JP2004165918A - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
JP2004165918A
JP2004165918A JP2002328445A JP2002328445A JP2004165918A JP 2004165918 A JP2004165918 A JP 2004165918A JP 2002328445 A JP2002328445 A JP 2002328445A JP 2002328445 A JP2002328445 A JP 2002328445A JP 2004165918 A JP2004165918 A JP 2004165918A
Authority
JP
Japan
Prior art keywords
light
signal
output
optical transmitter
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002328445A
Other languages
Japanese (ja)
Other versions
JP4003620B2 (en
Inventor
Takehiko Tokoro
武彦 所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002328445A priority Critical patent/JP4003620B2/en
Publication of JP2004165918A publication Critical patent/JP2004165918A/en
Application granted granted Critical
Publication of JP4003620B2 publication Critical patent/JP4003620B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmitter capable of suppressing variation of light output even if transmit data are abnormal. <P>SOLUTION: Since a duty control circuit 21 once detecting an error signal from a signal multiplexing circuit 3 controls the pulse width distortion of the output signal of a driving circuit 5, an electric field absorption type optical modulator 2 is held in a light absorbing state and a light signal of abnormal output is prevented from being transmitted to stabilize the transmission output of the optical transmitter 20. Once an LD driving circuit 34 detects the error signal from the signal multiplexing circuit 3, the current of the output signal of the LD driving circuit 34 is controlled to make the light emission power of an LD31 for direct modulation constant, thereby stabilizing the transmission output of the optical transmitter 30. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光送信器に関する。
【0002】
【従来の技術】
図3は従来の光送信器を示す回路図である。
【0003】
この光送信器1は、主に電界吸収型光変調器2と、FIFO(First In First Out:先入れ先出し方式)のメモリを有し、複数の送信データからなるパラレルデータをシリアルデータへ変換する信号多重化回路3と、シリアルデータに応じた電圧を電界吸収型光変調器2の変調用受光部としての変調用PD4に印加する変調器駆動回路5とで構成されたものである。
【0004】
ここで、電界吸収型光変調器2とは、半導体の外部から半導体光吸収層に電界印加することで、吸収端波長が長波長側へシフトする現象(電界吸収効果:Electro−absorption効果)を利用した光変調器であり、発光部としてのレーザダイオード(LD)6、印加電圧に応じてLD6からの出射光を吸収する変調用PD4及びLD6からのモニタ光を受光するモニタ用受光部としてのモニタ用PD7が集積化されたものである。変調用PD4には保護抵抗器8が並列接続されている。
【0005】
電界吸収型光変調器2のモニタ用PD7のカソードには、陰極がアースされた直流電圧源9の陽極が接続され、モニタ用PD7のアノードには一端がアースされた抵抗器10の他端が接続されている。抵抗器10にはバイパスコンデンサ11が並列接続されており、抵抗器10の他端は誤差増幅器12の反転入力端子に接続されている。誤差増幅器12の非反転入力端子は、陰極がアースされた基準電圧源13の陽極に接続されている。
【0006】
これら、モニタ用PD7、直流電圧源9、抵抗器10、バイパスコンデンサ11、誤差増幅器12及び基準電圧源13で、LD6の発光パワーを一定に保持するためのAPC(Automatic Power Control)回路が構成されている。
【0007】
信号多重化回路3の出力端子と変調器駆動回路5の入力端子との間にはカップリングコンデンサ14が接続されている。変調器駆動回路5は、変調器駆動電圧波形のパルス幅歪(デューティ)を調整する端子を有し、この端子に、陰極がアースされたデューティ制御電圧源15の陽極が接続されている。
【0008】
このような電界吸収型光変調器2を有する光送信器1では、変調用PD4の印加電圧に対する光の吸収割合が比例していないので、変調器駆動信号にデューティが高くなる方向へ幅歪みを持たせることにより、光出力波形歪みを補償している。
【0009】
信号多重化回路3は、多大なジッタ(歪み)を含んだデータでも符号誤りを発生させることなく光送信できるようにFIFO方式のメモリ(図示せず。)を有しており、そのFIFOメモリのオーバー/アンダーフロー時にはリセットしてデータを正しく読み込める機能を有している(例えば、特許文献1参照。)。
【0010】
【特許文献1】
特開平11−305175号公報(第3−4頁、図24)
【0011】
【発明が解決しようとする課題】
しかしながら、図3に示した従来の光送信器1において、信号多重化時に異常が生じると、送信光データ異常となると共に、場合によっては信号のマーク率(読み取り率)変動が生じることがある。光送信器1においては、このような場合、そのマーク率の変動に合わせて光出力パワーが変動するので、受信側(図示せず。)の光入力パワーモニタの値が時定数(変調器駆動回路5内の図示しない抵抗器及びコンデンサからなる時定数回路の抵抗値と静電容量値との積)にもよるが変動し、データエラーを光入力パワーの変動異常であると誤認するおそれがある。また、光送信器1の被変調光が伝送される伝送路の途中に光アンプを挿入して中継増幅する場合には、その出力パワー変動が光増幅時にサージを引き起こし、光増幅器や光受信器へのダメージを与えるおそれがある。
【0012】
また、図3に示した光送信器1では電界吸収型光変調器2を用いているので、その光吸収特性により、変調器駆動回路5は出力信号のデューティが高くなる方向へ幅歪みを持たせている。このため、送信信号の欠落等の異常は、平均光出力パワーが増大する方向へ変動するおそれが高くなり、光出力パワーの安全性が損なわれるおそれも増大するという問題があった。
【0013】
そこで、本発明の目的は、上記課題を解決し、送信データが異常であっても光出力の変動を抑えることができる光送信器を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、発光部、印加電圧に応じて発光部からの出射光を吸収する変調用受光部及び発光部からのモニタ光を受光するモニタ用受光部が集積化された電界吸収型光変調器と、先入れ先出し方式のメモリを有し、複数の送信データからなるパラレルデータをシリアルデータへ変換する信号多重化回路と、シリアルデータに応じた電圧を変調用受光素子に印加する駆動回路とを有する光送信器において、メモリからのメモリエラー信号を検知して駆動回路の出力信号のパルス幅歪みを制御する制御手段を備えたものである。
【0015】
請求項1の発明によれば、信号多重化回路からのメモリエラー信号を制御手段が検知すると、制御手段は駆動回路の出力信号のパルス幅歪みを制御するので、電界吸収型光変調器が光吸収状態に保持されることになり、異常な出力の光信号が送信されるのが防止される。
【0016】
請求項2の発明は、請求項1に記載の構成に加え、基準電圧源と、モニタ用受光素子からの出力電圧と基準電圧源の基準電圧とを比較して発光部の発光パワーを一定にする誤差増幅器とを有するのが好ましい。
【0017】
請求項2の発明によれば、誤差増幅器により、基準電圧とモニタ用受光素子からの出力電圧とを比較し、モニタ用受光素子からの出力電圧が基準電圧より高いときには変調用発光素子の発光パワーを減少させ、モニタ用受光素子からの出力電圧が基準電圧より低いときには変調用発光素子の発光パワーを増加させるので変調用発光素子の発光パワーが一定になり、光送信器の送信出力が安定化される。
【0018】
請求項3の発明は、直接変調用発光素子と、先入れ先出し方式のメモリを有し、複数の送信データからなるパラレルデータをシリアルデータへ変換する信号多重化回路と、シリアルデータに応じた電流を直接変調用発光素子に印加する駆動回路とを有する光送信器において、メモリからのメモリエラー信号を検知して駆動回路の出力信号の電流を制御する制御手段を備えたものである。
【0019】
請求項3の発明によれば、信号多重化回路からのメモリエラー信号を制御手段が検知すると、駆動回路の出力信号の電流が制御され、直接変調用発光素子の発光パワーが一定になり、光送信器の送信出力が安定化される。
【0020】
請求項4の発明は、請求項3に記載の構成に加え、直接変調用発光素子からのモニタ光を受光するモニタ用受光素子と、基準電圧源と、モニタ用受光素子からの出力電圧と基準電圧源の基準電圧とを比較する誤差増幅器と、誤差増幅器からの出力信号に応じて直接変調用発光素子の発光状態を停止若しくは調整する停止調整手段とを有するのが好ましい。
【0021】
請求項4の発明によれば、誤差増幅器により、基準電圧とモニタ用受光素子からの出力電圧とを比較し、モニタ用受光素子からの出力電圧が基準電圧より高いときは直接変調用発光素子が異常発光したものと判断し、制御手段とは独立に停止調整手段が作動して直接変調用発光素子の発光が基準値より大きくなったときは発光を停止させ、基準値より小さいときは発光が基準値に近づくように調整することができる。
【0022】
本発明は、電気信号を光信号に変換して送信する光通信用光送信器であって、FIFOメモリのエラー信号を用いて電界吸収型光変調器または直接変調用発光素子を制御することにより、異常な光出力変動を抑制し、光送信器から出力される光パワーを抑えることができると共に、光受信側のモニタ回路の誤動作や光アンプでのサージ光による劣化や故障を防止することができるものである。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
【0024】
図1は本発明の光送信器の一実施の形態を示す回路図である。以下、図3に示した従来例と同様の部材には共通の符号が用いられている。
【0025】
本光送信器20は、主に電界吸収型光変調器2と、先入れ先出し方式(FIFO)のメモリを有し、複数の送信データからなるパラレルデータをシリアルデータへ変換する信号多重化回路3と、シリアルデータに応じた電圧を電界吸収型光変調器2の変調用PD4に印加する変調器駆動回路5と、FIFOメモリのFIFOメモリエラー信号(メモリエラー信号)を検知して変調器駆動回路5の出力信号のパルス幅歪み(デューティ)を制御する制御手段としてのデューティ制御回路21とで構成されたものである。
【0026】
信号多重化回路3と変調器駆動回路5との間はカップリングコンデンサ14で接続されている。
【0027】
モニタ用PD7、直流電圧源9、抵抗器10、バイパスコンデンサ11、誤差増幅器12及び基準電圧源13で、LD6の発光パワーを一定に保持するためのAPC回路が構成されている。
【0028】
電界吸収型光変調器2は、電界吸収効果を利用した光変調器であり、発光部としてのLD6、印加電圧に応じてLD6からの出射光を吸収する変調用PD4及びLD6からのモニタ光を受光するモニタ用PD7が集積化されたものであるが、発光部がLD6ではなく、発光ダイオード(LED)であってもよい。
【0029】
次に図1に示した光送信器20の動作について説明する。
【0030】
信号多重化回路3に正常な送信データが入力される場合、信号多重化回路3はFIFOメモリからのメモリエラー信号は検知されない。このため、デューティ制御回路21は、光送信波形のデューティが50%程度になるように初期調整時に設定された変調器駆動出力信号としてはややデューティが高い波形となるような電圧を出力し続ける。この結果、良好な光信号伝送が継続される。
【0031】
これに対して、信号多重化回路3に異常な送信データが入力された場合、信号多重化回路3はメモリエラーとなり、マーク率の異常に応じて変動するデータが出力される。デューティ制御回路21は、メモリエラー信号を検知し、直ちに変調器駆動回路5の出力をデューティが小さくなる方向へ制御する。この結果、電界吸収型光変調器2は光吸収状態に保持されることになり、異常な光信号の出力を防止することができる。
【0032】
再び信号多重化回路3に正常な送信データが入力されると、信号多重化回路3はメモリエラーが解除されるので、デューティ制御回路21は、光送信波形のデューティが50%程度になるよう初期調整時に設定された変調器駆動出力信号としてはややデューティが高い波形となるような電圧を出力し続ける。この結果、良好な光信号伝送が再び継続される。
【0033】
(最適条件についての根拠)
信号多重化回路3のメモリエラーが解除されると、デューティ制御回路21は光送信波形のデューティが50%程度になるような電圧(初期調整時に設定された変調器駆動出力信号としてはややデューティが高い波形となるような電圧)を出力する状態へ戻る。このとき、あまり性急に電圧を戻すと、光送信器20に接続される光アンプ(図示せず。)でサージが生じるので、時定数(例えば、デューティ制御回路21内の図示しない抵抗器とコンデンサとで構成される時定数回路の抵抗値と静電容量値との積)を合わせる必要がある。
【0034】
図2は本発明の光送信器の他の実施の形態を示す回路図である。
【0035】
図2に示した光送信器30の図1に示した光送信器20との相違点は、電界吸収型光変調器2を用いずに直接変調用発光素子としての直接変調用LD31を用い、直接変調用LD31の異常発光を検知して直接変調用LD31の発光を停止する停止調整手段32を有する点である。
【0036】
図2に示した光送信器30は、直接変調用LD31と、先入れ先出し方式のメモリを有し、複数の送信データからなるパラレルデータをシリアルデータへ変換する信号多重化回路3と、シリアルデータに応じた電流を直接変調用LD31のLD33に印加するLD駆動回路34と、メモリのメモリエラー信号を検知してLD駆動回路34の出力信号の電流を制御する制御手段としてのLD変調電流制御回路35と、LD33の異常発光を検知してLD33の発光を停止する停止調整手段32とで構成されたものである。
【0037】
直接変調用LD31は、LD33と、LD33のモニタ光を受光するモニタ用PD36とで構成されている。モニタ用PD36のカソードには陰極がアースされた直流電圧源9の陽極が接続され、モニタ用PD36のアノードには一端がアースされた抵抗器10の他端が接続されている。抵抗器10にはバイパスコンデンサ11が並列接続されており、抵抗器10の他端は誤差増幅器12の反転入力端子に接続されている。誤差増幅器12の非反転入力端子には、陰極がアースされた基準電圧源13の陽極が接続されている。
【0038】
一方、LD33のアノードは陰極がアースされた直流電圧源38の陽極に接続され、LD33のカソードはLD駆動回路34の出力端子に接続されると共に、エミッタがアースされたバイポーラトランジスタ37のコレクタに接続されている。バイポーラトランジスタ37のベースは誤差増幅器12の出力端子に接続されている。
【0039】
これら直流電圧源9、抵抗器10、バイパスコンデンサ11、誤差増幅器12、基準電圧源13、モニタ用PD36及びバイポーラトランジスタ37でAPC回路に連動した停止調整手段32が構成されている。
【0040】
次に図2に示した光送信器の動作について説明する。
【0041】
信号多重化回路3に正常な送信データが入力される場合、信号多重化回路3からはFIFOメモリからのメモリエラー信号は検知されないため、LD変調電流制御回路35から直接変調用LD31のLD33には正常な電流が流れる。この結果、良好な光信号伝送が継続される。
【0042】
これに対して、信号多重化回路3に異常な送信データが入力された場合、信号多重化回路3はメモリエラーとなり、マーク率の異常に応じて変動するデータが出力される。LD変調電流制御回路35は、信号多重化回路3からのメモリエラー信号を検知すると、直接変調用LD31のLD33の変調電流を制御し、異常光信号が出力されるのを防止する。この結果、信号異常時に発生しがちな過大な光出力を防止することができるため、直接変調用LD31のレーザ光の使用範囲が拡がる。
【0043】
また、APC回路と連動した停止調整手段32の動作については、
▲1▼LD31の発光強度が基準値より大きくなったとき
モニタ用PD36の受光電流が増加し、抵抗器10にかかる電圧が上昇する。このとき、誤差増幅器12において、反転入力端子に印加される電圧が基準電圧源13の電圧より大きくなり、誤差増幅器12の出力が負になる。このため、バイポーラトランジスタ37がオフ動作になりLD33の発光が停止するように制御される。
【0044】
▲2▼LD31の発光強度が基準値より小さくなったとき
モニタ用PD36の受光電流が減少し、抵抗器10にかかる電圧が低下する。このとき、誤差増幅器12において、反転入力端子に印加される電圧が基準電圧源13の電圧より小さくなり、誤差増幅器12の出力が正になる。このため、バイポ−ラトランジスタ37がオン動作となり、LD33の発光が増加するように制御される。
【0045】
ここで、バイポーラトランジスタ37がオン動作になるとき、バイポーラトランジスタ37のコレクタとエミッタとは同じ電圧で動作するわけではなく、LD33のアノードの電位と、LD33の降下電位で決まるLD33のカソード電位でバイポ−ラトランジスタ37のコレクタ電位は制限される。すなわち、LD33の発光強度が基準値に近づくように調整される。
【0046】
尚、停止調整手段32にはnpn型のバイポーラトランジスタ37が用いられているが、本発明はこれに限定されるものではなく、pnp型のバイポーラトランジスタや電界効果トランジスタを用いて構成してもよい。
【0047】
【発明の効果】
以上要するに本発明によれば、送信データが異常であっても光出力の変動を抑えることができる光送信器の提供を実現することができる。
【図面の簡単な説明】
【図1】本発明の光送信器の一実施の形態を示す回路図である。
【図2】本発明の光送信器の他の実施の形態を示す回路図である。
【図3】従来の光送信器を示す回路図である。
【符号の説明】
2 電界吸収型光変調器
3 信号多重化回路
4 変調用PD(変調用受光部)
5 駆動回路(変調器駆動回路)
6 LD(発光部)
7 モニタ用PD(モニタ用受光部)
8 保護抵抗器
9 直流電圧源
10 抵抗器
11 バイパスコンデンサ
12 誤差増幅器
13 基準電圧源
14 カップリングコンデンサ
21 デューティ制御回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical transmitter.
[0002]
[Prior art]
FIG. 3 is a circuit diagram showing a conventional optical transmitter.
[0003]
The optical transmitter 1 mainly includes an electro-absorption optical modulator 2 and a FIFO (First In First Out) memory, and performs signal multiplexing for converting parallel data including a plurality of transmission data into serial data. And a modulator driving circuit 5 for applying a voltage corresponding to the serial data to a modulating PD 4 as a modulating light receiving unit of the electroabsorption optical modulator 2.
[0004]
Here, the electroabsorption optical modulator 2 is a phenomenon in which an electric field is applied to the semiconductor light absorption layer from outside the semiconductor to shift the absorption edge wavelength to a longer wavelength side (electroabsorption effect: Electro-absorption effect). A laser diode (LD) 6 as a light emitting unit, a modulating PD 4 for absorbing light emitted from the LD 6 according to an applied voltage, and a monitor light receiving unit for receiving monitor light from the LD 6 The monitoring PD 7 is integrated. The protection resistor 8 is connected in parallel to the modulation PD 4.
[0005]
The cathode of the monitoring PD 7 of the electroabsorption optical modulator 2 is connected to the anode of a DC voltage source 9 whose cathode is grounded, and the anode of the monitoring PD 7 is connected to the other end of a resistor 10 whose one end is grounded. It is connected. A bypass capacitor 11 is connected in parallel with the resistor 10, and the other end of the resistor 10 is connected to an inverting input terminal of an error amplifier 12. The non-inverting input terminal of the error amplifier 12 is connected to the anode of the reference voltage source 13 whose cathode is grounded.
[0006]
The monitoring PD 7, the DC voltage source 9, the resistor 10, the bypass capacitor 11, the error amplifier 12, and the reference voltage source 13 constitute an APC (Automatic Power Control) circuit for keeping the emission power of the LD 6 constant. ing.
[0007]
A coupling capacitor 14 is connected between the output terminal of the signal multiplexing circuit 3 and the input terminal of the modulator driving circuit 5. The modulator drive circuit 5 has a terminal for adjusting the pulse width distortion (duty) of the modulator drive voltage waveform, and this terminal is connected to the anode of the duty control voltage source 15 whose cathode is grounded.
[0008]
In the optical transmitter 1 having such an electro-absorption type optical modulator 2, since the ratio of light absorption to the voltage applied to the PD for modulation 4 is not proportional, the width distortion occurs in the direction in which the duty becomes higher in the modulator drive signal. By providing this, the optical output waveform distortion is compensated.
[0009]
The signal multiplexing circuit 3 has a FIFO type memory (not shown) so that data including a large amount of jitter (distortion) can be optically transmitted without generating a code error. It has a function of resetting and reading data correctly at the time of overflow / underflow (for example, see Patent Document 1).
[0010]
[Patent Document 1]
JP-A-11-305175 (page 3-4, FIG. 24)
[0011]
[Problems to be solved by the invention]
However, in the conventional optical transmitter 1 shown in FIG. 3, if an abnormality occurs during signal multiplexing, transmission optical data becomes abnormal, and in some cases, a mark rate (reading rate) of a signal fluctuates. In such a case, in the optical transmitter 1, the optical output power fluctuates in accordance with the fluctuation of the mark rate, so that the value of the optical input power monitor on the receiving side (not shown) is time constant (modulator driving). (A product of the resistance value and the capacitance value of a time constant circuit including a resistor and a capacitor (not shown) in the circuit 5), and the data error may be erroneously recognized as a fluctuation abnormality of the optical input power. is there. Further, when an optical amplifier is inserted in the transmission path of the optical transmitter 1 through which the modulated light is transmitted for relay amplification, the output power fluctuation causes a surge at the time of the optical amplification, and the optical amplifier or the optical receiver May cause damage.
[0012]
Further, since the optical transmitter 1 shown in FIG. 3 uses the electro-absorption optical modulator 2, the modulator driving circuit 5 has a width distortion in a direction in which the duty of the output signal becomes higher due to its optical absorption characteristics. I have. For this reason, there is a problem that an abnormality such as a loss of a transmission signal is likely to fluctuate in a direction in which the average optical output power is increased, and the safety of the optical output power is likely to be impaired.
[0013]
Therefore, an object of the present invention is to solve the above-mentioned problem and to provide an optical transmitter capable of suppressing a change in optical output even when transmission data is abnormal.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 includes a light emitting unit, a light receiving unit for modulation for absorbing light emitted from the light emitting unit according to an applied voltage, and a light receiving unit for monitoring for receiving monitor light from the light emitting unit. Has an integrated electro-absorption optical modulator, a first-in first-out type memory, a signal multiplexing circuit that converts parallel data consisting of a plurality of transmission data into serial data, and a device that modulates a voltage according to the serial data. An optical transmitter having a drive circuit for applying a light to a light receiving element, comprising a control means for detecting a memory error signal from a memory and controlling a pulse width distortion of an output signal of the drive circuit.
[0015]
According to the first aspect of the present invention, when the control means detects the memory error signal from the signal multiplexing circuit, the control means controls the pulse width distortion of the output signal of the drive circuit. Since the optical signal is kept in the absorption state, the transmission of the optical signal having an abnormal output is prevented.
[0016]
According to a second aspect of the present invention, in addition to the configuration according to the first aspect, the reference voltage source, the output voltage from the monitoring light receiving element and the reference voltage of the reference voltage source are compared to keep the light emission power of the light emitting section constant. It is preferable to have an error amplifier that performs the operation.
[0017]
According to the second aspect of the present invention, the error amplifier compares the reference voltage with the output voltage from the monitoring light receiving element, and when the output voltage from the monitoring light receiving element is higher than the reference voltage, the light emission power of the modulation light emitting element. When the output voltage from the monitoring light receiving element is lower than the reference voltage, the light emitting power of the modulating light emitting element is increased, so that the light emitting power of the modulating light emitting element becomes constant and the transmission output of the optical transmitter is stabilized. Is done.
[0018]
According to a third aspect of the present invention, a signal multiplexing circuit having a direct modulation light emitting element, a first-in first-out memory, converting parallel data composed of a plurality of transmission data into serial data, and directly outputting a current corresponding to the serial data. An optical transmitter having a drive circuit for applying the light to the modulation light emitting element, comprising a control means for detecting a memory error signal from a memory and controlling the current of an output signal of the drive circuit.
[0019]
According to the third aspect of the present invention, when the control means detects the memory error signal from the signal multiplexing circuit, the current of the output signal of the drive circuit is controlled, and the light emission power of the light emitting element for direct modulation becomes constant. The transmission output of the transmitter is stabilized.
[0020]
According to a fourth aspect of the present invention, in addition to the configuration of the third aspect, a monitoring light receiving element for receiving monitor light from the light emitting element for direct modulation, a reference voltage source, an output voltage from the monitoring light receiving element and a reference voltage. It is preferable to include an error amplifier that compares the reference voltage of the voltage source with the reference voltage, and a stop adjustment unit that directly stops or adjusts the light emitting state of the light emitting element for modulation in accordance with an output signal from the error amplifier.
[0021]
According to the fourth aspect of the present invention, the reference voltage is compared with the output voltage from the monitoring light receiving element by the error amplifier, and when the output voltage from the monitoring light receiving element is higher than the reference voltage, the direct modulation light emitting element is activated. It is determined that abnormal light emission has occurred, and the stop adjusting means operates independently of the control means to stop light emission when the light emission of the direct modulation light emitting element becomes larger than the reference value, and emit light when the light emission is smaller than the reference value. Adjustment can be made to approach the reference value.
[0022]
The present invention relates to an optical transmitter for optical communication for converting an electric signal into an optical signal and transmitting the same, wherein the optical transmitter or the direct modulation light emitting element is controlled by using an error signal of a FIFO memory. In addition to suppressing abnormal optical output fluctuations and suppressing the optical power output from the optical transmitter, it also prevents malfunctions of the monitor circuit on the optical receiving side and deterioration and failure due to surge light in the optical amplifier. You can do it.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0024]
FIG. 1 is a circuit diagram showing an embodiment of the optical transmitter according to the present invention. Hereinafter, the same members as those of the conventional example shown in FIG.
[0025]
The optical transmitter 20 mainly includes an electro-absorption type optical modulator 2, a first-in first-out (FIFO) memory, a signal multiplexing circuit 3 for converting parallel data including a plurality of transmission data into serial data, A modulator driving circuit 5 for applying a voltage corresponding to the serial data to the modulation PD 4 of the electroabsorption optical modulator 2 and a modulator driving circuit 5 which detects a FIFO memory error signal (memory error signal) of the FIFO memory and detects the FIFO memory error signal (memory error signal). It comprises a duty control circuit 21 as control means for controlling the pulse width distortion (duty) of the output signal.
[0026]
The signal multiplexing circuit 3 and the modulator driving circuit 5 are connected by a coupling capacitor 14.
[0027]
The monitoring PD 7, the DC voltage source 9, the resistor 10, the bypass capacitor 11, the error amplifier 12, and the reference voltage source 13 constitute an APC circuit for keeping the light emission power of the LD 6 constant.
[0028]
The electro-absorption optical modulator 2 is an optical modulator utilizing an electro-absorption effect, and emits light emitted from the LD 6 according to an applied voltage, and modulating PD 4 and monitor light from the LD 6. Although the monitoring PD 7 that receives light is integrated, the light emitting unit may be a light emitting diode (LED) instead of the LD 6.
[0029]
Next, the operation of the optical transmitter 20 shown in FIG. 1 will be described.
[0030]
When normal transmission data is input to the signal multiplexing circuit 3, the signal multiplexing circuit 3 does not detect a memory error signal from the FIFO memory. For this reason, the duty control circuit 21 continues to output a voltage that results in a waveform having a slightly higher duty as the modulator drive output signal set at the time of the initial adjustment so that the duty of the optical transmission waveform is about 50%. As a result, good optical signal transmission is continued.
[0031]
On the other hand, when abnormal transmission data is input to the signal multiplexing circuit 3, the signal multiplexing circuit 3 generates a memory error, and outputs data that fluctuates according to the mark rate abnormality. The duty control circuit 21 detects the memory error signal and immediately controls the output of the modulator drive circuit 5 in a direction to reduce the duty. As a result, the electro-absorption type optical modulator 2 is kept in a light absorbing state, and an abnormal output of an optical signal can be prevented.
[0032]
When the normal transmission data is input to the signal multiplexing circuit 3 again, the memory error is released from the signal multiplexing circuit 3, so that the duty control circuit 21 sets the initial state so that the duty of the optical transmission waveform becomes about 50%. The modulator drive output signal set at the time of the adjustment keeps outputting a voltage having a waveform with a slightly higher duty. As a result, good optical signal transmission is continued again.
[0033]
(Evidence for optimal conditions)
When the memory error of the signal multiplexing circuit 3 is released, the duty control circuit 21 outputs a voltage (duty is slightly higher as the modulator drive output signal set at the time of the initial adjustment) such that the duty of the optical transmission waveform becomes about 50%. The state returns to a state in which a voltage having a high waveform is output. At this time, if the voltage is returned too quickly, a surge occurs in an optical amplifier (not shown) connected to the optical transmitter 20, so that a time constant (for example, a resistor and a capacitor (not shown) in the duty (The product of the resistance value and the capacitance value of the time constant circuit).
[0034]
FIG. 2 is a circuit diagram showing another embodiment of the optical transmitter according to the present invention.
[0035]
The optical transmitter 30 shown in FIG. 2 is different from the optical transmitter 20 shown in FIG. 1 in that a direct modulation LD 31 as a direct modulation light emitting element is used without using the electro-absorption optical modulator 2. The difference lies in that there is a stop adjusting unit 32 that detects abnormal light emission of the direct modulation LD 31 and stops light emission of the direct modulation LD 31.
[0036]
The optical transmitter 30 shown in FIG. 2 includes an LD 31 for direct modulation, a first-in first-out memory, a signal multiplexing circuit 3 for converting parallel data composed of a plurality of transmission data into serial data, An LD drive circuit 34 for directly applying the applied current to the LD 33 of the LD 31 for modulation, an LD modulation current control circuit 35 as a control means for detecting a memory error signal of the memory and controlling the current of the output signal of the LD drive circuit 34. , And stop adjusting means 32 for detecting the abnormal light emission of the LD 33 and stopping the light emission of the LD 33.
[0037]
The direct modulation LD 31 includes an LD 33 and a monitor PD 36 that receives the monitor light of the LD 33. The cathode of the monitoring PD 36 is connected to the anode of the DC voltage source 9 whose cathode is grounded, and the anode of the monitoring PD 36 is connected to the other end of the resistor 10 whose one end is grounded. A bypass capacitor 11 is connected in parallel with the resistor 10, and the other end of the resistor 10 is connected to an inverting input terminal of an error amplifier 12. The non-inverting input terminal of the error amplifier 12 is connected to the anode of the reference voltage source 13 whose cathode is grounded.
[0038]
On the other hand, the anode of the LD 33 is connected to the anode of the DC voltage source 38 whose cathode is grounded, and the cathode of the LD 33 is connected to the output terminal of the LD driving circuit 34 and the emitter is connected to the collector of the bipolar transistor 37 whose ground is grounded. Have been. The base of the bipolar transistor 37 is connected to the output terminal of the error amplifier 12.
[0039]
The DC voltage source 9, the resistor 10, the bypass capacitor 11, the error amplifier 12, the reference voltage source 13, the monitoring PD 36, and the bipolar transistor 37 constitute a stop adjusting unit 32 linked to the APC circuit.
[0040]
Next, the operation of the optical transmitter shown in FIG. 2 will be described.
[0041]
When normal transmission data is input to the signal multiplexing circuit 3, the memory error signal from the FIFO memory is not detected from the signal multiplexing circuit 3, so that the LD modulation current control circuit 35 directly supplies the LD 33 of the modulation LD 31 to the LD 33. Normal current flows. As a result, good optical signal transmission is continued.
[0042]
On the other hand, when abnormal transmission data is input to the signal multiplexing circuit 3, the signal multiplexing circuit 3 generates a memory error, and outputs data that fluctuates according to the mark rate abnormality. When detecting the memory error signal from the signal multiplexing circuit 3, the LD modulation current control circuit 35 controls the modulation current of the LD 33 of the direct modulation LD 31 to prevent an abnormal optical signal from being output. As a result, it is possible to prevent an excessive light output, which tends to occur when a signal is abnormal, so that the range of use of the laser light of the LD 31 for direct modulation is expanded.
[0043]
Also, regarding the operation of the stop adjusting means 32 linked with the APC circuit,
(1) When the light emission intensity of the LD 31 becomes larger than the reference value, the light receiving current of the monitoring PD 36 increases, and the voltage applied to the resistor 10 increases. At this time, in the error amplifier 12, the voltage applied to the inverting input terminal becomes higher than the voltage of the reference voltage source 13, and the output of the error amplifier 12 becomes negative. Therefore, control is performed so that the bipolar transistor 37 is turned off and the light emission of the LD 33 is stopped.
[0044]
(2) When the light emission intensity of the LD 31 becomes smaller than the reference value, the light receiving current of the monitoring PD 36 decreases, and the voltage applied to the resistor 10 decreases. At this time, in the error amplifier 12, the voltage applied to the inverting input terminal becomes smaller than the voltage of the reference voltage source 13, and the output of the error amplifier 12 becomes positive. Therefore, the bipolar transistor 37 is turned on, and the light emission of the LD 33 is controlled to increase.
[0045]
Here, when the bipolar transistor 37 is turned on, the collector and the emitter of the bipolar transistor 37 do not always operate at the same voltage, and the bipolar transistor 37 operates at the anode potential of the LD 33 and the cathode potential of the LD 33 determined by the drop potential of the LD 33. -The collector potential of the transistor 37 is limited. That is, the light emission intensity of the LD 33 is adjusted so as to approach the reference value.
[0046]
Although the npn-type bipolar transistor 37 is used as the stop adjusting unit 32, the present invention is not limited to this, and may be configured using a pnp-type bipolar transistor or a field-effect transistor. .
[0047]
【The invention's effect】
In short, according to the present invention, it is possible to realize the provision of an optical transmitter that can suppress the fluctuation of the optical output even when the transmission data is abnormal.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing one embodiment of an optical transmitter according to the present invention.
FIG. 2 is a circuit diagram showing another embodiment of the optical transmitter according to the present invention.
FIG. 3 is a circuit diagram showing a conventional optical transmitter.
[Explanation of symbols]
2 electroabsorption type optical modulator 3 signal multiplexing circuit 4 modulation PD (modulation light receiving unit)
5 Drive circuit (Modulator drive circuit)
6 LD (light emitting unit)
7 PD for monitor (light receiving part for monitor)
Reference Signs List 8 protection resistor 9 DC voltage source 10 resistor 11 bypass capacitor 12 error amplifier 13 reference voltage source 14 coupling capacitor 21 duty control circuit

Claims (4)

発光部、印加電圧に応じて該発光部からの出射光を吸収する変調用受光部及び上記発光部からのモニタ光を受光するモニタ用受光部が集積化された電界吸収型光変調器と、先入れ先出し方式のメモリを有し、複数の送信データからなるパラレルデータをシリアルデータへ変換する信号多重化回路と、該シリアルデータに応じた電圧を上記変調用受光素子に印加する駆動回路とを有する光送信器において、上記メモリからのメモリエラー信号を検知して上記駆動回路の出力信号のパルス幅歪みを制御する制御手段を備えたことを特徴とする光送信器。A light emitting unit, an electro-absorption optical modulator in which a modulating light receiving unit that absorbs light emitted from the light emitting unit according to an applied voltage and a monitoring light receiving unit that receives monitor light from the light emitting unit are integrated; A light having a first-in first-out memory, a signal multiplexing circuit for converting parallel data composed of a plurality of transmission data into serial data, and a driving circuit for applying a voltage corresponding to the serial data to the light receiving element for modulation. An optical transmitter, comprising: a transmitter for detecting a memory error signal from the memory and controlling a pulse width distortion of an output signal of the drive circuit. 基準電圧源と、上記モニタ用受光素子からの出力電圧と該基準電圧源の基準電圧とを比較して上記発光部の発光パワーを一定にする誤差増幅器とを有する請求項1に記載の光送信器。2. The optical transmitter according to claim 1, further comprising: a reference voltage source; and an error amplifier configured to compare an output voltage from the monitor light receiving element with a reference voltage of the reference voltage source to make a light emission power of the light emitting unit constant. vessel. 直接変調用発光素子と、先入れ先出し方式のメモリを有し、複数の送信データからなるパラレルデータをシリアルデータへ変換する信号多重化回路と、該シリアルデータに応じた電流を上記直接変調用発光素子に印加する駆動回路とを有する光送信器において、上記メモリからのメモリエラー信号を検知して上記駆動回路の出力信号の電流を制御する制御手段を備えたことを特徴とする光送信器。A direct modulation light-emitting element, a signal multiplexing circuit having a first-in first-out memory and converting parallel data consisting of a plurality of transmission data into serial data, and applying a current corresponding to the serial data to the direct modulation light-emitting element An optical transmitter, comprising: a driving circuit for applying the driving signal; and a control unit for detecting a memory error signal from the memory and controlling a current of an output signal of the driving circuit. 上記直接変調用発光素子からのモニタ光を受光するモニタ用受光素子と、基準電圧源と、該モニタ用受光素子からの出力電圧と該基準電圧源の基準電圧とを比較する誤差増幅器と、該誤差増幅器からの出力信号に応じて上記直接変調用発光素子の発光状態を停止若しくは調整する停止調整手段とを有する請求項3に記載の光送信器。A monitor light receiving element for receiving monitor light from the direct modulation light emitting element; a reference voltage source; an error amplifier for comparing an output voltage from the monitor light receiving element with a reference voltage of the reference voltage source; 4. The optical transmitter according to claim 3, further comprising stop adjusting means for stopping or adjusting a light emitting state of the direct modulation light emitting element according to an output signal from the error amplifier.
JP2002328445A 2002-11-12 2002-11-12 Optical transmitter Expired - Fee Related JP4003620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328445A JP4003620B2 (en) 2002-11-12 2002-11-12 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328445A JP4003620B2 (en) 2002-11-12 2002-11-12 Optical transmitter

Publications (2)

Publication Number Publication Date
JP2004165918A true JP2004165918A (en) 2004-06-10
JP4003620B2 JP4003620B2 (en) 2007-11-07

Family

ID=32806756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328445A Expired - Fee Related JP4003620B2 (en) 2002-11-12 2002-11-12 Optical transmitter

Country Status (1)

Country Link
JP (1) JP4003620B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8547620B2 (en) 2010-10-15 2013-10-01 Mitsubishi Electric Corporation Light modulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8547620B2 (en) 2010-10-15 2013-10-01 Mitsubishi Electric Corporation Light modulation device

Also Published As

Publication number Publication date
JP4003620B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
KR100699962B1 (en) Light emitting element driving circuit, optical communication device and light emitting element driving method
JP3432620B2 (en) Optical transmitter and laser diode module
JP6212670B1 (en) Active optical cable
WO1998018184A1 (en) Laser diode having smooth enable apc circuit
JP2009200242A (en) Optical transmitter, and control method
US20090135868A1 (en) Optical transmitter able to resume APC operation automatically
US20070183790A1 (en) Optical transmitter with EA-modulator
JP2004222291A (en) Power saving method for optical fiber device, and laser system and method for adjusting threshold level for signal detection
CN111988888B (en) Light emission control device, light source device, and projection type image display device
JP3795762B2 (en) Optical output control circuit
JP4003620B2 (en) Optical transmitter
JP3970839B2 (en) Nonlinear load boosting circuit
JP3695413B2 (en) Light emitting element driving apparatus and image forming apparatus
JP2762986B2 (en) Optical output cutoff circuit
JP4767657B2 (en) Optical transmitter
JP3286896B2 (en) Optical transmitter
JP2008009226A (en) Optical transmission module
JPH07273388A (en) Light transmitter
CN114096051A (en) Driving circuit for regulating power by temperature, and lamp and car lamp with driving circuit
JPS6220391A (en) Light-output stabilizing circuit
JP6270351B2 (en) Optical transceiver and optical transceiver control method
JP2003101132A (en) Semiconductor laser driver
JPH04255284A (en) Laser diode drive control device
CN111712015A (en) Light emission control device, light source device, and projection type image display device
JPH05267769A (en) Light transmission device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees