JP2004187197A - Radio communication system, radio communication method and radio station - Google Patents

Radio communication system, radio communication method and radio station Download PDF

Info

Publication number
JP2004187197A
JP2004187197A JP2002354725A JP2002354725A JP2004187197A JP 2004187197 A JP2004187197 A JP 2004187197A JP 2002354725 A JP2002354725 A JP 2002354725A JP 2002354725 A JP2002354725 A JP 2002354725A JP 2004187197 A JP2004187197 A JP 2004187197A
Authority
JP
Japan
Prior art keywords
measurement signal
secret key
wireless
key
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002354725A
Other languages
Japanese (ja)
Inventor
Shuichi Sasaoka
秀一 笹岡
Motoki Horiike
元樹 堀池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2002354725A priority Critical patent/JP2004187197A/en
Publication of JP2004187197A publication Critical patent/JP2004187197A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system constituted so that a normal transmitter/receiver individually creates a secret key in secret based on irregular fluctuation of radiowave propagation path characteristics of radio communication and the radio communication with high security is performed by using the created secret key. <P>SOLUTION: In the case of performing the radio communication by using the secret key, a signal for measurement is first transmitted from the respective radio stations 1, 2 to the other radio stations 2, 1, the signal for measurement which is transmitted from the other party and changed by the radio wave propagation path characteristics between the radio stations is received and time series of a delay profile is measured. Then, the secret keys are uniquely crated in the respective radio stations 1, 2 based on the delay profile and the communication is performed by using the shared secret keys. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、無線通信に関するものであり、より詳しくは、例えば、移動無線端末間、もしくは、移動無線端末と基地局との間における無線通信に好適に用いられる無線通信技術に関するものである。
【0002】
【従来の技術】
近年、情報化社会の発展に伴い情報通信がますます重要となるとともに、情報の盗聴や不正利用がより深刻な問題となりつつある。特に、移動通信をはじめとする無線通信では無線の傍受により比較的容易にしかも秘密裏に盗聴を行うことが可能なため、盗聴対策がより重要である。盗聴対策としては、従来から暗号化などが用いられているが、既存技術をそのまま移動通信などに適用するには以下のような問題がある。
【0003】
すなわち、暗号技術のうち、公開鍵暗号方式は安全性が高いが、大容量のデータの暗号化には向かない。また、処理演算量が大きいため、消費電力と処理演算量に制約のある移動無線端末への適用が難しい。一方、処理が比較的簡単な秘密鍵暗号方式は、大容量データの高速暗号化も可能であるが、鍵管理と鍵配送が必要となる。また、秘密鍵暗号方式は、同一の秘密鍵を使い続けると、暗号解読の攻撃を受けやすく、安全性が損なわれる心配がある。さらに、移動通信では、端末の盗難・紛失の危険性が高いことも問題となる。
【0004】
一方、通信路雑音や通信路変動などの不規則な現象を用いて秘密通信を行うことも可能である。通信路雑音を活用する方式には、盗聴通信路を利用した秘密鍵配送の可能性の理論的検討(U. M. Maurer, “Secret key agreement by publicdiscussion from common information, “IEEE Trans. Information Theory, vol39, no3, pp733−742, May, 1993)などがある。また、移動通信路の不規則変動を活用して、正規の送受信者と盗聴者の間に誤り発生の格差を付ける伝送制御を行うことで、秘密通信を実現する方法が提案されている(中山、笹岡、“移動通信における通信路雑音を用いたセキュリティ通信方式の検討”、2002年信学総大, B−5−73, March, 2002)。しかし、これらは十分に簡易な方法とは言い難い。
【0005】
また、雑音や不規則な現象を用いて秘密鍵を作成する方法は知られているが、それらを秘密通信に用いる場合には、一度作成した秘密鍵を正規の利用者に安全に配る手段とその鍵を厳重に管理する手段とが必須となる。そして、正規の送受信者間で秘密鍵の情報の配送を行わないで秘密鍵を共有する方法、例えば、正規の送受信者で秘密鍵を個々に作成し、その秘密鍵を盗聴者には秘密裏に一致させることで、秘密鍵の共有を図る方法は知られていない。
【0006】
【発明が解決しようとする課題】
本発明は、かかる課題に着目したものであるが、一般的に、陸上移動通信では、電波伝搬路特性に依存して受信電界強度に高速で複雑な変動(マルチパス・フェージング)が発生するとともに、多重波の到達時間差(遅延時間差)を無視できないような場合に選択性フェージングが発生することが知られている。このマルチパス・フェージングは、一般に包絡線の分布がレイリー分布となる不規則過程で、その変動速度は一般的に数Hzから数百Hzであり、このため、時間が極わずか(例えば1秒)異なれば、フェージングの時間相関がほぼ無相関となる。また、移動局受信で場所が極わずか(半波長程度:1GHzの場合に15cm)異なれば、フェージングの空間相関がほぼ無相関となる。なお、基地局受信でも、フェージング空間相関が十数波長でほぼ無相関となる。
【0007】
一方、電波伝搬では、特定の送受信点間で可逆性が成り立つ。即ち、伝搬方向が逆となっても、2地点間の伝搬路の様子(伝搬経路、減衰量、遅延時間など)は変わらない。このため、同一周波数で時分割復信を行う場合に、相手局受信信号と自局受信信号とのフェージング変動の相関が強くなる。このため、正規の送受信者間でフェージング変動(広くは、伝送路特性)を情報の共有することが容易であり、これと受信場所を異にし盗聴者がこの伝送路特性の情報を共有することはほとんど不可能である。
【0008】
そこで、本発明は、かかる無線通信の伝送路特性の不規則変動に基づいて秘密裏に正規の送受信者が秘密鍵を個々に作成し、その作成された秘密鍵を用いて安全性の高い無線通信を行えるようにしたシステムを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するために、秘密鍵を用いて無線局間で通信を行う場合、まず、それぞれの無線局から他の無線局に測定用信号を送信するとともに、相手方から送信された測定用信号であって無線局間の電波伝搬路特性によって変化した測定用信号を受信する。そして、この受信した測定用信号に基づいてそれぞれの無線局で独自に秘密鍵を作成し、この秘密鍵を用いて通信を行うようにしたものである。
【0010】
このように構成することにより、簡易な方法で秘密鍵の作成や秘密鍵の盗聴防止を図ることができ、しかも、秘密鍵を使い捨てするようにした場合は、端末の盗難や紛失などが生じた場合であってもその秘密鍵が盗まれることがなくなる。
【0011】
なお、ここで「無線局」とは、電磁波により無線通信を行う装置、端末、デバイスなどを意味するものであり、例えば、携帯電話、PHS(登録商標)、PDAなどの移動可能な携帯端末の他、基地局などのように地面に設置されたものも含むものである。また、「電波伝搬路特性」とは、どのように電波が無線局間を伝搬するかを示す特性であり、例えば、それぞれの無線局の間における固有の特性である「伝送経路」、「減衰量」、「伝搬時間差」などのような自然的な電波伝搬路特性のほか、人為的に操作された現象に基づく特性をも含むものである。また「伝送路特性」とは、電波伝搬路特性に基づいて信号がどのように変化するかなどを示す特性であり、例えば、電波伝搬路特性に依存する信号の振幅・位相とその変動、伝送路のインパルス応答特性や周波数特性とその変動などを含むものである。
【0012】
また、このようなシステムにおいて、秘密鍵を作成する際、無線局における送受信機の機器特性の差に依存することが少なくなるように測定用信号の発生、送信処理、受信処理、伝送路特性の測定処理、測定量の変換処理などを行い、秘密鍵を作成する。このような処理は、測定用信号の発生、送信処理、受信処理、伝送路特性の測定処理、測定量の変換処理の全てに行うようにしても良いが、いずれか一つもしくは所定の処理に対してのみ行うようにしても良い。
【0013】
このように構成すれば、無線局の機器特性の差によって受信した測定用信号の差を小さくすることができ、それぞれの秘密鍵の不一致を可能な限り小さくすることができるようになる。
【0014】
さらに、他の無線局の秘密鍵に基づいて非可逆的に演算された鍵確認用データを受信し、その受信したデータおよび自局の秘密鍵に基づき同様の非可逆的に演算されたデータの一致を確認することで、秘密鍵の一致を図れるようにする。
【0015】
このように構成すれば、一致確認のために相手局へ鍵確認用データを送信する場合であっても、仮に盗聴者にその情報が盗聴されたとしても秘密鍵に戻すことが不可能となり、安全かつ確実に秘密鍵の一致を図ることができるようになる。
【0016】
また、それぞれの無線局の秘密鍵を確認する際、他の無線局の秘密鍵に基づき演算されたシンドロームを受信し、その受信したシンドロームおよび自局の秘密鍵に基づき演算されたシンドロームを用いて誤り訂正を行い、秘密鍵を一致させるようにする。
【0017】
このように構成すれば、仮にシンドロームに関する情報が盗聴者に知られたとしても秘密鍵自体が知られることはなく、また、それぞれの無線局で作成された秘密鍵が異なっている場合に、確実にそれらの秘密鍵を一致させることができるようになる。
【0018】
なお、本発明において、「送信者」とは、安全に伝送した情報の送信者を意味し、「受信者」とは、情報を受けるべき正規の受信者を意味する。また「盗聴者」とは、盗聴の意思の有無に関わらず盗聴の可能性のある正規でない受信者を意味する。これらの送信者、受信者、盗聴者の概念は、人物だけに限らず、送信、受信、盗聴の各機能を持った自動または手動の装置を含むものである。
【0019】
【発明の実施の形態】
以下、本発明における実施の形態について図面を用いて説明する。本実施の形態では、図2に示すように携帯電話などの無線局1、2との間で無線通信を行うシステムについて説明する。図2において、1および2は正規の送受信者を示し、3は盗聴者を示す。
【0020】
本実施の形態における無線局1、2は、測定用信号を送信する送信手段と、その送信手段によって送信され無線局間1、2の電波伝搬路特性、すなわち、無線局間に存在する電波の反射物、散乱物、遮蔽物、吸収物などあらゆる地物の配置特性およびその電波的な特性など、によって変化した測定用信号を受信する受信手段と、その受信した測定用信号に基づいて秘密鍵を作成する鍵作成手段と、その作成された秘密鍵が一致するか否かを確認する鍵確認手段と、その秘密鍵の一致が確認できなかった場合に誤り訂正などを行って一致化を図る鍵一致化手段とを備え、その一致した秘密鍵を用いて信号を暗号化、復号して通信を行うようにしたものである。以下、本実施形態における無線局1、2およびシステムのフローについて詳細に説明する。
【0021】
図3に無線局1、2の機能ブロックを示す。図3は、特に秘密鍵の共有および秘密通信に関する機能ブロックを示したものである。
【0022】
図3において、無線局1、2は、少なくとも測定用信号発生部10、送信処理部11、アンテナ部12、受信処理部13、伝送路特性測定部14、鍵作成部15、鍵一致確認部16、鍵一致化部17、鍵記憶部18を有する。そして、これらが協働して、送信手段、受信手段、鍵作成手段、鍵確認手段、鍵一致化手段をなす。
【0023】
測定用信号発生部10は、あらかじめ定められた互いに共通の測定用信号を発生させ、送信処理部11、アンテナ部12を介して相手方に送信する。ここで、測定用信号は、特殊な信号を別途発生させる場合以外に、通信用の信号を用いることもできる。送信処理部11は、変調、周波数変換、多元接続、送信信号増幅など送信系の処理を有するものである。また、受信処理部13は、アンテナ部12を介して相手方から送信されてきた信号の受信処理を行うものであり、受信増幅、多元接続、周波数変換、復調などの処理を行う。伝送路特性測定部14は、その受信した信号の伝送路特性を調べ鍵作成部15に受け渡す。鍵作成部15は、その伝送路特性を秘密鍵の作成に適するように変換した後、デジタル化し、ビット情報で表される秘密鍵を作成する。鍵一致確認部16は、図4に示すように鍵確認用データ発生部16aと、鍵確認用データ比較部16bと、結果処理部16cとを具備してなるもので、鍵確認用データを送信処理部11およびアンテナ部12を介して相手方に送信し、もしくは、相手方から受信した鍵確認用データを自局の鍵確認用データ発生部16aで作成したものと鍵確認用データ比較部16bで比較し、その結果を鍵記憶部18や送信処理部11などに送信する。鍵一致化部17は、図5に示すように擬似シンドローム作成部17a、不一致ビット検出部17b、鍵不一致訂正部17c、確認用データ発生部17d、鍵確認用データ比較部17e、結果処理部17fを具備するもので、鍵一致確認部16によって不一致が確認された場合に、擬似シンドロームを用いて秘密鍵を一致化させるとともに、その一致化させた秘密鍵を鍵一致確認部16の処理と同様にして鍵確認用データに変換し、一致を確認するものである。鍵記憶部18は、鍵一致確認部16によって一致が確認された秘密鍵もしくは鍵一致化部17によって一致処理された秘密鍵を一時的に記憶するものであり、例えば、1回の通信の間その情報を記憶しておく。一方、暗号化部19aは、秘密鍵の一致確認を行った後に、その秘密鍵を用いて送信データを暗号化し、送信処理部11およびアンテナ部12を介して相手方に送信できるようにする。また、復号部19bは、逆にアンテナ部12、受信処理部13を介して受信した暗号化データを秘密鍵で復号し、受信データとして出力する。
【0024】
次に、このように構成された無線局1、2が秘密通信を行う場合のフローについて図1を用いて説明する。
【0025】
(測定用信号の送受信・伝送路特性変動の測定)
まず、それぞれの無線局1、2で秘密通信を行うに際して、それぞれの無線局1、2から共通の測定用信号を送出し(ステップS1)、互いに電波伝搬路特性に基づき変化した測定用信号を受信して(ステップS2)伝送路特性の変動測定を行う(ステップS3)。なお、無線通信を行う場合、伝搬路部分は共通することになるが、一般に無線局1、2の送受信部分は共通でないため、その機器特性に基づいて測定用信号および伝送路特性の測定結果に誤差を生じる。また、伝搬路の可逆性は、厳密には同一周波数の電波でなくては成立しない。そこで、双方の無線局1、2で同一の送信周波数を用いる。この場合に、同一周波数の電波を同時に送信すると干渉が発生するので、時分割復信(TDD)で測定用信号を送信する。また、アンテナ部12において、送信アンテナと受信アンテナが別のような場合には、送受のアンテナ特性が異なり、伝送路特性の測定結果に誤差が生じるので、同一アンテナを時分割に送受信で使用する。また、送信処理部11での信号出力レベルの変動、受信処理部13での入出力の信号増幅率の変動があると、伝送路特性測定の誤差となるので必要に応じて変動の検出と補償を行う手段を付加する。さらに、送信処理部11や受信処理部13において周波数変換を行う場合に、局部発信器の周波数変動や位相変動が伝送路特性測定の誤差となるので、必要により送受に同一の局部発信器を使用する。
【0026】
また、さらに機器特性の差に依存することが少ない測定量に変換して秘密鍵を作成するためには、伝送路特性の変換とともに測定用信号の選択が重要となる。測定用信号としては、送信信号の振幅・位相変動の測定用連続波(CW波)、遅延プロファイル測定用のスペクトル拡散(SS)信号、伝送路の周波数特性測定用のスイープ信号、伝送路の周波数特性の測定が可能なOFDM信号などを使用できる。測定用信号としてCW波を用いた場合、双方の無線局で受信されたCW波は、双方の送受信機の増幅特性に依存する受信振幅偏差および局部発信器の位相変動による位相偏差の影響を受ける。そこで、受信CW波の振幅の相対値を用いる。一方、遅延プロファイルの測定においては、受信振幅偏差と位相偏差の影響を受けるほか、相対値で表した電力遅延プロファイルを使用する。また、双方の無線局間で遅延を測る基準時刻がずれると電力遅延プロファイル特性が相違するので、時間のずれに関係しない測定量に変換する必要がある。この一方法としては、電力遅延プロファイルのスペクトルを求めることなどが考えられる。伝送路の周波数特性の測定については、位相成分を含まない振幅周波数特性の相対値を求める。
【0027】
また、伝送路特性測定において、双方の無線局1、2で条件が共通でないために誤差が生じる原因として、受信側に加わる干渉や雑音の相違、測定時間の相違がある。干渉や雑音の相違の影響を少なくするため、測定用信号を複数回送信し、受信側で同期加算を行い、信号に対して干渉や雑音を抑圧する手法を用いる。また、測定時間の相違が、電波伝搬路特性の時間変化に対して無視できない場合には、双方の無線局で時間的に相互に測定を行い、異なる時間の特性を補間して時間差を補正する手法を用いる。
【0028】
このようにして送受信され測定された伝送路特性の変動の測定値は、ステップS4の秘密鍵作成に用いられる。
【0029】
(秘密鍵の作成)
共有された伝送路特性から秘密鍵を作成する場合、なんらかの方法で標本化、量子化、符号化を行い、アナログ情報からデジタル情報へ変換を行う。ここで、双方の無線局で測定された伝送路特性のわずかな差が、秘密鍵の大きな不一致とならないようにする必要がある。
【0030】
(鍵一致の確認)
ステップS4で作成された秘密鍵は、それぞれの無線局間で一致しているかどうか確認される(ステップS5)。この確認の手法としては、まず、一方の無線局2で、作成された秘密鍵に基づいて鍵確認用データを発生する。このデータは、秘密鍵から非可逆的な演算、あるいは、一方向的な演算により変換されるものであり、例えば、ハッシュ化などを含むものである。このような変換を用いると、鍵確認用データが盗聴されても秘密鍵の情報を解読される危険性が極めて低くなる。一方、鍵確認用データを受信した無線局1では、自局で作成した秘密鍵についても同様に同一の非可逆的な演算、あるいは、一方向的な演算により鍵確認用データを作成し、このデータと送信されてきた鍵確認用データとの一致を確認する。両データが不一致であれば、双方が作成した秘密鍵が不一致であることが分かり、一方、一致している場合は、秘密鍵も一致している確率が非常に高いので、秘密鍵が一致したと判断し、他局に一致を通知するとともに鍵記憶部18に秘密鍵を記憶させる。
【0031】
(鍵不一致対策)
ステップS5で双方の確認用データが不一致であると判断した場合は、他局にその旨の情報を通知し、誤り訂正を行えるようにする(ステップS6)。この誤り訂正は、秘密鍵の不一致を誤りとみなして誤り訂正の応用により鍵の不一致を解消するものである。この手法では、便宜上、秘密鍵のビットパターンに対して、あるブロック符号化が行われ、誤りが付加されたものと仮定する。そして、双方のビットパターンx、xに対して検査行列Hを掛けてシンドロームs=x、s=xを算出する。なお、これらの演算はmod2の演算とする。鍵不一致の訂正を行う無線局1では、他の無線局2からのシンドロームsを受信し、自局で算出したシンドロームsとの差分s=s―sを求める。秘密鍵のビットパターンの差分(鍵不一致のビットパターン)e=x−xとすると、s=eHの関係にある。ここでs=0の場合はe=0、すなわち、鍵不一致なしと判定できる。また、s=0でない場合、誤り訂正復号の手法でsから不一致数最小を満たすeを推定することができる。ここで、鍵不一致のビット数が誤り訂正能力内であれば、訂正が正しく行われる。このようにして、鍵不一致のビットパターンeが得られると、自局で作成した秘密鍵xから引くことで、相手局の秘密鍵x=x―eが得られる。なお、シンドローム情報が盗聴されても、ただちに情報のビットパターンが推測されることは特殊な符号化を想定しない限り起こらない。また、この手法は、鍵不一致のビット数が誤り訂正能力以上の場合に鍵一致に失敗する可能性があるので、別途、鍵一致の確認を行うことが望ましい。このため、鍵不一致訂正後の鍵について、ステップS5と同様の手法で自局の鍵確認用データを作成し、他局から受信している鍵確認用データと比較して、鍵一致/不一致を確認し、相手方に通知する。なお、鍵確認用データの比較が不一致である場合は、鍵不一致のビット数が誤り訂正能力以上である可能性が高いため、ステップ1に戻って秘密鍵の作成をやり直すのが好ましい。
【0032】
(秘密鍵による通信)
そして、このように秘密鍵の一致の確認が行われた場合、その秘密鍵を用いて送信データを暗号化するとともに、受信したデータを復号して受信データとして出力する(ステップS7)。
【0033】
このように上記実施の形態では、無線局間に共有される伝送路特性を用いて秘密鍵を作成するようにしたので、盗聴者が別の場所でこの秘密鍵を作成することが不可能となり、盗聴の危険性を減少させることができるようになる。また、この実施の形態では、それぞれの無線局1、2で、機器特性の影響が少なくなるように測定用信号、送信処理、受信処理、伝送路特性測定を含む送受信処理などを行うようにしたので、作成される秘密鍵の不一致を可能な限り少なくすることができるようになる。さらに、本実施の形態では、ハッシュ化などを行って鍵確認用データを送信して秘密鍵の一致を確認し、また、両データが不一致である場合には、誤り訂正なども行うようにしたので、安全かつ確実に秘密鍵の一致を図ることができるようになる。
【0034】
なお、本発明は上記実施の形態に限定されることなく、種々の態様で実施することができる。
【0035】
例えば、上記実施の形態においては、電波伝搬路特性として、無線局間の自然的な電波伝搬路特性を用いるようにしたが、これに限らず、人為的に操作した電波伝搬路特性を用いるようにしても良い。この方法としては、図6に示すように人為的な移動物体や変動物体を無線局間に設置し、不規則な移動や変動を与える手段や、物体の移動や変動を用いず電磁気的な特性を人為的に変化させる手段などがある。電磁気的な特性を変化させるものとしては、無線局間にアンテナを設置し、アンテナの等価長を電気的に変化させて、電波の反射率、吸収率を操作するものがある。また、別の手段として、双方または一方の無線局に電波伝搬路特性変動発生部を付加する手段がある。ここで、電波伝搬特性の変動を発生させるものとしては、複数アンテナからの送信ダイバーシチ、送信アダプティブアレーがある。なお、電波伝搬路特性の不規則的な変動は、アンテナの複素重み(振幅、位相)を不規則に変化させて発生できる。このような人為的電波伝搬特性を用いることが好適な場合としては、例えば、無線局の移動および無線局間に移動物体がない場合であって、電波伝搬路特性の時間変化がほとんど発生しないような場合が考えられる。
【0036】
また、上記実施の形態では、鍵不一致対策としてシンドロームによる誤り訂正を行うようにしたが、これに限らず、鍵確認用データを受信する無線局側で、あらかじめ秘密鍵の候補を複数作成しておき、これらを用いて秘密鍵の一致化を図るようにしても良い。
【0037】
なお、本発明と上記実施の形態との関係において、
送信手段は、測定用信号発生部10、送信処理部11、アンテナ部12に対応し、
受信手段は、アンテナ部12、受信処理部13に対応し、
鍵作成手段は、伝送路特性測定部14、鍵作成部15に対応し、
鍵確認手段は、鍵一致確認部16に対応し、
鍵一致化手段は、鍵一致化部17に対応し、
通信手段は、暗号化部19a、送信処理部11、アンテナ部12、および受信処理部13、復号部19bに対応する。
【0038】
【実施例】
上記実施の形態に基づき、実際に計算機シミュレーションを用いて特性評価を行った結果を示す。
【0039】
このシミュレーションにおいては、正規の送受信者はTDDを使用し、遅延プロファイルの測定機能をもつ。システム緒元としては、図8に示すようにTDMA/TDDを適用したSS変調を想定した。秘密鍵作成の手順は、図7に示すように始めに遅延プロファイル測定用の信号であるSS変調波を送受し、受信側で同期加算を行って、伝送路特性として遅延プロファイルの時系列を測定する。また、一方の無線局で補間により遅延プロファイルの測定時間差の影響を取り除く。この後、遅延プロファイルの時系列をフーリエ変換して伝送路の時変周波数特性を求め、時間・周波数領域で標本化を行い、2値化してビットパターンである鍵候補を求める。さらに、鍵不一致対策を施し、正常の鍵共有を確認する。その後、共有された秘密鍵を用いて暗号化・復号を行う。
【0040】
この結果を図9から図14に示す。図9は、電力遅延プロファイルの一例である。送信者、受信者、盗聴者での測定結果は全て異なっているが、正規の送受信者の測定結果に時間差の補正を施すと同一となるのに対して、盗聴者の測定する者は形状がかなり異なる。このような電力遅延プロファイルの時間変化を測定し、時変振幅周波数特性を求めた結果を図10に示す。この時変振幅周波数特性を周波数軸方向に8サンプル、時間軸方向に12サンプルし、96のサンプル値の平均値を閾値として2値判定を行って作成した(0、1)のビットパターンを図11に示す。両者のビットパターンは一致しており、秘密鍵が共有できることが分かる。
【0041】
次に、伝送路特性の測定が理想的でない場合に、鍵不一致が発生する割合と鍵不一致対策の効果について説明する。図12に、測定時間差による劣化と補間による改善効果を示す。線形補間や3次補間により鍵不一致率が低下できることが分かる。図13に同期加算による雑音低減効果を示す。図14に誤り訂正復号を応用した鍵不一致対策の効果を示す。信号対雑音電力比(SN比)が20dB程度で、鍵不一致率がほぼゼロとなることがわかる。
【0042】
【発明の効果】
本発明は、秘密鍵を用いて無線局間で通信を行う場合、まず、それぞれの無線局から他の無線局に測定用信号を送信するとともに、相手方から送信された測定用信号であって無線局間の電波伝搬路特性によって変化した測定用信号を受信する。そして、この受信した測定用信号に基づいてそれぞれの無線局で独自に秘密鍵を作成し、この作成された秘密鍵を用いて通信を行うようにしたので、簡易な方法で秘密鍵の作成や秘密鍵の盗難防止を図ることができる。
【図面の簡単な説明】
【図1】本実施形態における無線通信の状態を示すフロー
【図2】同形態におけるシステム概略図
【図3】同形態における無線局の機能ブロック図
【図4】同形態における鍵一致確認部の詳細ブロック図
【図5】同形態における鍵一致化部の詳細ブロック図
【図6】別の実施の形態におけるシステム概略図
【図7】実施例におけるシミュレーションフローを示す図
【図8】シミュレーションシステムの諸元を示す図
【図9】シミュレーションにおける電力遅延プロファイルを示す図
【図10】シミュレーションにおける伝送路の時変振幅周波数特性(絶対値)を示す図
【図11】シミュレーションにおける作成したビットパターンを示す図
【図12】シミュレーションにおける鍵不一致特性の補間による改善効果を示す図
【図13】シミュレーションにおける鍵不一致特性の同期加算による改善効果を示す図
【図14】シミュレーションにおける誤り訂正復号を応用した場合の鍵不一致特性を示す図
【符号の説明】
1、2・・・無線局
3・・・盗聴者
10・・・測定用信号発生部
11・・・送信処理部
12・・・アンテナ
13・・・受信処理部
14・・・伝送路特性測定部
15・・・鍵作成部
16・・・鍵一致確認部
17・・・鍵一致化部
18・・・鍵記憶部
19a・・・暗号化部
19b・・・復号部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to wireless communication, and more particularly to, for example, a wireless communication technique suitably used for wireless communication between mobile wireless terminals or between a mobile wireless terminal and a base station.
[0002]
[Prior art]
In recent years, with the development of the information society, information communication has become more and more important, and wiretapping and unauthorized use of information have become more serious problems. In particular, in wireless communication such as mobile communication, eavesdropping can be performed relatively easily and secretly by wireless interception, so that eavesdropping countermeasures are more important. As a countermeasure against eavesdropping, encryption and the like have been conventionally used, but there are the following problems when the existing technology is directly applied to mobile communication and the like.
[0003]
That is, among the encryption techniques, the public key cryptosystem has high security, but is not suitable for encrypting a large amount of data. In addition, since the amount of processing operation is large, it is difficult to apply the method to a mobile wireless terminal that has restrictions on power consumption and the amount of processing operation. On the other hand, a secret key cryptosystem, which is relatively easy to process, can also perform high-speed encryption of large amounts of data, but requires key management and key distribution. Further, in the secret key cryptosystem, if the same secret key is continuously used, there is a concern that a cryptanalysis attack is liable to occur and security is impaired. Further, in mobile communication, there is a problem that the risk of theft or loss of the terminal is high.
[0004]
On the other hand, secret communication can be performed using irregular phenomena such as channel noise and channel fluctuation. As a method utilizing channel noise, theoretical study of the possibility of secret key distribution using an eavesdropping channel (UM Maurer, "Secret key agreement by public discrimination from com- munication information," IEEE Transformation Information, "IEEE Transformation Information,"). vol39, no3, pp733-742, May, 1993). In addition, a method has been proposed for realizing secret communication by making use of irregular fluctuations in a mobile communication path and performing transmission control for giving a difference in error occurrence between a legitimate sender and receiver and an eavesdropper (Nakayama) Sasaoka, "Study of Security Communication System Using Channel Noise in Mobile Communication," IEICE Tech. 2002, B-5-73, March, 2002). However, these are not very simple methods.
[0005]
Also, methods for creating secret keys using noise and irregular phenomena are known.However, when using them for secret communication, there is a way to safely distribute the secret keys once created to authorized users. A means for strictly managing the key is essential. Then, a method of sharing the secret key without transmitting the secret key information between authorized senders and receivers, for example, creating a secret key individually by the authorized sender and receiver, and using the secret key in secret to an eavesdropper There is no known method of sharing a secret key by matching the secret key.
[0006]
[Problems to be solved by the invention]
The present invention focuses on such a problem. In general, in land mobile communication, a high-speed and complicated variation (multipath fading) occurs in a received electric field strength depending on radio wave propagation path characteristics. It is known that selective fading occurs when the arrival time difference (delay time difference) of multiplex waves cannot be ignored. This multipath fading is an irregular process in which the envelope distribution is generally a Rayleigh distribution, and its fluctuation speed is generally several Hz to several hundred Hz, so that the time is extremely short (for example, one second). If they are different, the fading time correlation becomes almost uncorrelated. Also, if the location is very small (about half a wavelength: 15 cm in the case of 1 GHz) at the reception of the mobile station, the fading spatial correlation becomes almost uncorrelated. It should be noted that the fading spatial correlation is almost uncorrelated at more than ten wavelengths even in the base station reception.
[0007]
On the other hand, in radio wave propagation, reversibility is established between specific transmission and reception points. That is, even if the propagation direction is reversed, the state of the propagation path between the two points (propagation path, attenuation, delay time, etc.) does not change. Therefore, when time-division duplexing is performed at the same frequency, the correlation of fading fluctuation between the signal received by the partner station and the signal received by the own station becomes stronger. For this reason, it is easy to share fading fluctuations (broadly, transmission path characteristics) between legitimate transmitters and receivers, and eavesdroppers share information on the transmission path characteristics at different receiving locations. Is almost impossible.
[0008]
Accordingly, the present invention provides a method in which an authorized sender and receiver individually create secret keys individually based on irregular fluctuations in the transmission path characteristics of wireless communication, and use the created secret keys to provide highly secure wireless communication. An object of the present invention is to provide a system capable of performing communication.
[0009]
[Means for Solving the Problems]
In order to solve the above problem, the present invention, when performing communication between wireless stations using a secret key, first, while transmitting a signal for measurement from each wireless station to another wireless station, and transmitted from the other party Receiving the measurement signal which has been changed due to the radio wave propagation path characteristics between the wireless stations. Then, based on the received measurement signal, each wireless station independently generates a secret key, and performs communication using the secret key.
[0010]
With this configuration, it is possible to create a secret key and prevent eavesdropping of the secret key in a simple manner, and if the secret key is thrown away, the terminal may be stolen or lost. Even in such a case, the secret key will not be stolen.
[0011]
Here, the “wireless station” means an apparatus, a terminal, a device, or the like that performs wireless communication using electromagnetic waves, and is, for example, a mobile terminal such as a mobile phone, a PHS (registered trademark), or a PDA. In addition, it includes those installed on the ground such as base stations. The “radio wave propagation path characteristic” is a characteristic indicating how a radio wave propagates between wireless stations. For example, “transmission path” and “attenuation”, which are unique characteristics between respective wireless stations. It includes not only natural radio wave propagation path characteristics such as "amount" and "propagation time difference" but also characteristics based on an artificially manipulated phenomenon. The “transmission path characteristic” is a characteristic indicating how a signal changes based on the radio wave propagation path characteristic. For example, the amplitude / phase of a signal depending on the radio wave propagation path characteristic and its fluctuation, transmission It includes the impulse response characteristics and the frequency characteristics of the road and their variations.
[0012]
Further, in such a system, when a secret key is generated, generation of a measurement signal, transmission processing, reception processing, and transmission path characteristics are performed so that dependence on the difference in the device characteristics of the transceiver in the wireless station is reduced. A secret key is created by performing a measurement process, a conversion process of a measured amount, and the like. Such a process may be performed for all of the generation of the measurement signal, the transmission process, the reception process, the measurement process of the transmission path characteristics, and the conversion process of the measured amount. It may be performed only for the user.
[0013]
With this configuration, the difference between the received measurement signals due to the difference in the device characteristics of the wireless stations can be reduced, and the mismatch between the secret keys can be minimized.
[0014]
Further, it receives key confirmation data irreversibly calculated based on the secret key of another wireless station, and receives the same irreversibly calculated data based on the received data and its own secret key. By confirming the match, the secret keys can be matched.
[0015]
With this configuration, even if the key confirmation data is transmitted to the partner station for matching, even if the information is eavesdropped by an eavesdropper, it cannot be returned to the secret key, The secret keys can be safely and reliably matched.
[0016]
Also, when confirming the secret key of each radio station, a syndrome calculated based on the secret key of the other radio station is received, and the syndrome calculated based on the received syndrome and the secret key of the own station is used. Perform error correction so that the secret keys match.
[0017]
With this configuration, even if the information about the syndrome is disclosed to the eavesdropper, the secret key itself is not known, and if the secret keys created by the respective radio stations are different, it is ensured. Can match their private keys.
[0018]
In the present invention, "sender" means a sender of information transmitted safely, and "recipient" means a legitimate recipient who should receive the information. "Eavesdropper" refers to an unauthorized recipient who is likely to eavesdrop, regardless of whether he or she intends to eavesdrop. The concepts of the sender, the receiver, and the eavesdropper are not limited to persons, but include automatic or manual devices having transmission, reception, and eavesdropping functions.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a system for performing wireless communication with wireless stations 1 and 2 such as a mobile phone as shown in FIG. 2 will be described. In FIG. 2, 1 and 2 indicate authorized senders and receivers, and 3 indicates an eavesdropper.
[0020]
Radio stations 1 and 2 according to the present embodiment include a transmitting unit that transmits a measurement signal, and radio wave propagation path characteristics transmitted between radio stations 1 and 2 by the transmitting unit, that is, radio waves existing between radio stations. Receiving means for receiving a measurement signal that has changed due to the arrangement characteristics of all features, such as reflectors, scatterers, shields, and absorbers, and their radio characteristics, and a secret key based on the received measurement signal Key creation means for creating a secret key, and key confirmation means for confirming whether or not the created secret key matches. If the match of the secret key cannot be confirmed, error correction or the like is performed to achieve consistency. And a key matching unit, and encrypts and decrypts the signal using the matched secret key to perform communication. Hereinafter, the flows of the wireless stations 1 and 2 and the system in the present embodiment will be described in detail.
[0021]
FIG. 3 shows functional blocks of the wireless stations 1 and 2. FIG. 3 particularly shows functional blocks related to secret key sharing and secret communication.
[0022]
In FIG. 3, the radio stations 1 and 2 include at least a measurement signal generation unit 10, a transmission processing unit 11, an antenna unit 12, a reception processing unit 13, a transmission path characteristic measurement unit 14, a key creation unit 15, and a key agreement check unit 16. , A key matching unit 17 and a key storage unit 18. These cooperate to form a transmitting unit, a receiving unit, a key creating unit, a key checking unit, and a key matching unit.
[0023]
The measurement signal generator 10 generates a predetermined common measurement signal, and transmits the same to the other party via the transmission processor 11 and the antenna 12. Here, as the measurement signal, a communication signal can be used in addition to a case where a special signal is separately generated. The transmission processing unit 11 has a transmission system process such as modulation, frequency conversion, multiple access, and transmission signal amplification. The reception processing unit 13 performs a reception process of a signal transmitted from the other party via the antenna unit 12, and performs processes such as reception amplification, multiple access, frequency conversion, and demodulation. The transmission path characteristic measuring section 14 examines the transmission path characteristics of the received signal and transfers it to the key generation section 15. The key creation unit 15 converts the transmission path characteristics so as to be suitable for creation of a secret key, and then digitizes it to create a secret key represented by bit information. The key agreement confirmation unit 16 includes a key confirmation data generation unit 16a, a key confirmation data comparison unit 16b, and a result processing unit 16c as shown in FIG. The key confirmation data transmitted to the other party via the processing unit 11 and the antenna unit 12 or the data for key confirmation received from the other party created by the key confirmation data generation unit 16a of the own station is compared by the key confirmation data comparison unit 16b. Then, the result is transmitted to the key storage unit 18, the transmission processing unit 11, and the like. As shown in FIG. 5, the key matching unit 17 includes a pseudo syndrome creation unit 17a, a mismatch bit detection unit 17b, a key mismatch correction unit 17c, a confirmation data generation unit 17d, a key confirmation data comparison unit 17e, and a result processing unit 17f. In the case where a mismatch is confirmed by the key matching confirmation unit 16, the secret key is matched using the pseudo syndrome, and the matched secret key is processed in the same manner as the process of the key matching checking unit 16. Is converted to key confirmation data, and a match is confirmed. The key storage unit 18 temporarily stores the secret key whose matching has been confirmed by the key matching checking unit 16 or the secret key subjected to the matching process by the key matching unit 17. For example, during one communication, The information is stored. On the other hand, after confirming that the secret keys match, the encryption unit 19a encrypts the transmission data using the secret key so that the transmission data can be transmitted to the other party via the transmission processing unit 11 and the antenna unit 12. Conversely, the decryption unit 19b decrypts the encrypted data received via the antenna unit 12 and the reception processing unit 13 with a secret key, and outputs the decrypted data as received data.
[0024]
Next, a flow in the case where the wireless stations 1 and 2 configured as described above perform secret communication will be described with reference to FIG.
[0025]
(Measurement of measurement signal transmission / reception and transmission path characteristic fluctuation)
First, when the wireless stations 1 and 2 perform confidential communication, a common measurement signal is transmitted from each of the wireless stations 1 and 2 (step S1), and the measurement signals that have been changed based on the radio wave propagation path characteristics are transmitted to each other. Upon reception (step S2), the fluctuation of the transmission path characteristics is measured (step S3). When wireless communication is performed, the propagation path portion is common, but the transmission and reception portions of the wireless stations 1 and 2 are generally not common, so that the measurement signal and the measurement result of the transmission path characteristic are based on the device characteristics. An error occurs. In addition, the reversibility of the propagation path cannot be established unless the radio waves are strictly of the same frequency. Therefore, the same transmission frequency is used in both wireless stations 1 and 2. In this case, if radio waves of the same frequency are transmitted at the same time, interference occurs. Therefore, the measurement signal is transmitted by time division duplex (TDD). Further, in the antenna unit 12, when the transmitting antenna and the receiving antenna are different, the transmitting and receiving antenna characteristics are different, and an error occurs in the measurement result of the transmission path characteristic. . In addition, if there is a change in the signal output level in the transmission processing unit 11 or a change in the input / output signal amplification factor in the reception processing unit 13, an error in the measurement of the transmission path characteristics will occur. Is added. Furthermore, when frequency conversion is performed in the transmission processing unit 11 or the reception processing unit 13, the same local oscillator is used for transmission and reception as necessary, since frequency fluctuations and phase fluctuations of the local oscillator cause errors in the measurement of transmission line characteristics. I do.
[0026]
Further, in order to generate a secret key by further converting to a measurement amount that is less dependent on differences in device characteristics, it is important to select a measurement signal together with conversion of transmission line characteristics. The measurement signal includes a continuous wave (CW wave) for measuring amplitude and phase fluctuations of a transmission signal, a spread spectrum (SS) signal for measuring a delay profile, a sweep signal for measuring frequency characteristics of a transmission line, and a frequency of a transmission line. An OFDM signal whose characteristics can be measured can be used. When a CW wave is used as a measurement signal, the CW waves received by both radio stations are affected by a reception amplitude deviation depending on amplification characteristics of both transceivers and a phase deviation due to a phase fluctuation of a local oscillator. . Therefore, the relative value of the amplitude of the received CW wave is used. On the other hand, in the measurement of the delay profile, in addition to being affected by the reception amplitude deviation and the phase deviation, a power delay profile represented by a relative value is used. Also, if the reference time for measuring the delay is shifted between the two wireless stations, the power delay profile characteristics will be different, so that it is necessary to convert the measured amount into a measured amount that is not related to the time shift. As one of the methods, it is conceivable to obtain a spectrum of a power delay profile. As for the measurement of the frequency characteristic of the transmission path, the relative value of the amplitude frequency characteristic not including the phase component is obtained.
[0027]
Further, in the measurement of the transmission path characteristics, the cause of an error due to the fact that the conditions are not common between the two wireless stations 1 and 2 is a difference in interference and noise applied to the receiving side and a difference in measurement time. In order to reduce the influence of the difference between interference and noise, a method of transmitting the measurement signal a plurality of times, performing synchronous addition on the receiving side, and suppressing interference and noise on the signal is used. If the difference in the measurement time cannot be ignored with respect to the time change of the radio wave propagation path characteristics, the two radio stations measure each other temporally and correct the time difference by interpolating the characteristics at different times. Use a method.
[0028]
The measured value of the fluctuation of the transmission line characteristic transmitted and received in this way is used for the secret key generation in step S4.
[0029]
(Private key creation)
When a secret key is created from shared transmission path characteristics, sampling, quantization, and encoding are performed by some method, and analog information is converted to digital information. Here, it is necessary to prevent a slight difference between the transmission line characteristics measured by both wireless stations from causing a large mismatch between the secret keys.
[0030]
(Confirm key match)
It is confirmed whether the secret key created in step S4 is the same between the respective wireless stations (step S5). As a method of this confirmation, first, one radio station 2 generates key confirmation data based on the created secret key. This data is converted from the secret key by an irreversible operation or a one-way operation, and includes, for example, hashing. By using such a conversion, even if the key confirmation data is eavesdropped, the risk of decrypting the secret key information is extremely low. On the other hand, the wireless station 1 that has received the key confirmation data similarly creates the key confirmation data by performing the same irreversible operation or one-way operation on the secret key created by itself. Confirm the match between the data and the transmitted key confirmation data. If the two data do not match, it is known that the secret keys created by both parties do not match.On the other hand, if they do match, the secret keys also have a very high probability of matching, so the secret keys match. Then, the other station is notified of the coincidence, and the secret key is stored in the key storage unit 18.
[0031]
(Key mismatch measure)
If it is determined in step S5 that the two pieces of confirmation data do not match, information on the fact is notified to another station so that error correction can be performed (step S6). In this error correction, the mismatch between the secret keys is regarded as an error, and the mismatch between the keys is eliminated by applying error correction. In this method, for the sake of convenience, it is assumed that a certain block encoding is performed on the bit pattern of the secret key and an error is added. Then, both bit patterns x 1 , X 2 Is multiplied by the check matrix H, and the syndrome s 1 = X 1 H T , S 2 = X 2 H T Is calculated. These calculations are mod2 calculations. In the wireless station 1 that corrects the key mismatch, the syndrome s from the other wireless station 2 2 Received, and the syndrome s calculated by the own station 1 Difference s = s 1 -S 2 Ask for. Difference of bit pattern of secret key (bit pattern of non-matching key) e = x 1 -X 2 Then s = eH T In a relationship. Here, when s = 0, it can be determined that e = 0, that is, there is no key mismatch. When s is not 0, e that satisfies the minimum number of mismatches can be estimated from s by the error correction decoding technique. Here, if the number of bits in which the keys do not match is within the error correction capability, the correction is correctly performed. In this way, when the key mismatch bit pattern e is obtained, the secret key x 1 From the other party's secret key x 2 = X 1 -E is obtained. Even if the syndrome information is eavesdropped, the bit pattern of the information is not immediately guessed unless a special encoding is assumed. Further, in this method, if the number of bits of the key mismatch does not exceed the error correction capability, the key matching may fail. Therefore, it is desirable to separately confirm the key matching. For this reason, for the key after the key mismatch correction, the key confirmation data of the own station is created in the same manner as in step S5, and the key confirmation data received from another station is compared with the key confirmation data. Check and notify the other party. If the comparison of the key confirmation data does not match, there is a high possibility that the number of bits of the key mismatch does not exceed the error correction capability, so it is preferable to return to step 1 and re-create the secret key.
[0032]
(Communication with secret key)
When the matching of the secret keys is thus confirmed, the transmission data is encrypted using the secret key, and the received data is decrypted and output as the received data (step S7).
[0033]
As described above, in the above embodiment, the secret key is created using the transmission path characteristic shared between the wireless stations, so that it becomes impossible for an eavesdropper to create this secret key in another place. , The risk of eavesdropping can be reduced. Further, in this embodiment, each of the radio stations 1 and 2 performs a measurement signal, transmission processing, reception processing, transmission / reception processing including transmission path characteristic measurement, and the like so as to reduce the influence of device characteristics. Therefore, the mismatch of the secret keys to be created can be reduced as much as possible. Further, in the present embodiment, key confirmation data is transmitted by performing hashing or the like to confirm the coincidence of the secret keys, and when both data do not match, error correction is performed. Therefore, the secret keys can be safely and reliably matched.
[0034]
The present invention is not limited to the above embodiment, but can be implemented in various modes.
[0035]
For example, in the above-described embodiment, a natural radio wave propagation path characteristic between wireless stations is used as the radio wave propagation path characteristic. However, the present invention is not limited to this, and an artificially operated radio wave propagation path characteristic may be used. You may do it. As this method, as shown in FIG. 6, an artificial moving object or a fluctuating object is installed between the radio stations, a means for giving an irregular movement or fluctuation, an electromagnetic characteristic without using the movement or fluctuation of the object. There are means to artificially change. As a device for changing the electromagnetic characteristics, there is a device in which an antenna is installed between wireless stations and the equivalent length of the antenna is electrically changed to control the reflectance and absorptance of radio waves. As another means, there is a means for adding a radio wave propagation path characteristic fluctuation generating unit to both or one of the radio stations. Here, there are transmission diversity from a plurality of antennas and a transmission adaptive array as those that cause a change in radio wave propagation characteristics. The irregular fluctuation of the radio wave propagation path characteristic can be generated by irregularly changing the complex weight (amplitude and phase) of the antenna. A case where it is preferable to use such an artificial radio wave propagation characteristic is, for example, a case where there is no movement of the radio station and no moving object between the radio stations, and a time change of the radio wave propagation path characteristic hardly occurs. Is the case.
[0036]
Further, in the above embodiment, error correction by syndrome is performed as a countermeasure for key mismatch. However, the present invention is not limited to this, and a plurality of secret key candidates are created in advance on the wireless station receiving key confirmation data. Alternatively, the secret keys may be matched using these.
[0037]
Note that, in the relationship between the present invention and the above embodiment,
The transmission means corresponds to the measurement signal generation unit 10, the transmission processing unit 11, and the antenna unit 12,
The receiving means corresponds to the antenna unit 12 and the reception processing unit 13,
The key generation means corresponds to the transmission line characteristic measurement unit 14 and the key generation unit 15,
The key confirmation means corresponds to the key agreement confirmation unit 16,
The key matching means corresponds to the key matching unit 17,
The communication unit corresponds to the encryption unit 19a, the transmission processing unit 11, the antenna unit 12, the reception processing unit 13, and the decryption unit 19b.
[0038]
【Example】
Based on the above embodiment, the results of actual evaluation of characteristics using computer simulation are shown.
[0039]
In this simulation, a legitimate sender / receiver uses TDD and has a function of measuring a delay profile. As the system specifications, SS modulation to which TDMA / TDD was applied as shown in FIG. 8 was assumed. As shown in FIG. 7, the secret key generation procedure first transmits and receives the SS modulated wave, which is a signal for delay profile measurement, performs synchronous addition on the receiving side, and measures the time series of the delay profile as the transmission path characteristics. I do. Further, the influence of the measurement time difference of the delay profile is removed by interpolation at one of the wireless stations. Thereafter, the time series of the delay profile is Fourier-transformed to obtain a time-varying frequency characteristic of the transmission path, sampled in the time / frequency domain, and binarized to obtain a key candidate as a bit pattern. Further, a key mismatch measure is taken, and normal key sharing is confirmed. After that, encryption / decryption is performed using the shared secret key.
[0040]
The results are shown in FIGS. FIG. 9 is an example of a power delay profile. The measurement results for the sender, receiver, and eavesdropper are all different, but when the time difference is corrected for the measurement result of the legitimate sender and receiver, the result is the same, whereas the eavesdropper measures the shape. Quite different. FIG. 10 shows a result of measuring such a time change of the power delay profile and obtaining a time-varying amplitude frequency characteristic. The bit pattern of (0, 1) created by performing eight-time determination of this time-varying amplitude frequency characteristic and twelve samples in the time axis direction and performing a binary determination using an average value of 96 sample values as a threshold value is illustrated. 11 is shown. The bit patterns of the two match, indicating that the secret key can be shared.
[0041]
Next, a description will be given of the rate of occurrence of key mismatch and the effect of the key mismatch countermeasure when the measurement of the transmission path characteristics is not ideal. FIG. 12 shows the deterioration due to the measurement time difference and the improvement effect by interpolation. It can be seen that the key mismatch rate can be reduced by linear interpolation or cubic interpolation. FIG. 13 shows a noise reduction effect by synchronous addition. FIG. 14 shows the effect of a key mismatch measure using error correction decoding. It can be seen that the key mismatch rate is almost zero when the signal-to-noise power ratio (SN ratio) is about 20 dB.
[0042]
【The invention's effect】
According to the present invention, when communication is performed between wireless stations using a secret key, first, a measurement signal is transmitted from each wireless station to another wireless station, and the measurement signal transmitted from the other The measurement signal changed by the radio wave propagation path characteristic between the stations is received. Then, based on the received measurement signal, each wireless station independently creates a secret key, and performs communication using the created secret key. It is possible to prevent the secret key from being stolen.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a state of wireless communication according to an embodiment;
FIG. 2 is a schematic diagram of a system in the embodiment.
FIG. 3 is a functional block diagram of a wireless station according to the embodiment;
FIG. 4 is a detailed block diagram of a key matching check unit in the embodiment.
FIG. 5 is a detailed block diagram of a key matching unit in the embodiment.
FIG. 6 is a schematic diagram of a system according to another embodiment.
FIG. 7 is a diagram showing a simulation flow in the embodiment.
FIG. 8 is a diagram showing specifications of a simulation system.
FIG. 9 is a diagram showing a power delay profile in a simulation.
FIG. 10 is a diagram illustrating a time-varying amplitude frequency characteristic (absolute value) of a transmission line in a simulation.
FIG. 11 is a diagram showing a bit pattern created in a simulation;
FIG. 12 is a diagram showing an improvement effect by interpolation of a key mismatch characteristic in a simulation;
FIG. 13 is a diagram showing an improvement effect of a key addition characteristic in a simulation by synchronous addition;
FIG. 14 is a diagram showing a key mismatch characteristic when error correction decoding is applied in a simulation;
[Explanation of symbols]
1, 2, ... wireless station
3 ... Eavesdropper
10 ... Measurement signal generator
11 ... Transmission processing unit
12 ... antenna
13 ... Reception processing unit
14 ... Transmission line characteristic measuring unit
15 ... key creation unit
16 ... Key agreement check section
17 ... Key matching unit
18 Key storage unit
19a: encryption unit
19b: decoding unit

Claims (18)

秘密鍵を用いて無線局間で通信を行う無線通信システムにおいて、それぞれの無線局に、他の無線局に対して測定用信号を送信する送信手段と、他の無線局から送信され、無線局間で変化した測定用信号を受信する受信手段と、この受信した測定用信号に基づいて秘密鍵を作成する鍵作成手段と、この作成された秘密鍵を用いて信号を暗号化し、復号して通信を行う通信手段と、を設けたことを特徴とする無線通信システム。In a wireless communication system for performing communication between wireless stations using a secret key, a transmitting unit for transmitting a measurement signal to another wireless station to each wireless station, and a wireless station transmitted from another wireless station, Receiving means for receiving a measurement signal that has changed between, a key creation means for creating a secret key based on the received measurement signal; and encrypting and decrypting the signal using the created secret key. A wireless communication system, comprising: communication means for performing communication. 前記無線局間で変化した測定用信号が、無線局間の電波伝搬路特性によって変化した測定用信号である請求項1に記載の無線通信システム。The wireless communication system according to claim 1, wherein the measurement signal that has changed between the wireless stations is a measurement signal that has changed due to radio wave propagation characteristics between the wireless stations. 無線局間で変化した測定用信号が、人為的に操作された無線局間の電波伝搬路特性によって変化した測定用信号である請求項1に記載の無線通信システム。2. The wireless communication system according to claim 1, wherein the measurement signal changed between the wireless stations is a measurement signal changed due to a radio wave propagation path characteristic between the artificially operated wireless stations. 秘密鍵を用いて無線局間で通信を行う無線通信方法において、それぞれの無線局から互いに測定用信号を送信するステップと、他の無線局から送信され、無線局間で変化した測定用信号を受信するステップと、この受信した測定用信号に基づいてそれぞれの無線局で秘密鍵を作成するステップと、この作成された秘密鍵を用いて信号を暗号化し、復号して通信を行うステップと、を設けたことを特徴とする無線通信方法。In a wireless communication method for performing communication between wireless stations using a secret key, transmitting a measurement signal from each wireless station to each other, and transmitting a measurement signal transmitted from another wireless station and changed between wireless stations. Receiving, generating a secret key in each radio station based on the received measurement signal, encrypting the signal using the generated secret key, decrypting and communicating, A wireless communication method comprising: 前記無線局間で変化した測定用信号が、無線局間の電波伝搬路特性によって変化した測定用信号である請求項4に記載の無線通信方法。The wireless communication method according to claim 4, wherein the measurement signal changed between the wireless stations is a measurement signal changed due to a radio wave propagation path characteristic between the wireless stations. 前記無線局間で変化した測定用信号が、人為的に操作された無線局間の電波伝搬路特性によって変化した測定用信号である請求項4に記載の無線通信方法。5. The wireless communication method according to claim 4, wherein the measurement signal changed between the wireless stations is a measurement signal changed due to radio wave propagation characteristics between artificially operated wireless stations. 秘密鍵を用いて他の無線局との間で通信を行う無線局において、前記他の無線局に対し、秘密鍵を作成させるための測定用信号を送信する送信手段と、前記他の無線局から送信され、無線局間で変化した測定用信号を受信する受信手段と、この受信した測定用信号に基づいて秘密鍵を作成する鍵作成手段と、この作成された秘密鍵を用いて信号を暗号化し、復号して通信を行う通信手段と、を設けたことを特徴とする無線局。In a wireless station that performs communication with another wireless station using a secret key, a transmitting unit that transmits a measurement signal for generating a secret key to the other wireless station, the other wireless station Receiving means for receiving a measurement signal that has been changed between wireless stations, a key creation means for creating a secret key based on the received measurement signal, and a signal using the created secret key. And a communication means for performing communication by encrypting, decrypting and communicating. 双方の無線局における機器特性の差に依存することが少なくなるように、測定用信号の発生、送信処理、受信処理、伝送路特性測定の少なくともいずれか一つを含む処理を行って秘密鍵を作成し、または/および、受信した測定用信号を機器特性の差に依存することが少ない測定量に変換して秘密鍵を作成する請求項7に記載の無線局。The secret key is obtained by performing processing including at least one of generation of a measurement signal, transmission processing, reception processing, and transmission path characteristic measurement so as to reduce dependence on the device characteristic difference between the two radio stations. The wireless station according to claim 7, wherein the secret key is created by converting the created measurement signal and / or the received measurement signal into a measurement quantity that is less dependent on a difference in device characteristics. さらに、前記他の無線局の秘密鍵に基づいて非可逆的に演算された鍵確認用データを受信し、その受信したデータおよび自局の秘密鍵に基づいて非可逆的に演算された鍵確認用データの一致を確認することで秘密鍵の一致を確認する鍵確認手段を設けた請求項7または8に記載の無線局。Further, receiving key confirmation data irreversibly calculated based on the secret key of the other wireless station, and confirming the key confirmation irreversibly calculated based on the received data and the secret key of the own station. 9. The wireless station according to claim 7, further comprising key confirmation means for confirming the coincidence of the secret keys by confirming the coincidence of the data for use. さらに、前記他の無線局の秘密鍵に基づいて演算されたシンドロームを受信し、その受信したシンドロームおよび自局の秘密鍵に基づいて演算されたシンドロームを用いて誤り訂正を行い、秘密鍵を一致させる鍵一致化手段を設けた請求項7から9いずれか1項に記載の無線局。Furthermore, a syndrome calculated based on the secret key of the other wireless station is received, error correction is performed using the received syndrome and a syndrome calculated based on the secret key of the own station, and the secret key is matched. The wireless station according to claim 7, further comprising a key matching unit configured to perform key matching. 前記無線局間で変化した測定用信号が、無線局間の電波伝搬路特性によって変化した測定用信号である請求項7から10いずれか1項に記載の無線局。The radio station according to any one of claims 7 to 10, wherein the measurement signal that has changed between the radio stations is a measurement signal that has changed due to radio wave propagation characteristics between the radio stations. 前記無線局間で変化した測定用信号が、人為的に操作された無線局間の電波伝搬路特性によって変化した測定用信号である請求項7から10いずれか1項に記載の無線局。The wireless station according to any one of claims 7 to 10, wherein the measurement signal that has changed between the wireless stations is a measurement signal that has changed due to radio wave propagation characteristics between artificially operated wireless stations. 秘密鍵を用いて他の無線局との間で通信を行う無線通信方法において、前記他の無線局に対し、秘密鍵を作成させるための測定用信号を送信するステップと、前記他の無線局から送信され、無線局間で変化した測定用信号を受信するステップと、この受信した測定用信号に基づいて秘密鍵を作成するステップと、この作成された秘密鍵を用いて信号を暗号化し、復号して通信を行うステップと、を設けたことを特徴とする無線通信方法。In a wireless communication method for performing communication with another wireless station using a secret key, a step of transmitting a measurement signal for generating a secret key to the other wireless station; Is transmitted from the step of receiving a measurement signal changed between wireless stations, a step of creating a secret key based on the received measurement signal, and encrypting the signal using the created secret key, Performing wireless communication by decoding. 双方の無線局における機器特性の差に依存することが少なくなるように、測定用信号の発生、送信処理、受信処理、伝送路特性測定の少なくともいずれか一つを含む処理を行って秘密鍵を作成し、または/および、受信した測定用信号を機器特性の差に依存することが少ない測定量に変換して秘密鍵を作成するものである請求項13に記載の無線通信方法。The secret key is obtained by performing processing including at least one of generation of a measurement signal, transmission processing, reception processing, and transmission path characteristic measurement so as to reduce dependence on the device characteristic difference between the two radio stations. 14. The wireless communication method according to claim 13, wherein the secret key is created by converting the created measurement signal and / or the received measurement signal into a measurement quantity that is less dependent on a difference in device characteristics. さらに、前記他の無線局の秘密鍵に基づいて非可逆的に演算された鍵確認用データを受信し、その受信したデータおよび自局の秘密鍵に基づいて非可逆的に演算された鍵確認用データの一致を確認することで、秘密鍵の一致を確認するステップを設けた請求項13または14に記載の無線通信方法。Further, receiving key confirmation data irreversibly calculated based on the secret key of the other wireless station, and confirming the key confirmation irreversibly calculated based on the received data and the secret key of the own station. 15. The wireless communication method according to claim 13, further comprising the step of confirming a match of a secret key by confirming a match of data for use. さらに、前記他の無線局の秘密鍵に基づいて演算されたシンドロームを受信し、その受信したシンドロームおよび自局の秘密鍵に基づいて演算されたシンドロームを用いて誤り訂正を行い、秘密鍵を一致させるステップを設けた請求項13から15いずれか1項に記載の無線通信方法。Furthermore, a syndrome calculated based on the secret key of the other wireless station is received, error correction is performed using the received syndrome and a syndrome calculated based on the secret key of the own station, and the secret key is matched. The wireless communication method according to any one of claims 13 to 15, further comprising a step of causing the wireless communication. 前記無線局間で変化した測定用信号が、無線局間の電波伝搬路特性によって変化した測定用信号である請求項13から16のいずれか1項に記載の無線通信方法。17. The wireless communication method according to claim 13, wherein the measurement signal that has changed between the wireless stations is a measurement signal that has changed due to radio wave propagation characteristics between the wireless stations. 前記無線局間で変化した測定用信号が、人為的に操作された無線局間の電波伝搬路特性によって変化した測定用信号である請求項13から16いずれか1項に記載の無線通信方法。17. The wireless communication method according to claim 13, wherein the measurement signal that has changed between the wireless stations is a measurement signal that has changed due to a radio wave propagation path characteristic between the wireless stations that have been artificially operated.
JP2002354725A 2002-12-06 2002-12-06 Radio communication system, radio communication method and radio station Pending JP2004187197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354725A JP2004187197A (en) 2002-12-06 2002-12-06 Radio communication system, radio communication method and radio station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354725A JP2004187197A (en) 2002-12-06 2002-12-06 Radio communication system, radio communication method and radio station

Publications (1)

Publication Number Publication Date
JP2004187197A true JP2004187197A (en) 2004-07-02

Family

ID=32755631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354725A Pending JP2004187197A (en) 2002-12-06 2002-12-06 Radio communication system, radio communication method and radio station

Country Status (1)

Country Link
JP (1) JP2004187197A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013798A1 (en) * 2004-08-04 2006-02-09 Matsushita Electric Industrial Co., Ltd. Radio communication method, radio communication system, and radio communication device
JP2006080934A (en) * 2004-09-10 2006-03-23 Buffalo Inc Encryption key setting system, data communication device, and encryption key setting method
JP2008529413A (en) * 2005-01-27 2008-07-31 インターデイジタル テクノロジー コーポレーション Method and system for deriving encryption key using joint randomness (JRNSO) not shared with others
JP2008217497A (en) * 2007-03-05 2008-09-18 Fuji Electric Holdings Co Ltd Radio communication system communication device, and radio communication method
WO2009014063A1 (en) * 2007-07-20 2009-01-29 Nec Corporation Encrypted communication method and encrypted communication system
JP2009521188A (en) * 2005-12-20 2009-05-28 インターデイジタル テクノロジー コーポレーション Method and system for generating a secret key from simultaneous randomness
JP2009534936A (en) * 2006-04-18 2009-09-24 インターデイジタル テクノロジー コーポレーション Method and system for protecting wireless communications
JP2010187231A (en) * 2009-02-12 2010-08-26 Ricoh Co Ltd Communication device, communicating system, communication method, and program
JP2011504014A (en) * 2007-11-06 2011-01-27 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus enabling physical layer secret key generation
JP2011217415A (en) * 2005-01-27 2011-10-27 Interdigital Technology Corp Generation of perfectly secret key in wireless communication network
JP2012129985A (en) * 2010-12-10 2012-07-05 Mitsubishi Electric Research Laboratories Inc Data communication method and wireless communication network
US8280046B2 (en) 2005-09-12 2012-10-02 Interdigital Technology Corporation Method and system for deriving an encryption key using joint randomness not shared by others
JP2016086337A (en) * 2014-10-28 2016-05-19 国立研究開発法人産業技術総合研究所 Cipher key sharing system and cipher key sharing method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013798A1 (en) * 2004-08-04 2006-02-09 Matsushita Electric Industrial Co., Ltd. Radio communication method, radio communication system, and radio communication device
JP4746296B2 (en) * 2004-09-10 2011-08-10 株式会社バッファロー Encryption key setting system, data communication apparatus, and encryption key setting method
JP2006080934A (en) * 2004-09-10 2006-03-23 Buffalo Inc Encryption key setting system, data communication device, and encryption key setting method
KR101253370B1 (en) * 2005-01-27 2013-04-11 인터디지탈 테크날러지 코포레이션 Method and system for deriving an encryption key using joint randomness not shared by others
JP2008529413A (en) * 2005-01-27 2008-07-31 インターデイジタル テクノロジー コーポレーション Method and system for deriving encryption key using joint randomness (JRNSO) not shared with others
US9130693B2 (en) 2005-01-27 2015-09-08 Interdigital Technology Corporation Generation of perfectly secret keys in wireless communication networks
JP4734344B2 (en) * 2005-01-27 2011-07-27 インターデイジタル テクノロジー コーポレーション Method and system for deriving encryption key using joint randomness (JRNSO) not shared with others
JP2011217415A (en) * 2005-01-27 2011-10-27 Interdigital Technology Corp Generation of perfectly secret key in wireless communication network
US8238551B2 (en) 2005-01-27 2012-08-07 Interdigital Technology Corporation Generation of perfectly secret keys in wireless communication networks
US8280046B2 (en) 2005-09-12 2012-10-02 Interdigital Technology Corporation Method and system for deriving an encryption key using joint randomness not shared by others
JP2009521188A (en) * 2005-12-20 2009-05-28 インターデイジタル テクノロジー コーポレーション Method and system for generating a secret key from simultaneous randomness
JP2009534936A (en) * 2006-04-18 2009-09-24 インターデイジタル テクノロジー コーポレーション Method and system for protecting wireless communications
JP2008217497A (en) * 2007-03-05 2008-09-18 Fuji Electric Holdings Co Ltd Radio communication system communication device, and radio communication method
WO2009014063A1 (en) * 2007-07-20 2009-01-29 Nec Corporation Encrypted communication method and encrypted communication system
JP5376408B2 (en) * 2007-07-20 2013-12-25 日本電気株式会社 Cryptographic communication method and cryptographic communication system
JP2011504014A (en) * 2007-11-06 2011-01-27 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus enabling physical layer secret key generation
US9490977B2 (en) 2007-11-06 2016-11-08 Interdigital Patent Holdings, Inc. Method and apparatus for enabling physical layer secret key generation
JP2010187231A (en) * 2009-02-12 2010-08-26 Ricoh Co Ltd Communication device, communicating system, communication method, and program
JP2012129985A (en) * 2010-12-10 2012-07-05 Mitsubishi Electric Research Laboratories Inc Data communication method and wireless communication network
JP2016086337A (en) * 2014-10-28 2016-05-19 国立研究開発法人産業技術総合研究所 Cipher key sharing system and cipher key sharing method

Similar Documents

Publication Publication Date Title
Li et al. Securing wireless systems via lower layer enforcements
Hamida et al. An adaptive quantization algorithm for secret key generation using radio channel measurements
Wang et al. Fast and scalable secret key generation exploiting channel phase randomness in wireless networks
Moara-Nkwe et al. A novel physical layer secure key generation and refreshment scheme for wireless sensor networks
Chen et al. SmokeGrenade: An efficient key generation protocol with artificial interference
US8270602B1 (en) Communication systems, transceivers, and methods for generating data based on channel characteristics
US20070036353A1 (en) Authentication and encryption methods using shared secret randomness in a joint channel
Badawy et al. Unleashing the secure potential of the wireless physical layer: Secret key generation methods
WO2004073226A1 (en) Transmitter apparatus and radio communication method
MX2007009064A (en) Generation of perfectly secret keys in wireless communication networks.
CN111970693B (en) Low-complexity LoRa Internet of things safety encryption method based on physical layer waveform
Cheng et al. Efficient physical-layer secret key generation and authentication schemes based on wireless channel-phase
Haroun et al. Secret key generation using chaotic signals over frequency selective fading channels
Soderi et al. Physical layer security based on spread‐spectrum watermarking and jamming receiver
JP2004187197A (en) Radio communication system, radio communication method and radio station
US7634088B2 (en) Radio communications system
JPH10513317A (en) Apparatus and method for generating pseudo-random quantities based on radio channel characteristics
CN103181115A (en) System and method for securing wireless communications
Tsouri et al. Threshold constraints on symmetric key extraction from rician fading estimates
Tahir et al. Wireless physical layer security using encryption and channel pre-compensation
Kitaura et al. A scheme of secret key agreement based on received signal strength variation by antenna switching in land mobile radio
Yasukawa et al. A secret key agreement scheme with multi-level quantization and parity check using fluctuation of radio channel property
JP2018137702A (en) Radio transmission method
Ji et al. Physical-layer-based secure communications for static and low-latency industrial internet of things
Kitano et al. A private key agreement scheme based on fluactions of BER in wireless communications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609