JP2004179014A - Plasma processing method and device - Google Patents

Plasma processing method and device Download PDF

Info

Publication number
JP2004179014A
JP2004179014A JP2002344788A JP2002344788A JP2004179014A JP 2004179014 A JP2004179014 A JP 2004179014A JP 2002344788 A JP2002344788 A JP 2002344788A JP 2002344788 A JP2002344788 A JP 2002344788A JP 2004179014 A JP2004179014 A JP 2004179014A
Authority
JP
Japan
Prior art keywords
tool electrode
workpiece
plasma
processing method
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002344788A
Other languages
Japanese (ja)
Inventor
Shinko Muro
真弘 室
Masayuki Takahashi
正行 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002344788A priority Critical patent/JP2004179014A/en
Publication of JP2004179014A publication Critical patent/JP2004179014A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing method and a device capable of realizing a high accuracy of form and roughness of a processed surface in processing of an optical component or a die of a complicated shape such as a free-form surface. <P>SOLUTION: A plasma 16 is generated between a processed article 11 coated with a thin compound film with its processed face containing carbon and a tool electrode 13 by impressing voltage on the tool electrode 13 while supplying gas including oxygen between the processed article 11 and the tool electrode 13, and the thin compound film 12 on the processed face is processed with oxygen radical generated from the plasma 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、AV機器やドキュメント作成機器等に用いられる光学部品や精密成形要金型等を製造するのに好適に適用されるプラズマ加工方法及び装置に関するものである。
【0002】
【従来の技術】
例えば、光学部品の製造においては、近年、形状の高精度化、加工面粗さの低減、形状の自由曲面化がますます強く要請されている。レーザ光学系要光学部品を例とした場合、最終的な出力の分解能を高め、高精度化、高精細化するために、使用するレーザの波長が短くなってきている。また、色収差のない反射光学系が増加する傾向にある。このような理由から、光学部品の形状精度、加工面粗さに対する要求がますます高くなっている。
【0003】
一方、光学部品の部品点数の低減も進んでいる。光学部品の形状は従来の軸対称形状から自由曲面と呼ばれる被対称形状に変化してきており、以前は複数の光学部品で構成されていた光学系が単純化されてきている。そのため、光学部品設計式の複雑、高度化が進展しており、それに伴って加工方法や形状精度の確保、形状精度の測定方法も高度化している。
【0004】
このような光学部品や光学部品金型の加工には、多くの場合、切削、研削、研磨といった機械加工が用いられている。即ち、切削加工や研削加工で光学部品の形状を形作り、その後所要の表面粗さを達成するために仕上げ加工として研磨を行なっている。その際に、切削、研削で十分な形状精度を確保しておき、加工痕を除去する程度の研磨により表面粗さを整える方法が最も好ましいと考えられている。
【0005】
図4を参照して、従来の研磨加工による表面仕上げ方法を説明する。研磨パッド41と被加工物42との間に、溶媒44に砥粒45を含ませたスラリー43を介在させ、研磨パッド41を矢印cのように回転させながら、矢印dのように被加工面に沿う方向に往復移動させることで研磨加工を行なう。こうして、スラリー43の材質によって多少の差はあるものの、被加工物42の表面において、化学的作用と物理的作用が生じ、被加工物42が加工される。
【0006】
ところで、研磨では加工面の粗さや形状精度に応じて徐々に砥粒45の直径を小さくして行き、所望の表面粗さ、形状精度に追い込んで行くため、研磨加工は加工に時間がかかるという問題がある。また、スラリー43が乾燥すると、被加工物42表面に固着してしまうため、研磨加工とその洗浄を一体のプロセスで行なう必要があり、加工工程が煩雑になるという問題もある。
【0007】
また、研磨において大面積を早く研磨するには、大きな研磨パッドを用いると良いが、近年の複雑な形状を持つ光学部品あるいは金型の場合、研磨パッドの圧力が不均一になり、その結果、研磨量に偏りが生じるため、切削や研削での形状精度を悪化させてしまうという問題がある。
【0008】
一方、比較的小さい研磨パッドを用いて形状精度を改善する場合がある。すなわち、切削あるいは研削加工後の形状を測定し、所望の形状に対して凸になっている部分を局所的に研磨する方法である。この方法の問題点は、局所加工であるうえに、加工と測定を繰り返しながら加工を進めるため、加工タクトが長くなること、作業に熟練を要すること、非対称形状の自由曲面の場合、特定位置を狙って研磨しながら、全体的にも均一に研磨することが困難であることなどが挙げられる。
【0009】
また、研磨時にゴミなどの異物が混入すると、異物によってスクラッチ傷が入る場合があり、研磨工程においてかなりのクリーン度が要求され、設備コストが高くなるという問題がある。
【0010】
このように、研磨加工は、光学部品や金型表面の鏡面加工方法として総じて有用な方法であるが、加工面が自由曲面のような複雑形状になった場合には、形状精度を確保することが困難である。
【0011】
以上のような機械的な加工方法における問題を解消する加工方法として、プラズマCVM(Chemical Vaporization Machining)と呼ばれる、ラジカル反応を利用した無歪加工方法が知られている(例えば、特許文献1参照。)。
【0012】
このプラズマCVMは、高圧力下において、加工電極からプラズマを発生させ、ハロゲンを主成分とする反応性ガスからラジカルを生成し、被加工物と反応、気化させ、除去加工する方法である。
【0013】
【特許文献1】
特開平9−63791号公報
【0014】
【発明が解決しようとする課題】
上記プラズマCVMは、大気圧でのプラズマ加工が可能であるが、例えば、特開平8−134651号公報に開示されているように、極めて反応性の高いガスを使用するため、その危険性を回避するために、加工室等に十分な安全対策をする必要があり、設備コストが高くなるという問題がある。
【0015】
また、プラズマCVMは、被加工物の材質とし、珪素や珪素化合物等に適用された事例が多く、他の材料にはあまり適用されていない。これは加工レートが小さいことが一要因であると考えられる。
【0016】
本発明は、上記従来の問題点に鑑み、自由曲面のような複雑形状の光学部品や金型の加工などにおいて、高精度の形状精度、加工面粗さを実現できるプラズマ加工方法を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明のプラズマ加工方法は、加工面が炭素を含む化合物薄膜で被覆された被加工物と工具電極の間に酸素を含むガスを供給しつつ、前記工具電極に電圧を印加することにより、被加工物と工具電極の間にプラズマを発生させ、プラズマから発生した酸素ラジカルにより加工面の化合物薄膜を加工するものであり、炭素を含む化合物薄膜で被覆された被加工物の加工面を酸素ラジカルによりプラズマ加工することにより非接触で加工でき、そのため加工面の加工変質層を極めて小さくでき、精密加工を実現できる。
【0018】
このとき、ガスが酸素と不活性ガスからなると、ハロゲン化物等と比較して、簡素かつ安価に装置化することができる。
【0019】
また、化合物薄膜が、ダイヤモンドライクカーボン膜(DLC膜)であると、耐摩耗性、成形材料の離形性に優れているため、加工面が光学面となる光学部品金型に適用することで、最終的に金型として使用する状態で、金型の形状精度、加工面粗さを仕上げ状態に加工することができる。
【0020】
また、本発明のプラズマ加工方法は、所望の形状を反転した形状を有する総形工具電極と被加工物との間にガスを供給しつつ、前記総形工具電極に電圧を印加することにより、総形工具電極と被加工物との間にプラズマを発生させ、プラズマから発生したラジカルあるいはイオンにより被加工物を加工し、総形工具電極の形状を前記被加工物に転写するものであり、総形工具電極を用いることにより、所望の被加工物形状が自由曲面のような複雑形状であっても、短時間に被加工物上に所望の形状を加工することができる。
【0021】
このとき、ガスは、総形工具電極と被加工物との間の側方から供給しても、総形工具電極の加工面側に設けた供給孔から供給しても良いが、総形工具電極を多孔質材料で形成して、ガスを総形工具電極の多孔質部分から供給するのが好適である。
【0022】
また、総形工具電極と被加工物を相対移動させながら加工すると、より効率的に短時間で加工することができ、特に総形工具電極と被加工物を対向した方向に往復移動させるのが好適である。
【0023】
また、被加工物の加工面が、炭素を含有する化合物薄膜で被覆されており、ガスが酸素を含むと、炭素を含む化合物薄膜で被覆された被加工物の加工面を酸素ラジカルによりプラズマ加工することにより非接触で加工でき、そのため加工面の加工変質層を極めて小さくでき、精密加工を実現できる。
【0024】
また、ガスが、酸素と不活性ガスからなると、ハロゲン化物等と比較して、簡素かつ安価に装置化することができる。
【0025】
また、化合物薄膜が、ダイヤモンドライクカーボン膜であると、耐摩耗性、成形材料の離形性に優れているため、加工面が光学面となる光学部品金型に適用することで、最終的に金型として使用する状態で、金型の形状精度、加工面粗さを仕上げ状態に加工することができる。
【0026】
また、本発明のプラズマ加工装置は、多孔質材料で構成されるとともに所望の形状を反転した形状を有する総形工具電極と、総形工具電極の多孔質部分から総形工具電極と被加工物との間にガスを供給するガス供給手段と、総形工具電極に電圧を印加する電源とを備えたものであり、上記総形工具電極を用いたプラズマ加工方法を実施してその効果を奏することができる。
【0027】
また、総形工具電極と被加工物を対向方向に相対往復移動させる移動手段を設けると、より効率的に短時間で加工することができる。
【0028】
【発明の実施の形態】
(第1の実施形態)
以下、本発明のプラズマ加工方法の第1の実施形態について、図1を参照して説明する。
【0029】
図1において、11は被加工物で、表面がダイヤモンドライクカーボン(DLC)膜12で被覆されている。DLC膜12は、炭素と水素からなるアモルファス構造の材料で、プラズマCVDやイオンプレーティングで生成されたもので、高硬度であるため、耐摩耗性に優れている。また、DLC膜12は、耐蝕性、成形品の離形性等についても優れた機能性薄膜であり、金型に適用することによって、金型の長寿命化や成形品品質の向上に大きく貢献する材料である。
【0030】
13は工具電極で、絶縁物の細管ノズルにて構成されている。工具電極13の細管中に、酸素と、アルゴン、ヘリウムなどの不活性ガスから成るガスを供給ガス15として供給し、工具電極13に高周波電源14から高周波電圧を印加することで、工具電極13の管内でプラズマ16が発生する。発生したプラズマ16は工具電極13の端部から被加工物11の表面との間の間隙に放出される。
【0031】
プラズマ16中では酸素ラジカルが発生しており、その酸素ラジカルがDLC膜12の炭素と反応し、二酸化炭素となって気中に放出され、DLC膜12が加工される。
【0032】
被加工物11が前加工によって、いわゆる表面粗さに相当する微細な凹凸がある場合、プラズマ加工では、凸部において加工が促進する傾向があるため、表面粗さの凹凸を平坦化することができる。従って、機能性薄膜を付加した被加工物11の形状創成と表面粗さ向上が可能となる。
【0033】
また、非接触加工であるため加工変質層を極めて小さくすることができる。さらに、供給ガス15として、ハロゲン化物ではなく、酸素や不活性ガスを使用しているため、危険性が少なく、装置構造を簡略化することができる。また、プラスマ16は局所に発生しており、大気圧でかつ大気雰囲気でも加工することができるため、装置構成を簡略化することができる。また、工具電極13と被加工物11とを相対移動させることにより、任意形状の加工を容易に実現することができる。
【0034】
(第2の実施形態)
次に、本発明のプラズマ加工方法の第2の実施形態について、図2を参照して説明する。
【0035】
図2において、21は被加工物、22は被加工物21上に形成したい形状を反転した形状を予め形成した多孔質材料から成る総形工具電極である。この総形工具電極22の背面から供給ガス24を供給すると、総形工具電極22が多孔質であるため、供給ガス24は様々な経路を通って対向させた被加工物21との間隙に放出される。総形工具電極22に高周波電源23にて高周波電圧を印加すると、総形工具電極22と被加工物21との間隙にプラズマ25が発生する。
【0036】
発生したプラズマ25で発生したラジカルあるいはイオンによって被加工物21が加工される。このプラズマ加工では、凸部において加工が促進する傾向があるため、表面粗さの凹凸を平坦化することができる。
【0037】
ここで、多孔質の総形工具電極22と被加工物21を、矢印aで示すように互いに対向する方向に相対的に往復移動させると、間隙での圧力変化によって、相対する面の中央から外周部へガスの流れが生じ、被加工物21を加工した際に生成した加工生成物を排除し、プラズマ25を均一に発生させることができる。その結果、自由曲面のような複雑形状であっても総形工具電極22を用いて短時間で高精度で、被加工物21に形状を転写することができる。
【0038】
(第3の実施形態)
次に、本発明のプラズマ加工方法の第3の実施形態について、図3を参照して説明する。
【0039】
図3において、31は被加工物で、その加工面はダイヤモンドカーボン(DLC)膜36にて被覆されている。32は被加工物31上に形成したい形状を反転した形状を予め形成した多孔質材料から成る総形工具電極であり、この総形工具電極32の背面から酸素、アルゴン、ヘリウムから成る供給ガス34を供給するように構成されている。供給ガス34は、総形工具電極32が多孔質であるため、様々な経路を通って対向させた被加工物31との間隙に放出される。総形工具電極32に高周波電源33にて高周波電圧を印加すると、総形工具電極32と被加工物31との間隙にプラズマ35が発生する。
【0040】
発生した酸素ラジカルによって、被加工物31上のDLC膜36が加工される。このプラズマ加工では、凸部において加工が促進する傾向があるため、表面粗さの凹凸を平坦化することができる。
【0041】
ここで、多孔質の総形工具電極32と被加工物31を、矢印bで示すように互いに対向する方向に相対的に往復移動させると、間隙での圧力変化によって、相対する面の中央から外周部へガスの流れが生じ、被加工物31のDLC膜36を加工した際に生成した二酸化炭素等の加工生成物を排除し、プラズマ35を均一に発生させることができる。その結果、自由曲面のような複雑形状であっても総形工具電極32を用いて短時間で高精度で、被加工物31のDLC膜36に形状を転写することができる。
【0042】
また、非接触加工であるため加工変質層を極めて小さくすることができる。さらに、供給ガス34は危険性が少なく、装置構造を簡略化することができる。また、大気圧でも加工することができるため、装置構成を簡略化することができる。
【0043】
以上の実施形態に示したように、本発明によれば、DLC膜12、36のような機能性薄膜を付加した被加工物11、31の形状創成と表面粗さ向上が可能となり、また非接触加工であるため加工変質層を極めて小さくすることができ、さらに供給ガスとして酸素や不活性ガスを使用することで、危険性が少なく、装置構成を簡略化することができる。
【0044】
また、プラズマ16、25、35を局所的に発生させるので、大気圧でかつ大気雰囲気中でも加工することができ、装置構成を簡略化することができる。
【0045】
また、多孔質材料にて構成された総形工具電極22、32を用いることで、総形工具電極22、32と被加工物21、31の間隙の全面に均一に供給ガス24、34を放出させることができ、被加工物21、31に自由曲面のような複雑な形状を短時間に高精度に転写することができる。
【0046】
なお、総形工具電極22、32は、多孔質材料にて構成したものに限定されるものではなく、供給ガス24、34を、総形工具電極22、32と被加工物21、31の間隙の側方から供給したり、総形工具電極22、32に加工面側に向けて供給孔を形成しておいて、供給ガス24、34が供給孔から総形工具電極22、32と被加工物21、31の間隙に向けて放出されるようにしても良い。
【0047】
【発明の効果】
本発明のプラズマ加工方法によれば、被加工物と工具電極の間に酸素を含むガスを供給しつつ、前記工具電極に電圧を印加することでプラズマを発生し、そのプラズマから発生した酸素ラジカルにより加工するので、炭素を含む化合物薄膜で被覆された被加工物の加工面を非接触で加工でき、そのため加工面の加工変質層を極めて小さくでき、精密加工を実現できる。
【0048】
また、本発明のプラズマ加工方法及び装置によれば、所望の形状を反転した形状を有する総形工具電極を用いてプラズマを発生させ、プラズマから発生したラジカルあるいはイオンにより被加工物を加工して総形工具電極の形状を被加工物に転写するので、所望の被加工物形状が自由曲面のような複雑形状であっても、短時間に被加工物上に所望の形状を加工することができる。
【図面の簡単な説明】
【図1】本発明のプラズマ加工方法の第1の実施形態の概要説明図である。
【図2】本発明のプラズマ加工方法の第2の実施形態の概要説明図である。
【図3】本発明のプラズマ加工方法の第3の実施形態の概要説明図である。
【図4】従来例の表面仕上げ加工方法の概要説明図である。
【符号の説明】
11、21、31 被加工物
12、36 炭素を含む化合物薄膜(DLC膜)
13 工具電極
14、23、33 高周波電源
15、24、34 供給ガス
16、25、35 プラズマ
22、32 総形工具電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plasma processing method and apparatus suitably applied to manufacture optical components, precision molding dies, and the like used in AV equipment and document creation equipment.
[0002]
[Prior art]
For example, in the production of optical parts, in recent years, there has been an increasing demand for higher precision of the shape, reduction of the roughness of the machined surface, and free-form surface of the shape. In the case of an optical component requiring a laser optical system as an example, the wavelength of a laser to be used is becoming shorter in order to increase the resolution of the final output, and to increase the accuracy and definition. Further, the number of reflection optical systems without chromatic aberration tends to increase. For these reasons, the demands on the shape accuracy and the roughness of the machined surface of the optical component are increasing.
[0003]
Meanwhile, the number of optical components has been reduced. The shape of an optical component has changed from a conventional axially symmetric shape to a symmetrical shape called a free-form surface, and an optical system that was previously configured with a plurality of optical components has been simplified. For this reason, the design formulas for optical parts are becoming more complicated and sophisticated, and accordingly, the processing methods, the securing of the shape accuracy, and the measuring methods of the shape accuracy are also advanced.
[0004]
In many cases, machining such as cutting, grinding, and polishing is used for processing such optical components and optical component molds. That is, the shape of the optical component is formed by cutting or grinding, and then polishing is performed as finishing to achieve the required surface roughness. At that time, it is considered that a method in which sufficient shape accuracy is secured by cutting and grinding, and the surface roughness is adjusted by polishing to such an extent that processing marks are removed is most preferable.
[0005]
With reference to FIG. 4, a conventional surface finishing method by polishing will be described. A slurry 43 containing a solvent 44 containing abrasive grains 45 is interposed between the polishing pad 41 and the workpiece 42, and the polishing pad 41 is rotated as shown by an arrow c while the surface to be processed is shown by an arrow d. The polishing process is performed by reciprocating in the direction along. Thus, although there is some difference depending on the material of the slurry 43, a chemical action and a physical action occur on the surface of the workpiece 42, and the workpiece 42 is processed.
[0006]
By the way, in polishing, since the diameter of the abrasive grains 45 is gradually reduced in accordance with the roughness and the shape accuracy of the processing surface, and the desired surface roughness and shape accuracy are driven, the polishing process takes time. There's a problem. Further, when the slurry 43 dries, it adheres to the surface of the workpiece 42, so that it is necessary to perform polishing and cleaning in an integrated process, and there is a problem that the processing steps become complicated.
[0007]
In addition, in order to quickly polish a large area in the polishing, it is good to use a large polishing pad, but in the case of an optical component or a mold having a complicated shape in recent years, the pressure of the polishing pad becomes uneven, and as a result, Since the amount of polishing is uneven, there is a problem that shape accuracy in cutting and grinding is deteriorated.
[0008]
On the other hand, there is a case where the shape accuracy is improved by using a relatively small polishing pad. That is, it is a method of measuring a shape after cutting or grinding, and locally polishing a portion that is convex with respect to a desired shape. The problem with this method is that, in addition to local processing, the processing is advanced while repeating processing and measurement, so that the processing tact becomes longer, the work requires skill, and in the case of an asymmetric free-form surface, a specific position is required. It is difficult to uniformly polish the entirety while aiming and polishing.
[0009]
In addition, if foreign matter such as dust is mixed during polishing, scratches may be caused by the foreign matter, and a considerable degree of cleanliness is required in the polishing process, resulting in an increase in equipment cost.
[0010]
As described above, polishing is generally useful as a method for mirror-finishing optical components and mold surfaces.However, when the processed surface has a complicated shape such as a free-form surface, it is necessary to ensure shape accuracy. Is difficult.
[0011]
As a processing method for solving the above problems in the mechanical processing method, a distortion-free processing method using a radical reaction, which is called plasma CVM (Chemical Vaporization Machining), is known (for example, see Patent Document 1). ).
[0012]
The plasma CVM is a method of generating plasma from a processing electrode under high pressure, generating radicals from a reactive gas containing halogen as a main component, reacting with a workpiece, vaporizing the workpiece, and removing the workpiece.
[0013]
[Patent Document 1]
JP-A-9-63791
[Problems to be solved by the invention]
The plasma CVM can be plasma-processed at atmospheric pressure. However, as disclosed in Japanese Patent Application Laid-Open No. 8-1344651, for example, a highly reactive gas is used, so that the danger is avoided. Therefore, it is necessary to take sufficient safety measures in the processing room and the like, and there is a problem that equipment costs increase.
[0015]
Further, the plasma CVM is used as a material of a workpiece, and is often applied to silicon, a silicon compound, or the like, and has not been applied to other materials. This is considered to be due to a small processing rate.
[0016]
The present invention has been made in view of the above-described conventional problems, and provides a plasma processing method capable of realizing high-precision shape accuracy and processed surface roughness in processing of optical components and molds having complicated shapes such as free-form surfaces. With the goal.
[0017]
[Means for Solving the Problems]
According to the plasma processing method of the present invention, a voltage is applied to the tool electrode while a gas containing oxygen is supplied between the workpiece and a tool electrode whose processing surface is coated with a compound thin film containing carbon. Plasma is generated between the workpiece and the tool electrode, and the compound thin film on the processing surface is processed by oxygen radicals generated from the plasma.The processed surface of the workpiece coated with the compound thin film containing carbon is treated with oxygen radicals. The non-contact processing can be performed by performing the plasma processing, thereby making it possible to extremely reduce the deteriorated layer on the processing surface and realize the precision processing.
[0018]
At this time, if the gas is composed of oxygen and an inert gas, the device can be simply and inexpensively manufactured as compared with a halide or the like.
[0019]
In addition, when the compound thin film is a diamond-like carbon film (DLC film), it is excellent in abrasion resistance and mold release properties, so that it can be applied to an optical component mold having a processed surface as an optical surface. In the state of being finally used as a mold, the shape accuracy and the surface roughness of the mold can be processed to a finished state.
[0020]
Further, the plasma processing method of the present invention, by supplying a voltage between the workpiece electrode and the workpiece tool having a shape inverted the desired shape, by applying a voltage to the workpiece tool electrode, A plasma is generated between the tool electrode and the workpiece, the workpiece is processed by radicals or ions generated from the plasma, and the shape of the tool electrode is transferred to the workpiece. By using the shaped tool electrode, even if the desired workpiece shape is a complicated shape such as a free-form surface, the desired shape can be processed on the workpiece in a short time.
[0021]
At this time, the gas may be supplied from the side between the forming tool electrode and the workpiece, or may be supplied from a supply hole provided on the processing surface side of the forming tool electrode. Preferably, the electrode is formed of a porous material and gas is supplied from a porous portion of the shaped tool electrode.
[0022]
In addition, when processing while moving the tool electrode and the workpiece relative to each other, it is possible to perform processing more efficiently in a short time, and in particular, it is necessary to reciprocate the tool electrode and the workpiece in opposite directions. It is suitable.
[0023]
Also, the processing surface of the workpiece is coated with a compound thin film containing carbon, and when the gas contains oxygen, the processing surface of the workpiece coated with the compound thin film containing carbon is plasma-processed by oxygen radicals. By doing so, it is possible to perform processing in a non-contact manner, so that the deteriorated layer on the processing surface can be extremely reduced, and precision processing can be realized.
[0024]
Further, when the gas is composed of oxygen and an inert gas, the apparatus can be manufactured simply and inexpensively as compared with a halide or the like.
[0025]
Also, if the compound thin film is a diamond-like carbon film, it has excellent wear resistance and mold release properties, so by applying it to an optical component mold whose working surface is an optical surface, In a state where the mold is used, the shape accuracy and machining surface roughness of the mold can be processed to a finished state.
[0026]
In addition, the plasma processing apparatus of the present invention is a plasma processing apparatus comprising: a shaped tool electrode formed of a porous material and having a shape inverted from a desired shape; and a shaped tool electrode and a workpiece from a porous portion of the shaped tool electrode. And a power supply for applying a voltage to the shaped tool electrode. The plasma processing method using the shaped tool electrode is performed to achieve the effect. be able to.
[0027]
Further, if a moving means for relatively reciprocatingly moving the tool electrode and the workpiece in the facing direction is provided, the machining can be performed more efficiently in a short time.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
(1st Embodiment)
Hereinafter, a first embodiment of the plasma processing method of the present invention will be described with reference to FIG.
[0029]
In FIG. 1, reference numeral 11 denotes a workpiece, the surface of which is covered with a diamond-like carbon (DLC) film 12. The DLC film 12 is a material having an amorphous structure composed of carbon and hydrogen, which is generated by plasma CVD or ion plating, and has a high hardness and thus excellent wear resistance. In addition, the DLC film 12 is a functional thin film having excellent corrosion resistance and mold releasability, and greatly contributes to extending the life of the mold and improving the quality of the molded product when applied to the mold. Material.
[0030]
Reference numeral 13 denotes a tool electrode, which is constituted by a thin tube nozzle made of an insulating material. A gas composed of oxygen and an inert gas such as argon or helium is supplied as a supply gas 15 into the thin tube of the tool electrode 13, and a high-frequency voltage is applied to the tool electrode 13 from a high-frequency power supply 14. Plasma 16 is generated in the tube. The generated plasma 16 is released from the end of the tool electrode 13 to a gap between the tool electrode 13 and the surface of the workpiece 11.
[0031]
Oxygen radicals are generated in the plasma 16, and the oxygen radicals react with carbon in the DLC film 12 to be released into the air as carbon dioxide, whereby the DLC film 12 is processed.
[0032]
If the workpiece 11 has fine irregularities corresponding to the so-called surface roughness due to pre-processing, plasma processing tends to promote the processing at the convex portions. it can. Therefore, it is possible to create the shape of the workpiece 11 to which the functional thin film is added and to improve the surface roughness.
[0033]
In addition, because of non-contact processing, the affected layer can be made extremely small. Furthermore, since oxygen or an inert gas is used as the supply gas 15 instead of a halide, there is little danger and the device structure can be simplified. Further, since the plasma 16 is locally generated and can be processed under the atmospheric pressure and the air atmosphere, the configuration of the apparatus can be simplified. Further, by relatively moving the tool electrode 13 and the workpiece 11, machining of an arbitrary shape can be easily realized.
[0034]
(Second embodiment)
Next, a second embodiment of the plasma processing method of the present invention will be described with reference to FIG.
[0035]
In FIG. 2, reference numeral 21 denotes a workpiece, and reference numeral 22 denotes a shaped tool electrode made of a porous material in which a shape desired to be formed on the workpiece 21 is inverted in advance. When the supply gas 24 is supplied from the back surface of the tool electrode 22, the supply gas 24 is discharged into a gap between the workpiece 21 and the workpiece 21 through various paths because the tool electrode 22 is porous. Is done. When a high-frequency voltage is applied to the tool electrode 22 by the high-frequency power supply 23, a plasma 25 is generated in a gap between the tool electrode 22 and the workpiece 21.
[0036]
The workpiece 21 is processed by radicals or ions generated by the generated plasma 25. In this plasma processing, since the processing tends to be accelerated in the convex portion, the unevenness of the surface roughness can be flattened.
[0037]
Here, when the porous shaped tool electrode 22 and the workpiece 21 are relatively reciprocated in directions opposite to each other as shown by an arrow a, a pressure change in the gap causes a change in the center of the opposed surfaces. A gas flow is generated in the outer peripheral portion, and a processing product generated when the workpiece 21 is processed can be eliminated, and the plasma 25 can be uniformly generated. As a result, even in the case of a complicated shape such as a free-form surface, the shape can be transferred to the workpiece 21 in a short time and with high accuracy using the formed tool electrode 22.
[0038]
(Third embodiment)
Next, a third embodiment of the plasma processing method of the present invention will be described with reference to FIG.
[0039]
In FIG. 3, reference numeral 31 denotes an object to be processed, and its processed surface is covered with a diamond carbon (DLC) film 36. Reference numeral 32 denotes a tool electrode made of a porous material in which a shape desired to be formed on the workpiece 31 is inverted in advance, and a supply gas 34 made of oxygen, argon, and helium is provided from the back surface of the tool electrode 32. Is provided. The supply gas 34 is discharged into a gap between the facing workpiece 31 through various paths because the forming tool electrode 32 is porous. When a high-frequency voltage is applied to the forming tool electrode 32 by the high-frequency power supply 33, a plasma 35 is generated in a gap between the forming tool electrode 32 and the workpiece 31.
[0040]
The DLC film 36 on the workpiece 31 is processed by the generated oxygen radicals. In this plasma processing, since the processing tends to be accelerated in the convex portion, the unevenness of the surface roughness can be flattened.
[0041]
Here, when the porous shaped tool electrode 32 and the workpiece 31 are reciprocated relatively in the direction opposite to each other as shown by the arrow b, the pressure change in the gap causes a change in the center of the facing surfaces. A gas flow is generated in the outer peripheral portion, and processing products such as carbon dioxide generated when processing the DLC film 36 of the workpiece 31 can be eliminated, and the plasma 35 can be uniformly generated. As a result, even with a complicated shape such as a free-form surface, the shape can be transferred to the DLC film 36 of the workpiece 31 with high accuracy in a short time by using the formed tool electrode 32.
[0042]
In addition, because of non-contact processing, the affected layer can be made extremely small. Further, the supply gas 34 is less dangerous and can simplify the device structure. Further, since processing can be performed even at atmospheric pressure, the device configuration can be simplified.
[0043]
As described in the above embodiments, according to the present invention, it is possible to create shapes and improve surface roughness of the workpieces 11 and 31 to which functional thin films such as the DLC films 12 and 36 are added. Because of the contact processing, the affected layer can be made extremely small, and the use of oxygen or an inert gas as a supply gas reduces the risk and simplifies the apparatus configuration.
[0044]
In addition, since the plasmas 16, 25, and 35 are locally generated, processing can be performed at atmospheric pressure and in an air atmosphere, and the apparatus configuration can be simplified.
[0045]
Also, by using the shaped tool electrodes 22 and 32 made of a porous material, the supply gases 24 and 34 are uniformly discharged over the entire surface of the gap between the shaped tool electrodes 22 and 32 and the workpieces 21 and 31. Thus, a complicated shape such as a free-form surface can be transferred onto the workpieces 21 and 31 with high accuracy in a short time.
[0046]
The tool electrodes 22 and 32 are not limited to those made of a porous material, and the supply gases 24 and 34 are supplied to the gaps between the tool electrodes 22 and 32 and the workpieces 21 and 31. The supply gas 24, 34 is supplied from the supply holes to the machining surface side, and the supply gas 24, 34 is supplied from the supply holes to the forming tool electrodes 22, 32 and It may be configured to be discharged toward the gap between the objects 21 and 31.
[0047]
【The invention's effect】
According to the plasma processing method of the present invention, a plasma is generated by applying a voltage to the tool electrode while supplying a gas containing oxygen between the workpiece and the tool electrode, and oxygen radicals generated from the plasma are generated. Therefore, the processing surface of the workpiece coated with the carbon-containing compound thin film can be processed in a non-contact manner, so that the processing-damaged layer on the processing surface can be made extremely small, and precision processing can be realized.
[0048]
Further, according to the plasma processing method and apparatus of the present invention, a plasma is generated using a shaped tool electrode having a shape inverted from a desired shape, and the workpiece is processed by radicals or ions generated from the plasma. Since the shape of the tool electrode is transferred to the workpiece, it is possible to process the desired shape on the workpiece in a short time even if the desired workpiece shape is a complicated shape such as a free-form surface. it can.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a first embodiment of a plasma processing method of the present invention.
FIG. 2 is a schematic explanatory view of a second embodiment of the plasma processing method of the present invention.
FIG. 3 is a schematic explanatory view of a third embodiment of the plasma processing method of the present invention.
FIG. 4 is a schematic explanatory view of a conventional surface finishing method.
[Explanation of symbols]
11, 21, 31 Workpiece 12, 36 Compound thin film containing carbon (DLC film)
13 Tool electrode 14, 23, 33 High frequency power supply 15, 24, 34 Supply gas 16, 25, 35 Plasma 22, 32 Form tool electrode

Claims (14)

加工面が炭素を含む化合物薄膜で被覆された被加工物と工具電極の間に酸素を含むガスを供給しつつ、前記工具電極に電圧を印加することにより、被加工物と工具電極の間にプラズマを発生させ、プラズマから発生した酸素ラジカルにより加工面の化合物薄膜を加工することを特徴とするプラズマ加工方法。By applying a voltage to the tool electrode while supplying a gas containing oxygen between the workpiece and the tool electrode, the processing surface of which is coated with the compound thin film containing carbon, by applying a voltage to the tool electrode, between the workpiece and the tool electrode A plasma processing method comprising generating plasma and processing a compound thin film on a processing surface by oxygen radicals generated from the plasma. ガスは酸素と不活性ガスからなることを特徴とする請求項1記載のプラズマ加工方法。2. The plasma processing method according to claim 1, wherein the gas comprises oxygen and an inert gas. 化合物薄膜は、ダイヤモンドライクカーボン膜であることを特徴とする請求項1記載のプラズマ加工方法。2. The plasma processing method according to claim 1, wherein the compound thin film is a diamond-like carbon film. 所望の形状を反転した形状を有する総形工具電極と被加工物との間にガスを供給しつつ、前記総形工具電極に電圧を印加することにより、総形工具電極と被加工物との間にプラズマを発生させ、プラズマから発生したラジカルあるいはイオンにより被加工物を加工し、総形工具電極の形状を前記被加工物に転写することを特徴とするプラズマ加工方法。By supplying a voltage between the shaped tool electrode and the workpiece while supplying a gas between the shaped tool electrode and the workpiece having a shape inverted from the desired shape, the voltage between the shaped tool electrode and the workpiece is reduced. A plasma processing method, comprising: generating plasma in the middle, processing a workpiece with radicals or ions generated from the plasma, and transferring the shape of a tool electrode to the workpiece. ガスを、総形工具電極と被加工物との間の側方から供給することを特徴とする請求項4記載のプラズマ加工方法。The plasma processing method according to claim 4, wherein the gas is supplied from a side between the tool electrode and the workpiece. ガスを、総形工具電極の加工面側に設けた供給孔から供給することを特徴とする請求項4記載のプラズマ加工方法。5. The plasma processing method according to claim 4, wherein the gas is supplied from a supply hole provided on a processing surface side of the forming tool electrode. 総形工具電極は多孔質材料で形成され、ガスを、前記総形工具電極の多孔質部分から供給することを特徴とする請求項4又は6記載のプラズマ加工方法。7. The plasma processing method according to claim 4, wherein the shaped tool electrode is formed of a porous material, and gas is supplied from a porous portion of the shaped tool electrode. 総形工具電極と被加工物を相対移動させながら加工することを特徴とする請求項4〜7の何れかに記載のプラズマ加工方法。The plasma processing method according to any one of claims 4 to 7, wherein the forming is performed while the tool electrode and the workpiece are relatively moved. 総形工具電極と被加工物を対向した方向に往復移動させることを特徴とする請求項8記載のプラズマ加工方法。9. The plasma processing method according to claim 8, wherein the forming tool electrode and the workpiece are reciprocated in a direction facing each other. 被加工物の加工面が、炭素を含有する化合物薄膜で被覆されており、ガスが酸素を含むことを特徴とする請求項4〜9の何れかに記載のプラズマ加工方法。The plasma processing method according to any one of claims 4 to 9, wherein the processing surface of the workpiece is covered with a compound thin film containing carbon, and the gas contains oxygen. ガスは、酸素と不活性ガスからなることを特徴とする請求項10記載のプラズマ加工方法。The plasma processing method according to claim 10, wherein the gas comprises oxygen and an inert gas. 化合物薄膜は、ダイヤモンドライクカーボン膜であることを特徴とする請求項10又は11記載のプラズマ加工方法。The plasma processing method according to claim 10, wherein the compound thin film is a diamond-like carbon film. 多孔質材料で構成されるとともに所望の形状を反転した形状を有する総形工具電極と、総形工具電極の多孔質部分から総形工具電極と被加工物との間にガスを供給するガス供給手段と、総形工具電極に電圧を印加する電源とを備えたことを特徴とするプラズマ加工装置。A forming tool electrode made of a porous material and having a shape inverted from a desired shape, and a gas supply for supplying a gas from the porous portion of the forming tool electrode to between the forming tool electrode and the workpiece. Means, and a power supply for applying a voltage to the shaped tool electrode. 総形工具電極と被加工物を対向方向に相対往復移動させる移動手段を設けたことを特徴とする請求項13記載のプラズマ加工装置。14. The plasma processing apparatus according to claim 13, further comprising a moving unit configured to relatively reciprocate the forming tool electrode and the workpiece in a facing direction.
JP2002344788A 2002-11-28 2002-11-28 Plasma processing method and device Pending JP2004179014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002344788A JP2004179014A (en) 2002-11-28 2002-11-28 Plasma processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002344788A JP2004179014A (en) 2002-11-28 2002-11-28 Plasma processing method and device

Publications (1)

Publication Number Publication Date
JP2004179014A true JP2004179014A (en) 2004-06-24

Family

ID=32706132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002344788A Pending JP2004179014A (en) 2002-11-28 2002-11-28 Plasma processing method and device

Country Status (1)

Country Link
JP (1) JP2004179014A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178616A (en) * 2010-03-02 2011-09-15 Tatsuhiko Aizawa Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method
JP2015516357A (en) * 2012-03-21 2015-06-11 ロッキード・マーチン・コーポレーション Method for perforating graphene using an activated gas flow and perforated graphene made from this method
JP2017103393A (en) * 2015-12-03 2017-06-08 学校法人日本大学 Carbon film processing machine
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US9833748B2 (en) 2010-08-25 2017-12-05 Lockheed Martin Corporation Perforated graphene deionization or desalination
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US9844757B2 (en) 2014-03-12 2017-12-19 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US9870895B2 (en) 2014-01-31 2018-01-16 Lockheed Martin Corporation Methods for perforating two-dimensional materials using a broad ion field
US10005038B2 (en) 2014-09-02 2018-06-26 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
US10017852B2 (en) 2016-04-14 2018-07-10 Lockheed Martin Corporation Method for treating graphene sheets for large-scale transfer using free-float method
US10118130B2 (en) 2016-04-14 2018-11-06 Lockheed Martin Corporation Two-dimensional membrane structures having flow passages
US10203295B2 (en) 2016-04-14 2019-02-12 Lockheed Martin Corporation Methods for in situ monitoring and control of defect formation or healing
US10201784B2 (en) 2013-03-12 2019-02-12 Lockheed Martin Corporation Method for forming perforated graphene with uniform aperture size
US10213746B2 (en) 2016-04-14 2019-02-26 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
US10376845B2 (en) 2016-04-14 2019-08-13 Lockheed Martin Corporation Membranes with tunable selectivity
US10418143B2 (en) 2015-08-05 2019-09-17 Lockheed Martin Corporation Perforatable sheets of graphene-based material
US10471199B2 (en) 2013-06-21 2019-11-12 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US10500546B2 (en) 2014-01-31 2019-12-10 Lockheed Martin Corporation Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US10696554B2 (en) 2015-08-06 2020-06-30 Lockheed Martin Corporation Nanoparticle modification and perforation of graphene
US10980919B2 (en) 2016-04-14 2021-04-20 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
WO2022018859A1 (en) * 2020-07-22 2022-01-27 三菱電機株式会社 Diamond processing method, production method for diamond substrate, and production method for semiconductor device

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011178616A (en) * 2010-03-02 2011-09-15 Tatsuhiko Aizawa Method for removing carbon-based substance and method for producing and recycling component or the like including the removing method
US9833748B2 (en) 2010-08-25 2017-12-05 Lockheed Martin Corporation Perforated graphene deionization or desalination
JP2015516357A (en) * 2012-03-21 2015-06-11 ロッキード・マーチン・コーポレーション Method for perforating graphene using an activated gas flow and perforated graphene made from this method
US9567224B2 (en) 2012-03-21 2017-02-14 Lockheed Martin Corporation Methods for perforating graphene using an activated gas stream and perforated graphene produced therefrom
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
US10201784B2 (en) 2013-03-12 2019-02-12 Lockheed Martin Corporation Method for forming perforated graphene with uniform aperture size
US10471199B2 (en) 2013-06-21 2019-11-12 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US10500546B2 (en) 2014-01-31 2019-12-10 Lockheed Martin Corporation Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
US9870895B2 (en) 2014-01-31 2018-01-16 Lockheed Martin Corporation Methods for perforating two-dimensional materials using a broad ion field
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US9844757B2 (en) 2014-03-12 2017-12-19 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US10005038B2 (en) 2014-09-02 2018-06-26 Lockheed Martin Corporation Hemodialysis and hemofiltration membranes based upon a two-dimensional membrane material and methods employing same
US10418143B2 (en) 2015-08-05 2019-09-17 Lockheed Martin Corporation Perforatable sheets of graphene-based material
US10696554B2 (en) 2015-08-06 2020-06-30 Lockheed Martin Corporation Nanoparticle modification and perforation of graphene
JP2017103393A (en) * 2015-12-03 2017-06-08 学校法人日本大学 Carbon film processing machine
US10376845B2 (en) 2016-04-14 2019-08-13 Lockheed Martin Corporation Membranes with tunable selectivity
US10213746B2 (en) 2016-04-14 2019-02-26 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
US10017852B2 (en) 2016-04-14 2018-07-10 Lockheed Martin Corporation Method for treating graphene sheets for large-scale transfer using free-float method
US10203295B2 (en) 2016-04-14 2019-02-12 Lockheed Martin Corporation Methods for in situ monitoring and control of defect formation or healing
US10118130B2 (en) 2016-04-14 2018-11-06 Lockheed Martin Corporation Two-dimensional membrane structures having flow passages
US10980919B2 (en) 2016-04-14 2021-04-20 Lockheed Martin Corporation Methods for in vivo and in vitro use of graphene and other two-dimensional materials
US10981120B2 (en) 2016-04-14 2021-04-20 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
WO2022018859A1 (en) * 2020-07-22 2022-01-27 三菱電機株式会社 Diamond processing method, production method for diamond substrate, and production method for semiconductor device

Similar Documents

Publication Publication Date Title
JP2004179014A (en) Plasma processing method and device
US10242905B2 (en) Wafer pin chuck fabrication and repair
JP5614677B2 (en) Precision processing method and apparatus for difficult-to-process materials
CN105372933B (en) Rectangular substrate for imprint lithography and method of making
EP1072357B1 (en) Elid centerless grinding apparatus
KR101704811B1 (en) Method of processing synthetic quartz glass substrate for semiconductor
KR101301507B1 (en) Semiconductor heater manufacturing method and heater thereusing
US11389929B2 (en) Method for surface treatment of workpiece made from hard-brittle material
JPH08120470A (en) Ultraprecision grinding by gas cluster ion beam
KR102046662B1 (en) Rectangular mold-forming substrate
JP2018006573A (en) Electrostatic chuck, manufacturing method thereof and reproduction method for electrostatic chuck
JP2018014515A (en) Electrostatic chuck and manufacturing method therefor, and generation method for electrostatic chuck
JPH08139169A (en) Method for making ceramic member for wafer holding base
US6386957B1 (en) Workpiece holder for polishing, method for producing the same, method for polishing workpiece, and polishing apparatus
KR20020023641A (en) Method and apparatus for polishing
JP6976713B2 (en) Chamfer grinding method and chamfer grinding equipment
Takino et al. Plasma chemical vaporization machining (CVM) for fabrication of optics
JP6301157B2 (en) Processing method and processing apparatus, and workpiece processed by the processing method or processing apparatus
JP6843396B2 (en) Plasma etching processing method for multi-component materials
Song et al. Correct the mid spatial frequency errors of large departure aspheric surfaces by smoothing polishing
KR101334037B1 (en) Semiconductor heater manufacturing method and heater thereusing
JP2003159653A (en) Abrasive material having amorphous surface layer and manufacturing method thereof
JPH11246240A (en) Workpiece and its surface processing method
JPH09106897A (en) Processing device
JPH06179166A (en) Polishing tool and manufacture thereof