 Infineon Technologies Ag Radar interference mitigation
US11719787B2 (en) 2020-10-30 2023-08-08 Infineon Technologies Ag Radar-based target set generation
US11719805B2 (en) 2020-11-18 2023-08-08 Infineon Technologies Ag Radar based tracker using empirical mode decomposition (EMD) and invariant feature transform (IFT)
US11662430B2 (en) 2021-03-17 2023-05-30 Infineon Technologies Ag MmWave radar testing
US11950895B2 (en) 2021-05-28 2024-04-09 Infineon Technologies Ag Radar sensor system for blood pressure sensing, and associated method

Also Published As

Publication number Publication date
JP3833606B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP3833606B2 (en) In-vehicle radar system
JP4833534B2 (en) Radar equipment
US11619706B2 (en) Radar device
EP1742081B1 (en) Digital beamforming for an electronically scanned radar system
JP2768439B2 (en) FM-CW type multi-beam radar device
US20180088224A1 (en) Radar apparatus
US7289058B2 (en) Radar apparatus
JP4615542B2 (en) Millimeter wave radar equipment
EP1464986A1 (en) Radar apparatus
US7864099B2 (en) Low cost short range radar
CN111693997A (en) High resolution multiple input multiple output radar system
JP3602258B2 (en) Multi-beam radar antenna
JP3878199B2 (en) Radar equipment
JP2010156708A (en) On-vehicle millimeter-wave radar device
JP4294665B2 (en) Millimeter wave radar equipment
CN112098968A (en) Target positioning method and device for radar
JP7154494B2 (en) Direction-of-arrival estimation device and direction-of-arrival estimation method
JPS63167288A (en) Radar equipment
JP2009031185A (en) Radar system and target detecting method
US11899126B2 (en) Method and system for multi-chip operation of radar systems
US8482454B2 (en) Monostatic multi-beam radar sensor, as well as method
JP2001099918A (en) Polographic radar device
CN101520507B (en) Ow cost short range radar
JP3637234B2 (en) Radar equipment
JPH06242229A (en) Radar apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Ref document number: 3833606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term