JP2004184019A - Inside cooling/heating device for vending machine - Google Patents

Inside cooling/heating device for vending machine Download PDF

Info

Publication number
JP2004184019A
JP2004184019A JP2002353686A JP2002353686A JP2004184019A JP 2004184019 A JP2004184019 A JP 2004184019A JP 2002353686 A JP2002353686 A JP 2002353686A JP 2002353686 A JP2002353686 A JP 2002353686A JP 2004184019 A JP2004184019 A JP 2004184019A
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling
heating device
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002353686A
Other languages
Japanese (ja)
Inventor
Toshiaki Tsuchiya
敏章 土屋
Kimimichi Kuboyama
久保山  公道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2002353686A priority Critical patent/JP2004184019A/en
Publication of JP2004184019A publication Critical patent/JP2004184019A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve an operation control system for an inside cooling/heating device for a vending machine adopting a heat pump refrigerator for the sales of cold/hot commodities, so that the device maintains stable operation by preventing the overload and lower operating efficiency of the refrigerator in an operation mode for the sales of the hot commodities. <P>SOLUTION: The inside cooling/heating device comprises an outside unit consisting of a compressor, an outside heat exchanger and an outside fan combined and an inside unit consisting of an expansion mechanism, an inside heat exchanger and an inside fan combined, arranged in a commodity chamber. It is constructed with the heat pump refrigerator for cooling/heating inside stored commodities with cold/heat generated by its refrigerating cycles. In the operation mode where at least one inside heat exchanger is used as a condenser for radiating heat, the rotating number of the blowing fan of the heat exchanger as an evaporator for absorbing heat is changed to control the quantity of absorbed heat in accordance with a detection signal from an inside temperature sensor, preventing increases in condensation temperature and the quantity of radiated heat over preset values. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ホット商品とコールド商品を併売するホット・アンド・コールド自動販売機に装備したヒートポンプ式の庫内冷却/加熱装置に関する。
【0002】
【従来の技術】
周知のように頭記したホット商品とコールド商品を併売する従来のホット・アンド・コールド自動販売機は、断熱筐体になる本体キャビネットの庫内を複数の商品室に仕切った上で、各商品室ごとに商品収納ラックと併せて冷却器(冷凍機の蒸発器),ヒータ,および庫内ファンを組合せた庫内冷却/加熱装置を設置し、ホット商品,コールド商品の販売モードに合わせて前記冷却器で冷却した庫内空気(冷気),もしくはヒータで加熱した庫内空気(暖気)を庫内に循環送風して商品収納ラックに収納した商品を冷却,ないし加温して販売するようにしている。
【0003】
また、近年になりオゾン層保護および温暖化防止の環境問題から冷凍機の冷媒としてフロン系冷媒の使用が規制されており、自動販売機においても、庫内冷却装置の冷凍機として自然冷媒(HC系冷媒)を採用した冷凍機が採用されるようになっている(例えば、特許文献1参照。)。
また、プロパン,イソブタンなどの自然冷媒はフロン系冷媒に比べて凝縮温度が高いことから、その性状を利用して庫内に収納した商品を加熱するように、ホット・アンド・コールド自動販売機に自然冷媒を採用したヒートポンプ式の冷凍機を搭載し、そのその冷凍サイクルで発生する冷熱,温熱で庫内の収納商品を冷却,加熱するようにした庫内冷却/加熱装置が注目され、その開発が進められている。
【0004】
次に、従来例として、発明者等が現在開発を進めているヒートポンプ式の庫内冷却/加熱装置を搭載した自動販売機の構成,運転動作を図8〜図21で説明する。
まず、図8,図9に自動販売機の全体構成を示す。図において、1は断熱筐体になる自動販売機の本体キャビネット、2は前面外扉、2aは商品取出口、3は断熱内扉、4は商品収納庫、4A〜4Cは商品収納庫4に仕切隔壁1aで画成された商品室、5は各商品室に搭載した商品収納ラック、6は商品搬出シュータ、7は商品室4A〜4Cの庫内底部に配置した庫内冷却/加熱装置の庫内ユニット、8は本体キャビネット1の底部側に画成した機械室に配置した庫外ユニット(冷凍機のコンデンシングユニット)である。なお、図示例では、商品室4Aはコールド専用室、4B,4Cはホット・アンド・コールド室として後記のようにコールド商品,ホット商品を販売するようにしている。
【0005】
また、図10は前記した庫内冷却/加熱装置の詳細構造図、図11はその冷凍回路図であり、前記の庫内ユニット7は庫内熱交換器7a,補助ヒータ(電熱ヒータ)7b,庫内ファン7cを組合せて風胴に収設した構成になり、図9で示すように商品室2A〜2Cに1基ずつ配置されている。一方、庫外ユニット8は圧縮機8a,庫外熱交換器8b,庫外ファン8cを図示のように前後に並べて本体キャビネット1の機械室に収設されており、庫外ファン8aの送風により外扉2の下部に開口する吸気口2bから取り込んだ外気を図示矢印の方向に流して庫外熱交換器8b,圧縮機8cを通風し、本体キャビネット1の背面に開口する排気口1bから機外に排気するようにしている。また、庫外ユニット8と各商品室に配した庫内ユニット7を結ぶ冷媒管路には、図11の冷凍回路で示すように冷媒膨張機構(膨張弁)9,電磁弁10,および回路内の要所に逆止弁11を接続してヒートポンプ式の冷凍回路を構成している。なお、図中に表した記号7A,7B,7Cはそれぞれ商品室4A,4B,4Cに配置した庫内ユニットを表している。
【0006】
上記の構成で、商品室4A〜4Cごとに定めたホット,コールド販売モードに合わせて後記のように冷凍機を運転し、庫内熱交換器7aと熱交換した冷気,暖気を庫内ファン7cの送風により商品室を循環通風して商品収納ラック5(図8,図9参照)に収納した商品12を冷却,もしくは加熱して販売する。
次に、商品室4A〜4Cでのホット,コールド販売モードに対応するヒートポンプ式冷凍機の運転モードを図12〜図18で説明する。なお、各図の冷凍回路には符号を付してないが図11に準ずるものとし、図中の太線は冷媒の通流,細線は冷媒の非通流状態を、矢印は冷媒の通流方向を表している。また、各運転モードの図中に表示した記号Cはコールド運転,Hはホット運転を表し、例えばCCCは図9に示した3室の商品室4A〜4Cが全てコールド運転、CCHは2室がコールド運転,1室がホット運転である状態を表している。
【0007】
また、図19は庫内冷却/加熱装置の制御系統図、図20はその制御装置のブロック図、図21はホット運転モードに対応する制御のフローチャートであり、図12〜図18に示す各運転モードでは、庫内の各商品室に配した庫内温度センサの検出信号を庫内温度情報として、コントローラからの指令により圧縮機,ヒータ,庫外ファン,庫内ファン,電磁弁をON/OFF制御して各商品室の庫内温度をコールド商品,ホット商品の販売適温に保ようにしている。
まず、図12(a),(b) に、3室の商品室4A〜4Cを全て冷却してコールド商品を販売する運転モード(CCC運転)に対応する冷凍回路の冷媒の流れ、および庫内温度の推移とこれに対応する冷凍機制御動作のタイムチャートを示す。なお、図中のA,B,Cはそれぞれ商品室4A,4B,4Cに対応する庫内温度の時間的な変化、ON点,OFF点はそれぞれ庫内温度設定値の上限,下限を表している。このCCC運転モードでは、各商品室に配した庫内ユニット7A〜7Cの庫内熱交換器7aが全て蒸発器,庫外ユニット8の庫外熱交換器8bを凝縮器として、庫内熱交換器で庫内から吸熱した熱を庫外熱交換器より庫外に放熱している。
【0008】
図13は商品室2A,2Bがコールド運転,2Cがホット運転の運転モード(CCH運転1)であり、この運転モードでは庫内ユニット7A,7Bの庫内熱交換器が蒸発器として庫内を冷却し、庫内ユニット7Cの庫内熱交換器が凝縮器として庫内ユニット7A,7Bの庫内熱交換器で吸熱した熱を放熱して庫内を加熱しており、庫外ユニット8の熱交換器は休止(冷媒の通流停止)している。
図14はCCH運転モードで商品室4Cの加熱要求がない運転状態(CCH運転2)を表し、この運転状態では庫内ユニット7Cの庫内熱交換器が休止し、庫外ユニット8の庫外熱交換器を凝縮器として庫内ユニット7A,7Bの庫内熱交換器で吸熱した熱を庫外に放熱している。
【0009】
図15はCCH運転モードで商品室4A,4Bの冷却要求がない運転状態(CCH運転3)であり、この運転状態では庫内ユニット7A,7Bの庫内熱交換器が休止、庫内ユニット7Cの庫内熱交換器が凝縮器として庫内に放熱し、庫外ユニット8の庫外熱交換器が蒸発器として吸熱している。
図16は商品室2Aがコールド運転,2B,2Cがホット運転の運転モード(CHH運転1)であり、この運転モードでは庫内ユニット7Aの庫内熱交換器が蒸発器として庫内を冷却し、庫内ユニット7B,7Cの庫内熱交換器が凝縮器として放熱しており、庫外ユニット8の熱交換器は休止(冷媒の通流停止)している。
【0010】
図17はCHH運転モードで商品室2Aの冷却要求がない運転状態(CHH運転2)を表し、この運転状態では庫内ユニット7Aの庫内熱交換器が休止、庫内ユニット7B,7Cが凝縮器として庫内に放熱し、庫外ユニット8の庫外熱交換器が蒸発器として吸熱している。
図18はCHH運転モードで商品室2B,2Cの加熱要求がない運転状態(CHH運転3)を表し、この運転状態では庫内ユニット7B,7Cの庫内熱交換器が休止、庫内ユニット7Aの庫内熱交換器が蒸発器として吸熱し、庫外ユニット8の庫外熱交換器が凝縮器として庫外に放熱している。
【0011】
上記のように図12のCCC運転モード1を除き、図13〜図18のCCH運転モードもしくはCHH運転モードでは、ホット運転(H)に対応する庫内ユニット7の庫内熱交換器7aが凝縮器として庫内に放熱する。一方、庫外ユニット8の庫外熱交換器7bについては、図12のCCC運転モード1,図14のCCH運転2,図18のCHH運転3の状態では凝縮器として放熱し、図15のCCH運転3,図17のCHH運転2では逆に蒸発器として庫外から吸熱するなど、そのときの自動販売機の販売モードに合わせて庫内熱交換器,庫外熱交換器が凝縮器として放熱したり、放熱器として吸熱したりする。そして、個々の運転モードでは、各商品室の庫内温度情報を基に図19〜図21で示すようにコントローラで圧縮機,庫内ファン,ヒータをON/OFF制御して庫内温度をコールド商品,ホット商品の販売適温に保つようにしている。
【0012】
【特許文献1】
特開2002−106983号公報
【0013】
【発明が解決しようとする課題】
前述のようにヒートポンプ式の冷凍機を自動販売機の庫内冷却/加熱装置として使用し、庫内の各商品室に収納した商品をコールド商品,あるいはホット商品として販売する場合に、そのコールド,ホット販売に対応する運転モードに合わせて冷凍機の庫内熱交換器,庫外熱交換器を凝縮器あるいは蒸発器として運転する場合には、運転上で次記のような問題点がある。すなわち、
(1) 通常の冷凍機では、冷凍サイクルの蒸発器で吸熱した熱量と圧縮機で与えられた熱量を凝縮器で放熱する(放熱量=吸熱量+圧縮機の仕事熱当量)ことから、庫外ユニットに配した凝縮器(庫外熱交換器)の熱交換能力が庫内ユニットに配した蒸発器(庫内熱交換器)の熱交換能力よりも圧縮機の仕事熱当量を加えた分だけ大きくなるように設計されている。
【0014】
しかしながら、先記のように冷凍機をヒートポンプとして運転し、庫内の収納商品を加熱するCCH,CHH運転モードでは、前記(CCC運転モードに対応する)とは逆に、蒸発器として設計した庫内ユニットの庫内熱交換器が凝縮器として放熱し、凝縮器として大きな熱交換能力を持たせるように設計した庫外ユニットの庫外熱交換器が蒸発器として吸熱する運転パターン(図15,図17参照)となる。しかも、このような運転パターンで冷凍機を運転すると、蒸発器(庫外熱交換器)の吸熱能力が凝縮器(庫内熱交換器)の放熱能力を上回ることになるため、冷凍サイクルの熱バランスが崩れて吸熱量が放熱量より大きくなる。このような運転状態になると、冷凍サイクルは放熱量を大きくして熱バランスを保つように凝縮温度が上昇するが、この場合に凝縮温度が高くなると圧縮機が過負荷運転となり、この過負荷運転の状態がある時間継続すると圧縮機のモータ給電回路に配したプロテクタが作動して冷凍機の運転が停止し、自動販売機の庫内冷却/加熱装置が機能しなくなってコールド商品,ホット商品が販売できなくなるといった販売トラブルに進展するおそれがある。
【0015】
また、前記した冷凍サイクルの熱バランスの崩れは、庫内の各商品室に配した庫内熱交換器の一部を凝縮器,他の庫内熱交換器を蒸発器として機能させ、庫外ユニットが休止している運転モード(例えば図13に示すCCH運転モード)でも起こり得る。
(2) また、冷凍機のヒートポンプ運転により庫内ユニットの庫内熱交換器を凝縮器として庫内に放熱し、その商品室に収納した商品を加熱する(凝縮器と熱交換した空気を庫内に循環送風して商品を加温する)ホット運転モードにおいて、前記した熱バランスの崩れに起因して凝縮器として機能している庫内熱交換器の放熱量が急激に増大する状態になると、凝縮温度とともに熱交換器自身の温度が急速に上昇する。そのために、商品の品温が上昇する以前に凝縮器(庫内熱交換器)が設定温度の上限を超えてしまい、その結果、当該熱交換器への冷媒供給が停止して休止となるため、その商品室の商品が販売適温まで加温されなくなるといった問題もある。
【0016】
(3) さらに、庫外ユニットの庫外熱交換器が蒸発器として機能する運転パターン(図15,図17参照)において、夏期のように周囲温度が高い状況では吸熱量が増えて冷凍負荷が大きくなる。そのために、冷凍サイクルでは蒸発温度の上昇とともに熱バランスを保つように凝縮温度が上昇して冷凍機が過負荷運転となって停止することがある。また、前記とは逆に冬期のように周囲温度が低下すると、蒸発器として機能している庫外熱交換器での蒸発温度も低下し、0℃以下になると熱交換器のフィン表面に霜が着霜して、これが通風抵抗となって熱交換能力が極端に低下する。このような状況では蒸発温度がさらに低下して冷凍機の運転効率が悪化する。
【0017】
本発明は上記の点に鑑みなされたものであり、庫内冷却/加熱装置にヒートポンプ式の冷凍機を採用してコールド商品,ホット商品を販売する自動販売機を対象に、ホット商品を販売する運転モードにおける冷凍機の過負荷,運転効率低下を防いで安定した運転を維持できるように運転制御方式を改良した庫内冷却/加熱装置を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、商品収納庫を複数の商品室に仕切り、商品室ごとにその室内に冷気もしくは暖気を循環送風して収納商品をホット商品もしくはコールド商品として販売する自動販売機の庫内冷却/加熱装置であって、前記庫内冷却/加熱装置を、圧縮機,庫外熱交換器,庫外ファンを組合せて庫外側に設置した庫外ユニット、冷媒膨張機構、および庫内熱交換器,庫内ファンを組合せて商品室内に配備した庫内ユニットを経由する冷凍回路に自然冷媒を封入し、その冷凍サイクルで発生する冷熱,温熱で庫内の収納商品を冷却,加熱するヒートポンプで構成したものにおいて、
各商品室に配備した庫内ユニットのうち、少なくとも1基の庫内熱交換器を凝縮器としてその商品室に収納した商品を加熱する運転モードで、凝縮器として放熱する庫内熱交換器の凝縮温度,放熱量が所定値以上に増大するのを抑える運転制御手段を備え(請求項1)、その運転制御手段は具体的には次記のような態様で構成するものとする。
【0019】
(1) 運転制御手段として、庫内ユニットごとにその庫内熱交換器の温度を検出する温度センサを配置した上で、凝縮器として機能している庫内熱交換器に付設した前記温度センサの検出信号を基に、蒸発器として機能している熱交換器に付設した送風ファンの回転数を変更して送風風量を調整する制御装置を備える(請求項2)。
上記の構成において、庫内熱交換器を凝縮器として庫内に放熱している運転モードで、先記した冷凍サイクルの熱バランスの崩れに起因して庫内ユニットの庫内熱交換器の温度が所定値以上に上昇した場合には、前記温度センサの検出信号を基に、蒸発器として放熱している熱交換器(庫外熱交換器または庫内熱交換器)に付属する送風ファンの回転数を減速して送風量を減量する。これにより、冷凍サイクルの吸熱量が減少し、これに熱バランスするように放熱量も減少して凝縮温度が下がる。これにより、圧縮機の過負荷運転、および凝縮器として機能している庫内熱交換器の急激な温度上昇に伴うホット運転の停止を回避して、庫内冷却/加熱装置を安定した状態で継続的に運転できる。
【0020】
(2) 運転制御手段として、庫内ユニットごとにその庫内熱交換器の温度を検出する温度センサを配置するとともに、膨張機構に電子膨張弁を採用し、凝縮器として機能している庫内熱交換器に付設した前記温度センサの検出信号を基に、電子膨張弁の弁開度を変更して冷凍回路の冷媒循環量を調整する制御装置を備える(請求項3)。
上記において、凝縮器として庫内に放熱する庫内ユニットの庫内熱交換器の温度が所定値以上に上昇した場合には、前記温度センサの検出信号を基に、電子膨張弁の弁開度を絞ることで冷凍回路の冷媒循環量が減少する。これにより、前項(1) と同様に冷凍サイクルの吸熱量,放熱量が減少し、凝縮温度を適正な温度範囲に維持して庫内冷却/加熱装置を安定よく運転できる。
【0021】
(3) 運転制御手段として、庫内ユニットごとにその庫内熱交換器の温度を検出する温度センサを配置した上で、凝縮器として放熱する庫内熱交換器に付設した前記温度センサの検出信号を基に、インバータ制御などにより圧縮機の回転数を変更して冷凍回路の冷媒循環量を調整する制御装置を備える(請求項4)。
これにより、凝縮器として庫内に放熱する庫内熱交換器の凝縮温度が上昇した場合には、前記温度センサの検出信号を基に圧縮機の回転数を減速して冷媒循環量を減らすことで、前項(2) と同様に凝縮温度を適正温度に維持できる。
(4) 運転制御手段として、庫内ユニットごとにその庫内熱交換器の温度を検出する温度センサを配置するとともに、膨張機構に電子膨張弁を採用し、凝縮器として放熱する庫内熱交換器に付設した前記温度センサの検出信号を基に、電子膨張弁の弁開度,および圧縮機の回転数を変更して冷凍回路の冷媒循環量を調整する制御装置を備える(請求項5)。
【0022】
この制御装置は、前記(2) 項による電子膨張弁の弁開度制御と、(3) 項による圧縮機の回転数制御を組合せて冷媒循環量を調整し、凝縮温度を適正温度に維持するように運転制御を行うものであり、庫内冷却/加熱装置の運転状況により電子膨張弁の弁開度あるいは圧縮機の回転数の一方が制御範囲を超えた場合でも、他方の制御でカバーできるので、広範囲な負荷変動にも適切に対応できる。
(5) 前項(1) 〜(4) において、温度センサを庫内熱交換器の吸込側および吐出側に配置し、その検出温度の温度差信号を基に運転制御を行うようにする(請求項6)。
【0023】
すなわち、凝縮器として放熱している庫内熱交換器に庫内空気を送風して熱交換を行っている状態では、その凝縮器の吸込側と吐出側の空気温度差が大きいほど庫内への放熱量が多く、温度差が小さいと放熱量は少ない。したがって、2組の温度センサを庫内熱交換器の吸込側と吐出側に分けて配置し、その検出信号から求めた温度差信号を基に、前項(1) 〜(4) のように庫内熱交換器に送風する風量,電子膨張弁の弁開度,圧縮機の回転数の制御を行うようにすれば、そのときの運転状況に即して適正な運転制御が行える。
(6) 運転制御手段として、庫外ユニットに周囲温度を検出する温度センサを配置した上で、庫外熱交換器を蒸発器として吸熱する運転モードでは、前記温度センサで検出した周囲温度信号を基に庫外ファンの回転数を変更して庫外熱交換器の送風風量を調整する制御装置を備える(請求項7)。
【0024】
庫外熱交換器を蒸発器として吸熱する運転モードでは、夏期のように周囲温度が高い状況になると冷凍サイクルの吸熱量が大きくなる。そこで、前記温度センサで検出した周囲温度が高くなった際に、庫外ファンの回転数を低めるように制御して蒸発器(庫外熱交換器)の吸熱量を低減することにより、これに熱バランスするように凝縮器として機能している庫内熱交換器の放熱量が低下する。これにより、前項(1) と同様に、冷凍機の過負荷運転,凝縮温度の過渡な上昇を回避して庫内冷却/加熱装置を安定よく運転できる。
また、本発明によれば、周囲温度の低い冬期対策として、庫外熱交換器を蒸発器とする運転モードで周囲温度が所定温度以下に低下した際に、庫外ユニットのファン送風方向を圧縮機から熱交換器に向くように切換える運転制御手段を備え(請求項7)ものとし、その運転制御手段の具体的な態様として、庫外ユニットに周囲温度を検出する温度センサを配置した上で、該温度センサで検出した周囲温度信号を基に庫外ファンを正転もしくは逆転させるファン制御装置を備える(請求項9)、あるいは庫外ファンとして送風方向が逆な2台のファンを備え、前記温度センサで検出した周囲温度信号を基に前記2台のファンのいずれか一方を選択的に運転するファン制御装置を備える(請求項10)。
【0025】
上記のように、庫外熱交換器を蒸発器,庫内熱交換器を凝縮器として商品を加熱する運転パターンで周囲温度が低下(冬期)した状況の下で、庫外ユニットに通風する庫外ファンの送風方向を通常運転から反転させることにより、庫外熱交換器には圧縮機を経由して温度上昇した空気が流れることになる。これにより、蒸発温度の極端な低下,および庫外熱交換器への着霜を防いで冷凍機の安定した運転を維持できる。
【0026】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図7に示す実施例に基づいて説明する。
〔実施例1〕
図1(a),(b) は庫内冷却/加熱装置の運転制御手段として本発明の請求項2に対応するファン回転数制御装置を備えた実施例であり、(a) 図は制御装置のブロック図、(b) 図はそのフローチャートを示す。ここで、ファン回転数制御装置は回転数変更判定部と回転数指令部を備え、また図中の温度センサには、図10において各商品室の庫内ユニット7に付設して庫内熱交換器7aと伝熱的に配置した温度センサ13を用いる。
【0027】
そして、庫内冷却/加熱装置の運転時には、図1(b) に示すフローチャートの処理を実行する。すなわち、回転数変更判定部がその時の庫内冷却/加熱装置の運転モードを読み込み、少なくとも1基の庫内熱交換器7を凝縮器として商品室に収納した商品を加熱する運転モード(CCH,CHH運転)では、その庫内ユニット7に配した温度センサ13の検出信号(庫内熱交換器の凝縮温度)を回転数変更判定部に入力してファン回転数変更を判定し、この運転モードで蒸発器として機能している熱交換器(図15,図17の運転モードにおける庫外熱交換器、もしくは図13,図16の運転モードで蒸発器として機能している庫内熱交換器)の送風ファンの送風ファンの回転数を以下述べるように変更して蒸発器として機能している熱交換器の吸熱量を調整する。なお、送風ファンの回転数変更手段としては、例えばインバータ制御により庫外ファンの駆動電圧を変える、あるいは通電時間比(Duty比) を変えるなどの方法がある。
【0028】
次に、ファン回転数変更の判定,制御を下記の表1〜表4について述べる。まず、表1は前記の運転モードで蒸発器として機能している熱交換器に付属の送風ファンに対する基本的な回転数変更の判定,制御を表している。
【0029】
【表1】

Figure 2004184019
表1では、回転数変更判定部が凝縮器として放熱している庫内熱交換器に付設した前記温度センサの検出信号 (凝縮温度) を読み込み、その凝縮温度が判定基準となる設定温度Tc1以下であれば変更判定は「そのまま」とし、蒸発器として機能している熱交換器(庫外熱交換器あるいは庫内熱交換器)に組合せた送風ファン(庫外ファンあるいは庫内ファン)の回転数変更量は「現状維持」として現在の運転状態を継続する。
【0030】
一方、先記のように冷凍サイクルの吸熱量と放熱量との熱バランスの崩れに伴い凝縮温度が設定温度Tc1以上に上昇した場合には、蒸発器の送風ファンの回転数を減速(−R1)し、その送風量を減らして蒸発器の吸熱量を減少させる。これにより、冷凍サイクルでは蒸発器の吸熱量減少に伴い、凝縮器の放熱量が減少して熱バランスするようになるので、従来の庫内冷却/加熱装置で問題となっていた冷凍機の運転効率低下、過負荷運転および凝縮温度の急激な温度上昇に伴う冷凍機停止などの運転トラブルを回避して安定した運転を維持できる。
また、この場合に凝縮温度,変更判定を表2のように設定することで、庫内熱交換器の凝縮温度を一定範囲に保つことができる。
【0031】
【表2】
Figure 2004184019
すなわち、表2では凝縮温度Tc2〜Tc3を判定の設定範囲として、運転中に凝縮温度がこの設定範囲を逸脱した場合には変更判定を「変更」とし、Tc3以上では蒸発器の送風ファンの回転数を−R3 に減速して前記のように蒸発器の吸熱量を下げ、逆にTc2以下ではファン回転数を+R2に増速して凝縮温度がTc2〜Tc3の範囲を保つように制御する。
〔実施例2〕
次に、本発明の請求項3に対応する実施例を図2(a),(b) に示す。この実施例では、庫内の各商品室に配した庫内ユニットの庫内熱交換器に対して、先記実施例1と同様に温度センサ13を配置し、さらに図11の冷凍回路における膨張機構9として電子膨張弁を採用した上で、図2(a) で示すように弁開度変更判定部および弁開度指令部を備えて制御装置を構成し、庫内冷却/加熱装置の運転時には図2(b) のフローチャートを実行する。
【0032】
そして、弁開度変更判定部が実施例1と同様にその時の庫内冷却/加熱装置の運転モードを読み込み、少なくとも1基の庫内熱交換器を凝縮器として商品室に収納した商品を加熱するCCH,CHH運転モードでは、凝縮器として機能している庫内熱交換器に配した温度センサの検出信号(凝縮温度)を弁開度変更判定部に入力して弁開度変更の判定を行い、その判定結果を弁開度指令部に送って電子膨張弁の弁開度を次記の表3〜表6のように変更して冷凍サイクルの凝縮温度を適正範囲に保つように調整する。
【0033】
【表3】
Figure 2004184019
【0034】
【表4】
Figure 2004184019
【0035】
【表5】
Figure 2004184019
【0036】
【表6】
Figure 2004184019
すなわち、表3では、弁開度変更判定部で読み込んだ凝縮温度(温度センサの検出信号) が判定の設定温度Tc1以下であれば変更判定は「そのまま」とし、電子膨張弁の弁開度変更量は「現状維持」として現在の運転状態を継続する。一方、凝縮温度が設定温度Tc1以上に上昇した場合には、弁開度指令部からの指令で電子膨張弁の弁開度を−P1 に絞り、冷凍回路の冷媒流量を減量する。これにより、冷凍サイクルでの吸熱量および放熱量が減少するので、先記実施例1と同様に従来の庫内冷却/加熱装置で問題となっていた冷凍機の運転効率低下, 過負荷運転, および凝縮温度の急激な温度上昇に伴う冷凍機の停止などの運転トラブルを回避して安定よく運転できる。
【0037】
また、表4では、先記実施例1における表2と同様に、凝縮温度Tc2〜Tc3を判定の設定範囲として、凝縮温度がこの設定範囲を逸脱した場合には変更判定を「変更」とし、Tc3以上では電子膨張弁の弁開度を−P3 に絞り、逆にTc2以下では弁開度を+P2 に開くように制御する。
一方、表5,表6では、庫内熱交換器の吸込側に配した温度センサと吐出側に配した温度センサで検出した凝縮温度の温度差ΔT1,ΔT2,ΔT3 を検出信号として弁開度変更判定部に入力し、この温度差信号を基に弁開度変更量の判定を行うようにしている(本発明の請求項6に対応)。
【0038】
すなわち、庫内ファンと組合せた庫内ユニットの庫内熱交換器を凝縮器として庫内に放熱している運転モードでは、その熱交換器の吸込側温度と吐出側温度の温度差が大きいほど放熱量が多く、温度差が小さいと放熱量は少ない。そこで、前記の温度差を凝縮温度の検出情報として弁開度の変更判定を行うようにすれば、前記表3,表4の判定と比べてより的確に判定できる。
ここで、表5では凝縮温度の前記温度差がΔT1 以下であれば変更判定を「そのまま」、電子膨張弁の弁開度変更量を「現状維持」として現在の運転状態を継続し、温度差がΔT1 以上に上昇した場合には、電子膨張弁の弁開度を−P4 に絞って冷凍回路の冷媒流量を減量する。また、表6では、温度差ΔT2 〜ΔT3 を判定の設定範囲として、凝縮温度の温度差がこの設定範囲を逸脱した場合には変更判定を「変更」としてΔT3 以上では電子膨張弁の弁開度を−P6 に絞り、逆にΔT2 以下では弁開度を+P5 に開くように制御する。
【0039】
なお、前記のように凝縮器の吸込側および吐出側に配した温度センサで求めた凝縮温度の温度差信号は、先記した実施例1のファン回転数制御装置,および後記する実施例3の圧縮機回転数制御装置に対する凝縮温度の検出情報として適用することができる。
〔実施例3〕
次に、本発明の請求項4に対応する実施例を図3(a),(b) に示す。この実施例では、庫内の各商品室に配した庫内ユニットの庫内熱交換器に対して、先記実施例1と同様に温度センサ13を配置するとともに、図11の冷凍回路における庫外ユニット8の圧縮機8aの回転数をインバータ制御により可変制御するようにした上で、図3(a) で示すように圧縮機の回転数変更判定部および回転数指令部を備えて制御装置を構成している。
【0040】
また、図3(b) は圧縮機の回転数制御のフローチャートであり、自動販売機の運転時には回転数変更判定部が実施例1,2と同様にその時の庫内冷却/加熱装置の運転モードを読み込み、少なくとも1基の庫内熱交換器7を凝縮器として商品室に収納した商品を加熱する運転モードでは、庫内ユニット7に配した温度センサの検出信号(凝縮温度)を回転数変更判定部に入力して圧縮機の回転数変更の判定を行い、その判定結果を回転数指令部に送って圧縮機の回転数を次記の表7,表8のように変更して冷凍サイクルの凝縮温度を適正範囲に保つように冷凍回路の冷媒流量を調整する。
【0041】
【表7】
Figure 2004184019
【0042】
【表8】
Figure 2004184019
すなわち、表7では、圧縮機の回転数変更判定部が凝縮器として機能している庫内熱交換器に付設した前記温度センサの検出信号 (凝縮温度) を読み込み、その凝縮温度が判定の設定温度Tc1以下であれば変更判定は「そのまま」、圧縮機の回転数変更量は「現状維持」として現在の運転状態を継続する。一方、凝縮温度が設定温度Tc1以上に上昇した場合には、圧縮機の回転数を−N1 に減速して冷凍回路の冷媒流量を減量する。これにより、実施例2で述べた電子膨張弁の弁開度を変更する制御方式と同様に冷凍サイクルでの吸熱量および放熱量が減少し、従来の庫内冷却/加熱装置で問題となっていた冷凍機の運転効率低下, 過負荷運転, および凝縮温度の急激な温度上昇に伴う冷凍機の停止などの運転トラブルを回避して運転の安定化が図れる。
【0043】
一方、表8では、先記実施例2における表4と同様に、凝縮温度Tc2〜Tc3を判定の設定範囲として、凝縮温度がこの設定範囲を逸脱した場合には変更判定を「変更」とし、Tc3以上では圧縮機の回転数を−N3 に減速し、逆にTc2以下では回転数を+N2 に増速するように制御する。これにより、凝縮温度を一定幅の範囲に維持できる。
〔実施例4〕
また、本発明の応用実施例として、請求項5のように先記実施例2による電子膨張弁の弁開度制御と実施例3による圧縮機の回転数制御を併用して冷凍機の運転制御を行うこともできる。この制御によれば、庫内冷却/加熱装置の運転状況により電子膨張弁の弁開度あるいは圧縮機の回転数の一方が制御範囲を超えた場合でも、他方の制御でカバーできるので、広範囲な負荷変動にも適切に対応できる。
【0044】
〔実施例5〕
次に、本発明の請求項7に対応する実施例を図4(a),(b) で説明する。この実施例は、図10で庫内冷却/加熱装置の庫外ユニット8に配した庫外熱交換器8aを蒸発器として吸熱する運転モード(図15,図17参照)において、夏期のように周囲温度が高い状況では冷凍機の負荷が大きくなって蒸発温度の上昇し、これに伴い凝縮器として機能している庫内熱交換器の放熱量,凝縮温度が上昇して冷凍機が過負荷運転となるのを防ぐようにしたものである。
すなわち、この実施例では図4(a) の制御装置が庫外ファンに対する回転数変更判定部と回転数指令部を備えている。そして、図6で示すように機械室の外気取り入れ口近傍に配した外気温度センサ14、あるいは庫外ユニット8の風胴に配した温度センサ15で検出した周囲温度を回転数変更判定部に入力し、図15,図17に示すCCH,CHH運転モード(庫外熱交換器が蒸発器として機能している)で庫外ファンの回転数変更を判定し、その判定結果を基に庫外ファンの回転数を変更(図4(b) のフローチャート参照)して冷凍サイクルの吸熱量を変え、これに合わせて凝縮器(庫内熱交換器)の放熱量を調整する。
【0045】
ここで、庫外ファンに対する回転数変更の判定,制御を表9に示す。
【0046】
【表9】
Figure 2004184019
すなわち、庫内冷却/加熱装置の運転時には回転数変更部,回転数指令部は図4(b) に示したフローチャートの処理を実行し、庫外ユニット8に送風する外気温度がTs1からTs2→Ts3→Ts4→Ts5に上昇変化すると、この外気温上昇に合わせて庫外熱交換器8aに組合せた庫外ユニット8に搭載した庫外ファン8cの回転数をM1 →M2 →M3 →M4 に減速制御して送風風量を減量する。これにより、冷凍サイクルでの吸熱量が減少するので、先記の実施例で述べたと同様に凝縮器(庫内熱交換器)の放熱量が減少して冷凍機の過負荷運転を回避できる。
【0047】
[実施例6]
次に本発明の請求項8,9に対応する実施例を図5(a),(b) および図6で説明する。この実施例は、庫内冷却/加熱装置の冬期対策として、庫外熱交換器を蒸発器として吸熱する運転モード(図15,図17参照)で周囲温度が低下した場合に庫外熱交換器(蒸発器)のフィン表面に霜が付着し、これが原因で冷凍機の運転効率が低下するのを防ぐようにしたものである。
そこで、この実施例では、図6で庫外ユニット8に組合せた庫外ファン8cに可逆転式ファンを採用した上で、図5(a) に示した制御装置に庫外ファンの回転方向変更判定部と回転方向指令部を備え、図5(b) に示すフローチャートの処理を実行する。すなわち、図15あるいは図17に示すCCH,CHH運転モード(庫外熱交換器が蒸発器として吸熱している)では、庫外ユニットに配した温度センサ(図6で、庫外ユニット8に送風する外気の取り入れ口近傍に配した外気温度センサ14、あるいは庫外ユニットの風胴上に配した温度センサ15)で検出した外気温度を回転方向変更判定部に入力して庫外ファンの回転方向変更を判定し、その判定結果を基に次記の表10で示すように庫外ファンの回転方向を正転/逆転制御して送風方向を図6の矢印A,Bの方向に切換え、これにより後記のように周囲温度が低い状態での運転時に、庫外熱交換器のフィン表面に着霜するのを防ぐようにしている。
【0048】
【表10】
Figure 2004184019
すなわち、外気温度が判定の設定温度Ts 以上であれば、庫外ファン8cを正転として外気取入口2bから機械室内に取り込んだ外気を矢印A方向に通風し、蒸発器として機能している庫外熱交換器8bと熱交換させる。一方、冬期のように外気温度が設定温度Ts 以下の低温状態になると、庫外ファン8cを逆転して送風方向を矢印AからBに切換える。これにより、背面側の排気口1bから機械室に流入した低温の外気は、運転中の圧縮機8aの周囲を流れる過程で圧縮機の発熱を受けて加熱昇温した後に庫外熱交換器8bを通風する。この場合に、庫外熱交換器8bと熱交換する空気は昇温しているので、蒸発器としての蒸発温度は極端に低下することがなく、また熱交換器の表面に着霜している霜を融解させる効果もあり、これにより庫外熱交換器8bの着霜を抑止して冷凍機の運転効率低下を回避できる。
【0049】
なお、この実施例は先記実施例5で述べた庫外ファンの回転数変更制御と組合せて実施することができる。すなわち、外気温度が設定温度以下では庫外ファン逆転し、設定温度以上の範囲では庫外ファンを正転とした上で、外気温度の上昇に伴って庫外ファンの回転数を減速させるように制御する。
〔実施例7〕
図7は本発明の請求項10に対応する先記実施例6の応用実施例を示すものであり、庫外ユニット8には庫外ファンとして、送風方向が互いに逆向きな2台の送風ファン8c−1(送風方向矢印A)と8c−2(送風方向矢印B)を搭載している。そして、実施例6で述べた表10の判定に合わせて、外気温度がTs 以上であれば、送風ファン8c−1を運転,送風ファン8c−2を停止として外気を矢印A方向に送風し、外気温度がTs 以下に低下した場合には送風ファン送風ファン8c−1を停止,8c−2を運転に切換える。これにより、先記の実施例6で述べたと同様に庫外熱交換器8bに通風する外気の温度が上昇して熱交換器の着霜を抑止できる。
【0050】
【発明の効果】
以上述べたように、本発明によれば、商品収納庫を複数の商品室に仕切り、商品室ごとにその室内に冷気もしくは暖気を循環送風して収納商品をホット商品もしくはコールド商品として販売する自動販売機の庫内冷却/加熱装置であって、前記庫内冷却/加熱装置を、圧縮機,庫外熱交換器,庫外ファンを組合せて庫外側に設置した庫外ユニット、冷媒膨張機構、および庫内熱交換器,庫内ファンを組合せて商品室内に配備した庫内ユニットを経由する冷凍回路に自然冷媒を封入し、その冷凍サイクルで発生する冷熱,温熱で庫内の収納商品を冷却,加熱するヒートポンプで構成したものにおいて、
各商品室に配備した庫内ユニットのうち、少なくとも1基の庫内熱交換器を凝縮器としてその商品室に収納した商品を加熱する運転モードで、凝縮器として放熱する庫内熱交換器の凝縮温度,放熱量が所定値以上に増大するのを抑える運転制御手段として、請求項1〜7に示した送風ファンの回転数制御装置,電子膨張弁の弁開度制御装置,圧縮機の回転数制御装置を備えたことにより、運転モードによって冷凍サイクルの熱バランスが崩れるのを防止し、従来の庫内冷却/加熱装置で問題となっていた冷凍機の運転効率低下、過負荷運転および凝縮温度の急激な温度上昇に伴う冷凍機停止などの運転トラブルを回避して安定した運転を維持できる。
【0051】
また、庫内冷却/加熱装置の冬期対策として、請求項8〜10の運転制御手段を備えたことにより、外気温度の低い状態で庫外ユニットの熱交換器を蒸発器として機能させる運転モードでも、蒸発温度の過度な低下に起因する低効率運転,および庫外熱交換器の着霜を防ぐことかできる。
【図面の簡単な説明】
【図1】本発明の実施例1に対応する制御装置の説明図であり、(a) は制御装置のブロック図、(b) は判定,制御のフローチャートを表す図
【図2】本発明の実施例2に対応する制御装置の説明図であり、(a) は制御装置のブロック図、(b) は判定,制御のフローチャートを表す図
【図3】本発明の実施例3に対応する制御装置の説明図であり、(a) は制御装置のブロック図、(b) は判定,制御のフローチャートを表す図
【図4】本発明の実施例4に対応する制御装置の説明図であり、(a) は制御装置のブロック図、(b) は判定,制御のフローチャートを表す図
【図5】本発明の実施例6に対応する制御装置の説明図であり、(a) は制御装置のブロック図、(b) は判定,制御のフローチャートを表す図
【図6】本発明の実施例6に対応する庫内冷却/加熱装置の構成配置図
【図7】本発明の実施例7に対応する庫内冷却/加熱装置の構成配置図
【図8】本発明の実施対象となるホット・アンド・コールド自動販売機の概要構成を示す側視断面図
【図9】図8の庫内正面図
【図10】図8における庫内冷却/加熱装置の従来例の構成配置図
【図11】図10の冷凍回路図
【図12】図11の冷凍回路によるCCC運転モードの説明図で、(a) は冷凍回路の冷媒の流れを表す図、(b) は運転制御のタイムチャートを表す図
【図13】図11の冷凍回路おけるCCH運転モードに対応した冷媒の流れを表す図
【図14】図13と異なる運転状態のCCH運転モードに対応した冷媒の流れを表す図
【図15】図14とさらに異なる運転状態のCCH運転モードに対応した冷媒の流れを表す図
【図16】図11の冷凍回路おけるCHH運転モードに対応した冷媒の流れを表す図
【図17】図16と異なる運転状態のCHH運転モードに対応した冷媒の流れを表す図
【図18】図17とさらに異なる運転状態のCCH運転モードに対応した冷媒の流れを表す図
【図19】庫内冷却/加熱装置の基本的な運転制御系統を表すブロック図
【図20】従来における庫内冷却/加熱装置の制御装置を表すブロック図
【図21】図20の制御装置のフローチャートを表す図
【符号の説明】
1 自動販売機のキャビネット
4A,4B,4C 商品室
5 商品収納ラック
7 庫内冷却/加熱装置の庫内ユニット
7a 庫内熱交換器
7c 庫内ファン
8 庫内冷却/加熱装置の庫外ユニット
8a 圧縮機
8b 庫外熱交換器
8c 庫外ファン
9 膨張機構
11 商品
13 庫内ユニットに配した温度センサ
14 外気温度センサ
15 庫外ユニットに配した温度センサ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump type cooling / heating device in a hot and cold vending machine that sells hot and cold products together.
[0002]
[Prior art]
As is well known, conventional hot and cold vending machines that sell both hot and cold products noted above are divided into a plurality of product rooms inside the cabinet of the main body cabinet that becomes an insulated housing, and each product In each room, a refrigerator / evaporator, which combines a cooler (evaporator of a refrigerator), a heater, and a fan inside the warehouse, is installed in combination with a product storage rack, and the above-mentioned equipment is set according to the sales mode of hot and cold products. The inside air (cold air) cooled by a cooler or the inside air (warm air) heated by a heater is circulated and blown into the inside of the cabinet to cool or heat the products stored in the product storage rack for sale. ing.
[0003]
In recent years, the use of chlorofluorocarbon-based refrigerants as refrigerants for refrigerators has been regulated due to environmental problems of protection of the ozone layer and prevention of global warming. (Refer to, for example, Patent Document 1).
In addition, natural refrigerants such as propane and isobutane have a higher condensation temperature than fluorocarbon-based refrigerants, so hot and cold vending machines can be used to heat products stored in the refrigerator using their properties. Attention has been paid to a cooling / heating device in the refrigerator that is equipped with a heat pump refrigerator that uses a natural refrigerant, and cools and heats the stored products in the refrigerator with the cold and warm heat generated by the refrigeration cycle. Is being promoted.
[0004]
Next, as a conventional example, the configuration and operation of a vending machine equipped with a heat pump-type in-chamber cooling / heating device which the present inventors are currently developing will be described with reference to FIGS.
First, FIGS. 8 and 9 show the overall configuration of a vending machine. In the figure, 1 is a main body cabinet of a vending machine which becomes an insulated housing, 2 is a front outer door, 2a is a product outlet, 3 is an insulated inner door, 4 is a product storage, and 4A to 4C are product storages 4. The product room defined by the partition 1a, 5 is a product storage rack mounted in each product room, 6 is a product unloading shooter, and 7 is a cooling / heating device in the warehouse disposed at the bottom of the warehouse of the product rooms 4A to 4C. An in-compartment unit 8 is an out-of-compartment unit (condensing unit of a refrigerator) arranged in a machine room defined on the bottom side of the main body cabinet 1. In the illustrated example, the product room 4A is a cold exclusive room, and 4B and 4C are hot and cold rooms for selling cold products and hot products as described later.
[0005]
FIG. 10 is a detailed structural view of the cooling / heating device in the refrigerator, and FIG. 11 is a refrigeration circuit diagram thereof. The unit 7 in the refrigerator includes a heat exchanger 7a in the refrigerator, an auxiliary heater (electric heater) 7b, The configuration is such that the in-compartment fan 7c is combined and housed in the wind tunnel, and as shown in FIG. 9, one fan is arranged in each of the product rooms 2A to 2C. On the other hand, the external unit 8 has a compressor 8a, an external heat exchanger 8b, and an external fan 8c arranged side by side as shown in the drawing and is housed in a machine room of the main body cabinet 1, and is blown by the external fan 8a. The outside air taken in from the intake port 2b opened at the lower part of the outer door 2 is flowed in the direction of the arrow in the figure to pass through the external heat exchanger 8b and the compressor 8c, and the air is exhausted from the exhaust port 1b opened on the back of the main body cabinet 1. I try to exhaust it outside. In addition, as shown in the refrigeration circuit of FIG. 11, a refrigerant expansion mechanism (expansion valve) 9, an electromagnetic valve 10, and a circuit inside the circuit are provided between the external unit 8 and the internal unit 7 arranged in each product room. The check valve 11 is connected to the key points (1) and (2) to constitute a heat pump type refrigeration circuit. Symbols 7A, 7B, and 7C shown in the figure represent units in the warehouse arranged in the product rooms 4A, 4B, and 4C, respectively.
[0006]
With the above configuration, the refrigerator is operated as described later in accordance with the hot and cold sales modes determined for each of the product rooms 4A to 4C, and the cool air and the warm air exchanged with the internal heat exchanger 7a are supplied to the internal fan 7c. The product 12 stored in the product storage rack 5 (see FIGS. 8 and 9) is cooled or heated for sale by circulating the product room by the air blowing.
Next, the operation modes of the heat pump refrigerator corresponding to the hot and cold sales modes in the product rooms 4A to 4C will be described with reference to FIGS. In the drawings, the refrigeration circuits are not denoted by reference numerals, but are assumed to be in accordance with FIG. 11, in which the thick lines indicate the flow of the refrigerant, the thin lines indicate the non-flow state of the refrigerant, and the arrows indicate the flow directions of the refrigerant. Is represented. The symbol C displayed in each figure of the operation mode indicates cold operation, and H indicates hot operation. For example, CCC indicates that all three commodity rooms 4A to 4C shown in FIG. The cold operation and the state where one room is in the hot operation are shown.
[0007]
FIG. 19 is a control system diagram of the in-compartment cooling / heating device, FIG. 20 is a block diagram of the control device, and FIG. 21 is a flowchart of control corresponding to the hot operation mode. In the mode, a compressor, a heater, a fan outside the warehouse, a fan inside the warehouse, and a solenoid valve are turned on / off by a command from a controller, using a detection signal of an inside temperature sensor arranged in each product room in the warehouse as inside temperature information. This is controlled so that the inside temperature of each product room is kept at a suitable temperature for selling cold products and hot products.
First, FIGS. 12A and 12B show the flow of the refrigerant in the refrigeration circuit corresponding to the operation mode (CCC operation) in which all three product rooms 4A to 4C are cooled and cold products are sold. 4 shows a time chart of temperature transition and a corresponding refrigerator control operation. In the figure, A, B, and C represent temporal changes in the internal temperature corresponding to the product rooms 4A, 4B, and 4C, respectively, and ON points and OFF points represent upper and lower limits of the internal temperature set value, respectively. I have. In this CCC operation mode, the internal heat exchangers 7a of the internal units 7A to 7C arranged in each product room are all evaporators and the external heat exchanger 8b of the external unit 8 is a condenser, and the internal heat exchange is performed. The heat absorbed from the inside of the refrigerator by the vessel is radiated outside the refrigerator from the external heat exchanger.
[0008]
FIG. 13 shows an operation mode (CCH operation 1) in which the product rooms 2A and 2B are in a cold operation and 2C is in a hot operation. In this operation mode, the internal heat exchangers of the internal units 7A and 7B serve as evaporators and serve as evaporators. After cooling, the internal heat exchanger of the internal unit 7C radiates heat absorbed by the internal heat exchangers of the internal units 7A and 7B as a condenser and heats the internal space. The heat exchanger is inactive (stopping the flow of the refrigerant).
FIG. 14 shows an operation state (CCH operation 2) in which the product room 4C is not requested to be heated in the CCH operation mode. In this operation state, the in-compartment heat exchanger of the in-compartment unit 7C is stopped and the out-of-compartment unit 8 is outside. The heat absorbed by the internal heat exchangers of the internal units 7A and 7B is radiated to the outside of the internal storage, using the heat exchanger as a condenser.
[0009]
FIG. 15 shows an operation state (CCH operation 3) in the CCH operation mode in which there is no request for cooling the product rooms 4A and 4B. In this operation state, the internal heat exchangers of the internal units 7A and 7B are stopped, and the internal unit 7C The heat exchanger inside the refrigerator as a condenser radiates heat into the refrigerator, and the heat exchanger outside the refrigerator of the external unit 8 absorbs heat as an evaporator.
FIG. 16 shows an operation mode (CHH operation 1) in which the product room 2A is in the cold operation and the operation in the 2B and 2C is the hot operation (CHH operation 1). In this operation mode, the interior heat exchanger of the interior unit 7A cools the interior as an evaporator. The internal heat exchangers of the internal units 7B and 7C are radiating heat as a condenser, and the heat exchanger of the external unit 8 is stopped (the flow of the refrigerant is stopped).
[0010]
FIG. 17 shows an operation state (CHH operation 2) in the CHH operation mode in which there is no request for cooling the product room 2A. In this operation state, the internal heat exchanger of the internal unit 7A is stopped, and the internal units 7B and 7C condense. The heat is radiated into the refrigerator as a container, and the external heat exchanger of the external unit 8 absorbs heat as an evaporator.
FIG. 18 shows an operation state (CHH operation 3) in which the product rooms 2B and 2C are not required to be heated in the CHH operation mode. In this operation state, the internal heat exchangers of the internal units 7B and 7C are stopped, and the internal unit 7A. The heat exchanger inside the refrigerator absorbs heat as an evaporator, and the heat exchanger outside the refrigerator of the external unit 8 radiates heat outside the refrigerator as a condenser.
[0011]
As described above, except for the CCC operation mode 1 in FIG. 12, in the CCH operation mode or the CHH operation mode in FIGS. 13 to 18, the internal heat exchanger 7a of the internal unit 7 corresponding to the hot operation (H) is condensed. Dissipates heat into the chamber as a container. On the other hand, the external heat exchanger 7b of the external unit 8 radiates heat as a condenser in the CCC operation mode 1, the CCH operation 2 in FIG. 14, and the CHH operation 3 in FIG. In operation 3 and CHH operation 2 in FIG. 17, heat is taken from the outside of the refrigerator as an evaporator. Conversely, the internal heat exchanger and the external heat exchanger radiate heat as a condenser according to the sales mode of the vending machine at that time. Or absorb heat as a radiator. In each operation mode, the controller controls the compressor, the internal fan, and the heater on / off based on the internal temperature information of each product room as shown in FIGS. Sales of products and hot products are kept at an appropriate temperature.
[0012]
[Patent Document 1]
JP 2002-106983 A
[0013]
[Problems to be solved by the invention]
As described above, when a heat pump type refrigerator is used as a cooling / heating device in a vending machine and a product stored in each product room in the refrigerator is sold as a cold product or a hot product, the cold and hot products are used. When the heat exchanger inside the refrigerator and the heat exchanger outside the refrigerator are operated as a condenser or an evaporator in accordance with the operation mode corresponding to hot selling, there are the following problems in operation. That is,
(1) In a normal refrigerator, the amount of heat absorbed by the evaporator of the refrigeration cycle and the amount of heat given by the compressor are radiated by the condenser (radiation amount = heat absorption amount + work heat equivalent of the compressor). The heat exchange capacity of the condenser (external heat exchanger) arranged in the external unit is equal to the heat exchange capacity of the evaporator (internal heat exchanger) arranged in the internal unit plus the work heat equivalent of the compressor. Only designed to be bigger.
[0014]
However, as described above, in the CCH and CHH operation modes in which the refrigerator is operated as a heat pump to heat the stored products in the storage, the storage designed as an evaporator is contrary to the above (corresponding to the CCC operation mode). An operation pattern in which the internal heat exchanger of the internal unit radiates heat as a condenser and the external heat exchanger of the external unit designed to have a large heat exchange capacity as a condenser absorbs heat as an evaporator (FIG. 15, FIG. 15). FIG. 17). Moreover, when the refrigerator is operated in such an operation pattern, the heat absorption capacity of the evaporator (external heat exchanger) exceeds the heat radiation capacity of the condenser (internal heat exchanger), so that the heat of the refrigeration cycle is reduced. The balance is lost and the amount of heat absorbed becomes larger than the amount of heat released. In such an operating state, the refrigeration cycle raises the condensing temperature so as to maintain a heat balance by increasing the amount of heat released.In this case, when the condensing temperature increases, the compressor becomes overloaded, and this overload operation is performed. If the condition continues for a certain period of time, the protector arranged in the motor power supply circuit of the compressor will operate and the operation of the refrigerator will stop, and the cooling / heating device in the vending machine will not function, and cold and hot products will not be available. There is a possibility that sales troubles such as the inability to sell will progress.
[0015]
In addition, the heat balance of the refrigeration cycle is lost because a part of the internal heat exchangers arranged in each product room in the refrigerator functions as a condenser and the other internal heat exchangers function as an evaporator. It can also occur in an operating mode where the unit is dormant (eg, the CCH operating mode shown in FIG. 13).
(2) In addition, the heat pump operation of the refrigerator causes the internal heat exchanger of the internal unit to radiate heat into the interior of the refrigerator as a condenser, thereby heating the products stored in the product room. In the hot operation mode in which the product is circulated and heated to heat the product), when the heat release amount of the internal heat exchanger functioning as a condenser suddenly increases due to the above-mentioned imbalance in heat balance. The temperature of the heat exchanger itself rises rapidly with the condensing temperature. Therefore, before the product temperature rises, the condenser (inside-chamber heat exchanger) exceeds the upper limit of the set temperature, and as a result, the refrigerant supply to the heat exchanger is stopped and stopped. In addition, there is a problem that the products in the product room are not heated to the appropriate temperature for sale.
[0016]
(3) Further, in an operation pattern in which the external heat exchanger of the external unit functions as an evaporator (see FIGS. 15 and 17), when the ambient temperature is high as in summer, the amount of heat absorbed increases and the refrigeration load increases. growing. For this reason, in the refrigerating cycle, the condensing temperature rises so as to maintain the heat balance with the evaporating temperature, and the refrigerator may be stopped due to overload operation. Conversely, when the ambient temperature decreases as in winter, the evaporation temperature in the external heat exchanger functioning as an evaporator also decreases. Is frosted, and this becomes ventilation resistance, and the heat exchange ability is extremely reduced. In such a situation, the evaporating temperature further decreases, and the operating efficiency of the refrigerator deteriorates.
[0017]
The present invention has been made in view of the above points, and sells hot products to vending machines that sell cold and hot products by employing a heat pump type refrigerator as a cooling / heating device in the refrigerator. It is an object of the present invention to provide a cooling / heating device in a refrigerator in which an operation control method is improved so that a stable operation can be maintained while preventing an overload of the refrigerator and a decrease in operation efficiency in an operation mode.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a product storage is partitioned into a plurality of product rooms, and cold or warm air is circulated and blown into each of the product rooms to sell the stored products as a hot product or a cold product. A cooling / heating device inside a vending machine, wherein the cooling / heating device inside the refrigerator is installed outside the warehouse by combining a compressor, a heat exchanger outside the warehouse, and a fan outside the warehouse; A natural refrigerant is sealed in a refrigeration circuit passing through an in-compartment unit arranged in a product room by combining a mechanism, an in-compartment heat exchanger, and an in-compartment fan, and the stored products in the compartment are cooled and heated by the refrigeration cycle. In a heat pump that cools and heats
In an operation mode in which at least one in-compartment heat exchanger among the in-compartment units provided in each product room is used as a condenser to heat the products stored in the product room, an in-compartment heat exchanger that radiates heat as a condenser is provided. An operation control means for suppressing the condensation temperature and the heat release amount from increasing beyond a predetermined value is provided (claim 1), and the operation control means is specifically configured in the following manner.
[0019]
(1) As an operation control means, a temperature sensor for detecting the temperature of the in-compartment heat exchanger is provided for each in-compartment unit, and the temperature sensor attached to the in-compartment heat exchanger functioning as a condenser A control device that adjusts the amount of blown air by changing the rotation speed of a blower fan attached to the heat exchanger functioning as an evaporator based on the detection signal of (2).
In the above configuration, in the operation mode in which the internal heat exchanger is dissipating heat to the interior as a condenser, the temperature of the internal heat exchanger of the internal unit due to the heat balance of the refrigeration cycle described above is lost. Is higher than a predetermined value, the blower fan attached to the heat exchanger radiating heat as the evaporator (external heat exchanger or internal heat exchanger) based on the detection signal of the temperature sensor. Decrease the rotation speed to reduce the air flow. As a result, the amount of heat absorbed by the refrigeration cycle is reduced, and the amount of heat radiation is also reduced so as to balance the heat, and the condensation temperature is reduced. This avoids the overload operation of the compressor and the stop of the hot operation due to the rapid rise in the temperature of the internal heat exchanger functioning as a condenser, and keeps the internal cooling / heating device stable. Can be operated continuously.
[0020]
(2) As an operation control means, a temperature sensor for detecting the temperature of the internal heat exchanger is disposed for each internal unit, and an electronic expansion valve is used for the expansion mechanism, and the internal unit functions as a condenser. A control device is provided for changing the valve opening of the electronic expansion valve to adjust the refrigerant circulation amount of the refrigeration circuit based on a detection signal of the temperature sensor attached to the heat exchanger (claim 3).
In the above, when the temperature of the in-compartment heat exchanger of the in-compartment unit that radiates heat into the compartment as a condenser rises to a predetermined value or more, the valve opening degree of the electronic expansion valve is determined based on the detection signal of the temperature sensor. , The amount of refrigerant circulating in the refrigeration circuit decreases. As a result, the amount of heat absorption and the amount of heat dissipation of the refrigeration cycle are reduced as in the case of the above item (1), and the condensing temperature is maintained in an appropriate temperature range, so that the cooling / heating device in the refrigerator can be operated stably.
[0021]
(3) As an operation control means, a temperature sensor for detecting the temperature of the in-compartment heat exchanger is provided for each in-compartment unit, and the temperature sensor attached to the in-compartment heat exchanger that radiates heat as a condenser is detected. A control device is provided for adjusting the refrigerant circulation amount of the refrigeration circuit by changing the rotation speed of the compressor by inverter control or the like based on the signal (claim 4).
Accordingly, when the condensation temperature of the internal heat exchanger that radiates heat into the internal storage as the condenser increases, the rotational speed of the compressor is reduced based on the detection signal of the temperature sensor to reduce the refrigerant circulation amount. Thus, the condensation temperature can be maintained at an appropriate temperature in the same manner as in (2) above.
(4) As operation control means, a temperature sensor for detecting the temperature of the in-compartment heat exchanger is disposed for each in-compartment unit, and an electronic expansion valve is adopted for the expansion mechanism, and the in-compartment heat exchange for releasing heat as a condenser. A control device for adjusting a refrigerant circulation amount of the refrigeration circuit by changing a valve opening degree of the electronic expansion valve and a rotation speed of the compressor based on a detection signal of the temperature sensor attached to the vessel (claim 5). .
[0022]
This control device adjusts the refrigerant circulation amount by combining the valve opening control of the electronic expansion valve according to the above item (2) and the rotation speed control of the compressor according to the item (3) to maintain the condensing temperature at an appropriate temperature. Even if one of the opening degree of the electronic expansion valve or the number of revolutions of the compressor exceeds the control range depending on the operation state of the internal cooling / heating device, the other control can cover the operation. Therefore, it is possible to appropriately cope with a wide range of load fluctuation.
(5) In the above items (1) to (4), the temperature sensors are arranged on the suction side and the discharge side of the internal heat exchanger, and the operation is controlled based on the temperature difference signal of the detected temperature. Item 6).
[0023]
In other words, in a state where the inside air is blown to the inside heat exchanger that is radiating heat as a condenser and heat exchange is performed, the larger the difference in air temperature between the suction side and the discharge side of the condenser, the more into the inside Has a large heat radiation amount, and the heat radiation amount is small when the temperature difference is small. Therefore, two sets of temperature sensors are separately arranged on the suction side and the discharge side of the internal heat exchanger, and based on the temperature difference signal obtained from the detection signal, the temperature sensors are set as described in the above items (1) to (4). If the amount of air blown to the internal heat exchanger, the valve opening of the electronic expansion valve, and the number of revolutions of the compressor are controlled, appropriate operation control can be performed according to the operating conditions at that time.
(6) In an operation mode in which a temperature sensor for detecting an ambient temperature is provided in an external unit as operation control means, and in an operation mode in which an external heat exchanger is used as an evaporator to absorb heat, an ambient temperature signal detected by the temperature sensor is detected. A control device is provided based on which the number of rotations of the external fan is changed to adjust the amount of air blown from the external heat exchanger.
[0024]
In the operation mode in which heat is absorbed using the external heat exchanger as an evaporator, the amount of heat absorbed by the refrigeration cycle increases when the ambient temperature is high, such as in summer. Therefore, when the ambient temperature detected by the temperature sensor becomes high, the amount of heat absorbed by the evaporator (external heat exchanger) is reduced by controlling the rotation speed of the external fan to decrease, thereby reducing this. The amount of heat released from the internal heat exchanger functioning as a condenser so as to balance heat is reduced. As a result, similarly to the above-mentioned item (1), the overcooling operation of the refrigerator and the transient rise of the condensing temperature can be avoided to stably operate the internal cooling / heating device.
Further, according to the present invention, as a measure against winter in which the ambient temperature is low, when the ambient temperature falls below a predetermined temperature in an operation mode using the external heat exchanger as an evaporator, the fan blowing direction of the external unit is compressed. Operation control means for switching from the heat exchanger to the heat exchanger (claim 7). As a specific mode of the operation control means, a temperature sensor for detecting an ambient temperature is provided in an external unit. A fan control device for rotating the external fan forward or reverse based on the ambient temperature signal detected by the temperature sensor (claim 9), or as an external fan, two fans whose blowing directions are opposite to each other, A fan control device is provided for selectively operating one of the two fans based on an ambient temperature signal detected by the temperature sensor (Claim 10).
[0025]
As described above, in the case where the ambient temperature is reduced (in winter) by the operation pattern of heating the product using the external heat exchanger as the evaporator and the internal heat exchanger as the condenser, the external unit is ventilated to the external unit. By reversing the blowing direction of the external fan from the normal operation, the air whose temperature has increased flows through the external heat exchanger via the compressor. As a result, it is possible to prevent a drastic decrease in the evaporating temperature and frost formation on the external heat exchanger, thereby maintaining a stable operation of the refrigerator.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples shown in FIGS.
[Example 1]
FIGS. 1 (a) and 1 (b) show an embodiment in which a fan rotation speed control device according to claim 2 of the present invention is provided as operation control means of a cooling / heating device in a refrigerator. The block diagram of (b) shows the flowchart. Here, the fan rotation speed control device includes a rotation speed change determination unit and a rotation speed command unit, and the temperature sensor in the drawing is attached to the unit 7 in each product room in FIG. A temperature sensor 13 that is disposed in heat transfer with the vessel 7a is used.
[0027]
During operation of the in-compartment cooling / heating device, the processing of the flowchart shown in FIG. 1B is executed. That is, the rotation speed change determination unit reads the operation mode of the in-compartment cooling / heating device at that time, and the operation mode (CCH, CCH, in which at least one in-compartment heat exchanger 7 is used as a condenser to heat the product stored in the product room. In the CHH operation), the detection signal (condensation temperature of the internal heat exchanger) of the temperature sensor 13 disposed in the internal unit 7 is input to a rotational speed change determining unit to determine a change in the fan rotational speed. Heat exchanger functioning as an evaporator in the above (external heat exchanger in the operation mode of FIGS. 15 and 17 or heat exchanger in the refrigerator functioning as an evaporator in the operation mode of FIGS. 13 and 16) The number of revolutions of the blower fan is changed as described below to adjust the amount of heat absorbed by the heat exchanger functioning as an evaporator. As a means for changing the number of revolutions of the blower fan, for example, there is a method of changing the drive voltage of the external fan by inverter control, or changing the energization time ratio (duty ratio).
[0028]
Next, the determination and control of the change in the number of revolutions of the fan will be described with reference to Tables 1 to 4 below. First, Table 1 shows the determination and control of the basic rotation speed change for the blower fan attached to the heat exchanger functioning as the evaporator in the operation mode.
[0029]
[Table 1]
Figure 2004184019
In Table 1, the detection signal (condensation temperature) of the temperature sensor attached to the internal heat exchanger in which the rotation speed change determination unit radiates heat as a condenser is read, and the condensation temperature is equal to or lower than a set temperature Tc1 serving as a determination criterion. If so, the change judgment is “as is” and the rotation of the blower fan (external or internal fan) combined with the heat exchanger functioning as an evaporator (external or internal heat exchanger) The number change amount is set to “maintain the current state” and the current operation state is continued.
[0030]
On the other hand, as described above, when the condensing temperature rises to the set temperature Tc1 or more due to the heat balance between the heat absorption amount and the heat release amount of the refrigeration cycle, the rotation speed of the blower fan of the evaporator is reduced (−R1 ) And reduce the amount of air blow to reduce the amount of heat absorbed by the evaporator. As a result, in the refrigeration cycle, the amount of heat absorbed by the evaporator is reduced and the amount of heat released from the condenser is reduced so that the heat balance is achieved. Stable operation can be maintained by avoiding operation troubles such as a decrease in efficiency, an overload operation, and a stoppage of a refrigerator due to a rapid rise in condensing temperature.
Also, in this case, by setting the condensing temperature and the change judgment as shown in Table 2, the condensing temperature of the internal heat exchanger can be kept within a certain range.
[0031]
[Table 2]
Figure 2004184019
That is, in Table 2, the condensing temperatures Tc2 to Tc3 are set as determination ranges, and when the condensing temperature deviates from this set range during operation, the change determination is set to "change", and when Tc3 or more, the rotation of the blower fan of the evaporator is changed. The number is reduced to -R3 to reduce the amount of heat absorbed by the evaporator as described above. Conversely, when the temperature is equal to or lower than Tc2, the fan speed is increased to + R2 to control the condensing temperature to maintain the range of Tc2 to Tc3.
[Example 2]
Next, an embodiment corresponding to claim 3 of the present invention is shown in FIGS. 2 (a) and 2 (b). In this embodiment, the temperature sensor 13 is disposed in the same manner as in the first embodiment with respect to the in-compartment heat exchanger of the in-compartment unit arranged in each product room in the compartment, and furthermore, the expansion in the refrigeration circuit of FIG. After adopting an electronic expansion valve as the mechanism 9, as shown in FIG. 2A, a control device is provided with a valve opening change determining section and a valve opening command section, and the operation of the cooling / heating device in the refrigerator is performed. At times, the flowchart of FIG. 2B is executed.
[0032]
Then, the valve opening change determination unit reads the operation mode of the in-compartment cooling / heating device at that time in the same manner as in the first embodiment, and heats the product stored in the product room with at least one in-compartment heat exchanger as a condenser. In the CCH and CHH operation modes, the detection signal (condensation temperature) of the temperature sensor disposed in the internal heat exchanger functioning as a condenser is input to the valve opening change determination unit to determine the valve opening change. Then, the determination result is sent to the valve opening command section, and the valve opening of the electronic expansion valve is changed as shown in Tables 3 to 6 below so as to adjust the condensing temperature of the refrigeration cycle within an appropriate range. .
[0033]
[Table 3]
Figure 2004184019
[0034]
[Table 4]
Figure 2004184019
[0035]
[Table 5]
Figure 2004184019
[0036]
[Table 6]
Figure 2004184019
That is, in Table 3, if the condensing temperature (detection signal of the temperature sensor) read by the valve opening change determination unit is equal to or lower than the set temperature Tc1, the change determination is “as is”, and the change in the valve opening of the electronic expansion valve is changed. The quantity is maintained as is, and the current operating state is continued. On the other hand, when the condensing temperature rises to the set temperature Tc1 or higher, the valve opening of the electronic expansion valve is reduced to -P1 by a command from the valve opening command unit, and the refrigerant flow rate in the refrigeration circuit is reduced. As a result, the amount of heat absorbed and the amount of heat released in the refrigeration cycle are reduced. In addition, operation troubles such as a stoppage of a refrigerator due to a rapid rise in condensing temperature can be avoided and stable operation can be performed.
[0037]
Further, in Table 4, similarly to Table 2 in the first embodiment, the condensing temperatures Tc2 to Tc3 are set as determination ranges, and when the condensing temperature deviates from this set range, the change determination is “change”. At Tc3 or higher, the valve opening of the electronic expansion valve is reduced to -P3, and conversely, at Tc2 or lower, the valve opening is controlled to open to + P2.
On the other hand, in Tables 5 and 6, the valve opening degree is defined as a temperature difference ΔT1, ΔT2, ΔT3 between the condensing temperatures detected by the temperature sensor disposed on the suction side and the temperature sensor disposed on the discharge side of the internal heat exchanger. The change is inputted to the change judging section, and the change amount of the valve opening is judged based on the temperature difference signal (corresponding to claim 6 of the present invention).
[0038]
That is, in the operation mode in which the internal heat exchanger of the internal unit combined with the internal fan is radiating heat into the interior as a condenser, the larger the temperature difference between the suction side temperature and the discharge side temperature of the heat exchanger, the larger the difference. The amount of heat radiation is large and the amount of heat radiation is small if the temperature difference is small. Therefore, if the change in the valve opening is determined using the temperature difference as the detection information of the condensing temperature, the determination can be made more accurately than the determinations in Tables 3 and 4.
Here, in Table 5, if the temperature difference of the condensing temperature is equal to or smaller than ΔT1, the change determination is “as is”, the change amount of the valve opening of the electronic expansion valve is “maintained”, and the current operation state is continued. Rises to ΔT1 or more, the valve opening of the electronic expansion valve is reduced to −P4 to reduce the refrigerant flow rate in the refrigeration circuit. In Table 6, the temperature difference ΔT2 to ΔT3 is set as a determination setting range, and when the temperature difference of the condensing temperature deviates from this setting range, the change determination is “changed”. Is controlled to −P6, and conversely, when ΔT2 or less, the valve opening is controlled to open to + P5.
[0039]
The temperature difference signal of the condensing temperature obtained by the temperature sensors disposed on the suction side and the discharge side of the condenser as described above is used for the fan rotation speed control device of the first embodiment and the third embodiment of the third embodiment described later. It can be applied as detection information of the condensation temperature to the compressor rotation speed control device.
[Example 3]
Next, an embodiment corresponding to claim 4 of the present invention is shown in FIGS. In this embodiment, the temperature sensor 13 is disposed in the refrigerator heat exchanger of the refrigerator unit in the refrigerator unit arranged in each product room in the refrigerator in the same manner as in the first embodiment, and the refrigerator in the refrigeration circuit of FIG. After the rotation speed of the compressor 8a of the outer unit 8 is variably controlled by inverter control, as shown in FIG. 3 (a), the control device includes a rotation speed change determination unit and a rotation speed command unit of the compressor. Is composed.
[0040]
FIG. 3B is a flowchart of the control of the number of revolutions of the compressor. When the vending machine is operated, the number of revolutions change judging unit operates in the same manner as in the first and second embodiments. In the operation mode in which the product stored in the product room is heated using at least one internal heat exchanger 7 as a condenser, the detection signal (condensation temperature) of the temperature sensor arranged in the internal unit 7 is changed in rotation speed. The result is input to the determination unit to determine the change in the number of rotations of the compressor, and the determination result is sent to the number of rotations command unit to change the number of rotations of the compressor as shown in Tables 7 and 8 below. The refrigerant flow rate in the refrigeration circuit is adjusted so as to keep the condensation temperature of the refrigeration circuit in an appropriate range.
[0041]
[Table 7]
Figure 2004184019
[0042]
[Table 8]
Figure 2004184019
That is, in Table 7, the rotation speed change determination unit of the compressor reads the detection signal (condensation temperature) of the temperature sensor attached to the internal heat exchanger functioning as a condenser, and determines the condensation temperature. If the temperature is equal to or lower than the temperature Tc1, the change determination is “as is” and the amount of change in the number of revolutions of the compressor is “maintained as is”, and the current operation state is continued. On the other hand, when the condensing temperature rises to the set temperature Tc1 or more, the rotation speed of the compressor is reduced to -N1 to reduce the refrigerant flow rate in the refrigeration circuit. As a result, similarly to the control method for changing the valve opening of the electronic expansion valve described in the second embodiment, the amount of heat absorption and the amount of heat radiation in the refrigeration cycle are reduced, which is a problem in the conventional internal cooling / heating device. In addition, it is possible to avoid operating troubles such as reduced operating efficiency of the refrigerator, overload operation, and stop of the refrigerator due to a sudden rise in the condensing temperature, thereby stabilizing the operation.
[0043]
On the other hand, in Table 8, similarly to Table 4 in Embodiment 2 described above, the condensing temperatures Tc2 to Tc3 are set as determination ranges, and when the condensing temperature deviates from this set range, the change determination is “change”. At Tc3 or higher, the rotation speed of the compressor is decelerated to -N3, and at Tc2 or lower, the rotation speed is increased to + N2. Thereby, the condensing temperature can be maintained within a certain range.
[Example 4]
Further, as an application example of the present invention, the operation control of the refrigerator is performed by using both the valve opening control of the electronic expansion valve according to the second embodiment and the rotation speed control of the compressor according to the third embodiment. Can also be performed. According to this control, even if one of the valve opening degree of the electronic expansion valve or the rotation speed of the compressor exceeds the control range depending on the operation state of the internal cooling / heating device, it can be covered by the other control. It can respond appropriately to load fluctuations.
[0044]
[Example 5]
Next, an embodiment corresponding to claim 7 of the present invention will be described with reference to FIGS. This embodiment is similar to the summer mode in the operation mode (see FIGS. 15 and 17) in which the external heat exchanger 8a arranged in the external unit 8 of the internal cooling / heating device in FIG. 10 absorbs heat as an evaporator. When the ambient temperature is high, the load on the refrigerator increases and the evaporating temperature rises. As a result, the heat radiation and condensation temperature of the internal heat exchanger functioning as a condenser increase, and the refrigerator becomes overloaded. This is to prevent driving.
That is, in this embodiment, the control device shown in FIG. 4A includes a rotation speed change determination unit for the external fan and a rotation speed instruction unit. Then, as shown in FIG. 6, the ambient temperature detected by the outside air temperature sensor 14 disposed in the vicinity of the outside air intake of the machine room or the temperature sensor 15 disposed in the wind tunnel of the external unit 8 is input to the rotation speed change determination unit. Then, in the CCH and CHH operation modes (the external heat exchanger functions as an evaporator) shown in FIGS. 15 and 17, a change in the rotation speed of the external fan is determined, and the external fan is determined based on the determination result. Is changed (see the flowchart of FIG. 4 (b)) to change the amount of heat absorbed by the refrigeration cycle, and the amount of heat released from the condenser (in-compartment heat exchanger) is adjusted accordingly.
[0045]
Table 9 shows the determination and control of the change in the number of revolutions for the external fan.
[0046]
[Table 9]
Figure 2004184019
That is, during the operation of the in-compartment cooling / heating device, the rotation speed changing unit and the rotation speed commanding unit execute the processing of the flowchart shown in FIG. 4B, and the temperature of the outside air blown to the external unit 8 changes from Ts1 to Ts2 → When the temperature rises from Ts3 to Ts4 to Ts5, the rotation speed of the external fan 8c mounted on the external unit 8 combined with the external heat exchanger 8a is decelerated from M1 to M2 to M3 to M4 in accordance with the increase in the external temperature. Control to reduce the air flow. As a result, the amount of heat absorbed in the refrigeration cycle is reduced, so that the amount of heat released from the condenser (in-compartment heat exchanger) is reduced in the same manner as described in the previous embodiment, and the overload operation of the refrigerator can be avoided.
[0047]
[Example 6]
Next, an embodiment corresponding to claims 8 and 9 of the present invention will be described with reference to FIGS. 5 (a), (b) and FIG. In this embodiment, as a winter countermeasure for the cooling / heating device in the refrigerator, the external heat exchanger is used when the ambient temperature decreases in an operation mode in which the external heat exchanger is used as an evaporator to absorb heat (see FIGS. 15 and 17). This prevents frost from adhering to the fin surface of the (evaporator), thereby reducing the operation efficiency of the refrigerator.
Therefore, in this embodiment, a reversible fan is used as the external fan 8c combined with the external unit 8 in FIG. 6, and the control device shown in FIG. It has a determination unit and a rotation direction command unit, and executes the processing of the flowchart shown in FIG. That is, in the CCH, CHH operation mode (the external heat exchanger absorbs heat as an evaporator) shown in FIG. 15 or FIG. 17, the temperature sensor disposed in the external unit (in FIG. The outside air temperature detected by the outside air temperature sensor 14 disposed near the intake of the outside air to be changed or the temperature sensor 15) disposed on the wind tunnel of the outside unit is input to the rotation direction change determination unit, and the rotation direction of the outside fan The change is determined, and based on the result of the determination, the rotation direction of the external fan is controlled in the forward / reverse direction as shown in Table 10 below to switch the blowing direction to the directions of arrows A and B in FIG. Thus, during operation in a state where the ambient temperature is low as described later, frost formation on the fin surface of the external heat exchanger is prevented.
[0048]
[Table 10]
Figure 2004184019
That is, if the outside air temperature is equal to or higher than the set temperature Ts for determination, the outside fan 8c is rotated forward to allow the outside air taken into the machine room from the outside air inlet 2b to flow in the direction of arrow A, and the outside function as the evaporator. The heat is exchanged with the external heat exchanger 8b. On the other hand, when the outside air temperature is lower than the set temperature Ts as in winter, the outside fan 8c is reversed to switch the blowing direction from the arrow A to the arrow B. As a result, the low-temperature outside air that has flowed into the machine room from the exhaust port 1b on the rear side receives heat generated by the compressor in the process of flowing around the compressor 8a during operation, and heats and raises the temperature. Ventilate. In this case, since the temperature of the air that exchanges heat with the external heat exchanger 8b is rising, the evaporation temperature of the evaporator does not drop extremely and frost is formed on the surface of the heat exchanger. There is also an effect of melting the frost, thereby preventing frost formation on the external heat exchanger 8b and avoiding a decrease in the operating efficiency of the refrigerator.
[0049]
This embodiment can be implemented in combination with the control for changing the rotation speed of the external fan described in the fifth embodiment. That is, when the outside air temperature is lower than the set temperature, the outside fan reverses, and when the outside air temperature is higher than the set temperature, the outside fan is made to rotate forward, and the rotation speed of the outside fan is reduced with an increase in the outside air temperature. Control.
[Example 7]
FIG. 7 shows an application example of the sixth embodiment according to the tenth aspect of the present invention. In the external unit 8, two air blowing fans whose air blowing directions are opposite to each other are used as external fans. 8c-1 (blowing direction arrow A) and 8c-2 (blowing direction arrow B) are mounted. Then, in accordance with the determination in Table 10 described in the sixth embodiment, if the outside air temperature is equal to or higher than Ts, the blower fan 8c-1 is operated, the blower fan 8c-2 is stopped, and the outside air is blown in the direction of arrow A. When the outside air temperature falls below Ts, the blower fan 8c-1 is stopped and the operation of 8c-2 is switched to operation. Thus, as described in the above-described sixth embodiment, the temperature of the outside air flowing through the external heat exchanger 8b rises, and frost formation on the heat exchanger can be suppressed.
[0050]
【The invention's effect】
As described above, according to the present invention, the product storage is divided into a plurality of product rooms, and the cold or warm air is circulated and blown into each of the product rooms, and the stored products are sold as hot products or cold products. A cooling / heating device inside a vending machine, wherein the cooling / heating device inside the refrigerator is installed outside the refrigerator by combining a compressor, a heat exchanger outside the refrigerator, and a fan outside the refrigerator, a refrigerant expansion mechanism, In addition, a natural refrigerant is sealed in a refrigeration circuit that passes through an in-compartment unit installed in the product room by combining an in-compartment heat exchanger and an in-compartment fan, and the stored products in the compartment are cooled by cold and warm heat generated in the refrigeration cycle. , Consisting of a heat pump for heating,
In an operation mode in which at least one in-compartment heat exchanger among the in-compartment units provided in each product room is used as a condenser to heat the products stored in the product room, an in-compartment heat exchanger that radiates heat as a condenser is provided. 8. An operation control means for suppressing an increase in the condensing temperature and the heat radiation to a predetermined value or more, a rotation speed control device for a blower fan, a valve opening degree control device for an electronic expansion valve, and a rotation speed for a compressor according to claim 1 to 7. Equipped with a number control device, prevents the heat balance of the refrigeration cycle from being lost depending on the operation mode, and reduces the operation efficiency of the refrigerator, which has been a problem with the conventional cooling / heating device in the refrigerator, overload operation, and condensation. An operation trouble such as a stop of a refrigerator due to a rapid rise in temperature can be avoided to maintain a stable operation.
[0051]
In addition, as a measure against the winter of the in-compartment cooling / heating device, by providing the operation control means of claims 8 to 10, even in an operation mode in which the heat exchanger of the out-of-compartment unit functions as an evaporator when the outside air temperature is low. In addition, it is possible to prevent low-efficiency operation due to an excessive decrease in the evaporating temperature and prevent frost formation on the external heat exchanger.
[Brief description of the drawings]
FIGS. 1A and 1B are explanatory diagrams of a control device corresponding to a first embodiment of the present invention, wherein FIG. 1A is a block diagram of the control device, and FIG.
FIGS. 2A and 2B are explanatory diagrams of a control device according to a second embodiment of the present invention, wherein FIG. 2A is a block diagram of the control device, and FIG.
FIGS. 3A and 3B are explanatory diagrams of a control device according to a third embodiment of the present invention, wherein FIG. 3A is a block diagram of the control device, and FIG.
FIGS. 4A and 4B are explanatory diagrams of a control device corresponding to a fourth embodiment of the present invention, wherein FIG. 4A is a block diagram of the control device, and FIG.
FIGS. 5A and 5B are explanatory diagrams of a control device corresponding to a sixth embodiment of the present invention, wherein FIG. 5A is a block diagram of the control device, and FIG.
FIG. 6 is a configuration layout diagram of a cooling / heating device in a refrigerator corresponding to a sixth embodiment of the present invention.
FIG. 7 is a configuration layout diagram of an in-compartment cooling / heating device corresponding to a seventh embodiment of the present invention.
FIG. 8 is a side sectional view showing a schematic configuration of a hot and cold vending machine to which the present invention is applied;
FIG. 9 is a front view of the inside of the refrigerator in FIG. 8;
FIG. 10 is a configuration diagram of a conventional example of a cooling / heating device in a refrigerator in FIG.
11 is a refrigeration circuit diagram of FIG.
12A and 12B are explanatory diagrams of a CCC operation mode by the refrigeration circuit of FIG. 11, wherein FIG. 12A is a diagram illustrating a flow of a refrigerant in the refrigeration circuit, and FIG. 12B is a diagram illustrating a time chart of operation control.
FIG. 13 is a diagram showing a refrigerant flow corresponding to the CCH operation mode in the refrigeration circuit of FIG. 11;
FIG. 14 is a diagram illustrating a flow of a refrigerant corresponding to a CCH operation mode in an operation state different from FIG. 13;
FIG. 15 is a diagram showing a refrigerant flow corresponding to a CCH operation mode in an operation state different from that of FIG. 14;
FIG. 16 is a diagram showing a refrigerant flow corresponding to the CHH operation mode in the refrigeration circuit of FIG. 11;
FIG. 17 is a diagram illustrating a refrigerant flow corresponding to the CHH operation mode in an operation state different from that in FIG. 16;
FIG. 18 is a diagram illustrating a flow of a refrigerant corresponding to a CCH operation mode in an operation state different from FIG. 17;
FIG. 19 is a block diagram showing a basic operation control system of the cooling / heating device in the refrigerator.
FIG. 20 is a block diagram showing a conventional control device for a cooling / heating device in a refrigerator.
FIG. 21 is a diagram showing a flowchart of the control device of FIG. 20;
[Explanation of symbols]
1 Vending machine cabinet
4A, 4B, 4C Product room
5 Product storage rack
7 In-chamber cooling / heating unit
7a Internal heat exchanger
7c Inside fan
8 Cooling / heating unit outside unit
8a compressor
8b Outside heat exchanger
8c Outside fan
9 Expansion mechanism
11 products
13 Temperature sensor arranged in the unit inside the refrigerator
14 Outside air temperature sensor
15 Temperature sensor arranged in the outside unit

Claims (10)

商品収納庫を複数の商品室に仕切り、商品室ごとにその室内に冷気もしくは暖気を循環送風して収納商品をホット商品もしくはコールド商品として販売する自動販売機の庫内冷却/加熱装置であって、前記庫内冷却/加熱装置を、圧縮機,庫外熱交換器,庫外ファンを組合せて庫外側に設置した庫外ユニット、冷媒膨張機構、および庫内熱交換器,庫内ファンを組合せて商品室内に配備した庫内ユニットを経由する冷凍回路に自然冷媒を封入し、その冷凍サイクルで発生する冷熱,温熱で庫内の収納商品を冷却,加熱するヒートポンプで構成したものにおいて、
各商品室に配備した庫内ユニットのうち、少なくとも1基の庫内熱交換器を凝縮器としてその商品室に収納した商品を加熱する運転モードで、凝縮器として放熱する庫内熱交換器の凝縮温度,放熱量が所定値以上に増大するのを抑える運転制御手段を備えたことを特徴とする自動販売機の庫内冷却/加熱装置。
A vending machine cooling / heating device for partitioning a product storage into a plurality of product rooms, and circulating or blowing cold or warm air into each of the product rooms to sell the stored products as hot or cold products. An external unit, a refrigerant expansion mechanism, and an internal heat exchanger and an internal fan, wherein the internal cooling / heating device is installed outside the internal storage by combining a compressor, an external heat exchanger, and an external fan. A natural pump is filled in a refrigeration circuit via an in-compartment unit installed in the product room, and a heat pump that cools and heats stored products in the compartment with cold and warm heat generated in the refrigeration cycle.
In an operation mode in which at least one in-compartment heat exchanger among the in-compartment units provided in each product room is used as a condenser to heat the products stored in the product room, an in-compartment heat exchanger that radiates heat as a condenser is provided. An interior cooling / heating device for a vending machine, comprising an operation control means for suppressing an increase in a condensing temperature and a heat radiation amount to a predetermined value or more.
請求項1に記載の庫内冷却/加熱装置において、運転制御手段として、庫内ユニットごとにその庫内熱交換器の温度を検出する温度センサを配置した上で、凝縮器として機能している庫内熱交換器に付設した前記温度センサの検出信号を基に、蒸発器として機能している熱交換器に付設した送風ファンの回転数を変更して送風風量を調整する制御装置を備えたことを特徴とする自動販売機の庫内冷却/加熱装置。2. The internal cooling / heating device according to claim 1, wherein a temperature sensor for detecting the temperature of the internal heat exchanger is provided for each internal unit as the operation control means, and the unit functions as a condenser. A control device that adjusts the amount of blown air by changing the number of rotations of a blower fan attached to the heat exchanger functioning as an evaporator based on a detection signal of the temperature sensor attached to the internal heat exchanger. A cooling / heating device in a vending machine, comprising: 請求項1に記載の庫内冷却/加熱装置において、運転制御手段として、庫内ユニットごとにその庫内熱交換器の温度を検出する温度センサを配置するとともに、膨張機構に電子膨張弁を採用し、凝縮器として機能している庫内熱交換器に付設した前記温度センサの検出信号を基に、電子膨張弁の弁開度を変更して冷凍回路の冷媒循環量を調整する制御装置を備えたことを特徴とする自動販売機の庫内冷却/加熱装置。2. The cooling / heating device according to claim 1, wherein a temperature sensor for detecting the temperature of the internal heat exchanger is provided for each internal unit as the operation control means, and an electronic expansion valve is used for the expansion mechanism. Then, based on the detection signal of the temperature sensor attached to the internal heat exchanger functioning as a condenser, based on the detection signal of the electronic expansion valve, a control device that changes the valve opening of the electronic expansion valve to adjust the refrigerant circulation amount of the refrigeration circuit. A cooling / heating device in a vending machine, comprising: 請求項1に記載の庫内冷却/加熱装置において、運転制御手段として、庫内ユニットごとにその庫内熱交換器の温度を検出する温度センサを配置した上で、凝縮器として機能している庫内熱交換器に付設した前記温度センサの検出信号を基に、圧縮機の回転数を変更して冷凍回路の冷媒循環量を調整する制御装置を備えたことを特徴とする自動販売機の庫内冷却/加熱装置。2. The internal cooling / heating device according to claim 1, wherein a temperature sensor for detecting the temperature of the internal heat exchanger is provided for each internal unit as the operation control means, and the unit functions as a condenser. A vending machine characterized by comprising a control device that adjusts the refrigerant circulation amount of the refrigeration circuit by changing the rotation speed of the compressor based on the detection signal of the temperature sensor attached to the internal heat exchanger. In-chamber cooling / heating device. 請求項1に記載の庫内冷却/加熱装置において、運転制御手段として、庫内ユニットごとにその庫内熱交換器の温度を検出する温度センサを配置するとともに、膨張機構に電子膨張弁を採用し、凝縮器として機能している庫内熱交換器に付設した前記温度センサの検出信号を基に、電子膨張弁の弁開度,および圧縮機の回転数を変更して冷凍回路の冷媒循環量を調整する制御装置を備えたことを特徴とする自動販売機の庫内冷却/加熱装置。2. The cooling / heating device according to claim 1, wherein a temperature sensor for detecting the temperature of the internal heat exchanger is provided for each internal unit as the operation control means, and an electronic expansion valve is used for the expansion mechanism. Then, based on the detection signal of the temperature sensor attached to the internal heat exchanger functioning as a condenser, the valve opening degree of the electronic expansion valve and the rotation speed of the compressor are changed to circulate the refrigerant in the refrigeration circuit. A cooling / heating device in a vending machine, comprising a control device for adjusting the amount. 請求項2ないし5のいずれかに記載の庫内冷却/加熱装置において、温度センサを庫内熱交換器の吸込側および吐出側に配置し、その検出温度の温度差信号を基に運転制御を行うようにしたことを特徴とする自動販売機の庫内冷却/加熱装置。6. The in-compartment cooling / heating device according to claim 2, wherein temperature sensors are arranged on the suction side and the discharge side of the in-compartment heat exchanger, and operation control is performed based on a temperature difference signal of the detected temperature. A cooling / heating device in a vending machine, wherein the cooling / heating device is provided. 請求項1に記載の庫内冷却/加熱装置において、運転制御手段として、庫外ユニットに周囲温度を検出する温度センサを配置した上で、庫外熱交換器が蒸発器として機能する運転モードでは、前記温度センサの検出信号を基に庫外ファンの回転数を変更して庫外熱交換器の送風風量を調整する制御装置を備えたことを特徴とする自動販売機の庫内冷却/加熱装置。The cooling / heating device according to claim 1, wherein the operation control means includes a temperature sensor for detecting an ambient temperature in an external unit, and an operation mode in which the external heat exchanger functions as an evaporator. And a control device for changing the number of rotations of the fan outside the refrigerator based on the detection signal of the temperature sensor to adjust the amount of air blown by the heat exchanger outside the refrigerator. apparatus. 商品収納庫を複数の商品室に仕切り、商品室ごとに冷気もしくは暖気を循環送風して庫内に収納した商品をホット商品もしくはコールド商品として販売する自動販売機の庫内冷却/加熱装置であって、前記庫内冷却/加熱装置を、圧縮機,庫外熱交換器,庫外ファンを組合せて庫外側に設置した庫外ユニット、冷媒膨張機構、庫内熱交換器,庫内ファンを組合せて商品収納庫の各商品室内に配置した庫内ユニットを経由する冷凍回路に自然冷媒を封入し、その冷凍サイクルで発生する冷熱,温熱で庫内の収納商品を冷却,加熱するヒートポンプで構成したものにおいて、
庫外熱交換器を蒸発器として吸熱する運転モードで、周囲温度が所定温度以下に低下した際に、庫外ユニットのファン送風方向を圧縮機から熱交換器に向くように切換える運転制御手段を備えたことを特徴とする自動販売機の庫内冷却/加熱装置。
A vending machine cooling / heating device for a vending machine that divides a product storage into a plurality of product rooms, circulates cool or warm air in each product room, and sells products stored in the store as hot or cold products. The cooling / heating device inside the refrigerator is combined with a compressor, a heat exchanger outside the refrigerator, a fan outside the refrigerator, and an external unit installed outside the refrigerator, a refrigerant expansion mechanism, a heat exchanger inside the refrigerator, and a fan inside the refrigerator. A natural refrigerant is sealed in a refrigeration circuit that passes through a unit inside the product storage room, and a heat pump that cools and heats the stored products in the refrigerator with the cold and warm heat generated by the refrigeration cycle. In things
In an operation mode in which the external heat exchanger is used as an evaporator to absorb heat, when the ambient temperature drops below a predetermined temperature, an operation control means for switching the fan blowing direction of the external unit from the compressor to the heat exchanger. A cooling / heating device in a vending machine, comprising:
請求項8に記載の庫内冷却/加熱装置において、運転制御手段として、庫外ユニットに周囲温度を検出する温度センサを配置した上で、該温度センサの検出信号を基に庫外ファンを正転もしくは逆転させる制御装置を備えたことを特徴とする自動販売機の庫内冷却/加熱装置。9. The internal cooling / heating device according to claim 8, wherein a temperature sensor for detecting an ambient temperature is disposed in the external unit as the operation control means, and the external fan is set to correct based on the detection signal of the temperature sensor. A cooling / heating device in a vending machine, comprising a control device for inverting or reversing. 請求項8に記載の庫内冷却/加熱装置において、運転制御手段として、庫外ユニットに周囲温度を検出する温度センサを配置するとともに、庫外ファンとして送風方向が互いに逆な2台のファンを備え、前記温度センサの検出信号を基に前記2台のファンのいずれか一方を選択的に運転する制御装置を備えたことを特徴とする自動販売機の庫内冷却/加熱装置。9. The internal cooling / heating device according to claim 8, wherein a temperature sensor for detecting an ambient temperature is provided in the external unit as the operation control means, and two fans whose blowing directions are opposite to each other are used as the external fans. And a control device for selectively operating one of the two fans based on a detection signal of the temperature sensor.
JP2002353686A 2002-12-05 2002-12-05 Inside cooling/heating device for vending machine Pending JP2004184019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353686A JP2004184019A (en) 2002-12-05 2002-12-05 Inside cooling/heating device for vending machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353686A JP2004184019A (en) 2002-12-05 2002-12-05 Inside cooling/heating device for vending machine

Publications (1)

Publication Number Publication Date
JP2004184019A true JP2004184019A (en) 2004-07-02

Family

ID=32754917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353686A Pending JP2004184019A (en) 2002-12-05 2002-12-05 Inside cooling/heating device for vending machine

Country Status (1)

Country Link
JP (1) JP2004184019A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138520A (en) * 2004-11-11 2006-06-01 Matsushita Electric Ind Co Ltd Heating system, and vending machine using it
JP2007183044A (en) * 2006-01-06 2007-07-19 Fuji Electric Retail Systems Co Ltd Cooling apparatus and vending machine
JP2008165721A (en) * 2006-12-08 2008-07-17 Fuji Electric Retail Systems Co Ltd Article storage device
JP2008171191A (en) * 2007-01-11 2008-07-24 Fuji Electric Retail Systems Co Ltd Commodity storage device
JP2008262489A (en) * 2007-04-13 2008-10-30 Fuji Electric Retail Systems Co Ltd Vending machine
JP2008276397A (en) * 2007-04-26 2008-11-13 Fuji Electric Retail Systems Co Ltd Cooling/heating device and automatic vending machine
JP2009076028A (en) * 2007-08-30 2009-04-09 Fuji Electric Retail Systems Co Ltd Vending machine
WO2009088057A1 (en) * 2008-01-10 2009-07-16 Fuji Electric Retail Systems Co., Ltd. Vending machine
JP2009169494A (en) * 2008-01-11 2009-07-30 Fuji Electric Retail Systems Co Ltd Vending machine
WO2009102020A1 (en) * 2008-02-15 2009-08-20 Fuji Electric Retail Systems Co., Ltd. Vending machine
WO2010035512A1 (en) * 2008-09-24 2010-04-01 富士電機リテイルシステムズ株式会社 Vending machine
JP2010159896A (en) * 2009-01-06 2010-07-22 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010169361A (en) * 2009-01-26 2010-08-05 Fuji Electric Retail Systems Co Ltd Cooling heating device
JP2010216771A (en) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd Local cooling system, and device for controlling the same and program
JP2010249456A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2011007392A (en) * 2009-06-24 2011-01-13 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2011080741A (en) * 2009-09-09 2011-04-21 Fujitsu General Ltd Heat pump device
ITPG20100017A1 (en) * 2010-03-05 2011-09-06 Gaia Tomarelli STEAM THERMODYNAMIC COMPRESSION SYSTEM FOR CLIMATE CHAMBERS AND REFRIGERATING PUMP MACHINES IN HEAT PUMP AND GENERAL, WHERE IT IS NECESSARY TO CHECK IN A CONTEMPORARY MANNER OR DISTINCT OR HUMAN, COLD AND RELATIVE HUMIDITY.
CN102667353A (en) * 2010-08-12 2012-09-12 富士电机株式会社 Localized cooling system, control device thereof, and program
JP2014517248A (en) * 2011-06-13 2014-07-17 リンゲルバック、フレッド Condenser / evaporator for cooling device and method thereof
JP2015215160A (en) * 2015-09-01 2015-12-03 三菱電機株式会社 Refrigerator and refrigeration device
JP2016004311A (en) * 2014-06-13 2016-01-12 富士電機株式会社 vending machine
CN106052062A (en) * 2016-05-30 2016-10-26 芜湖美智空调设备有限公司 Air conditioner device and control method thereof
US9513033B2 (en) 2011-06-13 2016-12-06 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
CN114562838A (en) * 2020-11-27 2022-05-31 富士电机株式会社 Refrigerant circuit device
CN115167560A (en) * 2022-06-27 2022-10-11 江苏上频高新科技有限公司 Temperature control method of high-precision temperature control box

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006138520A (en) * 2004-11-11 2006-06-01 Matsushita Electric Ind Co Ltd Heating system, and vending machine using it
JP2007183044A (en) * 2006-01-06 2007-07-19 Fuji Electric Retail Systems Co Ltd Cooling apparatus and vending machine
JP2008165721A (en) * 2006-12-08 2008-07-17 Fuji Electric Retail Systems Co Ltd Article storage device
JP2008171191A (en) * 2007-01-11 2008-07-24 Fuji Electric Retail Systems Co Ltd Commodity storage device
JP2008262489A (en) * 2007-04-13 2008-10-30 Fuji Electric Retail Systems Co Ltd Vending machine
JP2008276397A (en) * 2007-04-26 2008-11-13 Fuji Electric Retail Systems Co Ltd Cooling/heating device and automatic vending machine
JP2009076028A (en) * 2007-08-30 2009-04-09 Fuji Electric Retail Systems Co Ltd Vending machine
JP4557010B2 (en) * 2007-08-30 2010-10-06 富士電機リテイルシステムズ株式会社 vending machine
WO2009088057A1 (en) * 2008-01-10 2009-07-16 Fuji Electric Retail Systems Co., Ltd. Vending machine
CN101884057B (en) * 2008-01-10 2012-06-13 富士电机零售设备系统株式会社 Vending machine
JP2009169494A (en) * 2008-01-11 2009-07-30 Fuji Electric Retail Systems Co Ltd Vending machine
WO2009102020A1 (en) * 2008-02-15 2009-08-20 Fuji Electric Retail Systems Co., Ltd. Vending machine
JP2009193422A (en) * 2008-02-15 2009-08-27 Fuji Electric Retail Systems Co Ltd Vending machine
CN101946266B (en) * 2008-02-15 2012-07-04 富士电机零售设备系统株式会社 Vending machine
KR101149229B1 (en) 2008-02-15 2012-05-25 후지 덴키 리테일 시스템즈 가부시키가이샤 Vending machine
JP2010079351A (en) * 2008-09-24 2010-04-08 Fuji Electric Retail Systems Co Ltd Vending machine
CN101983392A (en) * 2008-09-24 2011-03-02 富士电机零售设备系统株式会社 Vending machine
CN101983392B (en) * 2008-09-24 2013-08-28 富士电机株式会社 Vending machine
KR101286436B1 (en) * 2008-09-24 2013-07-18 후지 덴키 가부시키가이샤 Vending machine
WO2010035512A1 (en) * 2008-09-24 2010-04-01 富士電機リテイルシステムズ株式会社 Vending machine
JP2010159896A (en) * 2009-01-06 2010-07-22 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2010169361A (en) * 2009-01-26 2010-08-05 Fuji Electric Retail Systems Co Ltd Cooling heating device
JP2010216771A (en) * 2009-03-18 2010-09-30 Fuji Electric Systems Co Ltd Local cooling system, and device for controlling the same and program
JP2010249456A (en) * 2009-04-17 2010-11-04 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2011007392A (en) * 2009-06-24 2011-01-13 Fuji Electric Retail Systems Co Ltd Refrigerant circuit device
JP2011080741A (en) * 2009-09-09 2011-04-21 Fujitsu General Ltd Heat pump device
ITPG20100017A1 (en) * 2010-03-05 2011-09-06 Gaia Tomarelli STEAM THERMODYNAMIC COMPRESSION SYSTEM FOR CLIMATE CHAMBERS AND REFRIGERATING PUMP MACHINES IN HEAT PUMP AND GENERAL, WHERE IT IS NECESSARY TO CHECK IN A CONTEMPORARY MANNER OR DISTINCT OR HUMAN, COLD AND RELATIVE HUMIDITY.
CN102667353B (en) * 2010-08-12 2014-12-24 富士电机株式会社 Localized cooling system, and control device thereof
CN102667353A (en) * 2010-08-12 2012-09-12 富士电机株式会社 Localized cooling system, control device thereof, and program
US10260779B2 (en) 2011-06-13 2019-04-16 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
US9513033B2 (en) 2011-06-13 2016-12-06 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
JP2014517248A (en) * 2011-06-13 2014-07-17 リンゲルバック、フレッド Condenser / evaporator for cooling device and method thereof
US10989445B2 (en) 2011-06-13 2021-04-27 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
US11549727B2 (en) 2011-06-13 2023-01-10 Aresco Technologies, Llc Refrigeration system and methods for refrigeration
JP2016004311A (en) * 2014-06-13 2016-01-12 富士電機株式会社 vending machine
JP2015215160A (en) * 2015-09-01 2015-12-03 三菱電機株式会社 Refrigerator and refrigeration device
CN106052062A (en) * 2016-05-30 2016-10-26 芜湖美智空调设备有限公司 Air conditioner device and control method thereof
CN106052062B (en) * 2016-05-30 2019-03-08 芜湖美智空调设备有限公司 Air-conditioning device and its control method
CN114562838A (en) * 2020-11-27 2022-05-31 富士电机株式会社 Refrigerant circuit device
CN115167560A (en) * 2022-06-27 2022-10-11 江苏上频高新科技有限公司 Temperature control method of high-precision temperature control box

Similar Documents

Publication Publication Date Title
JP2004184019A (en) Inside cooling/heating device for vending machine
CN103175364B (en) Refrigerator
JP4885481B2 (en) Cooling device operation method
JP5124952B2 (en) vending machine
JP5194742B2 (en) vending machine
GB2540167A (en) Combined heating and cooling systems
JP4404012B2 (en) vending machine
JPH0791753A (en) Air conditioner
JP2013185762A (en) Refrigerant cycle device
JP5056026B2 (en) vending machine
JP2006275467A (en) Showcase
CN115111871A (en) Refrigerating and freezing device and defrosting control method thereof
KR20180061763A (en) Refrigerator and method for controlling the same
JP4720530B2 (en) Refrigerant cycle equipment
JP2007303698A (en) Hot water supply system
JPH11224371A (en) Controller for vending machine
JPH09245237A (en) Automatic vending machine
JP2002243350A (en) Refrigerating system
JP2010210192A (en) Refrigerating cycle device and vending machine
JP5673651B2 (en) Open showcase
JP6515449B2 (en) vending machine
JP2004101050A (en) Cooling warehouse
JP2006031520A (en) Automatic vending machine with cooling and heating system
JP6566784B2 (en) Heating device and vending machine using the same
JP2019045017A (en) Merchandise storage box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070821