JP2004190348A - Earth for building and its manufacturing method - Google Patents

Earth for building and its manufacturing method Download PDF

Info

Publication number
JP2004190348A
JP2004190348A JP2002360054A JP2002360054A JP2004190348A JP 2004190348 A JP2004190348 A JP 2004190348A JP 2002360054 A JP2002360054 A JP 2002360054A JP 2002360054 A JP2002360054 A JP 2002360054A JP 2004190348 A JP2004190348 A JP 2004190348A
Authority
JP
Japan
Prior art keywords
soil
parts
weight
building
thermosetting resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002360054A
Other languages
Japanese (ja)
Other versions
JP3761087B2 (en
Inventor
Hirobumi Kumagai
博文 熊谷
Osamu Shimamura
修 島村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSYU FRIT KK
Aica Kogyo Co Ltd
Original Assignee
SANSYU FRIT KK
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANSYU FRIT KK, Aica Kogyo Co Ltd filed Critical SANSYU FRIT KK
Priority to JP2002360054A priority Critical patent/JP3761087B2/en
Publication of JP2004190348A publication Critical patent/JP2004190348A/en
Application granted granted Critical
Publication of JP3761087B2 publication Critical patent/JP3761087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve adhesive strength, water resistance and acid resistance as roofing earth and wall earth and to make sludge containing adhesive components, scraps of thermosetting resin laminated plates and defectives into resources. <P>SOLUTION: Adhesive sludge and a suitable quantity of water are mixed in building earth components and kneaded. The mixing rate of the adhesive sludge is 0.01-50 pts.wt. to 100 pts.wt. of building earth components. Further, adhesive sludge, at least one kind selected out of (a) gypsum, (b) a solution containing boron at 10-1000 mg/1, (c) a crushed material of thermosetting resin molding, (d) molding sand and (e) sanded powder of thermosetting resin laminated plates, and the suitable quantity of water are mixed in the building earth components and kneaded. The mixing rates of (a)-(e) are (a) 5-50 pts.wt., (b) 5-50 pts.wt., (c) 0.01-10 pts.wt., (d) 5-50 pts.wt. and (e) 0.01-10 pts.wt. to 100 pts.wt. of building earth components. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、住宅を建築する際に使用する建築用土に関し、より詳しくは建築土成分に、接着性を有する汚泥や、石膏などを配合し、適量の水で混練して得られる建築用土及びその製造方法に関するものである。
【0002】
【従来の技術】
【特許文献1】特開平1−257157
【特許文献2】特開平5−69000
【特許文献3】特開平8−143354
【特許文献4】特開平9−100149
【0003】
これまでより、家屋を建築する際には、竹を細く割ったものを、わら網などで格子状に組んだものを下地(小舞い下地)として、下塗り用の荒壁土、中塗り用の中塗り土などの壁土、及び仕上げ用の色土を塗って仕上げる小舞い壁が知られており、壁土には粘土質の土、例えば、荒木田土、畑土、山土等と砂を主な成分として、藁、すさなどのつなぎ材を入れて練り込んだ土を用いている。
また、屋根を瓦葺きにすることも古くから行われており、屋根面に棟瓦、桟瓦などの瓦を敷設する際には、瓦を下地に固定するために葺き土(屋根土)を用いており、外から見える個所、例えば棟土として用いた場合は表面を漆喰で仕上げて保護している。この葺き土も粘土質の土と砂などを主な成分としている。
【0004】
一方、接着剤を製造する工場においては、反応釜を洗浄した洗浄水が排出され、汚水処理過程で接着成分を含有する汚泥が発生する。
また、熱硬化性樹脂成形品、例えば、熱硬化性樹脂樹脂積層板は、熱硬化性樹脂含浸紙を一種、或いは複数種を積層した後、熱圧成形して得られ、注型品は、液状樹脂あるいはモノマーを型内に流し込み、硬化させることで得られ、切断屑などが発生する。
【0005】
【発明が解決しようとする課題】
しかしながら、従来の壁土、葺き土などは粘土質の土が主成分のため雨水に弱く、また水分を含むため、現場施工して乾燥するときに水分の蒸発で収縮して表面から内部へ亀裂が発生して雨水がしみ込んだりすることがあった。
また、葺き土の接着力が乏しく、寒暑、風雪、雨水、地震などにより、瓦がずれたり、浮いたりして雨漏りがし、ひどい時には瓦が飛ぶことがあり、壁土はくずれることさえあった。
【0006】
このような問題を解消するために、
粘土と砂の混合物を主材として、石灰、天然繊維や合成繊維などのつなぎ材、硬化遅延剤と水を配合したもの(屋根土組成物、特開平1−257157)、
上水道汚泥を主成分とし、粘土、消石灰、砂、繊維物質、粘結剤、及び硬化遅延剤を適量の水と混合したもの(上水道汚泥を利用した屋根瓦固定土の製造方法、特開平5−69000)、
山土と砂の混合物を主材として、産業廃棄物に消石灰又は塩化第二鉄を加えてできた凝集沈殿汚泥、消石灰、つなぎ材、硬化遅延剤と水を配合したもの(屋根土組成物、特開平8−143354)、
石灰、細粒骨材、のり材、化学接着剤などの原料を所定の比率で混合し、水を加えたもの(屋根土の製造方法及び屋根土、特開平9−100149)
などの技術が開示されている。
【0007】
しかしながら、粘土を主成分とするものにおいては、粘土の経時的劣化、すなわち収縮や乾燥に伴うひび割れは依然として解消されるものでなく、また砂と石灰を主成分とする葺き土(砂南蛮)では接着力が弱いという問題点があった。
また、耐水性、耐酸性なども劣り、葺き土が未だ乾ききらない内に降雨に見舞われるとくずれやすく、特に近年問題となっているpH3〜4程度の酸性雨に合うと、例え葺き土が乾燥したものであっても劣化することがあった。
更に、合成化学系の接着剤を用いると接着剤が高価な上、接着力が強すぎて固まるのが速く長期の保存が難しく、葺き土が不均一に固まることがあった。
【0008】
一方、接着剤を製造する工場において発生した汚泥は、凝集沈殿処理され、廃棄されるが、廃棄処理には多額の費用を要し、最近では廃棄場所も少なくなりつつあり、地球環境の保全、又産業廃棄物の処理コストの削減等の観点から、接着剤を製造する工場において発生した汚泥を再資源化して他の用途に再利用することが求められている。
【0009】
また、熱硬化性樹脂樹脂積層板は、最終製品に至る過程において発生した周辺部の切断屑や裏面のサンディング処理した際に発生するサンダー粉や、表面に傷や打痕のある不良品は焼却されたり、産業廃棄物として埋め立て処理されているのが実情であり、前述の接着性の汚泥と同様に再資源化して他の用途に再利用することが求められている。
このような状況は、熱硬化性樹脂樹脂積層板に限らず、注型品、射出成形品においても同様であった。
【0010】
本発明は、かかる状況に鑑み検討されたもので、接着剤を製造する工場において発生した汚泥や、該熱硬化性樹脂成形品の切断屑などを再資源化して建築用土に利用することにより建築用土の亀裂を防止し、耐水性、耐酸性及び接着性を向上させることを目的とするものである。
【0011】
【課題を解決するための手段】
すなわち、請求項1記載の発明は、建築土成分に、接着性汚泥と適量の水を配合し、混練してなることを特徴とする建築用土である。
【0012】
また、請求項2記載の発明は、該建築土成分100重量部に対して、該接着性汚泥の配合割合が0.01〜50重量部であることを特徴とする請求項1記載の建築用土である。
【0013】
更に、請求項3記載の発明は、建築土成分に、接着性汚泥と、下記(a)〜(e)からなる群から選択される少なくとも1種と、適量の水とを配合し、混練してなることを特徴とする建築用土である。
(a)石膏
(b)10〜1000mg/lのホウ素含有溶液
(c)熱硬化性樹脂成形品の粉砕物
(d)鋳物砂
(e)熱硬化性樹脂積層板のサンダー粉
【0014】
更に、請求項4記載の発明は、該建築土成分100重量部に対して、前記(a)〜(e)の配合割合が、(a)の石膏については5〜50重量部、(b)の10〜1000mg/lのホウ素含有溶液については5〜50重量部、(c)の熱硬化性樹脂成形品の粉砕物については0.01〜10重量部、(d)の鋳物砂については5〜50重量部、(e)熱硬化性樹脂積層板のサンダー粉については0.01〜10重量部であることを特徴とする請求項3記載の建築用土である。
【0015】
更にまた、請求項5記載の発明は、該熱硬化性樹脂成形品が熱硬化性樹脂積層板であることを特徴とする請求項3又は4記載の建築用土である。
【0016】
また、請求項6記載の発明は、請求項1〜5記載の建築用土を得る際、脱気しながら混練することを特徴とする建築用土の製造方法である。
以下、本発明について詳細に説明する。
【0017】
本発明の建築用土は、壁土、葺き土などの建築土の構成成分、具体的には、砂(20〜60重量部)、粘土(10〜40重量部)、消石灰(5〜30重量部)、炭酸カルシウム(5〜30重量部)、のり剤(0.1〜1.0重量部)、スサ(0.05〜3.0重量部)に、接着性汚泥と、(a)石膏、(b)10〜1000mg/lのホウ素含有溶液、(c)熱硬化性樹脂成形品の粉砕物、(d)鋳物砂、(e)熱硬化性樹脂積層板のサンダー粉などを配合し、適量の水(10〜50重量部)を加えて混練したものである。
【0018】
粘土は通常公知の鉱物組成であれば特に制約はなく、産地により組成は異なるが、主な構成鉱物は石英、長石、カオリン鉱物、雲母鉱物などからなり、化学組成は、SiOを45〜80部、Alを5〜35部、Feを0〜10部、TiOを0〜2部、CaOを0〜20部、MgOを0〜10部、KOを0〜10部、NaOを0〜5部、その他を0〜5部含むのものであればよく、例えば、三河粘土が挙げられる。
【0019】
消石灰は水と混和され、小舞い下地、屋根下地などに塗られた後、空気中の炭酸ガスと結合して徐々に硬化する気硬性を備えおり、その化学変化は式1で示される。
【式1】

Figure 2004190348
消石灰は建築用土の表面から硬化させるので内部の水分の急激な蒸発を緩和し、乾燥収縮を抑制する。
【0020】
消石灰には粘性、膠着性がないためのり剤を用いてこれを補い、のり剤としては糖蜜、海藻のり、コンニャクのり、アラビヤゴムなどを用いる。
【0021】
スサは、補強、亀裂防止、崩壊防止など形状の安定化の目的で用いられ、繊維質材を短く裁断し、もみほぐしたものであり、例えば、稲ワラ、木綿、麻など植物繊維による麻スサ、藁スサ、紙スサなどが、また、無石綿、岩綿、炭素などの無機繊維によるスサが、また、アクリル繊維、レーヨン繊維などの化学繊維によるスサなど挙げられる。
【0022】
葺き土においては瓦の色彩と合わせて黒色、鼠色、褐色、白色等に着色して使用してもよく、このときには、建築土成分の一つとして顔料を0.5〜3重量部配合する。
【0023】
本発明において用いる接着性汚泥とは、接着剤製造工場において、その反応釜、搬送用や保管用の容器、その他使用器具を洗浄した排水を凝集沈殿させた後、乾燥し、建築用土として配合しやすいように水分調整したものであり、汚泥としては、酢酸ビニル樹脂、アクリル樹脂、SBR、NBR、MBR、酢酸ビニル系共重合樹脂などのラテックスやエマルジョンを含有するものが挙げられ、特にアクリル樹脂系の汚泥を用いると建築用土の耐水性、耐酸性が向上する。
【0024】
前記の排水は詳しく述べると、先ず工場内の一個所の処理槽に集められ凝集沈殿槽に入れられる。次いで、攪拌しながらpH調整、有機物を凝集させる目的で塩化第二鉄を0.2重量部程度配合し、pHを2〜3にする。次に苛性ソーダを配合して、pH6.5〜7.5に中和し、例えば、メタリル酸ジメチルアミノエチル、アクリルアミド、アクリル酸を主成分とする高分子凝集剤を微量配合してフロックを形成させる。
【0025】
上澄み液が取り除かれた沈殿層を珪藻土が加えられた真空脱水機に導入して脱水し、珪藻土によって捕捉された汚泥を取り出す一連の処理によって、フロックを水から分離する。このフロックの成分重量比は、一例を挙げれば、酢酸ビニル樹脂が12、珪藻土3、塩化鉄3、その他3(アクリル、ラテックス、炭酸カルシウム、珪砂など)で、残りの79は水分となっている。
【0026】
この汚泥は、含水率が10〜80%、より好ましくは20〜50%になるまでフィルタープレスや真空脱水機により水分調整される。下限に満たないと建築土成分との混合が不均一になりやすく、上限を超えるとベトベトで、建築用土中の固形分と水分が分離しやすく、取り扱いが容易ではなくなる。
【0027】
前記の接着性汚泥は建築土成分に配合することで接着成分が原料中の砂、粘土、消石灰などにバインダーとして作用し、接着強度が著しく向上し、瓦の下地からの剥落を防いだり、壁土の亀裂の発生や崩壊を防止することができる。
【0028】
接着性汚泥の建築土成分に対する配合割合は、多くなればなるほど、接着力を向上させることができるが、その反面、粘性が上がり作業性が悪くなるため、配合割合は建築土成分100重量部に対して0.01〜50重量部、より好ましくは0.05〜30重量部、更に好ましくは0.1〜20重量部の範囲とし、この範囲であれば建築用土として充分機能する。下限に満たないと接着力が乏しくなり、上限を超えると作業性が悪くなる。
【0029】
次に、本発明においては接着性汚泥に加えて、(a)石膏、(b)10〜1000mg/lのホウ素溶液、(c)熱硬化性樹脂成形品の粉砕物、(d)鋳物砂、(e)熱硬化性樹脂積層板のサンダー粉の内1種以上を選択して配合し、より品質、機能などを向上させることができる。
【0030】
石膏は、硫酸カルシウムを主体とする無色或いは白色の無臭の物質で、二水石膏(CaSO4・2H2O)、半水石膏(CaSO4・1/2H2O)及び無水石膏(CaSO4)の3形態に大別されるが、半水石膏(焼き石膏)や無水石膏は、式2、式3で示されるように水を加えると短時間で硬化する性質を有する水硬性の建築材料である。尚、二水石膏はそれ自体では水硬性を持たないが、焼成等により半水石膏、無水石膏に変化し、水硬性が得られ、硬化剤として機能する。
【式2】
Figure 2004190348
【式3】
Figure 2004190348
【0031】
石膏としては、石膏ボードを粉砕し、水硬性が得られるように温度100〜230℃の範囲で焼成処理したもの(半水石膏或いは無水石膏)で粒度3〜30μm程度の微粒子が適用できるが、石膏を含有する成型体であれば廃材でもよく、例えば、廃石膏ボード、廃石膏ブロック、型どり用廃石膏型、陶磁器製造工程で発生する廃石膏型などを用いることができる。
【0032】
石膏は、比重が小さく、軽量のための建築土成分との混練が容易であり、建築用土成分100重量部に対して5〜50重量部配合することにより硬化剤として作用し、粘り気が増しコテへのなじみがよくなり、施工中に建築用土がコテから落ちにくく作業しやすいといった利点がある。石膏の配合割合が下限に満たないと粘り気が余り増さず、上限を超えると硬くなりコテで葺く作業がしづらくなる。また、石膏は収縮しにくくいため、亀裂を生じないといった利点もある。
【0033】
次にホウ素含有溶液を併用すると、凝結硬化を遅延させるため保存性を改良することができ、袋詰めにしても長期間(2〜3か月)保存することができる。溶液中のホウ素濃度は10〜1000mg/l程度、より好ましくは100〜600mg/lの範囲が好ましく、下限未満では遅延硬化の作用が小さく、上限を超えると遅延硬化は余りなく、作業性が悪くなる。
【0034】
前記のホウ素含有溶液としては釉薬の製造過程、メッキ廃水処理工程などで発生する処理水を用いると都合がよい。
釉薬には、主成分から見て、長石釉、石灰釉、石灰マグネシア釉、石灰バリウム釉、石灰亜鉛釉など1200℃以上で焼成する高火度釉、鉛釉、フリット釉(ホウケイ酸鉛釉)など1200℃以下で焼成する中火度釉、低火度釉など数多くのものがあるが、一般には、福島長石、釜戸長石、平津長石などの長石と、カオリン、蛙目粘土、木節粘土などの粘土と、珪石を主な成分とし、溶融化剤、例えば、リチウム、カリウム、ナトリウムなどのアルカリ金属の酸化物、マグネシウム、カルシウム、ストロンチウム、バリウムなどのアルカリ土類金属の酸化物、ジルコニウム、亜鉛、鉛、ホウ素などの酸化物と、着色原料としての金属類、例えば、鉄、コバルト、マンガン、ニッケル、クロム、銅などの金属元素の酸化物または同元素の炭酸塩などと、ワラ灰、珪石、カオリンなどの焼成中に釉が流れ落ちてしまうのを防ぐ物質と、適量の水とをボールミルで混合・粉砕して得られるガラス質状のものである。窯で焼成すると、構成成分の一部であるホウ素とアルカリ土類金属酸化物、アルカリ金属酸化物が溶融・固化に大きく寄与してガラス化になり、着色原料である金属の種類及び焼成条件を適宜選択することにより多彩な仕上がりとなる。
【0035】
このように多種多様な釉薬を製造する過程では処理水が発生し、この処理水中には釉薬中のホウ素が10〜1000mg/l含まれており、これを用いると安価で、処理費用を削減でき、資源を有効に利用することができる。
ホウ酸含有溶液として他に、調合によるものでも多少費用がかかるが使用に際しては一向に支障はなく、ホウ素化合物としては、Li、Na、Kなどのアルカリ金属を含むホウ酸塩、メタホウ酸、オルトホウ酸、四ホウ酸などのホウ酸、酸化ホウ素などを用いることができ、ホウ素を含むものであれば特に限定はされず、1種若しくは2種以上用いる。
【0036】
次に、熱硬化性樹脂成形品の粉砕物を配合することにより、接着性汚泥と建築土成分とをより均一に混合することができる。熱硬化性樹脂成形品の粉砕物を添加しないと、建築用土中の固形分と水分とが分離する場合が稀にある。
【0037】
前記の熱硬化性樹脂成形品の粉砕物としては、メラミン樹脂積層板、フェノール樹脂積層板、メラミン樹脂化粧板、ガラス繊維基材エポキシ樹脂積層板などの熱硬化性樹脂積層板や、メラミン樹脂注型品、フェノール樹脂注型品などの熱硬化性樹脂の注型品や、熱硬化性樹脂の射出成形品などを衝撃式粉砕機、例えばボールミル、パルべライザ等で粉砕したものが適用でき、粒度範囲は0.01〜1.5mmが望ましく、粒子径が下限に満たないと建築用土中の固形分と水分との分離を抑制する効果が小さく、上限を超えると建築土成分と均一に混合しずらくなり、凹凸が生じ易くなるため好ましくない。より好ましい粒度範囲は0.1〜1.0mmである。粉砕機は特に限定されない。
【0038】
中でも熱硬化性樹脂積層板は基材としてクラフト紙を用いているため、切断屑、不良品などを粉砕して得られる粒状のものについては軽量化に寄与し、裏面をサンディング処理して発生する250〜500μm程度のサンダー粉は繊維状であり、実施例15に示すように建築土成分の一つであるスサの機能を果たすことができ、特に好ましい。
【0039】
熱硬化性樹脂成形品の粉砕物の建築土成分に対する配合割合は、多くなればなるほど、建築用土を軽量化できるが、その反面、建築用土としての粘りが悪くなるため、配合割合は建築土成分100重量部に対して0.01〜10重量部とするのが好ましく、この範囲であれば建築用土としての充分機能する。
【0040】
すなわち、建築土成分に対する熱硬化性樹脂成形品の粉砕物の配合割合が、下限未満では建築用土中の固形分と水分との分離を抑制する効果が小さく、また上限を越えると、可塑性が低下して接着力が悪くなり、表面が粗くなるため、前記範囲に設定するのが好ましい。特に好ましい範囲は0.5〜2.0重量部である。
【0041】
次に、鋳物砂を用いることにより建築用土の色を濃色に変化させることができる。鋳物砂としては、基材としての珪砂、粘結材としてのベントナイトに、石炭粉、バインダーとして澱粉類とを配合し、水を適量加えて混練したものが適用できる他、鋳物工場において鋳鉄を製造する際に集塵装置から粉塵廃棄物として排出されるいわゆる廃鋳物砂や、鋳造後に鋳型をばらした後の砂が適用でき、その色が黒色であるため建築用土成分の一つとして配合することにより建築用土を黒茶色にすることができる。配合割合は5〜50重量部とするのが好ましく、下限に満たないと着色効果が少なく、上限を超えると建築用土としての粘性が小さくなる。
【0042】
前記の廃鋳物砂は、常温では付着炭素と鉄分とで黒色であるが、炭素の燃焼と酸化鉄の生成によって薄赤〜赤茶色を帯びたものに変えることができ、廃鋳物砂を用いると費用も余りかからず好適で、顔料として再利用できる。
【0043】
本発明の建築用土は、建築土成分に接着性汚泥、前述の(a)〜(e)の成分などを、水を加えて混合すればよいが、特に真空土練機や真空混練機などで混合すると内部に含まれる空気が外表面に減圧排気された上、外方に脱気されるため、極めて均質で緻密な状態で成形され、耐候性、接着性が向上し、施工後経時劣化して亀裂が入ることがない。
【0044】
以下、本発明について実施例、比較例を挙げてより詳細に説明するが、本発明をより具体的に示すものであって、配合割合など特に限定されるものではない。
【実施例】
実施例1
接着性汚泥
接着性汚泥として、アクリル系接着剤を含有する排水を塩化第二鉄、高分子凝集剤を用いて凝集沈殿させ、フィルタープレスで含水率が40%になるように乾燥させて接着性汚泥(a)を得た。
建築土成分(a)
建築土成分(a)として、下記配合のものを用いた。
砂 40重量部
粘土 20重量部
消石灰 19重量部
炭酸カルシウム 20重量部
糖蜜 0.5重量部
スサ 0.5重量部
上記の建築土成分(a)に対して、接着性汚泥(a)を4.0重量部、水を30重量部配合し、混練して実施例1の建築用土を得た。
【0045】
実施例2
実施例1において、粒度20μmの廃石膏ボード粉砕物(半水石膏)を20重量部配合した以外は同様に実施して実施例2の建築用土を得た。
【0046】
実施例3
実施例1において、150mg/lのホウ素含有釉薬処理水を30重量配合した以外は同様に実施して実施例3の建築用土を得た。
【0047】
実施例4
実施例1において、平均粒径0.3mmのメラミン樹脂化粧板の粉砕物を2.0重量部配合した以外は同様に実施して実施例4の建築用土を得た。
【0048】
実施例5
実施例1において、廃鋳物砂10重量部配合した以外は同様に実施して実施例5の建築用土を得た。
【0049】
実施例6
実施例1において、粒度20μmの廃石膏ボード粉砕物(半水石膏)を20重量部と、150mg/lのホウ素含有釉薬処理水を30重量部配合した以外は同様に実施して実施例6の建築用土を得た。
【0050】
実施例7
実施例1において、粒度20μmの廃石膏ボード粉砕物(半水石膏)を20重量部と、平均粒径0.3mmのメラミン樹脂化粧板の粉砕物を2.0重量部配合した以外は同様に実施して実施例7の建築用土を得た。
【0051】
実施例8
実施例1において、150mg/lのホウ素含有釉薬処理水を30重量部と、平均粒径0.3mmのメラミン樹脂化粧板の粉砕物を2.0重量部配合した以外は同様に実施して実施例8の建築用土を得た
【0052】
実施例9
実施例1において、粒度20μmの廃石膏ボード粉砕物(半水石膏)を20重量部と、150mg/lのホウ素含有釉薬処理水を30重量部と、平均粒径0.3mmのメラミン樹脂化粧板の粉砕物を2.0重量部配合した以外は同様に実施して実施例9の建築用土を得た。
【0053】
実施例10
実施例1において、粒度20μmの廃石膏ボード粉砕物(半水石膏)を20重量部と、150mg/lのホウ素含有釉薬処理水を30重量部と、平均粒径0.3mmのメラミン樹脂化粧板の粉砕物を2.0重量部と、廃鋳物砂10重量部配合した以外は同様に実施して実施例10の建築用土を得た。
【0054】
実施例11〜14
実施例1、2、3、9の配合で、真空土練機を用いて混合した以外は同様に実施して実施例11〜14の建築用土を得た。
【0055】
実施例15
建築土成分(b)として、下記配合のものを用いた。
砂 40重量部
粘土 20重量部
消石灰 19.45重量部
炭酸カルシウム 20重量部
糖蜜 0.5重量部
スサ 0.05重量部
上記の建築土成分(b)に対して、接着性汚泥(a)を4.0重量部、水を30重量部、メラミン樹脂化粧板のサンダー粉を0.45重量部配合し、混練して実施例15の建築用土を得た。
【0056】
比較例1(汚泥(a)の配合量が下限未満の場合)
実施例1において、接着性汚泥(a)を0.005重量部配合した以外は同様に実施してが、接着力の向上効果が余りなかった。
【0057】
比較例2(汚泥粉末(a)の配合量が上限を超える場合)
実施例1において、接着性汚泥粉末(a)を52.0重量部配合した以外は同様に実施したが、粘性が高く作業性が悪かった。
【0058】
比較例3(廃石膏ボード粉砕物の配合量が下限未満の場合)
実施例2において、粒度20μmの廃石膏ボード粉砕物(半水石膏)を4重量部配合した以外は同様に実施して比較例3の土を得た。
【0059】
比較例4(廃石膏ボード粉砕物の配合量が上限を超える場合)
実施例2において、粒度20μmの廃石膏ボード粉砕物(半水石膏)を53重量部配合した以外は同様に実施して比較例4の土を得た。
【0060】
比較例5(ホウ素含有溶液の配合量が下限未満の場合)
実施例3において、150mg/lのホウ素含有釉薬処理水を4重量部配合した以外は同様に実施して比較例5の土を得た。
【0061】
比較例6(ホウ素含有溶液の配合量が上限を超える場合)
実施例3において、150mg/lのホウ素含有釉薬処理水を52重量部配合した以外は同様に実施して比較例6の土を得た。
【0062】
比較例7(ホウ素含有溶液の濃度が下限未満の場合)
実施例3において、8mg/lのホウ素含有釉薬処理水ホウ素含有溶液を30重量部配合した以外は同様に実施して比較例7の土を得た。
【0063】
比較例8(ホウ素含有溶液の濃度が上限を超える場合)
実施例3において、1100mg/lのホウ素含有釉薬処理水ホウ素含有溶液を30重量部配合した以外は同様に実施して比較例8の土を得た。
【0064】
比較例9(化粧板粉砕物の配合量が下限未満の場合)
実施例4において、平均粒径0.3mmのメラミン樹脂化粧板の粉砕物を0.005重量部配合した以外は同様に実施して比較例9の土を得た。
【0065】
比較例10(化粧板粉砕物の配合量が上限を超える場合)
実施例4において、平均粒径0.3mmのメラミン樹脂化粧板の粉砕物を11重量部配合した以外は同様に実施して比較例10の土を得た。
【0066】
比較例11(廃鋳物砂の配合量が下限未満の場合)
実施例5において、廃鋳物砂4重量部配合した以外は同様に実施して比較例11の土を得た。
【0067】
比較例12(廃鋳物砂の配合量が上限を超える場合)
実施例5において、廃鋳物砂52重量部配合した以外は同様に実施して比較例112の土を得た。
【0068】
比較例13(化粧板のサンダー粉の配合量が下限未満の場合)
実施例15において、メラミン樹脂化粧板のサンダー粉を0.005重量部配合した以外は同様に実施して比較例13の土を得た。
【0069】
比較例14(化粧板のサンダー粉の配合量が上限を超える場合)
実施例15において、メラミン樹脂化粧板のサンダー粉を11重量部配合した以外は同様に実施して比較例14の土を得た。
【0070】(添加剤なし)
比較例15
実施例1において、接着性汚泥(a)を配合しなかったものを比較例15の土とした。
【0071】
評価結果を表1に示す。
【表1】
Figure 2004190348
試験方法、評価方法は以下の通りとした。
【0072】
分散性
混練後目視にて確認し、極めて良好な混合を◎、良好な混合を○、水分と固形分の微な分離を△、水分と固形分の分離を×とした。
【0073】
耐水性
実施例及び比較例の建築用土、土を直径3cmの球状に成形し、室内で1週間自然乾燥させ、更に20℃−相対湿度65%の恒温恒湿槽内で1週間放置させ、試験サンプルを作成する。
300mlのビーカーに、純水を200ml入れ、その中に試験サンプルを入れ、24時間浸漬した後、目視にて状態を確認し、変化なしを○、溶出してスレーキングが認められたものを×とした。
【0074】
耐酸性
実施例及び比較例の建築用土、土を直径3cmの球状に成形し、室内で1週間自然乾燥させ、更に20℃−相対湿度65%の恒温恒湿槽内で1週間放置させ、試験サンプルを作成する。
硝酸17.3mlと硫酸12.0mlを1lの純水に混合し、この混合溶液に15%の塩化ナトリウム溶液を添加し、pH3に調整する。
300mlのビーカーに、このpHに調整した溶液を200ml入れ、その溶液中に試験サンプルを入れ、24時間浸漬した後、目視にて状態を確認し、変化なしを○、溶出してスレーキングが認められたものを×とした。
【0075】
作業性
コテへのなじみが極めて良いものを◎、コテへのなじみが良いものを○、ネバネバしてコテへのなじみが悪くコテさばきが悪いものを×とした。
【0076】
着色度: 目視にて確認した。
【0077】
接着力
100mm×25mm×5mmのセラミックタイルで実施例及び比較例の建築用土、土を挟み込み図1に示すような試験片を作成した。(建築用土、土は25mm×30mm×10mm)
次いで、この試験片を25℃−相対湿度65%の恒温恒湿槽内で1週間放置し、島津製作所(株)のオートグラフ(IS−500)を用いて、クロスヘッドスピード20mm/分で剥がし接着力を測定した。
【0078】
保存性
実施例及び比較例の建築用土、土を混練後1時間以内にBM型粘度計で測定して初期粘度とした後、常態で放置し10日毎に粘度を測定し、初期粘度の2倍を超えた日数を確認した。
【0079】
耐候性
実施例及び比較例の建築用土、土を直径10cmの球状に成形して試験サンプルを作成し、この試験サンプル屋外に1年間放置後、表面が浸食されていないものを◎、浸食はされてないが軽微なクラックをあるものを○、浸食があるものを×とした。
【0080】
【発明の効果】
本発明によれば、接着性汚泥を用いることにより、消石灰の粘性、膠着性の少なさを補い、建築用土に接着性が付与され瓦の下地への接着が強固になりずれたり、浮いたりすることがなく、耐水性、耐酸性、耐候性、耐凍害性に優れ、壁土においては亀裂が生じることがなく、固まるのが速すぎることがない。
【0081】
また、建築用土の粘性が適度に向上し、乾燥時の収縮が小さくなるため、亀裂の発生を抑制でき、水密性が保たれる。真空土練機や真空混練機で混合すれば空気が混ざることがないので耐候性、接着力などが向上し、建築用土の経時劣化をかなり抑制することができ、接着力を向上させることができる。
【0082】
従来、焼却処分や産業廃棄物として取り扱われていた接着性汚泥を利用することにより、処理費用も削減でき、建築用土の製造コストを低減させることができる。
【0083】
更に、石膏を配合することにより、粘性、膠着性が増し、コテ、下地によくなじみ施工中に建築用土がズレ落ちたりしないのでコテ塗り作業が向上する。また、これまで廃棄処分されていた廃石膏成型体などを再利用することができる。
【0084】
更にまた、ホウ素含有溶液を使用することにより、硬化を遅延させることができ、建築用土を袋詰めにした場合、長期間保存することができる。この際、釉薬製造工程などで発生した処理水を用いると処理費用が削減でき、有効に活用することができる。
【0085】
また、熱硬化性樹脂成形品の粉砕物を併用することにより、建築用土中の固形分と水分との分離を抑制することができ、より均一に混合され、良質の建築用土となる。
【0086】
更に、熱硬化性樹脂積層板をサンディング処理して発生したサンダー粉をスサ用途として用いることができる。
【0087】
更にまた、従来大部分が廃棄されていた廃鋳物砂を建築用土の着色材として有効活用することができる。
【0088】
以上の説明でも明らかなように、建築用土成分に、工場から排出される汚泥、処理水、あるいは廃棄物などを用いることにより、処理費用を削減できる上、品質、機能などを向上させることができ、非常に安価で、産業上極めて経済的、かつ有益なものとなる。
【図面の簡単な説明】
【図1】接着力を測定する試験片を示す模式側面図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a construction soil used when constructing a house, and more specifically, to a construction soil obtained by blending sludge or gypsum having adhesiveness with a construction soil component, kneading with an appropriate amount of water, and the like. It relates to a manufacturing method.
[0002]
[Prior art]
[Patent Document 1] JP-A-1-257157
[Patent Document 2] JP-A-5-69000
[Patent Document 3] JP-A-8-143354
[Patent Document 4] JP-A-9-110049
[0003]
Conventionally, when constructing a house, bamboo is divided into thin pieces, and those that are assembled in a grid pattern with a straw net or the like are used as the groundwork (small dance groundwork). Known is a small dance wall which is finished by painting a wall soil such as a painted soil, and a colored soil for finishing.The wall soil is mainly composed of clay soil, for example, Arakida soil, field soil, mountain soil, and sand. Is made of soil mixed with tie materials such as straw and susa.
In addition, the roof has been tiled for a long time, and when laying roof tiles such as ridge tiles and cross tiles on the roof surface, roofing soil is used to fix the tiles to the groundwork. When used as a ridge, the surface is protected with a plaster finish. The main component of this roofing soil is clayey soil and sand.
[0004]
On the other hand, in a factory that manufactures an adhesive, washing water that has washed the reactor is discharged, and sludge containing an adhesive component is generated in a sewage treatment process.
In addition, a thermosetting resin molded product, for example, a thermosetting resin resin laminate is obtained by laminating one or a plurality of thermosetting resin-impregnated papers, and then performing hot-press molding. It is obtained by pouring a liquid resin or a monomer into a mold and curing it, and generates cutting chips and the like.
[0005]
[Problems to be solved by the invention]
However, conventional wall soils and roofing soils are mainly clayey soils and are vulnerable to rainwater because they are the main component.They also contain water. Sometimes, rainwater soaked out.
In addition, the adhesive strength of the roofing soil was poor, and the tiles were displaced or floated due to cold and hot weather, wind and snow, rainwater, earthquake, etc., causing rain to leak, and in severe cases, the tiles could fly, and the wall soil could even collapse.
[0006]
To solve such problems,
A mixture of clay and sand as a main material, a binder such as lime, natural fiber or synthetic fiber, a setting retarder and water (roof soil composition, JP-A-1-257157);
Mixing clay, slaked lime, sand, fiber substance, binder, and setting retarder with an appropriate amount of water, mainly containing waterworks sludge (Method of manufacturing roof tile fixed soil using waterworks sludge; 69000),
A mixture of sludge and lime, fermented chloride, sludge, slaked lime, binder, hardening retardant and water mixed with slaked lime or ferric chloride as industrial waste, using a mixture of mountain soil and sand as the main material (roof soil composition, JP-A-8-143354),
Materials obtained by mixing raw materials such as lime, fine-grained aggregate, glue, and chemical adhesive at a predetermined ratio and adding water thereto (method for manufacturing roof soil and roof soil, Japanese Patent Application Laid-Open No. 9-1001449).
Such techniques are disclosed.
[0007]
However, in the case of clay as a main component, the deterioration with time of the clay, that is, cracking due to shrinkage and drying is still not eliminated, and in the case of a roofing soil (sand nanban) mainly containing sand and lime. There was a problem that the adhesive strength was weak.
In addition, the water resistance and acid resistance are poor, and the roofing soil is apt to be broken when it is hit by rainfall before it is still dry. Deterioration sometimes occurred even when dried.
Furthermore, when a synthetic chemical adhesive is used, the adhesive is expensive, and the adhesive strength is too strong to quickly solidify, making it difficult to store for a long period of time.
[0008]
On the other hand, sludge generated in factories that manufacture adhesives is subjected to coagulation and sedimentation treatment and is discarded.Waste disposal requires a large amount of money, and recently, the number of disposal sites is decreasing. In addition, from the viewpoint of reducing the cost of treating industrial waste and the like, there is a demand for recycling sludge generated in factories that manufacture adhesives for other uses.
[0009]
In addition, the thermosetting resin laminated board is incinerated with cutting chips in the peripheral area generated in the process of reaching the final product, sander powder generated when sanding the back surface, and defective products with scratches and dents on the surface. In fact, wastewater is being disposed of or landfilled as industrial waste, and it is required to recycle it and reuse it for other uses as in the case of the above-mentioned adhesive sludge.
Such a situation is not limited to the thermosetting resin laminate, but also applies to cast products and injection molded products.
[0010]
The present invention has been made in view of such a situation, and has been developed by recycling sludge generated in a factory that manufactures an adhesive and cutting waste of the thermosetting resin molded product and using the same as building soil. An object of the present invention is to prevent cracks in soil and improve water resistance, acid resistance, and adhesion.
[0011]
[Means for Solving the Problems]
That is, the invention according to claim 1 is a construction soil characterized by mixing and kneading an adhesive sludge and an appropriate amount of water with a construction soil component.
[0012]
The invention according to claim 2 is characterized in that the mixing ratio of the adhesive sludge is 0.01 to 50 parts by weight with respect to 100 parts by weight of the building soil component. It is.
[0013]
Further, in the invention according to claim 3, an adhesive sludge, at least one selected from the group consisting of the following (a) to (e), and an appropriate amount of water are blended with a building soil component and kneaded. It is a construction soil characterized by the following.
(A) Plaster
(B) Boron-containing solution of 10 to 1000 mg / l
(C) Pulverized thermosetting resin molded product
(D) Foundry sand
(E) Sander powder of thermosetting resin laminate
[0014]
Further, in the invention according to claim 4, the mixing ratio of (a) to (e) is 5 to 50 parts by weight for the gypsum of (a), and (b) 5 to 50 parts by weight for the boron-containing solution of 10 to 1000 mg / l, 0.01 to 10 parts by weight for the pulverized thermosetting resin molded product of (c), and 5 to 5 parts for the molding sand of (d). The construction soil according to claim 3, wherein the amount of the sand is from 0.01 to 50 parts by weight, and the amount of the (e) sander powder of the thermosetting resin laminate is from 0.01 to 10 parts by weight.
[0015]
Further, the invention according to claim 5 is the building soil according to claim 3 or 4, wherein the thermosetting resin molded product is a thermosetting resin laminate.
[0016]
Further, the invention according to claim 6 is a method for producing a construction soil, which comprises kneading while obtaining air, when obtaining the construction soil according to claims 1 to 5.
Hereinafter, the present invention will be described in detail.
[0017]
The architectural soil of the present invention is a component of architectural soil such as wall soil and thatched soil, specifically, sand (20 to 60 parts by weight), clay (10 to 40 parts by weight), slaked lime (5 to 30 parts by weight). , Calcium carbonate (5 to 30 parts by weight), glue (0.1 to 1.0 parts by weight), susa (0.05 to 3.0 parts by weight), adhesive sludge, (a) gypsum, b) 10 to 1000 mg / l boron-containing solution, (c) pulverized thermosetting resin molded product, (d) molding sand, (e) sander powder of thermosetting resin laminate, etc. Water was added and kneaded with 10 to 50 parts by weight.
[0018]
Clay is not particularly limited as long as it is a commonly known mineral composition, and the composition varies depending on the place of production.The main constituent minerals are quartz, feldspar, kaolin mineral, mica mineral, and the like. 2 45 to 80 parts, Al 2 O 3 5 to 35 parts, Fe 2 O 3 0 to 10 parts, TiO 2 0 to 2 parts, 0 to 20 parts of CaO, 0 to 10 parts of MgO, K 2 0 to 10 parts of O, Na 2 What is necessary is just to contain 0-5 parts of O and 0-5 parts of others, for example, Mikawa clay.
[0019]
Slaked lime is mixed with water, applied to a small dance foundation, a roof foundation, and the like, and then has a gas-hardening property that gradually combines with carbon dioxide in the air to harden, and its chemical change is represented by Formula 1.
(Equation 1)
Figure 2004190348
Since slaked lime hardens from the surface of the building soil, it attenuates the rapid evaporation of moisture inside and suppresses drying shrinkage.
[0020]
Slaked lime is supplemented with a glue that has no stickiness or stickiness, and molasses, seaweed glue, konjac glue, arabia gum, etc. are used as glue.
[0021]
Susa is used for the purpose of stabilizing the shape, such as reinforcement, crack prevention, and collapse prevention. It is made by cutting the fibrous material into short pieces and loosening it.For example, hemp susa made from plant fibers such as rice straw, cotton, and hemp. And susa made of inorganic fibers such as asbestos, rock wool and carbon, and susa made of chemical fibers such as acrylic fiber and rayon fiber.
[0022]
In thatched soil, it may be used by coloring it in black, rattan, brown, white, etc. according to the color of the tile. In this case, 0.5 to 3 parts by weight of a pigment is blended as one of the building soil components. .
[0023]
Adhesive sludge used in the present invention is, in an adhesive manufacturing plant, after coagulating and sedimenting the wastewater obtained by washing the reaction kettle, containers for transportation and storage, and other used equipment, dried, and blended as building soil. The sludge is adjusted to make it easy to use. Examples of the sludge include those containing a latex or emulsion such as vinyl acetate resin, acrylic resin, SBR, NBR, MBR, and vinyl acetate copolymer resin. When the sludge is used, the water resistance and acid resistance of the building soil are improved.
[0024]
More specifically, the wastewater is first collected in a treatment tank in one place in a factory and put into a coagulation sedimentation tank. Then, about 0.2 parts by weight of ferric chloride is added to adjust pH while stirring and to coagulate organic substances, and the pH is adjusted to 2-3. Next, caustic soda is blended and neutralized to pH 6.5 to 7.5. For example, a floc is formed by blending a small amount of a polymer flocculant containing dimethylaminoethyl methacrylate, acrylamide and acrylic acid as main components. .
[0025]
The sedimentary layer from which the supernatant liquid has been removed is introduced into a vacuum dehydrator to which diatomaceous earth has been added and dewatered, and the floc is separated from water by a series of processes for removing sludge captured by diatomaceous earth. The component weight ratio of this floc is, for example, 12 vinyl acetate resins, 3 diatomaceous earths, 3 iron chlorides, and 3 others (acrylic, latex, calcium carbonate, silica sand, etc.), and the remaining 79 is water. .
[0026]
The water content of this sludge is adjusted by a filter press or a vacuum dehydrator until the water content becomes 10 to 80%, more preferably 20 to 50%. If it is less than the lower limit, the mixture with the building soil component tends to be uneven, and if it is more than the upper limit, the solid content and water in the building soil are easily separated and the handling is not easy.
[0027]
By mixing the above-mentioned adhesive sludge into the building soil component, the adhesive component acts as a binder for sand, clay, slaked lime, etc. in the raw material, significantly improving the adhesive strength, preventing the tile from falling off from the foundation, and preventing the wall soil from being removed. The generation and collapse of cracks can be prevented.
[0028]
As the mixing ratio of the adhesive sludge to the building soil component increases, the adhesive strength can be improved, but on the other hand, the viscosity increases and the workability deteriorates, so the mixing ratio is reduced to 100 parts by weight of the building soil component. On the other hand, it is in the range of 0.01 to 50 parts by weight, more preferably 0.05 to 30 parts by weight, and still more preferably 0.1 to 20 parts by weight. If it is less than the lower limit, the adhesive strength is poor, and if it exceeds the upper limit, the workability is poor.
[0029]
Next, in the present invention, in addition to the adhesive sludge, (a) gypsum, (b) a boron solution of 10 to 1000 mg / l, (c) a crushed thermosetting resin molded product, (d) molding sand, (E) One or more types of sander powder of the thermosetting resin laminate can be selected and blended to further improve the quality and function.
[0030]
Gypsum is a colorless or white odorless substance mainly composed of calcium sulfate. Four ・ 2H Two O), hemihydrate gypsum (CaSO Four ・ 1 / 2H Two O) and anhydrous gypsum (CaSO Four Hemihydrate gypsum (plastered gypsum) or anhydrous gypsum is a hydraulic building material having a property of hardening in a short time when water is added as shown in Formulas 2 and 3. It is. Note that dihydrate gypsum itself does not have hydraulic properties, but changes to hemihydrate gypsum or anhydrous gypsum by firing or the like, hydraulic properties are obtained, and it functions as a curing agent.
[Equation 2]
Figure 2004190348
[Equation 3]
Figure 2004190348
[0031]
As the gypsum, gypsum board is pulverized and calcined at a temperature in the range of 100 to 230 ° C. (hemihydrate gypsum or anhydrous gypsum) to obtain hydraulic properties, and fine particles having a particle size of about 3 to 30 μm can be applied. A waste material may be used as long as it is a molded body containing gypsum. For example, a waste gypsum board, a waste gypsum block, a waste gypsum mold for molding, a waste gypsum mold generated in a ceramic manufacturing process, and the like can be used.
[0032]
Gypsum has a low specific gravity and is easy to knead with a building soil component for light weight. It works as a hardening agent by blending 5 to 50 parts by weight with respect to 100 parts by weight of the building soil component, and increases the stickiness. There is an advantage that the soil for construction is less likely to fall off the iron during construction and work is easier. If the mixing ratio of the gypsum is less than the lower limit, the stickiness does not increase so much, and if it exceeds the upper limit, the gypsum becomes hard and difficult to work with a trowel. Gypsum also has the advantage of not cracking because it is unlikely to shrink.
[0033]
Next, when a boron-containing solution is used in combination, storage stability can be improved to delay setting and hardening, and storage can be performed for a long time (2 to 3 months) even when bagged. The boron concentration in the solution is preferably in the range of about 10 to 1000 mg / l, more preferably 100 to 600 mg / l. When the boron concentration is less than the lower limit, the effect of delayed curing is small. Become.
[0034]
As the boron-containing solution, it is convenient to use treated water generated in a glaze manufacturing process, a plating wastewater treatment step, or the like.
The glazes include high-fired glazes fired at 1200 ° C or higher, lead glazes, frit glazes (lead borosilicate glazes) such as feldspar glaze, lime glaze, lime magnesia glaze, lime barium glaze, lime zinc glaze. There are many types such as medium- and low-fired glazes fired at 1200 ° C or lower, but in general, feldspars such as Fukushima feldspar, Kamado feldspar, and Hiratsu feldspar, kaolin, frog eyes clay, kibushi clay, etc. And clay as main components, and a melting agent, for example, oxides of alkali metals such as lithium, potassium, and sodium, oxides of alkaline earth metals such as magnesium, calcium, strontium, and barium, zirconium, and zinc , Lead, boron and other oxides and metals as coloring raw materials, for example, oxides or carbonates of metal elements such as iron, cobalt, manganese, nickel, chromium and copper Etc. and, straw ash, silica, a substance for preventing from being run down the glaze during firing, such as kaolin, is of the vitreous-like obtained by mixing and grinding and a suitable amount of water in a ball mill. When fired in a kiln, boron, an alkaline earth metal oxide, and alkali metal oxide, which are part of the constituents, greatly contribute to melting and solidification, resulting in vitrification. A variety of finishes can be obtained by selecting as appropriate.
[0035]
In the process of producing a variety of glazes as described above, treated water is generated, and the treated water contains 10 to 1000 mg / l of boron in the glaze. Resources can be used effectively.
In addition to the boric acid-containing solution, even if it is prepared, it costs a little, but there is no problem in using it. Boron compounds containing alkali metals such as Li, Na, K, borates, metaboric acid, orthoboric acid And boric acid such as tetraboric acid and the like, boron oxide and the like can be used, and there is no particular limitation as long as it contains boron, and one kind or two or more kinds are used.
[0036]
Next, by blending the pulverized thermosetting resin molded product, the adhesive sludge and the building soil component can be more uniformly mixed. Unless a pulverized thermosetting resin molded product is added, the solid content and moisture in the architectural soil are rarely separated.
[0037]
Examples of pulverized thermosetting resin molded products include thermosetting resin laminates such as melamine resin laminates, phenolic resin laminates, melamine resin decorative plates, glass fiber base epoxy resin laminates, and melamine resin injection molds. Molded products, cast products of thermosetting resin such as phenolic resin cast products, and injection-molded products of thermosetting resin, etc. can be applied by pulverizing with an impact-type pulverizer, such as a ball mill, pulverizer, etc. The particle size range is preferably from 0.01 to 1.5 mm. If the particle size is less than the lower limit, the effect of suppressing the separation of solids and moisture in the building soil is small, and if it exceeds the upper limit, it is uniformly mixed with the building soil components. It is not preferable because it becomes difficult to form and unevenness is easily generated. A more preferred particle size range is 0.1 to 1.0 mm. The crusher is not particularly limited.
[0038]
Above all, since the thermosetting resin laminate uses kraft paper as the base material, the granular material obtained by pulverizing cutting chips, defective products, etc. contributes to weight reduction and is generated by sanding the back surface. The sander powder of about 250 to 500 μm is in a fibrous form and, as shown in Example 15, can fulfill the function of susa, which is one of the building soil components, and is particularly preferable.
[0039]
As the mixing ratio of the pulverized thermosetting resin molded product to the building soil component increases, the weight of the building soil can be reduced, but on the other hand, the sticking property of the building soil deteriorates. The amount is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight, and within this range, it functions sufficiently as construction soil.
[0040]
That is, if the blending ratio of the pulverized thermosetting resin molded product to the building soil component is less than the lower limit, the effect of suppressing the separation of the solid content and moisture in the building soil is small, and if it exceeds the upper limit, the plasticity is reduced. Therefore, the adhesive strength is deteriorated, and the surface is roughened. A particularly preferred range is 0.5 to 2.0 parts by weight.
[0041]
Next, the color of the architectural soil can be changed to a dark color by using casting sand. As the foundry sand, silica sand as a base material, bentonite as a binder, blended with coal powder and starch as a binder, kneaded by adding an appropriate amount of water can be applied, and cast iron is manufactured in a foundry. So-called waste foundry sand that is discharged as dust waste from the dust collector or sand that has been released from the casting mold after casting can be applied. This makes the building soil blackish brown. The compounding ratio is preferably from 5 to 50 parts by weight. If it is less than the lower limit, the coloring effect is small, and if it is more than the upper limit, the viscosity as architectural soil decreases.
[0042]
The waste molding sand is black at normal temperature with attached carbon and iron, but can be changed to light red to reddish brown by burning carbon and generating iron oxide. It is suitable at low cost and can be reused as a pigment.
[0043]
The construction soil of the present invention may be prepared by adding adhesive sludge to the construction soil components, the above-mentioned components (a) to (e), and the like by adding water, and particularly using a vacuum kneader or a vacuum kneader. When mixed, the air contained inside is exhausted to the outer surface under reduced pressure and degassed outward, so it is molded in a very homogeneous and dense state, weather resistance and adhesion are improved, and it deteriorates with time after construction No cracks.
[0044]
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is more specifically shown, and there is no particular limitation on the mixing ratio.
【Example】
Example 1
Adhesive sludge
As the adhesive sludge, wastewater containing an acrylic adhesive is coagulated and precipitated using ferric chloride and a polymer flocculant, and dried with a filter press so that the water content becomes 40%. ) Got.
Building soil component (a)
The following components were used as the building soil component (a).
40 parts by weight of sand
20 parts by weight of clay
Slaked lime 19 parts by weight
20 parts by weight of calcium carbonate
Molasses 0.5 parts by weight
Susa 0.5 parts by weight
4.0 parts by weight of the adhesive sludge (a) and 30 parts by weight of water were mixed with the above-mentioned building soil component (a) and kneaded to obtain a building soil of Example 1.
[0045]
Example 2
In Example 1, a construction soil of Example 2 was obtained in the same manner except that 20 parts by weight of a pulverized waste gypsum board (hemihydrate gypsum) having a particle size of 20 μm was blended.
[0046]
Example 3
In Example 1, a construction soil of Example 3 was obtained in the same manner as in Example 1, except that 30% by weight of 150 mg / l boron-containing glaze-treated water was blended.
[0047]
Example 4
Example 4 The same procedure as in Example 1 was carried out except that 2.0 parts by weight of a pulverized melamine resin decorative plate having an average particle diameter of 0.3 mm was added, to obtain a building soil of Example 4.
[0048]
Example 5
The same procedure as in Example 1 was carried out except that 10 parts by weight of the waste foundry sand was blended to obtain a building soil of Example 5.
[0049]
Example 6
Example 6 was carried out in the same manner as in Example 1 except that 20 parts by weight of a gypsum waste gypsum board (hemihydrate gypsum) having a particle size of 20 μm and 30 parts by weight of 150 mg / l boron-containing glaze-treated water were blended. Obtained building soil.
[0050]
Example 7
In the same manner as in Example 1, except that 20 parts by weight of a gypsum waste gypsum board (hemihydrate gypsum) having a particle diameter of 20 μm and 2.0 parts by weight of a pulverized melamine resin decorative board having an average particle diameter of 0.3 mm were blended. This was performed to obtain a building soil of Example 7.
[0051]
Example 8
Example 1 was repeated except that 30 parts by weight of 150 mg / l boron-containing glaze-treated water and 2.0 parts by weight of a pulverized melamine resin decorative board having an average particle diameter of 0.3 mm were used. Example 8 construction soil was obtained.
[0052]
Example 9
In Example 1, 20 parts by weight of a waste gypsum board (hemihydrate gypsum) having a particle size of 20 μm, 30 parts by weight of 150 mg / l boron-containing glaze-treated water, and a melamine resin decorative board having an average particle size of 0.3 mm Was obtained in the same manner as above except that 2.0 parts by weight of the pulverized material was mixed to obtain a building soil of Example 9.
[0053]
Example 10
In Example 1, 20 parts by weight of a waste gypsum board (hemihydrate gypsum) having a particle size of 20 μm, 30 parts by weight of 150 mg / l boron-containing glaze-treated water, and a melamine resin decorative board having an average particle size of 0.3 mm Was obtained in the same manner as above except that 2.0 parts by weight of the pulverized product was mixed with 10 parts by weight of waste casting sand.
[0054]
Examples 11 to 14
The construction of Examples 11, 2, 3, and 9 was carried out in the same manner except that mixing was performed using a vacuum clay kneader to obtain building soils of Examples 11 to 14.
[0055]
Example 15
The following composition was used as the building soil component (b).
40 parts by weight of sand
20 parts by weight of clay
Slaked lime 19.45 parts by weight
20 parts by weight of calcium carbonate
Molasses 0.5 parts by weight
Susa 0.05 parts by weight
4.0 parts by weight of the adhesive sludge (a), 30 parts by weight of water, and 0.45 parts by weight of sander powder for a melamine resin decorative board are blended and kneaded with the above-mentioned building soil component (b). The construction soil of Example 15 was obtained.
[0056]
Comparative Example 1 (when the amount of sludge (a) is less than the lower limit)
Example 1 was repeated in the same manner as in Example 1 except that 0.005 parts by weight of the adhesive sludge (a) was added, but the effect of improving the adhesive strength was not so large.
[0057]
Comparative Example 2 (when the amount of sludge powder (a) exceeds the upper limit)
Example 1 was repeated except that 52.0 parts by weight of the adhesive sludge powder (a) was blended, but the viscosity was high and the workability was poor.
[0058]
Comparative Example 3 (when the blended amount of the waste gypsum board is less than the lower limit)
The soil of Comparative Example 3 was obtained in the same manner as in Example 2, except that 4 parts by weight of a pulverized waste gypsum board (hemihydrate gypsum) having a particle size of 20 μm was mixed.
[0059]
Comparative Example 4 (when the amount of the pulverized waste gypsum board exceeds the upper limit)
The soil of Comparative Example 4 was obtained in the same manner as in Example 2, except that 53 parts by weight of a pulverized waste gypsum board (hemihydrate gypsum) having a particle size of 20 μm was blended.
[0060]
Comparative Example 5 (when the amount of the boron-containing solution is less than the lower limit)
Comparative Example 5 was obtained in the same manner as in Example 3, except that 4 parts by weight of 150 mg / l boron-containing glaze-treated water was added.
[0061]
Comparative Example 6 (when the amount of the boron-containing solution exceeds the upper limit)
The soil of Comparative Example 6 was obtained in the same manner as in Example 3, except that 52 parts by weight of 150 mg / l boron-containing glaze-treated water was added.
[0062]
Comparative Example 7 (when the concentration of the boron-containing solution is less than the lower limit)
The soil of Comparative Example 7 was obtained in the same manner as in Example 3, except that 30 parts by weight of an 8 mg / l boron-containing glaze-treated water-boron-containing solution was blended.
[0063]
Comparative Example 8 (when the concentration of the boron-containing solution exceeds the upper limit)
Comparative Example 8 was obtained in the same manner as in Example 3, except that 30 parts by weight of a 1100 mg / l boron-containing glaze-treated water-boron-containing solution was blended.
[0064]
Comparative Example 9 (when the blended amount of the pulverized decorative board is less than the lower limit)
Comparative Example 9 was obtained in the same manner as in Example 4, except that 0.005 parts by weight of a pulverized melamine resin decorative board having an average particle diameter of 0.3 mm was added.
[0065]
Comparative Example 10 (when the blended amount of the pulverized decorative board exceeds the upper limit)
Comparative Example 10 was obtained in the same manner as in Example 4, except that 11 parts by weight of a pulverized melamine resin decorative plate having an average particle diameter of 0.3 mm was mixed.
[0066]
Comparative Example 11 (when the amount of waste casting sand is less than the lower limit)
In Example 5, soil was obtained in the same manner as in Comparative Example 11 except that 4 parts by weight of waste casting sand was added.
[0067]
Comparative Example 12 (when the amount of waste foundry sand exceeds the upper limit)
In Example 5, soil was obtained in the same manner as in Comparative Example 112 except that 52 parts by weight of waste casting sand was added.
[0068]
Comparative Example 13 (when the blending amount of the sander powder of the decorative board is less than the lower limit)
A soil of Comparative Example 13 was obtained in the same manner as in Example 15, except that 0.005 parts by weight of sander powder for a melamine resin decorative board was added.
[0069]
Comparative Example 14 (when the amount of the sander powder in the decorative board exceeds the upper limit)
A soil of Comparative Example 14 was obtained in the same manner as in Example 15, except that 11 parts by weight of sander powder for a melamine resin decorative board was blended.
(No additive)
Comparative Example 15
In Example 1, the soil in which the adhesive sludge (a) was not blended was used as the soil of Comparative Example 15.
[0071]
Table 1 shows the evaluation results.
[Table 1]
Figure 2004190348
The test method and evaluation method were as follows.
[0072]
Dispersibility
After kneading, the mixture was visually observed, and 極 め て indicates extremely good mixing, を indicates good mixing, Δ indicates fine separation of water and solids, and × indicates separation of water and solids.
[0073]
water resistant
The architectural soil and soil of Examples and Comparative Examples were formed into a spherical shape having a diameter of 3 cm, allowed to dry naturally in a room for one week, and further allowed to stand in a constant temperature and humidity chamber at 20 ° C. and a relative humidity of 65% for one week. create.
200 ml of pure water was placed in a 300 ml beaker, the test sample was placed therein, and immersed for 24 hours. The condition was visually checked. did.
[0074]
Acid resistance
The architectural soil and soil of Examples and Comparative Examples were formed into a spherical shape having a diameter of 3 cm, allowed to dry naturally in a room for one week, and further allowed to stand in a constant temperature and humidity chamber at 20 ° C. and a relative humidity of 65% for one week. create.
17.3 ml of nitric acid and 12.0 ml of sulfuric acid are mixed in 1 liter of pure water, and a pH of the mixture is adjusted to 3 by adding a 15% sodium chloride solution.
200 ml of the solution adjusted to this pH was placed in a 300 ml beaker, the test sample was placed in the solution, and immersed for 24 hours. The condition was visually checked. Was evaluated as x.
[0075]
Workability
も の: Very good to the iron, ○: Good to the iron, ×: Sticky and poor to the iron, ×: Bad.
[0076]
Coloring degree: Visually confirmed.
[0077]
Adhesive strength
Architectural soils of Examples and Comparative Examples were sandwiched between ceramic tiles of 100 mm × 25 mm × 5 mm, and test pieces as shown in FIG. 1 were prepared. (Building soil, soil is 25mm x 30mm x 10mm)
Then, the test piece was left in a thermo-hygrostat at 25 ° C. and a relative humidity of 65% for one week, and peeled off at a crosshead speed of 20 mm / min using an autograph (IS-500) manufactured by Shimadzu Corporation. The adhesion was measured.
[0078]
Shelf life
Within 1 hour after kneading the building soil and soil of Examples and Comparative Examples, the viscosity was measured with a BM type viscometer to obtain an initial viscosity, and then left in a normal state, and the viscosity was measured every 10 days. Days were confirmed.
[0079]
Weatherability
The building soils of the examples and comparative examples were molded into a spherical shape having a diameter of 10 cm to prepare a test sample, and after leaving this test sample outdoors for one year, those whose surface was not eroded were evaluated as ◎, and were not eroded. Was evaluated as ○ when there was a slight crack, and as × when there was erosion.
[0080]
【The invention's effect】
According to the present invention, by using the adhesive sludge, the viscosity of slaked lime is compensated for the low adhesiveness, the adhesiveness is given to the building soil, and the adhesion to the foundation of the tile becomes strong or shifts or floats. It is excellent in water resistance, acid resistance, weather resistance, and frost damage resistance, does not crack in wall soil, and does not harden too quickly.
[0081]
In addition, the viscosity of the building soil is appropriately improved, and shrinkage during drying is reduced, so that generation of cracks can be suppressed and watertightness can be maintained. If mixed with a vacuum clay kneader or vacuum kneader, air does not mix, so weather resistance, adhesive strength, etc. are improved, secular deterioration of construction soil can be considerably suppressed, and adhesive strength can be improved. .
[0082]
By using adhesive sludge which has been conventionally treated as incineration or industrial waste, the processing cost can be reduced and the production cost of building soil can be reduced.
[0083]
Further, by blending gypsum, the viscosity and the adhesiveness are increased, and the building soil is not displaced during the work, which is well adapted to the iron and the base, so that the ironing work is improved. Further, a waste gypsum molded body or the like that has been disposed of can be reused.
[0084]
Furthermore, by using a boron-containing solution, the curing can be delayed, and when the building soil is packaged, it can be stored for a long period of time. At this time, if processing water generated in the glaze manufacturing process or the like is used, the processing cost can be reduced and the water can be effectively used.
[0085]
Further, by using a pulverized thermosetting resin molded product in combination, it is possible to suppress the separation of the solid content and the water in the building soil, and to mix more uniformly to obtain a high quality building soil.
[0086]
Furthermore, sander powder generated by sanding the thermosetting resin laminate can be used for sash.
[0087]
Furthermore, the waste foundry sand, which has been largely discarded, can be effectively used as a coloring material for building soil.
[0088]
As is clear from the above description, the use of sludge, treated water, or waste discharged from factories as building soil components can reduce treatment costs and improve quality and functions. Very inexpensive, industrially very economical and profitable.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing a test piece for measuring an adhesive force.

Claims (6)

建築土成分に、接着性汚泥と適量の水を配合し、混練してなることを特徴とする建築用土。An architectural soil characterized by mixing an adhesive sludge and an appropriate amount of water with a building soil component and kneading the mixture. 該建築土成分100重量部に対して、該接着性汚泥の配合割合が0.01〜50重量部であることを特徴とする請求項1記載の建築用土。2. The building soil according to claim 1, wherein the mixing ratio of the adhesive sludge is 0.01 to 50 parts by weight based on 100 parts by weight of the building soil component. 建築土成分に、接着性汚泥と、下記(a)〜(e)からなる群から選択される少なくとも1種と、適量の水とを配合し、混練してなることを特徴とする建築用土。
(a)石膏
(b)10〜1000mg/lのホウ素含有溶液
(c)熱硬化性樹脂成形品の粉砕物
(d)鋳物砂
(e)熱硬化性樹脂積層板のサンダー粉
An architectural soil obtained by mixing and kneading an adhesive sludge, at least one selected from the group consisting of the following (a) to (e), and an appropriate amount of water, with an architectural soil component.
(A) gypsum (b) 10-1000 mg / l boron-containing solution (c) pulverized thermosetting resin molded product (d) molding sand (e) sander powder of thermosetting resin laminate
該建築土成分100重量部に対して、前記(a)〜(e)の配合割合が、(a)の石膏については5〜50重量部、(b)の10〜1000mg/lのホウ素含有溶液については5〜50重量部、(c)の熱硬化性樹脂成形品の粉砕物については0.01〜10重量部、(d)の鋳物砂については5〜50重量部、(e)熱硬化性樹脂積層板のサンダー粉については0.01〜10重量部であることを特徴とする請求項3記載の建築用土。The mixing ratio of (a) to (e) is 5 to 50 parts by weight for the gypsum of (a) and 10 to 1000 mg / l of a boron-containing solution of (b) with respect to 100 parts by weight of the building soil component. 5 to 50 parts by weight, 0.01 to 10 parts by weight for the pulverized thermosetting resin molded product of (c), 5 to 50 parts by weight of the molding sand of (d), and (e) thermosetting. The building soil according to claim 3, wherein the sander powder of the conductive resin laminate is 0.01 to 10 parts by weight. 該熱硬化性樹脂成形品が熱硬化性樹脂積層板であることを特徴とする請求項3又は4記載の建築用土。The architectural soil according to claim 3 or 4, wherein the thermosetting resin molded product is a thermosetting resin laminate. 請求項1〜5記載の建築用土を得る際、脱気しながら混練することを特徴とする建築用土の製造方法。A method for producing a building soil, comprising: kneading while obtaining the building soil according to any one of claims 1 to 5.
JP2002360054A 2002-12-12 2002-12-12 Construction soil Expired - Fee Related JP3761087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002360054A JP3761087B2 (en) 2002-12-12 2002-12-12 Construction soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002360054A JP3761087B2 (en) 2002-12-12 2002-12-12 Construction soil

Publications (2)

Publication Number Publication Date
JP2004190348A true JP2004190348A (en) 2004-07-08
JP3761087B2 JP3761087B2 (en) 2006-03-29

Family

ID=32759237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002360054A Expired - Fee Related JP3761087B2 (en) 2002-12-12 2002-12-12 Construction soil

Country Status (1)

Country Link
JP (1) JP3761087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241923A (en) * 2005-03-07 2006-09-14 Eco Keikaku:Kk Mud wall material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241923A (en) * 2005-03-07 2006-09-14 Eco Keikaku:Kk Mud wall material

Also Published As

Publication number Publication date
JP3761087B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
KR101269120B1 (en) Pattern block using unsintered inorganic binder and method for manufacturing thereof
KR101321977B1 (en) Clay block using unsintered inorganic binder and method for manufacturing thereof
EA001799B1 (en) A settable composition and uses therefor
CN103288405B (en) Flexible decorative sheet and manufacturing method thereof
KR101518443B1 (en) Compositions of pervious concrete products by using the aggregates from industrial wastes and method for the same
CN102815959A (en) Environment-friendly aerated concrete block
CN105384403A (en) Composite floor tiles having good stain resistance capacity
KR101380591B1 (en) Rapid-curing cement concrete composition for boundary block, a method for manufacturing a patterned boundary block using the composition and the patterned boundary block manufactured by the method
CN107572972A (en) A kind of cement imitation wood and preparation method thereof
CN105330230A (en) Resin-cement composite non-sintered water-permeable floor tile
JP2010143774A (en) Geopolymer hardened body which uses sewage sludge molten slag as activated filler
CA2445052C (en) Building and other materials containing treated bauxite tailings and process for making same
CN101973751A (en) Concrete product prepared from stone sludge waste residues and preparation method thereof
WO2019170963A1 (en) Binder composition and hardenable mixture
KR100982653B1 (en) Rapid setting polymer cement mortar composite, manufacturing method of boundary block using the composite and boundary block manufactured by the method
US20050087107A1 (en) Building and other materials containing treated bauxite tailings and process for making same
TWI829773B (en) Method for manufacturing decorated mineral composites, use of decorated mineral composites and multilayer films
CN101328031A (en) Curing agent, polymer and method
JP3761087B2 (en) Construction soil
KR102338303B1 (en) Composition for sidewalk block comprising oyster shells
US20230150892A1 (en) Method for producing a decorative mineral composite body, decorated mineral composite body and use of a multi-layer film
KR100994833B1 (en) Polymer Concrete Composition Using Waste Foundry Sand
WO2014187052A1 (en) Composite blast furnace mineral powder and synthetic material made from same
KR101313540B1 (en) Tree protection block using unsintered inorganic binder and method for manufacturing thereof
CN106747239A (en) A kind of fire-proof board and its manufacture method for impermeabilisation finishing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050310

A131 Notification of reasons for refusal

Effective date: 20050909

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Effective date: 20060105

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100120

LAPS Cancellation because of no payment of annual fees