JP2004178980A - Electron microscope - Google Patents

Electron microscope Download PDF

Info

Publication number
JP2004178980A
JP2004178980A JP2002343856A JP2002343856A JP2004178980A JP 2004178980 A JP2004178980 A JP 2004178980A JP 2002343856 A JP2002343856 A JP 2002343856A JP 2002343856 A JP2002343856 A JP 2002343856A JP 2004178980 A JP2004178980 A JP 2004178980A
Authority
JP
Japan
Prior art keywords
sample
electron beam
electron
standard sample
electron microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002343856A
Other languages
Japanese (ja)
Other versions
JP3819834B2 (en
Inventor
Yasumitsu Ueki
泰光 植木
Yoshifumi Taniguchi
佳史 谷口
Hiroyuki Kobayashi
弘幸 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Science Systems Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi Science Systems Ltd
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi Science Systems Ltd, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2002343856A priority Critical patent/JP3819834B2/en
Publication of JP2004178980A publication Critical patent/JP2004178980A/en
Application granted granted Critical
Publication of JP3819834B2 publication Critical patent/JP3819834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve accuracy by simplifying procedures for complicated energy calibration necessary at spectral measurement by EELS (Electron Energy Loss Spectroscopy). <P>SOLUTION: By arranging in free detachment a standard matter 16 with a known composition made in a thin-film shape on a light path of electron beams transmitting a sample 9, an EELS spectrum is obtained in the form of an EELS spectrum of the sample 9 and that of the standard matter 16 overlapped. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子顕微鏡に付属の電子線エネルギー損失分光分析(Electron Energy Loss Spectroscopy:EELS)装置を用いて試料の組成分析を行う際の分析精度向上手段に関する。
【0002】
【従来の技術】
一般に、電子顕微鏡を用いて電子線プローブを薄膜試料に照射すると、試料を構成する原子を照射電子がイオン化する(非弾性散乱)。その際に原子種に特有のエネルギーを入射電子は損失する。この電子線を分光することにより、縦軸が電子強度で横軸が損失エネルギーである電子線エネルギー損失分光(EELS)スペクトルが得られ、そのスペクトルの特定の損失値にピークが形成される。そのスペクトルのピークが示す損失エネルギー値は原子種に特有の値を持つことから定性分析を行うことが可能である。また、ピークの形状からは結合状態に関する情報が得られる。
【0003】
【発明が解決しようとする課題】
最近では電子顕微鏡で電子線を細く絞り、直径1nm程度の試料の領域からEELSスペクトルを測定することがルーチン化している。試料の極微小な領域からEELSスペクトルを得ても、そこに既知の物質が存在しないためにスペクトルの損失エネルギーの校正が困難であることが頻繁に生じるようになってきた。
【0004】
従来は試料のEELSスペクトルのエネルギー校正のため、試料測定後、試料の代わりに組成が既知である物質に交換してEELSスペクトルを取得し、そのEELSスペクトルから試料のスペクトルの損失エネルギーの校正を行っており、煩雑な操作が必要であった。その間の時間的経過により測定条件が変化することもあった。また、分光スペクトルの分散を変えるたびや、測定エネルギー範囲が変わるたびに損失エネルギーの校正が必要であった。
本発明は、このような従来技術の問題点に鑑み、EELSスペクトル測定時に必要な煩雑なエネルギー校正の手順を簡便にし、その精度を向上させることを目的とする。
【0005】
【特許文献1】
特開平58−178948号公報
【特許文献2】
特開平7−21967号公報
【0006】
【課題を解決するための手段】
本発明においては、試料を透過した電子線の光路上でレンズの像面に組成が既知である標準物質を薄膜状にしたものを着脱可能に配し、試料のEELSスペクトルと標準物質のスペクトルを重ね合わせた形でEELSスペクトルを取得することにより損失エネルギー校正を行うことで、前記目的を達成する。
【0007】
すなわち、本発明による電子顕微鏡は、電子線を発生させる電子銃部と、試料を保持する試料ステージと、電子銃部から発生した電子線を収束し偏向して試料ステージに保持された試料上の所望位置に照射する照射系と、対物レンズを備え試料の拡大像を形成する結像系と、試料を透過した電子線のエネルギー損失スペクトルを測定するための電子線分光器とを備える電子顕微鏡において、対物レンズと電子線分光器との間の光路上に標準試料として組成が既知の薄膜を設置し、試料と標準試料の電子線エネルギー損失分光スペクトルを同時に取得することを特徴とする。標準試料は、制限視野絞り位置に設置するのが好ましい。
【0008】
標準試料の設置は、少なくとも1対の同径の空孔を有し一方の空孔に前記標準試料として用いる薄膜を張り付けたホールダを、光軸上に挿入することによって行うことができる。標準試料は、透過電子顕微鏡観察用試料グリッドに保持してもよい。標準試料は、ホールダ上に配置した複数の標準試料のうちの1つを選択して使用するようにしてもよい。また、対物レンズと電子線分光器との間の光路上に標準試料として組成が既知の複数種類の薄膜を同時に設置してもよい。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図1は、本発明による分析電子顕微鏡の一例を示す縦断面模式図である。
電子銃1で発生した電子線2は、陽極3に向かって高圧電源4より供給される加速電圧により所望の加速電圧に加速され、照射系レンズ駆動電源5によって駆動される照射系レンズ6と、対物レンズ駆動電源7により駆動される対物レンズ8により収束され、薄膜状試料9(以下試料9)に照射される。このとき電子線偏向コイル駆動電源10で駆動される電子線偏向コイル11により試料9上の分析希望箇所に電子線2を照射する。
【0010】
試料9を透過した透過電子12は対物レンズ8で拡大され、拡大像13が結像系レンズ駆動電源14により駆動される第1投射レンズ15と対物レンズ8の間に形成される。通常はこの拡大像13が形成されている場所に制限視野絞りが置かれている。電子線2が照射している領域全体の情報を持った電子線回折像が試料9と拡大像13の間に形成されているが、拡大像13の位置において制限視野絞りで測定希望領域だけを電子線が通るようにすると、電子線照射領域全体の情報を持った電子線回折像から制限視野絞りで選択した拡大像の領域の電子線回折像を抜き出すことが可能である。
【0011】
電子線2が試料9を透過する際に、試料9を構成する原子によりエネルギー損失が起こり、特定のエネルギーを損失した電子線12も拡大像13の形成に参加している。この対物レンズ8による拡大像13と第1投射レンズ15の物面が一致しており、対物レンズの8の拡大像13を第1投射レンズ15が更に拡大している。この拡大像13が形成されている像面に、非晶質炭素の薄膜からなる標準試料16を標準試料ホールダ17に装填し挿入する。
【0012】
図2は標準試料ホールダの先端の形状の一例を示す模式図であり、図2(a)は平面図、図2(b)はそのAA′断面図である。試料ホールダ17先端部はMo製の厚さ約100μmの板からなり、その板に直径3mm、1mm、0.3mm、0.1mmの4つの空孔が2列に設けられている。一方の列の空孔には厚さ約100nmの非晶質炭素の膜が張られており、この非晶質炭素の膜が標準試料16となる。試料ホールダ17先端部に用意されている4種類の空孔または標準試料16はそれぞれ制限視野絞りの役目を兼ね備えており、どの領域のEELSスペクトルを取得するかによってどの孔径を選択するかが選択される。図2に示した試料ホールダ17において、4つの異なる孔径の空孔を設けたのは、測定する試料上の領域の大小に応じて穴径を選択できるようにするためであり、空孔の径は4種類とは限らず、4種類より多くても少なくても構わない。
【0013】
標準試料ホールダ17は光軸に対して水平方向に可動で、真空外より光軸上への出し入れ操作が可能である。拡大像13の像面位置に標準試料16を挿入することにより、試料9でエネルギー損失を受けた電子線も含んで拡大像13を形成している電子線12が更に標準試料16を透過する時に非晶質炭素を励起するため、エネルギー損失が再びおこる。すなわちこの配置によると、試料9と標準試料16の実際の設置位置は異なるが、電子光学的には両者を同一位置に設置したことと同値である。
【0014】
標準試料16を透過した電子線は、結像系レンズ18により調整され、電子線分光器19に入射する。透過電子線12は電子線分光器19のセクタ駆動電源20により駆動されるセクタコイル21の磁場により軌道を90°曲げられる。透過電子12のうち試料9と標準試料16を透過する間に弾性散乱しエネルギー損失をしなかった電子線22は加速電圧のエネルギーをそのまま保持しているので電子線分光器19の中で最も外側の軌道を通り蛍光体検出器23に入射する。非弾性散乱によりエネルギーを損失した電子線24はエネルギーが弾性散乱電子よりも小さいために軌道を大きく曲げられるので電子線分光器19の中で内側に結像するため、図3に示すようなEELSスペクトルを蛍光体検出器23上で形成する。EELSスペクトルは蛍光体検出器23の裏側に配されたフォトダイオードアレイ25により電気信号に変えられ、増幅器26により増幅されたのちEELS制御部27に送られCRT28に表示される。
【0015】
図4は、図1に示した分析電子顕微鏡によって計測したEELSスペクトルの模式図である。図2に示す先端部を持った標準試料ホールダ17の非晶質炭素薄膜が貼ってある孔を電子線が通るように位置調整すると、図4に示すEELSスペクトルaが得られる。このEELSスペクトルaに現れる炭素ピークのエネルギー損失値が284eVであることを利用して、同一EELSスペクトル上の他のピークの損失エネルギー値を校正する。何らかの理由で試料単独のEELSスペクトルを取得する場合には、EELSスペクトルaを取得後ただちに同一測定条件で、標準試料ホールダ17の位置調整を行い、電子線が標準試料ホールダ17の非晶質炭素の薄膜が張られていない空孔を通るようにする。こうして、図4に示すEELSスペクトルbを得る。
【0016】
図5は、本発明による標準試料ホールダ先端部の他の例を示す平面模式図である。この例の標準試料ホールダは、ホールダ先端に径の異なる空孔をそれぞれ3個ずつ設け、それぞれの径について1個の空孔には非晶質炭素薄膜を張り付け、他の1個の空孔には非晶質窒化珪素薄膜を張り付け、残りの1個の空孔は何も張り付けないでそのままとしたものである。図5に示す標準試料ホールダを用いると、先端部を交換することなしに孔の選択のみで別の標準試料を用いることができ、標準試料として炭素の284eVが必要な場合にも、標準試料として更に高損失エネルギーである窒素の402eVが必要な場合にも対応できる。
【0017】
図6は、本発明による標準試料ホールダ先端部の他の例を示す平面模式図である。本例の標準試料ホールダ先端部は、1つの空孔に2種類の標準試料薄膜を貼りつけたものであり、2つの標準試料のエネルギー損失ピークを同時に得ることができる。例えば標準試料として非晶質炭素膜と酸化マンガン薄膜を用いると、図7に示すように、EELSスペクトルに炭素の284eVとマンガンの640eVのエネルギー損失ピークが同時に得られる。従って、炭素とマンガンの2つのピークの損失エネルギー値が既知であることを利用して測定スペクトルのエネルギー校正を行い、測定試料のEELSスペクトル上の未知ピークの損失エネルギー値の校正を行うことができる。
【0018】
図8、図9を用いて、本発明による標準試料ホールダの更に他の例を説明する。図8は標準試料ホールダ先端部のメッシュ張り付け部の模式図であり、図9はそれにメッシュを貼り付けた状態を示す模式図である。
組成が既知の既存の透過電子顕微鏡試料を標準試料として用いる場合は損失エネルギー校正用の標準試料を作製する必要がないため、図8に示したような先端部をもつ標準試料ホールダを使用する。通常の透過電子顕微鏡試料用メッシュは直径3mmで厚さは20〜50μmである。このメッシュが入るよう標準試料ホールダ先端部に直径約3.2mmで深さ約100μmでザグリを入れてある。このザグリの中に標準試料として用いる透過電子顕微鏡試料が載ったメッシュを入れ、図9に示したようにメッシュの端部をカーボンペーストで標準試料ホールダ先端部に接着固定し、前述の方法で測定を行う。本実施例によると、標準試料として既存の透過電子顕微鏡試料を用いることにより標準試料を作製することが不要となる。
【0019】
図10は、本発明による分析電子顕微鏡の他の例を示す縦断面模式図である。電子銃1で発生した電子線2は、陽極3に向かって高圧電源4より供給される加速電圧により所望の加速電圧に加速され、照射系レンズ駆動電源5によって駆動される照射系レンズ6と、対物レンズ駆動電源7により駆動される対物レンズ8により収束され、薄膜状試料9(以下試料9)に照射される。このとき電子線偏向コイル駆動電源10で駆動される電子線偏向コイル11により試料9上の分析希望箇所に電子線2を照射する。試料9を透過した透過電子12は対物レンズ8で拡大され、拡大像13が結像系レンズ駆動電源14により駆動される第1投射レンズ15と対物レンズ8の間に形成される。電子線2が試料9を透過する際に、試料9を構成する原子によりエネルギー損失が起こり、特定のエネルギーを損失した電子線12も拡大像13の形成に参加している。この対物レンズ8による拡大像13と第1投射レンズ15の像面が一致しており、対物レンズの8の拡大像を13を第1投射レンズ15が更に拡大している。第2投射レンズ29との間に第1投射レンズ15による拡大像30が同様に形成される。
【0020】
この拡大像30が形成されている像面に、非晶質炭素の薄膜からなる標準試料16を標準試料ホールダ31に装填し挿入する。標準試料ホールダ31は光軸に対して垂直方向を軸に回転可能で、真空外から操作して回転させることで、光軸上に対して挿入または軸外へ退避する。
【0021】
この位置で標準試料16を挿入することにより、試料9でエネルギー損失を受けた電子線も含んで拡大像30を形成している電子線12が更に標準試料16を透過する時に非晶質炭素を励起するため、エネルギー損失が再びおこる。このことは、試料9と標準試料16の実際に設置されている位置は異なるが、電子光学的には同一位置に設置したことと同値であることを意味する。その後これらの電子線は結像系レンズ18により調整され、電子線分光器19に入射し、前述の実施例と同様にEELSスペクトルの取得が行われる。
【0022】
【発明の効果】
本発明によれば、測定試料と標準試料の入れ替えが不要になり、煩雑な損失エネルギー校正が簡便になる。また、測定試料のEELSスペクトルに標準試料のスペクトルが完全に重なることから校正精度が向上する。
【図面の簡単な説明】
【図1】本発明による分析電子顕微鏡の一例を示す縦断面模式図。
【図2】標準試料ホールダの先端の形状の一例を示す模式図。
【図3】EELSスペクトルの模式図。
【図4】本発明の分析電子顕微鏡によって計測したEELSスペクトルの模式図。
【図5】本発明による標準試料ホールダ先端部の他の例を示す平面模式図。
【図6】本発明による標準試料ホールダ先端部の他の例を示す平面模式図。
【図7】本発明の分析電子顕微鏡によって計測したEELSスペクトルの他の例の模式図。
【図8】標準試料ホールダのメッシュ張り付け部の模式図。
【図9】標準試料ホールダへメッシュを貼り付けた状態を示す図。
【図10】本発明による分析電子顕微鏡の他の例を示す縦断面模式図。
【符号の説明】
1:電子銃、2:電子線、3:陽極、4:高圧電源、5:照射系レンズ駆動電源、6:照射系レンズ、7:対物レンズ駆動電源、8:対物レンズ、9:薄膜試料、10:電子線偏向コイル駆動電源、11:電子線偏向コイル、12:透過電子、13:拡大像、14:結像系レンズ駆動電源、15:第1投射レンズ、16:標準試料(非晶質炭素薄膜)、17:標準試料ホールダ、18:結像系レンズ、19:電子線分光器、20:セクタ駆動電源、21:セクタ、22:弾性散乱電子、23:蛍光体検出器、24:非弾性散乱電子、25:フォトダイオードアレイ、26増幅器、27:EELS制御部、28:CRT、29:第2投射レンズ、30:拡大像、31:標準試料ホールダ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a means for improving the analysis accuracy when performing a composition analysis of a sample using an electron energy loss spectroscopy (EELS) device attached to an electron microscope.
[0002]
[Prior art]
Generally, when an electron probe is used to irradiate a thin film sample with an electron microscope, the irradiated electrons are ionized by atoms constituting the sample (inelastic scattering). At that time, the incident electrons lose energy peculiar to the atomic species. By splitting this electron beam, an electron beam energy loss spectroscopy (EELS) spectrum is obtained in which the vertical axis represents electron intensity and the horizontal axis represents loss energy, and a peak is formed at a specific loss value of the spectrum. Qualitative analysis can be performed because the loss energy value indicated by the spectrum peak has a value specific to the atomic species. In addition, information on the bonding state can be obtained from the shape of the peak.
[0003]
[Problems to be solved by the invention]
Recently, it has been routine to narrow an electron beam with an electron microscope and measure an EELS spectrum from a sample region having a diameter of about 1 nm. Even if an EELS spectrum is obtained from a very small area of a sample, it often happens that it is difficult to calibrate the energy loss of the spectrum due to the absence of a known substance.
[0004]
Conventionally, in order to calibrate the energy of the EELS spectrum of a sample, after measuring the sample, replace the sample with a substance having a known composition, obtain an EELS spectrum, and calibrate the energy loss of the spectrum of the sample from the EELS spectrum. And complicated operations were required. The measurement conditions sometimes changed with the passage of time during that time. Further, it is necessary to calibrate the energy loss each time the dispersion of the spectrum is changed or the measurement energy range is changed.
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the related art, and has as its object to simplify a complicated energy calibration procedure required for measuring an EELS spectrum and improve the accuracy thereof.
[0005]
[Patent Document 1]
JP-A-58-178948 [Patent Document 2]
JP-A-7-21967
[Means for Solving the Problems]
In the present invention, a thin film of a standard substance having a known composition is disposed on the image plane of the lens on the optical path of the electron beam transmitted through the sample in a detachable manner, and the EELS spectrum of the sample and the spectrum of the standard substance are measured. The object is achieved by performing loss energy calibration by acquiring an EELS spectrum in a superimposed form.
[0007]
That is, the electron microscope according to the present invention comprises an electron gun for generating an electron beam, a sample stage for holding the sample, and an electron beam generated from the electron gun for focusing and deflecting the electron beam on the sample held on the sample stage. An electron microscope including an irradiation system for irradiating a desired position, an imaging system having an objective lens to form an enlarged image of the sample, and an electron beam spectrometer for measuring an energy loss spectrum of an electron beam transmitted through the sample. A thin film having a known composition is set as a standard sample on an optical path between an objective lens and an electron beam spectrometer, and electron beam energy loss spectral spectra of the sample and the standard sample are simultaneously obtained. The standard sample is preferably installed at the selected area aperture position.
[0008]
The standard sample can be installed by inserting a holder having at least one pair of holes having the same diameter and a thin film used as the standard sample in one of the holes on the optical axis. The standard sample may be held on a transmission electron microscope observation sample grid. As the standard sample, one of a plurality of standard samples arranged on the holder may be selected and used. Also, a plurality of types of thin films having known compositions may be simultaneously provided as a standard sample on the optical path between the objective lens and the electron beam spectrometer.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic longitudinal sectional view showing an example of the analytical electron microscope according to the present invention.
An electron beam 2 generated by the electron gun 1 is accelerated to a desired acceleration voltage by an acceleration voltage supplied from a high voltage power supply 4 toward an anode 3, and an irradiation lens 6 driven by an irradiation lens driving power supply 5, The light is converged by an objective lens 8 driven by an objective lens driving power supply 7 and is irradiated on a thin film sample 9 (hereinafter, sample 9). At this time, the electron beam 2 is irradiated to a desired analysis spot on the sample 9 by the electron beam deflection coil 11 driven by the electron beam deflection coil drive power supply 10.
[0010]
The transmitted electrons 12 transmitted through the sample 9 are enlarged by the objective lens 8, and an enlarged image 13 is formed between the first projection lens 15 driven by the imaging lens driving power supply 14 and the objective lens 8. Usually, a selected area stop is placed at a position where the enlarged image 13 is formed. An electron diffraction image having information on the entire area irradiated by the electron beam 2 is formed between the sample 9 and the enlarged image 13. When the electron beam is allowed to pass, it is possible to extract an electron beam diffraction image of the area of the enlarged image selected by the selected area stop from the electron beam diffraction image having information on the entire electron beam irradiation area.
[0011]
When the electron beam 2 passes through the sample 9, energy loss occurs due to atoms constituting the sample 9, and the electron beam 12 having lost a specific energy also participates in the formation of the enlarged image 13. The enlarged image 13 of the objective lens 8 and the object plane of the first projection lens 15 match, and the enlarged image 13 of the objective lens 8 is further enlarged by the first projection lens 15. A standard sample 16 made of an amorphous carbon thin film is loaded and inserted into the standard sample holder 17 on the image plane on which the enlarged image 13 is formed.
[0012]
2A and 2B are schematic views showing an example of the shape of the tip of the standard sample holder. FIG. 2A is a plan view, and FIG. The tip of the sample holder 17 is made of a Mo plate having a thickness of about 100 μm, and four holes having a diameter of 3 mm, 1 mm, 0.3 mm, and 0.1 mm are provided in two rows. A hole of one row is covered with an amorphous carbon film having a thickness of about 100 nm, and this amorphous carbon film becomes the standard sample 16. Each of the four types of holes or the standard sample 16 provided at the tip of the sample holder 17 also has a role of a selected area stop, and a hole diameter to be selected is selected depending on which region of the EELS spectrum is to be acquired. You. In the sample holder 17 shown in FIG. 2, the four holes having different hole diameters are provided so that the hole diameter can be selected according to the size of the region on the sample to be measured. Is not limited to four types, and may be more or less than four types.
[0013]
The standard sample holder 17 is movable in the horizontal direction with respect to the optical axis, and can be moved in and out of the optical axis from outside the vacuum. By inserting the standard sample 16 at the image plane position of the enlarged image 13, the electron beam 12 forming the enlarged image 13 including the electron beam that has lost the energy in the sample 9 further passes through the standard sample 16. Energy loss occurs again because of the excitation of the amorphous carbon. In other words, according to this arrangement, the actual installation positions of the sample 9 and the standard sample 16 are different, but the values are the same as those in which both are installed at the same position in terms of electron optics.
[0014]
The electron beam transmitted through the standard sample 16 is adjusted by an imaging lens 18 and enters an electron beam spectroscope 19. The trajectory of the transmission electron beam 12 is bent by 90 ° by the magnetic field of the sector coil 21 driven by the sector drive power supply 20 of the electron beam spectroscope 19. Among the transmitted electrons 12, the electron beam 22 that has been elastically scattered and did not lose energy during transmission through the sample 9 and the standard sample 16 retains the energy of the accelerating voltage as it is, so that it is the outermost in the electron beam spectrometer 19 And enters the phosphor detector 23 through the orbit. Since the trajectory of the electron beam 24 whose energy has been lost due to inelastic scattering is smaller than that of the elastic scattered electrons, the image is formed inside the electron beam spectroscope 19, so that the EELS as shown in FIG. The spectrum is formed on the phosphor detector 23. The EELS spectrum is converted into an electric signal by a photodiode array 25 disposed on the back side of the phosphor detector 23, amplified by an amplifier 26, sent to an EELS control unit 27, and displayed on a CRT 28.
[0015]
FIG. 4 is a schematic diagram of an EELS spectrum measured by the analytical electron microscope shown in FIG. When the position of the standard sample holder 17 having the tip shown in FIG. 2 is adjusted so that the electron beam passes through the hole on which the amorphous carbon thin film is stuck, the EELS spectrum a shown in FIG. 4 is obtained. Using the fact that the energy loss value of the carbon peak appearing in the EELS spectrum a is 284 eV, the loss energy values of other peaks on the same EELS spectrum are calibrated. When acquiring the EELS spectrum of the sample alone for some reason, immediately after acquiring the EELS spectrum a, the position of the standard sample holder 17 is adjusted under the same measurement conditions, and the electron beam is irradiated with the amorphous carbon of the standard sample holder 17. The thin film is allowed to pass through the holes that are not stretched. Thus, the EELS spectrum b shown in FIG. 4 is obtained.
[0016]
FIG. 5 is a schematic plan view showing another example of the tip of the standard sample holder according to the present invention. In the standard sample holder of this example, three holes each having a different diameter are provided at the tip of the holder, an amorphous carbon thin film is attached to one hole for each diameter, and the other hole is attached to another hole. Is a film in which an amorphous silicon nitride thin film is adhered, and the other one hole is left as it is without being attached. When the standard sample holder shown in FIG. 5 is used, another standard sample can be used only by selecting a hole without exchanging a tip portion. Even when 284 eV of carbon is required as a standard sample, it can be used as a standard sample. Further, it can cope with a case where 402 eV of nitrogen having a high loss energy is required.
[0017]
FIG. 6 is a schematic plan view showing another example of the tip of the standard sample holder according to the present invention. The tip of the standard sample holder of this example is one in which two types of standard sample thin films are adhered to one hole, and the energy loss peaks of the two standard samples can be obtained simultaneously. For example, when an amorphous carbon film and a manganese oxide thin film are used as a standard sample, energy loss peaks of 284 eV of carbon and 640 eV of manganese are simultaneously obtained in the EELS spectrum as shown in FIG. Therefore, by utilizing the fact that the loss energy values of the two peaks of carbon and manganese are known, the energy calibration of the measurement spectrum can be performed, and the loss energy value of the unknown peak on the EELS spectrum of the measurement sample can be corrected. .
[0018]
Still another example of the standard sample holder according to the present invention will be described with reference to FIGS. FIG. 8 is a schematic diagram of a mesh attaching portion at the tip of the standard sample holder, and FIG. 9 is a schematic diagram showing a state where a mesh is attached to the mesh attaching portion.
When an existing transmission electron microscope sample having a known composition is used as a standard sample, it is not necessary to prepare a standard sample for loss energy calibration. Therefore, a standard sample holder having a tip as shown in FIG. 8 is used. A typical mesh for a transmission electron microscope sample has a diameter of 3 mm and a thickness of 20 to 50 μm. A counterbore with a diameter of about 3.2 mm and a depth of about 100 μm is placed at the tip of the standard sample holder so that the mesh can be inserted. A mesh carrying a transmission electron microscope sample used as a standard sample is placed in the counterbore, and the end of the mesh is adhered and fixed to the tip of the standard sample holder with a carbon paste as shown in FIG. 9, and measured by the method described above. I do. According to this embodiment, it is not necessary to prepare a standard sample by using an existing transmission electron microscope sample as the standard sample.
[0019]
FIG. 10 is a schematic longitudinal sectional view showing another example of the analytical electron microscope according to the present invention. An electron beam 2 generated by the electron gun 1 is accelerated to a desired acceleration voltage by an acceleration voltage supplied from a high voltage power supply 4 toward an anode 3, and an irradiation lens 6 driven by an irradiation lens driving power supply 5, The light is converged by an objective lens 8 driven by an objective lens driving power supply 7 and is irradiated on a thin film sample 9 (hereinafter, sample 9). At this time, the electron beam 2 is irradiated to a desired analysis spot on the sample 9 by the electron beam deflection coil 11 driven by the electron beam deflection coil drive power supply 10. The transmitted electrons 12 transmitted through the sample 9 are enlarged by the objective lens 8, and an enlarged image 13 is formed between the first projection lens 15 driven by the imaging lens driving power supply 14 and the objective lens 8. When the electron beam 2 passes through the sample 9, energy loss occurs due to atoms constituting the sample 9, and the electron beam 12 having lost a specific energy also participates in the formation of the enlarged image 13. The enlarged image 13 of the objective lens 8 and the image plane of the first projection lens 15 coincide with each other, and the enlarged image 13 of the objective lens 8 is further enlarged by the first projection lens 15. An enlarged image 30 by the first projection lens 15 is similarly formed between the second projection lens 29 and the second projection lens 29.
[0020]
The standard sample 16 made of an amorphous carbon thin film is loaded and inserted into the standard sample holder 31 on the image plane on which the enlarged image 30 is formed. The standard sample holder 31 is rotatable about an axis perpendicular to the optical axis, and is inserted into the optical axis or retracted off-axis by being operated and rotated from outside the vacuum.
[0021]
By inserting the standard sample 16 at this position, when the electron beam 12 forming the magnified image 30 including the electron beam that has lost energy in the sample 9 further transmits the standard sample 16, amorphous carbon is removed. Due to the excitation, energy loss occurs again. This means that the positions where the sample 9 and the standard sample 16 are actually placed are different from each other, but that the values are the same as those placed at the same position in terms of electron optics. Thereafter, these electron beams are adjusted by the imaging lens 18 and are incident on the electron beam spectroscope 19, and the EELS spectrum is obtained in the same manner as in the above-described embodiment.
[0022]
【The invention's effect】
According to the present invention, there is no need to replace the measurement sample and the standard sample, and complicated energy loss calibration is simplified. Further, since the spectrum of the standard sample completely overlaps the EELS spectrum of the measurement sample, the calibration accuracy is improved.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view showing an example of an analytical electron microscope according to the present invention.
FIG. 2 is a schematic view showing an example of the shape of the tip of a standard sample holder.
FIG. 3 is a schematic diagram of an EELS spectrum.
FIG. 4 is a schematic diagram of an EELS spectrum measured by the analytical electron microscope of the present invention.
FIG. 5 is a schematic plan view showing another example of the tip of the standard sample holder according to the present invention.
FIG. 6 is a schematic plan view showing another example of the tip of the standard sample holder according to the present invention.
FIG. 7 is a schematic view of another example of the EELS spectrum measured by the analytical electron microscope of the present invention.
FIG. 8 is a schematic view of a mesh attachment portion of a standard sample holder.
FIG. 9 is a view showing a state where a mesh is attached to a standard sample holder.
FIG. 10 is a schematic longitudinal sectional view showing another example of the analytical electron microscope according to the present invention.
[Explanation of symbols]
1: electron gun, 2: electron beam, 3: anode, 4: high voltage power supply, 5: irradiation system lens driving power supply, 6: irradiation system lens, 7: objective lens driving power supply, 8: objective lens, 9: thin film sample, 10: electron beam deflection coil drive power supply, 11: electron beam deflection coil, 12: transmitted electron, 13: enlarged image, 14: imaging lens drive power supply, 15: first projection lens, 16: standard sample (amorphous Carbon thin film), 17: standard sample holder, 18: imaging lens, 19: electron beam spectrometer, 20: sector drive power supply, 21: sector, 22: elastic scattered electron, 23: phosphor detector, 24: non-conductive Elastic scattering electrons, 25: photodiode array, 26 amplifier, 27: EELS control unit, 28: CRT, 29: second projection lens, 30: enlarged image, 31: standard sample holder

Claims (6)

電子線を発生させる電子銃部と、試料を保持する試料ステージと、前記電子銃部から発生した電子線を収束し偏向して前記試料ステージに保持された試料上の所望位置に照射する照射系と、対物レンズを備え試料の拡大像を形成する結像系と、試料を透過した電子線のエネルギー損失スペクトルを測定するための電子線分光器とを備える電子顕微鏡において、
前記対物レンズと前記電子線分光器との間の光路上に標準試料として組成が既知の薄膜を設置し、試料と前記標準試料の電子線エネルギー損失分光スペクトルを同時に取得することを特徴とする電子顕微鏡。
An electron gun for generating an electron beam, a sample stage for holding a sample, and an irradiation system for converging and deflecting the electron beam generated from the electron gun to irradiate a desired position on the sample held by the sample stage And, in an electron microscope equipped with an imaging system having an objective lens and forming an enlarged image of the sample, and an electron beam spectrometer for measuring the energy loss spectrum of the electron beam transmitted through the sample,
An electron, wherein a thin film having a known composition is set as a standard sample on an optical path between the objective lens and the electron beam spectrometer, and electron beam energy loss spectral spectra of the sample and the standard sample are simultaneously obtained. microscope.
請求項1記載の電子顕微鏡において、前記標準試料を制限視野絞り位置に設置することを特徴とする電子顕微鏡。2. The electron microscope according to claim 1, wherein the standard sample is set at a selected area stop position. 請求項1又は2記載の電子顕微鏡において、少なくとも1対の同径の空孔を有し一方の空孔に前記標準試料として用いる薄膜を張り付けたホールダを、光軸上に挿入したことを特徴とする電子顕微鏡。3. The electron microscope according to claim 1, wherein a holder having at least one pair of holes having the same diameter and a thin film used as the standard sample adhered to one of the holes is inserted on the optical axis. Electron microscope. 請求項1又は2記載の電子顕微鏡において、前記標準試料を透過電子顕微鏡観察用試料グリッドに保持したことを特徴とする電子顕微鏡。3. The electron microscope according to claim 1, wherein the standard sample is held on a transmission electron microscope observation sample grid. 請求項1又は2記載の電子顕微鏡において、前記標準試料はホールダ上に配置した複数の標準試料のうちの1つを選択して使用することを特徴とする電子顕微鏡。3. The electron microscope according to claim 1, wherein one of a plurality of standard samples arranged on a holder is selected and used as the standard sample. 請求項1又は2記載の電子顕微鏡において、前記対物レンズと前記電子線分光器との間の光路上に標準試料として組成が既知の複数種類の薄膜を同時に設置したことを特徴とする電子顕微鏡。3. The electron microscope according to claim 1, wherein a plurality of thin films of known compositions are simultaneously installed as a standard sample on an optical path between the objective lens and the electron beam spectrometer.
JP2002343856A 2002-11-27 2002-11-27 electronic microscope Expired - Fee Related JP3819834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343856A JP3819834B2 (en) 2002-11-27 2002-11-27 electronic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343856A JP3819834B2 (en) 2002-11-27 2002-11-27 electronic microscope

Publications (2)

Publication Number Publication Date
JP2004178980A true JP2004178980A (en) 2004-06-24
JP3819834B2 JP3819834B2 (en) 2006-09-13

Family

ID=32705540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343856A Expired - Fee Related JP3819834B2 (en) 2002-11-27 2002-11-27 electronic microscope

Country Status (1)

Country Link
JP (1) JP3819834B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157358A1 (en) * 2008-06-27 2009-12-30 株式会社 日立ハイテクノロジーズ Transmission electron microscope apparatus comprising electron spectroscope, sample holder, sample stage, and method for acquiring spectral image
CN1769876B (en) * 2005-10-28 2010-05-05 清华大学 Stable receiving method for energy of large dynamic range energy spectrum and apparatus therefor
EP2256780A3 (en) * 2007-02-28 2010-12-29 Hitachi High-Technologies Corporation Transmission electron microscope and method of displaying spectral image
JP2012104502A (en) * 2012-01-23 2012-05-31 Hitachi High-Technologies Corp Transmission electron microscope apparatus having electronic spectroscope, sample holder, and method of acquiring sample stage and spectral image
DE102006014288B4 (en) 2005-04-04 2022-09-01 Jeol Ltd. transmission electron microscope

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006014288B4 (en) 2005-04-04 2022-09-01 Jeol Ltd. transmission electron microscope
CN1769876B (en) * 2005-10-28 2010-05-05 清华大学 Stable receiving method for energy of large dynamic range energy spectrum and apparatus therefor
EP2256780A3 (en) * 2007-02-28 2010-12-29 Hitachi High-Technologies Corporation Transmission electron microscope and method of displaying spectral image
WO2009157358A1 (en) * 2008-06-27 2009-12-30 株式会社 日立ハイテクノロジーズ Transmission electron microscope apparatus comprising electron spectroscope, sample holder, sample stage, and method for acquiring spectral image
JP2010009943A (en) * 2008-06-27 2010-01-14 Hitachi High-Technologies Corp Transmission electron microscope apparatus having electron spectroscope, sample holder, sample stage, and method for acquiring spectral image
EP2293319A1 (en) * 2008-06-27 2011-03-09 Hitachi High-Technologies Corporation Transmission electron microscope apparatus comprising electron spectroscope, sample holder, sample stage, and method for acquiring spectral image
EP2293319A4 (en) * 2008-06-27 2012-08-01 Hitachi High Tech Corp Transmission electron microscope apparatus comprising electron spectroscope, sample holder, sample stage, and method for acquiring spectral image
US8530858B2 (en) 2008-06-27 2013-09-10 Hitachi High-Technologies Corporation Transmission electron microscope apparatus comprising electron spectroscope, sample holder, sample stage, and method for acquiring spectral image
JP2012104502A (en) * 2012-01-23 2012-05-31 Hitachi High-Technologies Corp Transmission electron microscope apparatus having electronic spectroscope, sample holder, and method of acquiring sample stage and spectral image

Also Published As

Publication number Publication date
JP3819834B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP3441955B2 (en) Projection type charged particle microscope and substrate inspection system
US7183562B2 (en) Charged-particle-beam mapping projection-optical systems and methods for adjusting same
JP3820964B2 (en) Sample observation apparatus and method using electron beam
JP2019016600A (en) Method for alignment of light beam to charged particle beam
US5811804A (en) Electron microscope with raman spectroscopy
US20130126727A1 (en) Time-of-Flight Electron Energy Analyzer
US5008537A (en) Composite apparatus with secondary ion mass spectrometry instrument and scanning electron microscope
US7612336B2 (en) Scanning electron microscope having a monochromator
JP2005534041A (en) A method for local high-resolution surface mass spectroscopic characterization using scanning probe technology
US7622714B2 (en) Standard specimen for a charged particle beam apparatus, specimen preparation method thereof, and charged particle beam apparatus
KR102601725B1 (en) Charged-particle microscope with astigmatism compensation and energy-selection
JP2016039119A (en) Electron microscope, and adjustment method for the electron microscope
JPH05113418A (en) Surface analyzing apparatus
JP3819834B2 (en) electronic microscope
JP2021162590A (en) Transmissive type charge particle microscope comprising electronic energy loss spectroscopic detector
JPH10223168A (en) Sample analyzer
JP3266814B2 (en) Micro part analyzer
US20040075051A1 (en) Apparatus and method for image optimization of samples in a scanning electron microscope
JP2004319149A (en) Electron source and electron beam device using it
JP2004171801A (en) Electron microscope
JP2000003692A (en) Charged particle beam mapping and projection optical system
JP2008082767A (en) Particle beam analyzer
JP2000304712A (en) Electron beam analyzing and observing apparatus and electron beam microanalyzer
JP2000329716A (en) Auger electron spectral apparatus and analytical method for depth direction
CN114252653B (en) Ultrafast imaging device and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees