JP2004163555A - Vertical illumination microscope and objective for vertical illumination microscope - Google Patents

Vertical illumination microscope and objective for vertical illumination microscope Download PDF

Info

Publication number
JP2004163555A
JP2004163555A JP2002327723A JP2002327723A JP2004163555A JP 2004163555 A JP2004163555 A JP 2004163555A JP 2002327723 A JP2002327723 A JP 2002327723A JP 2002327723 A JP2002327723 A JP 2002327723A JP 2004163555 A JP2004163555 A JP 2004163555A
Authority
JP
Japan
Prior art keywords
illumination
epi
observed
light source
illumination light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002327723A
Other languages
Japanese (ja)
Inventor
Sadashi Adachi
貞志 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2002327723A priority Critical patent/JP2004163555A/en
Publication of JP2004163555A publication Critical patent/JP2004163555A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical illumination microscope equipped with a deflecting member such as a half mirror or a half prism in its optical path and capable of eliminating the difference of resolution and the difference of contrast caused by the vertical and horizontal line patterns, and an optical member such as an objective used in the vertical illumination microscope. <P>SOLUTION: The vertical illumination microscope is provided with an illuminating light source 1, the half mirror 3 guiding illuminating light from the light source 1 to an object to be observed (sample 8) side and also guiding the light from the object to be observed to an image (electronic image pickup element 9) side, an illumination optical system 2 making the illuminating light from the light source 1 incident on the mirror 3 while keeping a polarized state at the time of exiting from the light source 1, and an observation optical system 4 including the objective 5 and forming the image of the sample 8 illuminated with the illuminating light, and has a constitution where a depolarization element 9 is arranged between the mirror 3 and the sample 8. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はハーフミラーやハーフプリズムなどの偏向部材を用いた、特に明視野観察を行うための落射顕微鏡、及び落射顕微鏡に用いられる対物レンズなどの光学部材に関する。
【0002】
【従来の技術】
従来、通常の落射顕微鏡では、照明光源からの照明光を被観察物体側に導くとともに、被観察物体からの光を像側へと導くために、光路中にハーフミラーなどの偏向部材が設けられている(例えば、特許文献1,2参照)。
【0003】
【特許文献1】
特開平5−203880号
【特許文献2】
特開平5−173078号
【0004】
図10は、特許文献1,2に記載の落射顕微鏡に共通する概略構成図である。
落射顕微鏡は、照明光源1と、照明光学系2と、ハーフミラー3と、観察光学系4とを備えている。照明光学系2は、レンズ2a,2a’を有して構成されている。ハーフミラー3は、照明光源1からの照明光の一部を被観察物体側(標本8側)へと導くともに、被観察物体からの光の一部を像側(結像レンズ6側)へと導くように構成されている。観察光学系4は、対物レンズ5と、結像レンズ6とを有して構成されている。
【0005】
このように構成された落射顕微鏡によれば、光源1から出射された光は、レンズ2a,2a’を経てハーフミラー3に導かれる。ハーフミラー3に入射した光のうち一部の光がハーフミラー3で反射して標本8側に偏向され、対物レンズ5を経て標本8を照射する。標本8で反射した光は、対物レンズ5を経てハーフミラー3に入射する。ハーフミラー3を透過した光は、結像レンズ6により像を形成する。観察者は、形成された像を接眼レンズ7を介して観察する。
【0006】
【発明が解決しようとする課題】
ところで、偏向部材を構成するハーフミラーは、P偏光とS偏光とで反射率・透過率が異なるという偏光特性を有している。そのため、ハーフミラーを介して被観察物体(標本)に対する照明光は、ランダムな光ではなく、P偏光成分とS偏光成分のうちいずれか一方の偏光成分が幾分多い偏光特性を帯びた光束となる。
【0007】
しかるに、P偏光あるいはS偏光のような直線偏光で被観察物体を照明した場合、直線偏光の方向に平行なラインパターンと、直線偏光に垂直な方向のラインパターンとではコントラストが異なる。
このため、特許文献1,2に記載のような従来の落射顕微鏡では、ハーフミラーなどの偏向部材を介して被観察物体を照明した場合、縦のラインパターンと横のラインパターンとでコントラストに大きな違いを生じてしまっていた。
また、偏向部材としてハーフミラーの代わりに光路分割プリズム(ハーフプリズム)を用いた場合も、ハーフミラーを用いた場合と同様に、P偏光成分とS偏光成分のうちいずれか一方の偏光成分が幾分多くなるという偏光特性をなくすことが難しい。このため、偏向部材に光路分割プリズムを用いた落射顕微鏡であっても、縦のラインパターンと横のラインパターンとでコントラストに違いを生じてしまう。
【0008】
本発明は上記問題点に鑑みてなされたものであり、ハーフミラーやハーフプリズム等の偏向部材を光路中に備える落射顕微鏡において、縦横のラインパターンによる解像度の差やコントラストの差を無くすことが可能な落射顕微鏡及び落射顕微鏡に用いられる対物レンズなどの光学部材を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本第1の発明による顕微鏡は、照明光源と、該照明光源からの照明光を被観察物体側へと導くとともに、前記被観察物体からの光を像側へと導く偏向部材と、前記照明光源からの照明光を、該照明光源から出射したときの偏光状態を保持したまま前記偏向部材に入射させる照明光学系と、対物レンズを含み前記照明光によって照明された被観察物体の像を形成する観察光学系とを有する落射顕微鏡であって、前記偏向部材と被観察物体との間に偏光解消素子を配置したことを特徴としている。
【0010】
また、本第2の発明として、本第1の発明による顕微鏡は、前記偏光解消素子が、前記照明光学系の光軸に対して略45°となるように配置されているのが好ましい。
【0011】
また、本第3の発明による顕微鏡は、照明光源と、該照明光源からの照明光を被観察物体側へと導くとともに、前記被観察物体からの光を像側へと導く偏向部材と、前記照明光源からの照明光を、該照明光源から出射したときの偏光状態を保持したまま前記偏向部材に入射させる照明光学系と、対物レンズを含み前記照明光によって照明された被観察物体の像を形成する観察光学系とを有する落射顕微鏡であって、前記偏向部材と被観察物体との間にλ/4板を配置したことを特徴としている。
【0012】
また、本第4の発明による落射顕微鏡は、照明光源と、該照明光源からの照明光を被観察物体側へと導くとともに、前記被観察物体からの光を像側へと導く偏向部材と、前記照明光源からの照明光を、該照明光源から出射したときの偏光状態を保持したまま前記偏向部材に入射させる照明光学系と、対物レンズを含み前記照明光によって照明された被観察物体の像を形成する観察光学系とを有する落射顕微鏡において、次の条件式(1)を満足する空間周波数の物体を観察するときには、前記偏向部材と被観察物体との間に偏光解消素子又はλ/4板を配置することができるようにしたことを特徴としている。
NA/λ<P<2NA/λ …(1)
但し、NAは対物レンズのNA、λは落射顕微鏡の中心波長、Pは観察物体の空間周波数である。
【0013】
また、本第5の発明による落射顕微鏡用対物レンズは、偏光解消素子を備えたことを特徴としている。
【0014】
【発明の実施の形態】
実施例の説明に先立ち、本発明の作用について説明する。
本第1の発明のように、通常の落射明視野顕微鏡において、偏向部材と被観察物体との間に偏光解消素子を配置すれば、ハーフミラーやハーフプリズムなどの偏向部材を経てP偏光成分とS偏光成分のうちいずれか一方の偏光成分の割合が多くなるといった偏光特性を帯びた光がランダムな光に変換されて被観察物体を照明することになる。このため、被観察物体の配置に影響されることなく、縦横のラインパターンがほぼ一定のコントラストでもって被観察物体像を観察することができる。
【0015】
また、本第2の発明のように、本第1の発明における偏光解消素子を水晶で構成すると、加工、入手が容易となる。
【0016】
また、本第3の発明のように、偏向部材と被観察物体との間にλ/4板を配置すれば、反射率・透過率特性の異なるハーフミラーやハーフプリズムなどの偏向部材で被観察物体側へと導かれることによって上記のような偏光特性を帯びた照明光が、λ/4板を通過することにより被観察物体を照明するときには円偏光になる。このため、縦横のラインパターンの違いによるコントラスト差が少なくなる。
【0017】
また、本第4の発明のように、上記条件式(1)を満足する空間周波数の物体を観察する場合に、偏向部材と被観察物体との間に偏光解消素子又はλ/4板を配置すると、縦横のラインパターンのコントラストを一定にする効果が大きくなる。
NA/λ<P<2NA/λ …(1)
但し、NAは対物レンズのNA、λは落射顕微鏡の中心波長、Pは被察物体の空間周波数である。
被観察物体の空間周波数PがNA/λを下回ると、偏光とS偏光とでの解像、コントラストに差がでないので、本発明を用いる必要がない。
また、観察物体の空間周波数Pが2NA/λ(カットオフ周波数)を上回ると、観察光学系で解像できなくなる。
【0018】
また、本第5の発明のように、顕微鏡用対物レンズに偏光解消素子を備えた構成とすれば、この対物レンズを本第1の発明と同様の顕微鏡に用いることで、偏向部材と被観察物体との間の光路中に単独の偏光解消素子を配置することなく、本第1の発明と同様の効果が得られる。
【0019】
その他、本発明は、上記発明の構成の他に更に次のように構成してもよい。
本第6の発明として、顕微鏡用対物レンズをλ/4板を備えた構成としてもよい。
このようにしても、偏向部材と被観察物体との間の光路中に単独のλ/4板を配置することなく、本第3の発明と同様の効果が得られる。
【0020】
これら、本第5及び本第6の発明を用いて次の本第7及び第8の発明のような落射顕微鏡が構成できる。
本第7の発明として、本第1の発明の落射顕微鏡は、前記対物レンズが、偏光解消素子を備えているのが好ましい。
【0021】
また、第8の発明として、本第3の発明の落射顕微鏡は、前記対物レンズが、λ/4板を備えているのが好ましい。
【0022】
また、本第9の発明として、本第1の発明の落射顕微鏡は、前記偏向部材が、光路に挿脱可能なユニットに備えられ、該ユニットが、前記偏向部材よりも被観察物体側に偏光解消素子を備えているのが好ましい。
【0023】
本第9の発明のように偏向部材と偏光解消素子を備えたユニットを構成すると、偏向部材と被観察物体との間の光路中に単独の偏光解消素子を配置することなく、本第1の発明と同様の効果が得られる。
【0024】
また、本第10の発明として、本第9の発明の落射顕微鏡は、前記偏光解消素子が、該偏向部材の被観察物体側の面に沿って配置されているのが好ましい。
【0025】
本第10の発明のように偏向部材の被観察物体側の面に沿って偏光解消素子を配置しても、本第9の発明と同様、偏向部材と被観察物体との間の光路中に単独の偏光解消素子を配置することなく、本第1の発明と同様の効果が得られる。
【0026】
また、本第11の発明として、本第7、本第9、本第10のいずれかの発明は、前記偏光解消素子が、照明光軸に対して光学軸が概ね45°となるように配置された水晶であるのが好ましい。
偏光解消素子を水晶で構成すると、本第2の発明と同様、加工、入手が容易となる。
【0027】
また、本第12の発明として、本第3の発明の落射顕微鏡は、前記偏向部材が、光路に挿脱可能なユニットに備えられ、該ユニットが、前記偏向部材よりも被観察物体側に、λ/4板を備えているのが好ましい。
このようにしても、偏向部材と被観察物体との間の光路中に単独のλ/4板を配置することなく、本第8の発明と同様の効果が得られる。
【0028】
また、本第13の発明として、本第9〜第12のいずれかの発明の落射顕微鏡は、前記偏向部材が、ビームスプリッタで構成されているのが好ましい。
【0029】
なお、本発明が適用される顕微鏡は、前記偏向部材が、照明光源からの照明光を被観察物体側へ反射するとともに、前記被観察物体からの光を像側へ透過する構成、あるいは、照明光源からの照明光を被観察物体側へ透過するとともに、前記被観察物体からの光を像側へ反射する構成、のいずれのタイプに構成してもよい。
【0030】
【実施例】
第1実施例
図1は本発明による落射顕微鏡の第1実施例の概略構成図である。図2は本実施例の偏光解消素子を示す図であり、(a)は図1の部分図、(b)は図1の構成における標本8側から偏向解消素子10をみたときの光学軸と偏光成分との関係を示す説明図である。
第1実施例の落射顕微鏡は、照明光源1と、照明光学系2と、ハーフミラー3と、観察光学系4とを備えている。また、電子撮像系あるいは写真撮影系などの撮像光学系9を備えている。
照明光学系2は、レンズ2a,2a’とを有し、照明光源1からの照明光を、照明光源1から出射したときの偏光状態を保持したままハーフミラー3に入射させるように構成されている。
ハーフミラー3は、照明光源1からの照明光の一部を被観察物体側(標本8側)へと導くともに、被観察物体からの光の一部を像側(結像レンズ6側)へと導くように構成されている。
観察光学系4は、対物レンズ5と、結像レンズ6と、接眼レンズ7とを有して構成されている。
また、本実施例の落射顕微鏡では、ハーフミラー3と対物レンズ5との間に偏光解消素子10が配置されている。
偏光解消素子10は、図2(b)に示すように、その光学軸が偏光成分1,2(P偏光成分,S偏光成分)など直線偏光成分の偏光方向に対して45°となるように配置された水晶で構成されており、偏光をランダムな状態の光に変換する作用を有している。
【0031】
このように構成された第1実施例の落射顕微鏡によれば、光源1から出射された光は、レンズ2a,2a’を経てハーフミラー3に導かれる。このときの光は、光源1から出射した直後の偏光状態が保たれておりランダムな状態となっている。ハーフミラー3に入射した光のうち一部の光が反射して標本8側に偏向される。このとき、ハーフミラー3の偏光特性により、標本8側に偏向された光に含まれるP偏光成分の光とS偏光成分の光の割合が変化し、いずれか一方の偏光成分が多くなっている。
このとき、本実施例の落射顕微鏡では、ハーフミラー3と標本8との間に偏光解消素子10を備えたので、ハーフミラー3で標本8側に偏向された光は、偏光解消素子10を介してランダムな状態の光に変換されて対物レンズ5に入射する。対物レンズ5に入射した光は、ランダムな状態に保たれながら標本8に照射される。
標本8で反射した光は、対物レンズ5、偏光解消素子10を経てハーフミラー3に入射する。ハーフミラー3を透過した光は、結像レンズ6により像を形成する。観察者は、一部の光で形成された像を、接眼レンズ7を介して観察する。結像レンズ6を透過したその他の光は、撮像光学系9を介して撮像面又は撮影面に像を形成する。
【0032】
このように、第1実施例の落射顕微鏡によれば、ハーフミラー3を介して標本8側へ偏向された光に含まれるP偏光成分とS偏光成分の光の割合が一方に偏ったとしても偏光解消素子10がその偏光状態をランダムな光に変換する。このため、標本8にはランダム光が照射される。
従って、本実施例の落射顕微鏡によれば、標本8の配置に影響されることなく、縦横のラインパターンがほぼ一定のコントラストでもって標本8の像を観察することができる。
また、本実施例の落射顕微鏡によれば、偏光解消素子10を水晶で構成したので、加工、入手が容易となる。
なお、本実施例の落射顕微鏡においては、ハーフミラー3の代わりにビームスプリッタを用いてもよい。
【0033】
第2実施例
図3は本発明による落射顕微鏡の第2実施例の概略構成図である。
第2実施例の落射顕微鏡は、図1に示した第1実施例における偏光解消素子10の代わりにλ/4板11が配置されている。その他の構成は第1実施例と同様である。
【0034】
このように構成された第2実施例の落射顕微鏡によれば、光源1から出射された光は、レンズ2a,2a’を経てハーフミラー3に導かれる。このときの光は、光源1から出射した直後の偏光状態が保たれておりランダムな状態となっている。ハーフミラー3に入射した光のうち一部の光が反射して標本8側に偏向される。このとき、ハーフミラー3の偏光特性により、標本8側に偏向された光に含まれるP偏光成分の光とS偏光成分の光の割合が変化し、いずれか一方の偏光成分が多くなっている。
このとき、本実施例の落射顕微鏡では、ハーフミラー3と標本8との間にλ/4板11を備えたので、ハーフミラー3で標本8側に偏向された光は、λ/4板11を介して円偏光となって対物レンズ5に入射する。対物レンズ5に入射した光は円偏光の偏光状態を保たれながら標本8に照射される。
標本8で反射した光は、対物レンズ5、λ/4板11を経てハーフミラー3に入射する。ハーフミラー3を透過した光は、結像レンズ6により像を形成する。観察者は、一部の光で形成された像を、接眼レンズ7を介して観察する。結像レンズ6を透過したその他の光は、撮像光学系9を介して撮像面又は撮影面に像を形成する。
【0035】
このように、第2実施例の落射顕微鏡によれば、ハーフミラー3を介して標本8側へ偏向された光に含まれるP偏光成分とS偏光成分の光の割合が一方に偏ったとしてもλ/4板11が円偏光に変換する。このため、標本8には円偏光が照射される。
従って、本実施例の落射顕微鏡によれば、標本8の配置に影響されることなく、縦横のラインパターンがほぼ一定のコントラストでもって標本8の像を観察することができる。
【0036】
第3実施例
図4は本発明による落射顕微鏡の第3実施例の概略構成図である。
第3実施例の落射顕微鏡は、図1に示した第1実施例における偏光解消素子10が、対物レンズ5の鏡筒内において像側(結像レンズ6側)に組み込まれている。その他の構成は第1実施例と同様である。
本実施例のように、対物レンズ5に偏光解消素子10を備えた構成とすれば、ハーフミラー3と標本8との間の光路中に単独の偏光解消素子を配置することなく、第1実施例と同様の効果が得られる。
【0037】
第4実施例
図5は本発明による落射顕微鏡の第4実施例の概略構成図である。
第4実施例の落射顕微鏡は、図1に示した第1実施例におけるハーフミラー3を光路に挿脱可能なユニットして構成されたキューブ12の内部に備えるとともに、偏光解消素子10をキューブ12の内部におけるハーフミラー3よりも被観察物体側(標本8側)に備えている。
本実施例のように、ハーフミラー3と偏光解消素子10とをユニット内に備えた構成とすれば、ハーフミラー3と標本8との間の光路中に単独の偏光解消素子を配置することなく、第1実施例と同様の効果が得られる。
なお、本実施例の落射顕微鏡における偏光解消素子10は、光源1からの光軸に対して90°より幾分傾いて配置されているが、これは、光源1からの光が偏光解消素子10に入射するときに一部の光が表面反射したとしても反射方向が結像レンズ6からずれて観察に悪影響を与えないようにするためである。従って、他の実施例の落射顕微鏡おいても、偏光解消素子を光軸に対して垂直に配置された構成のものは、実際には、本実施例の落射顕微鏡における偏光解消素子10に示すように光源1からの光軸に対して90°より幾分傾いて配置されていると好ましい。
【0038】
第5実施例
図6は本発明による落射顕微鏡の第5実施例の概略構成図、図7は図6の要部拡大説明図である。図8は図7の偏光解消素子の光学軸と偏光成分との関係を示す説明図であり、(a)は図7の矢印A側から偏向解消素子13bを垂直にみたときの状態、(b)は図7と同じ側から偏向解消素子13bみたときの状態、(c)は図7の矢印B側から偏向解消素子13bをみたときの状態を夫々示している。
第5実施例の落射顕微鏡は、第4実施例におけるハーフミラー3と偏光解消素子10とを兼ね備えた部材13を用いている。この部材13は、偏光解消素子13bにハーフミラー面13aが一体的に備えられた構成となっている。
ハーフミラー面13aは、偏光解消素子13bの像側に設けられている。偏光解消素子13bは、水晶を用いて、その光学軸がP偏光成分、S偏光成分などの直線偏光成分の偏光方向に対して45°となるように構成されており、偏光をランダムな状態の光に変換する作用を有している。また、偏光解消素子13bの標本8側の面には、光源1からの入射光の表面反射を防止するようにARコート13cが施されている。その他の構成は第1実施例と同様である。
本実施例のように、ハーフミラー面13aを偏光解消素子13bに一体的に設けた構成とすれば、少ない部品点数で、ハーフミラー面と標本8との間の光路中に単独の偏光解消素子を配置することなく、第1実施例と同様の効果が得られる。
【0039】
第6実施例
図9は本発明による落射顕微鏡の第6実施例の概略構成図である。
第6実施例の落射顕微鏡は、図1に示した第1実施例におけるハーフミラー3の代わりにビームスプリッタ3’が配置されるとともに、偏光解消素子10が、ビームスプリッタ3’の標本8側に接合されている。
本実施例のように、ビームスプリッタ3’に偏光解消素子10を備えた構成とすれば、第4実施例と同様、ビームスプリッタ3’と標本8との間の光路中に単独の偏光解消素子を配置することなく、第1実施例と同様の効果が得られる。
【0040】
なお、図示は省略するが、本発明の落射顕微鏡のその他の実施例として、上記第3〜第6実施例の落射顕微鏡の構成おいて、偏光解消素子に代えてλ/4板を用いて落射顕微鏡を構成してもよい。
そのように構成した場合には、ハーフミラーあるいはビームスプリッタと標本との間の光路中に単独のλ/4板を配置することなく、第2実施例と同様の効果が得られる。
【0041】
以上説明したように、本発明の落射顕微鏡及び落射顕微鏡用対物レンズは、特許請求の範囲に記載された発明の他に、次に示すような特徴も備えている。
【0042】
(1)λ/4板を備えたことを特徴とする顕微鏡用対物レンズ。
【0043】
(2)前記対物レンズが、偏光解消素子を備えていることを特徴とする請求項1に記載の落射顕微鏡。
【0044】
(3)前記対物レンズが、λ/4板を備えていることを特徴とする請求項3に記載の落射顕微鏡。
【0045】
(4)前記偏向部材が、光路に挿脱可能なユニットに備えられ、該ユニットが、前記偏向部材よりも被観察物体側に偏光解消素子を備えていることを特徴とする請求項1に記載の落射顕微鏡。
【0046】
(5)前記偏光解消素子が、該偏向部材の被観察物体側の面に沿って配置されていることを特徴とする上記(4)に記載の落射顕微鏡。
【0047】
(6)前記偏光解消素子が、前記光偏向部材を介して偏向された照明光に含まれる直線偏光成分の偏光方向に対して光学軸が45°となるように配置された水晶であることを特徴とする上記(2)、(4)、(5)のいずれかに記載の落射顕微鏡。
【0048】
(7)前記偏向部材が、光路に挿脱可能なユニットに備えられ、該ユニットが、前記偏向部材よりも被観察物体側に、λ/4板を備えていることを特徴とする請求項1に記載の落射顕微鏡。
【0049】
(8)前記偏向部材が、ビームスプリッタで構成されていることを特徴とする上記(4)〜(7)のいずれかに記載の落射顕微鏡。
【0050】
【発明の効果】
本発明によれば、縦横のパターンに関係なく、均一な解像、コントラストで被観察物体の観察を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明による落射顕微鏡の第1実施例の概略構成図である。
【図2】本実施例の偏光解消素子を示す図であり、(a)は図1の部分図、(b)は図1の構成における標本8側から偏向解消素子10をみたときの光学軸と偏光成分との関係を示す説明図である。
【図3】本発明による落射顕微鏡の第2実施例の概略構成図である。
【図4】本発明による落射顕微鏡の第3実施例の概略構成図である。
【図5】本発明による落射顕微鏡の第4実施例の概略構成図である。
【図6】本発明による落射顕微鏡の第5実施例の概略構成図である。
【図7】図6の要部拡大説明図である。
【図8】図7の偏光解消素子の光学軸と偏光成分との関係を示す説明図であり、(a)は図7の矢印A側から偏向解消素子13bを垂直にみたときの状態、(b)は図7と同じ側から偏向解消素子13bみたときの状態、(c)は図7の矢印B側から偏向解消素子13bをみたときの状態を夫々示している。
【図9】本発明による落射顕微鏡の第6実施例の概略構成図である。
【図10】従来の落射顕微鏡の概略構成図である。
【符号の説明】
1 照明光源
2 照明光学系
2a,2a’ レンズ
3 ハーフミラー
3’ ビームスプリッタ
4 観察光学系
5 対物レンズ
6 結像レンズ
7 接眼光学系
8 標本
9 撮像光学系
10 偏光解消素子
11 λ/4板
12 キューブ
13 偏向作用と偏向解消作用とを兼ね備えた部材
13a ハーフミラー面
13b 偏光解消素子
13c ARコート面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical member such as an epi-illumination microscope for performing bright field observation, and an objective lens used for the epi-illumination microscope, in particular, using a deflecting member such as a half mirror or a half prism.
[0002]
[Prior art]
Conventionally, in a normal epi-illumination microscope, a deflecting member such as a half mirror is provided in an optical path to guide illumination light from an illumination light source to an object to be observed and to guide light from the object to be observed to an image side. (For example, see Patent Documents 1 and 2).
[0003]
[Patent Document 1]
JP-A-5-203880 [Patent Document 2]
JP-A-5-173078
FIG. 10 is a schematic configuration diagram common to the epi-illumination microscopes described in Patent Documents 1 and 2.
The epi-illumination microscope includes an illumination light source 1, an illumination optical system 2, a half mirror 3, and an observation optical system 4. The illumination optical system 2 includes lenses 2a and 2a '. The half mirror 3 guides a part of the illumination light from the illumination light source 1 to the object to be observed (the specimen 8 side), and also directs a part of the light from the object to be observed to the image side (the imaging lens 6 side). It is configured to guide. The observation optical system 4 includes an objective lens 5 and an imaging lens 6.
[0005]
According to the epi-illumination microscope thus configured, the light emitted from the light source 1 is guided to the half mirror 3 via the lenses 2a and 2a '. Part of the light incident on the half mirror 3 is reflected by the half mirror 3 and deflected toward the sample 8, and irradiates the sample 8 via the objective lens 5. The light reflected by the sample 8 enters the half mirror 3 via the objective lens 5. The light transmitted through the half mirror 3 forms an image by the imaging lens 6. The observer observes the formed image through the eyepiece 7.
[0006]
[Problems to be solved by the invention]
By the way, the half mirror constituting the deflecting member has a polarization characteristic that the reflectance and the transmittance are different between the P-polarized light and the S-polarized light. Therefore, the illumination light to the object to be observed (sample) via the half mirror is not a random light, but a light flux having a polarization characteristic in which one of the P-polarized component and the S-polarized component is somewhat larger. Become.
[0007]
However, when the object to be observed is illuminated with linearly polarized light such as P-polarized light or S-polarized light, the contrast differs between a line pattern parallel to the linearly polarized light and a line pattern perpendicular to the linearly polarized light.
For this reason, in the conventional epi-illumination microscopes described in Patent Documents 1 and 2, when an object to be observed is illuminated via a deflecting member such as a half mirror, the vertical line pattern and the horizontal line pattern have large contrast. It was making a difference.
Also, when an optical path splitting prism (half prism) is used instead of a half mirror as a deflecting member, similarly to the case where a half mirror is used, the amount of one of the P-polarized component and the S-polarized component is reduced. It is difficult to eliminate the polarization characteristic that the number increases. For this reason, even in an epi-illumination microscope using an optical path splitting prism as the deflecting member, there is a difference in contrast between the vertical line pattern and the horizontal line pattern.
[0008]
The present invention has been made in view of the above problems, and in an epi-illumination microscope including a deflection member such as a half mirror or a half prism in an optical path, it is possible to eliminate a difference in resolution and a difference in contrast due to vertical and horizontal line patterns. It is an object to provide an optical member such as an epi-illumination microscope and an objective lens used for the epi-illumination microscope.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the microscope according to the first aspect of the present invention provides an illumination light source, and guides illumination light from the illumination light source to an object to be observed and guides light from the object to be observed to an image side. A deflecting member, an illumination optical system that causes the illumination light from the illumination light source to enter the deflection member while maintaining a polarization state when emitted from the illumination light source, and an object illuminated by the illumination light including an objective lens. An epi-illumination microscope having an observation optical system for forming an image of an observation object, wherein a depolarizing element is arranged between the deflection member and the object to be observed.
[0010]
As a second aspect of the present invention, in the microscope according to the first aspect of the present invention, it is preferable that the depolarizing element is disposed so as to be approximately 45 ° with respect to the optical axis of the illumination optical system.
[0011]
The microscope according to the third aspect of the present invention includes an illumination light source, a deflecting member that guides illumination light from the illumination light source to the object to be observed, and guides light from the object to be observed to the image side, Illumination light from an illumination light source, an illumination optical system that enters the deflection member while maintaining the polarization state when emitted from the illumination light source, and an image of an object to be observed illuminated by the illumination light including an objective lens. An epi-illumination microscope having an observation optical system to be formed, wherein a λ / 4 plate is arranged between the deflection member and the object to be observed.
[0012]
The epi-illumination microscope according to the fourth aspect of the present invention includes an illumination light source, and a deflecting member that guides illumination light from the illumination light source to the object to be observed and guides light from the object to be observed to the image side. An illumination optical system that causes illumination light from the illumination light source to enter the deflecting member while maintaining a polarization state when emitted from the illumination light source; and an image of an object to be observed illuminated by the illumination light, including an objective lens. When observing an object having a spatial frequency that satisfies the following conditional expression (1) in an epi-illumination microscope having an observation optical system that forms a depolarizing element or a λ / 4 between the deflecting member and the object to be observed. It is characterized in that a plate can be arranged.
NA / λ <P <2NA / λ (1)
Here, NA is the NA of the objective lens, λ is the center wavelength of the epi-illumination microscope, and P is the spatial frequency of the observation object.
[0013]
The objective lens for an epi-illumination microscope according to the fifth aspect of the present invention is characterized in that it comprises a depolarizing element.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Prior to the description of the embodiments, the operation of the present invention will be described.
In the ordinary epi-illumination bright-field microscope as in the first invention, if a depolarizing element is arranged between the deflecting member and the object to be observed, the P-polarized light component is passed through a deflecting member such as a half mirror or a half prism. Light having polarization characteristics such that the ratio of one of the S-polarized components is increased is converted into random light to illuminate the observed object. Therefore, the image of the object to be observed can be observed with a substantially constant vertical and horizontal line pattern without being affected by the arrangement of the object to be observed.
[0015]
Further, when the depolarizing element in the first invention is made of quartz crystal as in the second invention, processing and acquisition become easy.
[0016]
Further, if a λ / 4 plate is arranged between the deflecting member and the object to be observed as in the third aspect of the present invention, the deflecting member such as a half mirror or a half prism having different reflectance / transmittance characteristics can be used. Illumination light having the above-mentioned polarization characteristics by being guided to the object side becomes circularly polarized light when illuminating the observation object by passing through the λ / 4 plate. For this reason, the contrast difference due to the difference between the vertical and horizontal line patterns is reduced.
[0017]
When observing an object having a spatial frequency that satisfies the conditional expression (1) as in the fourth invention, a depolarizing element or a λ / 4 plate is arranged between the deflecting member and the object to be observed. Then, the effect of making the contrast of the vertical and horizontal line patterns constant is increased.
NA / λ <P <2NA / λ (1)
Here, NA is the NA of the objective lens, λ is the center wavelength of the epi-illumination microscope, and P is the spatial frequency of the object to be inspected.
When the spatial frequency P of the object to be observed falls below NA / λ, there is no difference between the resolution and the contrast between the polarized light and the S-polarized light, so that it is not necessary to use the present invention.
If the spatial frequency P of the observation object exceeds 2NA / λ (cutoff frequency), the observation optical system cannot resolve the image.
[0018]
Further, if the objective lens for a microscope is provided with a depolarizing element as in the fifth invention, by using this objective lens in the same microscope as in the first invention, the deflecting member and the object to be observed can be obtained. The same effect as that of the first invention can be obtained without disposing a single depolarizing element in the optical path between the object and the object.
[0019]
In addition, the present invention may be configured as follows in addition to the configuration of the above-described invention.
As a sixth aspect of the present invention, the objective lens for a microscope may be provided with a λ / 4 plate.
Even in this case, the same effect as that of the third invention can be obtained without disposing a single λ / 4 plate in the optical path between the deflecting member and the object to be observed.
[0020]
By using these fifth and sixth inventions, an epi-illumination microscope as in the following seventh and eighth inventions can be constructed.
According to a seventh aspect of the present invention, in the epi-illumination microscope according to the first aspect of the present invention, it is preferable that the objective lens includes a depolarizing element.
[0021]
As an eighth invention, in the epi-illumination microscope according to the third invention, it is preferable that the objective lens includes a λ / 4 plate.
[0022]
According to a ninth aspect of the present invention, in the epi-illumination microscope according to the first aspect, the deflecting member is provided in a unit that can be inserted into and removed from an optical path, and the unit is polarized more toward the object to be observed than the deflecting member. It is preferred to have a cancellation element.
[0023]
When a unit including a deflecting member and a depolarizing element is configured as in the ninth aspect of the present invention, the first depolarizing element is not disposed in the optical path between the deflecting member and the object to be observed. The same effect as the invention can be obtained.
[0024]
According to a tenth aspect of the present invention, in the epi-illumination microscope according to the ninth aspect, it is preferable that the depolarizing element is arranged along a surface of the deflecting member on the observation object side.
[0025]
Even if the depolarizing element is arranged along the surface of the deflecting member on the side of the object to be observed as in the tenth aspect of the present invention, as in the ninth aspect of the present invention, the depolarizing element is disposed in the optical path between the deflecting member and the object to be observed. The same effect as the first invention can be obtained without disposing a single depolarizing element.
[0026]
Further, as an eleventh invention, in any one of the seventh, ninth, and tenth inventions, the depolarization element is arranged such that an optical axis is approximately 45 ° with respect to an illumination optical axis. Preferably, it is a quartz crystal.
When the depolarizing element is made of quartz, it can be easily processed and obtained as in the second invention.
[0027]
As a twelfth invention, in the epi-illumination microscope according to the third invention, the deflecting member is provided in a unit that can be inserted into and removed from an optical path, and the unit is closer to the object to be observed than the deflecting member. It is preferable to provide a λ / 4 plate.
Even in this case, the same effect as that of the eighth aspect can be obtained without disposing a single λ / 4 plate in the optical path between the deflecting member and the object to be observed.
[0028]
Further, as a thirteenth invention, in the epi-illumination microscope according to any of the ninth to twelfth inventions, it is preferable that the deflection member is constituted by a beam splitter.
[0029]
Note that the microscope to which the present invention is applied has a configuration in which the deflecting member reflects illumination light from an illumination light source toward the object to be observed and transmits light from the object to be observed to the image side, or The illumination light from the light source may be transmitted to the observation object side, and the light from the observation object may be reflected to the image side.
[0030]
【Example】
First Embodiment FIG. 1 is a schematic configuration diagram of a first embodiment of an epi-illumination microscope according to the present invention. 2A and 2B are views showing the depolarizing element of the present embodiment, in which FIG. 2A is a partial view of FIG. 1, and FIG. 2B is an optical axis when the depolarizing element 10 is viewed from the sample 8 side in the configuration of FIG. FIG. 4 is an explanatory diagram showing a relationship with a polarization component.
The epi-illumination microscope according to the first embodiment includes an illumination light source 1, an illumination optical system 2, a half mirror 3, and an observation optical system 4. Further, an imaging optical system 9 such as an electronic imaging system or a photographing system is provided.
The illumination optical system 2 has lenses 2 a and 2 a ′, and is configured to make the illumination light from the illumination light source 1 enter the half mirror 3 while maintaining the polarization state when emitted from the illumination light source 1. I have.
The half mirror 3 guides a part of the illumination light from the illumination light source 1 to the object to be observed (the specimen 8 side), and also directs a part of the light from the object to be observed to the image side (the imaging lens 6 side). It is configured to guide.
The observation optical system 4 includes an objective lens 5, an imaging lens 6, and an eyepiece 7.
In the epi-illumination microscope according to the present embodiment, the depolarizing element 10 is arranged between the half mirror 3 and the objective lens 5.
As shown in FIG. 2 (b), the depolarizing element 10 is set so that its optical axis is at 45 ° to the polarization direction of the linearly polarized light components such as the polarized light components 1 and 2 (the P-polarized light component and the S-polarized light component). It is composed of placed quartz and has the function of converting polarized light into light in a random state.
[0031]
According to the epi-illumination microscope of the first embodiment configured as described above, the light emitted from the light source 1 is guided to the half mirror 3 via the lenses 2a and 2a '. At this time, the light is kept in a random state because the polarization state immediately after emission from the light source 1 is maintained. Part of the light incident on the half mirror 3 is reflected and deflected to the specimen 8 side. At this time, due to the polarization characteristics of the half mirror 3, the ratio of the P-polarized light component and the S-polarized light component included in the light deflected toward the sample 8 changes, and one of the polarized light components is increased. .
At this time, in the epi-illumination microscope of this embodiment, since the depolarizing element 10 is provided between the half mirror 3 and the sample 8, the light deflected toward the sample 8 by the half mirror 3 passes through the depolarizing element 10. Is converted into light in a random state and enters the objective lens 5. The light that has entered the objective lens 5 irradiates the sample 8 while maintaining a random state.
The light reflected by the sample 8 enters the half mirror 3 via the objective lens 5 and the depolarizing element 10. The light transmitted through the half mirror 3 forms an image by the imaging lens 6. The observer observes an image formed by a part of the light through the eyepiece 7. Other light transmitted through the imaging lens 6 forms an image on an imaging surface or an imaging surface via the imaging optical system 9.
[0032]
As described above, according to the epi-illumination microscope of the first embodiment, even if the ratio of the P-polarized light component and the S-polarized light component included in the light deflected toward the sample 8 via the half mirror 3 is deviated to one direction. The depolarizing element 10 converts the polarization state into random light. For this reason, the sample 8 is irradiated with random light.
Therefore, according to the epi-illumination microscope of the present embodiment, the image of the specimen 8 can be observed with a substantially constant vertical and horizontal line pattern without being affected by the arrangement of the specimen 8.
Further, according to the epi-illumination microscope of the present embodiment, the depolarizing element 10 is made of quartz, so that it is easy to process and obtain.
In the epi-illumination microscope according to the present embodiment, a beam splitter may be used instead of the half mirror 3.
[0033]
Second Embodiment FIG. 3 is a schematic configuration diagram of a second embodiment of the epi-illumination microscope according to the present invention.
In the epi-illumination microscope of the second embodiment, a λ / 4 plate 11 is arranged instead of the depolarizing element 10 in the first embodiment shown in FIG. Other configurations are the same as in the first embodiment.
[0034]
According to the epi-illumination microscope of the second embodiment configured as described above, the light emitted from the light source 1 is guided to the half mirror 3 via the lenses 2a and 2a '. At this time, the light is kept in a random state because the polarization state immediately after emission from the light source 1 is maintained. Part of the light incident on the half mirror 3 is reflected and deflected to the specimen 8 side. At this time, due to the polarization characteristics of the half mirror 3, the ratio of the P-polarized light component and the S-polarized light component included in the light deflected toward the sample 8 changes, and one of the polarized light components is increased. .
At this time, in the epi-illumination microscope of this embodiment, since the λ / 4 plate 11 is provided between the half mirror 3 and the sample 8, the light deflected to the sample 8 side by the half mirror 3 is , And enters the objective lens 5 as circularly polarized light. The light incident on the objective lens 5 irradiates the specimen 8 while maintaining the polarization state of the circularly polarized light.
The light reflected by the sample 8 enters the half mirror 3 via the objective lens 5 and the λ / 4 plate 11. The light transmitted through the half mirror 3 forms an image by the imaging lens 6. The observer observes an image formed by a part of the light through the eyepiece 7. Other light transmitted through the imaging lens 6 forms an image on an imaging surface or an imaging surface via the imaging optical system 9.
[0035]
As described above, according to the epi-illumination microscope of the second embodiment, even if the ratio of the P-polarized light component and the S-polarized light component included in the light deflected toward the sample 8 via the half mirror 3 is biased to one direction. The λ / 4 plate 11 converts the light into circularly polarized light. For this reason, the sample 8 is irradiated with circularly polarized light.
Therefore, according to the epi-illumination microscope of the present embodiment, the image of the specimen 8 can be observed with a substantially constant vertical and horizontal line pattern without being affected by the arrangement of the specimen 8.
[0036]
Third Embodiment FIG. 4 is a schematic configuration diagram of a third embodiment of the epi-illumination microscope according to the present invention.
In the epi-illumination microscope of the third embodiment, the depolarizing element 10 of the first embodiment shown in FIG. 1 is incorporated in the lens barrel of the objective lens 5 on the image side (imaging lens 6 side). Other configurations are the same as in the first embodiment.
If the objective lens 5 is provided with the depolarizing element 10 as in the present embodiment, the first embodiment can be performed without disposing a single depolarizing element in the optical path between the half mirror 3 and the sample 8. The same effect as the example can be obtained.
[0037]
Fourth Embodiment FIG. 5 is a schematic configuration diagram of a fourth embodiment of the epi-illumination microscope according to the present invention.
The epi-illumination microscope according to the fourth embodiment is provided with the half mirror 3 of the first embodiment shown in FIG. 1 inside a cube 12 configured as a unit that can be inserted into and removed from the optical path. Is provided on the object to be observed side (sample 8 side) with respect to the half mirror 3 inside.
If the unit includes the half mirror 3 and the depolarizing element 10 in the unit as in the present embodiment, it is not necessary to dispose a single depolarizing element in the optical path between the half mirror 3 and the sample 8. The same effects as those of the first embodiment can be obtained.
The depolarizing element 10 in the epi-illumination microscope according to the present embodiment is arranged to be slightly inclined from the optical axis from the light source 1 by more than 90 °. This is to prevent the reflection direction from being deviated from the imaging lens 6 and adversely affecting the observation even when some light is reflected on the surface when the light is incident on. Therefore, even in the epi-illumination microscope according to the other embodiment, the configuration in which the depolarizing element is arranged perpendicular to the optical axis is actually as shown in the de-polarizing element 10 in the epi-microscope according to the present embodiment. It is preferable that the light source 1 be disposed at an angle of 90 ° with respect to the optical axis from the light source 1.
[0038]
Fifth Embodiment FIG. 6 is a schematic configuration diagram of a fifth embodiment of an epi-illumination microscope according to the present invention, and FIG. 7 is an enlarged explanatory view of a main part of FIG. FIGS. 8A and 8B are explanatory diagrams showing the relationship between the optical axis and the polarization component of the depolarizing element in FIG. 7, and FIG. 8A shows a state when the depolarizing element 13b is viewed vertically from the arrow A side in FIG. 7) shows the state when viewing the deflection elimination element 13b from the same side as FIG. 7, and FIG. 7C shows the state when viewing the deflection elimination element 13b from the arrow B side in FIG.
The epi-illumination microscope of the fifth embodiment uses the member 13 having both the half mirror 3 and the depolarizing element 10 of the fourth embodiment. This member 13 has a configuration in which a half mirror surface 13a is provided integrally with a depolarizing element 13b.
The half mirror surface 13a is provided on the image side of the depolarizing element 13b. The depolarizing element 13b is configured using quartz crystal such that its optical axis is at 45 ° to the polarization direction of a linearly polarized light component such as a P-polarized light component or an S-polarized light component. It has the function of converting light. An AR coat 13c is applied to the surface of the depolarization element 13b on the sample 8 side so as to prevent surface reflection of incident light from the light source 1. Other configurations are the same as in the first embodiment.
If the half mirror surface 13a is provided integrally with the depolarizing element 13b as in this embodiment, a single depolarizing element can be provided in the optical path between the half mirror surface and the sample 8 with a small number of parts. Can be obtained without arranging them.
[0039]
Sixth Embodiment FIG. 9 is a schematic configuration diagram of a sixth embodiment of the epi-illumination microscope according to the present invention.
In the epi-illumination microscope of the sixth embodiment, a beam splitter 3 'is arranged instead of the half mirror 3 in the first embodiment shown in FIG. 1, and a depolarizing element 10 is provided on the specimen 8 side of the beam splitter 3'. Are joined.
If the beam splitter 3 'is provided with the depolarizing element 10 as in the present embodiment, as in the fourth embodiment, a single depolarizing element is provided in the optical path between the beam splitter 3' and the sample 8. Can be obtained without arranging them.
[0040]
Although not shown in the drawings, as another embodiment of the epi-illumination microscope of the present invention, in the configuration of the epi-illumination microscope according to the third to sixth embodiments, the epi-illumination is performed by using a λ / 4 plate instead of the depolarizing element. A microscope may be configured.
With such a configuration, the same effect as in the second embodiment can be obtained without disposing a single λ / 4 plate in the optical path between the half mirror or the beam splitter and the sample.
[0041]
As described above, the epi-illumination microscope and the objective lens for the epi-illumination microscope of the present invention have the following features in addition to the invention described in the claims.
[0042]
(1) An objective lens for a microscope comprising a λ / 4 plate.
[0043]
(2) The epi-illumination microscope according to claim 1, wherein the objective lens includes a depolarizing element.
[0044]
(3) The epi-illumination microscope according to claim 3, wherein the objective lens includes a λ / 4 plate.
[0045]
(4) The deflecting member is provided in a unit that can be inserted into and removed from an optical path, and the unit includes a depolarizing element closer to the object to be observed than the deflecting member. Epi-illumination microscope.
[0046]
(5) The epi-illumination microscope according to the above (4), wherein the depolarizing element is arranged along a surface of the deflecting member on the side of the object to be observed.
[0047]
(6) The depolarizing element is a crystal arranged such that the optical axis is at 45 ° to the polarization direction of the linearly polarized light component included in the illumination light deflected via the light deflecting member. The epi-illumination microscope according to any one of the above (2), (4) and (5), which is characterized by the following.
[0048]
(7) The deflecting member is provided in a unit that can be inserted into and removed from the optical path, and the unit includes a λ / 4 plate closer to the object to be observed than the deflecting member. The epi-illumination microscope according to 1.
[0049]
(8) The epi-illumination microscope according to any one of the above (4) to (7), wherein the deflection member is constituted by a beam splitter.
[0050]
【The invention's effect】
According to the present invention, it is possible to observe an object to be observed with uniform resolution and contrast regardless of the vertical and horizontal patterns.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of an epi-illumination microscope according to the present invention.
FIGS. 2A and 2B are views showing a depolarizing element of the present embodiment, wherein FIG. 2A is a partial view of FIG. 1, and FIG. 2B is an optical axis when the depolarizing element 10 is viewed from the sample 8 side in the configuration of FIG. FIG. 4 is an explanatory diagram showing a relationship between and polarization components.
FIG. 3 is a schematic configuration diagram of a second embodiment of the epi-illumination microscope according to the present invention.
FIG. 4 is a schematic configuration diagram of a third embodiment of the epi-illumination microscope according to the present invention.
FIG. 5 is a schematic configuration diagram of a fourth embodiment of an epi-illumination microscope according to the present invention.
FIG. 6 is a schematic configuration diagram of a fifth embodiment of an epi-illumination microscope according to the present invention.
FIG. 7 is an enlarged explanatory view of a main part of FIG. 6;
8A and 8B are explanatory diagrams illustrating a relationship between an optical axis and a polarization component of the depolarizing element in FIG. 7; FIG. 8A illustrates a state when the depolarizing element 13b is viewed vertically from an arrow A side in FIG. 7B shows a state when the deflection elimination element 13b is viewed from the same side as FIG. 7, and FIG. 9C shows a state when the deflection elimination element 13b is viewed from the arrow B side in FIG.
FIG. 9 is a schematic configuration diagram of a sixth embodiment of an epi-illumination microscope according to the present invention.
FIG. 10 is a schematic configuration diagram of a conventional epi-illumination microscope.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Illumination light source 2 Illumination optical systems 2a, 2a 'Lens 3 Half mirror 3' Beam splitter 4 Observation optical system 5 Objective lens 6 Imaging lens 7 Eyepiece optical system 8 Sample 9 Imaging optical system 10 Depolarization element 11 λ / 4 plate 12 Cube 13 A member 13a having both a deflecting action and a deflecting action 13a Half mirror surface 13b Depolarizing element 13c AR coated surface

Claims (5)

照明光源と、
該照明光源からの照明光を被観察物体側へと導くともに、前記被観察物体からの光を像側へと導く偏向部材と、
前記照明光源からの照明光を、該照明光源から出射したときの偏光状態を保持したまま前記偏向部材に入射させる照明光学系と、
対物レンズを含み前記照明光によって照明された被観察物体の像を形成する観察光学系とを有する落射顕微鏡であって、
前記偏向部材と被観察物体との間に偏光解消素子を配置したことを特徴とする落射顕微鏡。
An illumination light source,
A deflecting member that guides the illumination light from the illumination light source to the observation object side and guides the light from the observation object to the image side,
An illumination optical system that causes the illumination light from the illumination light source to enter the deflection member while maintaining a polarization state when emitted from the illumination light source,
An epi-illumination microscope having an observation optical system that forms an image of an object to be observed illuminated by the illumination light and includes an objective lens,
An epi-illumination microscope wherein a depolarizing element is arranged between the deflecting member and the object to be observed.
前記偏光解消素子が、前記照明光学系の光軸に対して略45°となるように配置されていることを特徴とする請求項1に記載の落射顕微鏡。The epi-illumination microscope according to claim 1, wherein the depolarizing element is disposed so as to be approximately 45 ° with respect to an optical axis of the illumination optical system. 照明光源と、
該照明光源からの照明光を被観察物体側へと導くとともに、前記被観察物体からの光を像側へと導く偏向部材と、
前記照明光源からの照明光を、該照明光源から出射したときの偏光状態を保持したまま前記偏向部材に入射させる照明光学系と、
対物レンズを含み前記照明光によって照明された被観察物体の像を形成する観察光学系とを有する落射顕微鏡であって、
前記偏向部材と被観察物体との間にλ/4板を配置したことを特徴とする落射顕微鏡。
An illumination light source,
A deflecting member that guides the illumination light from the illumination light source to the observed object side, and guides the light from the observed object to the image side,
An illumination optical system that causes the illumination light from the illumination light source to enter the deflection member while maintaining a polarization state when emitted from the illumination light source,
An epi-illumination microscope having an observation optical system that forms an image of an object to be observed illuminated by the illumination light and includes an objective lens,
An epi-illumination microscope, wherein a λ / 4 plate is arranged between the deflection member and the object to be observed.
照明光源と、
該照明光源からの照明光を被観察物体側へと導くとともに、前記被観察物体からの光を像側へと導く偏向部材と、
前記照明光源からの照明光を、該照明光源から出射したときの偏光状態を保持したまま前記偏向部材に入射させる照明光学系と、
対物レンズを含み前記照明光によって照明された被観察物体の像を形成する観察光学系とを有する落射顕微鏡であって、
次の条件式を満足する空間周波数の物体を観察するときに、前記偏向部材と被観察物体との間に偏光解消素子又はλ/4板が配置されていることを特徴とする落射顕微鏡。
NA/λ<P<2NA/λ
但し、NAは対物レンズのNA、λは落射顕微鏡の中心波長、Pは観察物体の空間周波数である。
An illumination light source,
A deflecting member that guides the illumination light from the illumination light source to the observed object side, and guides the light from the observed object to the image side,
An illumination optical system that causes the illumination light from the illumination light source to enter the deflection member while maintaining a polarization state when emitted from the illumination light source,
An epi-illumination microscope having an observation optical system that forms an image of an object to be observed illuminated by the illumination light and includes an objective lens,
An epi-illumination microscope characterized in that when observing an object having a spatial frequency satisfying the following conditional expression, a depolarizing element or a λ / 4 plate is arranged between the deflecting member and the object to be observed.
NA / λ <P <2NA / λ
Here, NA is the NA of the objective lens, λ is the center wavelength of the epi-illumination microscope, and P is the spatial frequency of the observation object.
偏光解消素子を備えたことを特徴とする落射顕微鏡用対物レンズ。An objective lens for an epi-illumination microscope comprising a depolarizing element.
JP2002327723A 2002-11-12 2002-11-12 Vertical illumination microscope and objective for vertical illumination microscope Withdrawn JP2004163555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327723A JP2004163555A (en) 2002-11-12 2002-11-12 Vertical illumination microscope and objective for vertical illumination microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327723A JP2004163555A (en) 2002-11-12 2002-11-12 Vertical illumination microscope and objective for vertical illumination microscope

Publications (1)

Publication Number Publication Date
JP2004163555A true JP2004163555A (en) 2004-06-10

Family

ID=32806227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327723A Withdrawn JP2004163555A (en) 2002-11-12 2002-11-12 Vertical illumination microscope and objective for vertical illumination microscope

Country Status (1)

Country Link
JP (1) JP2004163555A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007549A1 (en) * 2005-07-08 2007-01-18 Nikon Corporation Surface position detection apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
CN107111119A (en) * 2014-10-06 2017-08-29 徕卡显微系统(瑞士)股份公司 Microscope
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
JP2008258654A (en) * 2005-07-08 2008-10-23 Nikon Corp Surface position detector, exposing device, and exposure method
JP2014057078A (en) * 2005-07-08 2014-03-27 Nikon Corp Position detection device, exposure apparatus and exposure method
JP2015057837A (en) * 2005-07-08 2015-03-26 株式会社ニコン Position detection device, exposure apparatus and exposure method
US9069261B2 (en) 2005-07-08 2015-06-30 Nikon Corporation Surface position detection apparatus, exposure apparatus, and exposure method
CN105204302A (en) * 2005-07-08 2015-12-30 株式会社尼康 Surface Position Detection Apparatus, Exposure Apparatus, And Exposure Method
JP2016029483A (en) * 2005-07-08 2016-03-03 株式会社ニコン Position detection apparatus, exposure apparatus, and exposure method
US8149382B2 (en) 2005-07-08 2012-04-03 Nikon Corporation Surface position detection apparatus, exposure apparatus, and exposure method
JP4883006B2 (en) * 2005-07-08 2012-02-22 株式会社ニコン Surface position detection apparatus, exposure apparatus, and exposure method
US9519223B2 (en) 2005-07-08 2016-12-13 Nikon Corporation Surface position detection apparatus, exposure apparatus, and exposure method
JP2013070075A (en) * 2005-07-08 2013-04-18 Nikon Corp Position detection device, position detection method, exposure device, exposure method and device manufacturing method
JP2012053048A (en) * 2005-07-08 2012-03-15 Nikon Corp Surface position detection device, exposure apparatus and exposure method
EP2520978A3 (en) * 2005-07-08 2013-09-25 Nikon Corporation Surface position detection apparatus, exposure apparatus and exposure method
JP2008258655A (en) * 2005-07-08 2008-10-23 Nikon Corp Surface position detector, exposing device, and exposure method
EP3321741A3 (en) * 2005-07-08 2018-08-01 Nikon Corporation Surface position detection apparatus, exposure apparatus, and exposure method
EP2733535A3 (en) * 2005-07-08 2014-08-13 Nikon Corporation Surface position detection apparatus, exposure apparatus, and exposure method
CN101218482A (en) * 2005-07-08 2008-07-09 株式会社尼康 Surface position detection apparatus, exposure apparatus, and exposure method
WO2007007549A1 (en) * 2005-07-08 2007-01-18 Nikon Corporation Surface position detection apparatus, exposure apparatus, and exposure method
CN103728849A (en) * 2005-07-08 2014-04-16 株式会社尼康 Position detection apparatus, exposure apparatus, and exposure method
US9927713B2 (en) 2005-07-08 2018-03-27 Nikon Corporation Surface position detection apparatus, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2017530417A (en) * 2014-10-06 2017-10-12 ライカ マイクロシステムズ (シュヴァイツ) アクチエンゲゼルシャフトLeica Microsystems (Schweiz) AG microscope
US10146037B2 (en) 2014-10-06 2018-12-04 Leica Microsystems (Schweiz) Ag Microscope
CN107111119A (en) * 2014-10-06 2017-08-29 徕卡显微系统(瑞士)股份公司 Microscope

Similar Documents

Publication Publication Date Title
US7304281B2 (en) Confocal laser scanning microscope
JP4312777B2 (en) Confocal self-interference microscope with side lobes removed
US5966204A (en) Near-infrared microscope
JP3656252B2 (en) Differential interference microscope
JP2004038139A (en) Device for coupling light ray into microscope
JP2004163555A (en) Vertical illumination microscope and objective for vertical illumination microscope
JP2009198903A (en) Optical equipment
US11002978B2 (en) Microscope having a beam splitter assembly
WO2006123712A1 (en) Polarization microscope
US5701198A (en) Confocal incident light microscope
JP2005173580A (en) Confocal laser scanning microscope
US11874450B2 (en) Oblique plane microscope for imaging a sample
JP2010164834A (en) Microscope apparatus and fluorescent cube
US11086117B2 (en) Apparatus and method for light-sheet-like illumination of a sample
JP4196031B2 (en) Laser microscope
JP2008164719A (en) Scanning confocal microscope
JPH11109252A (en) Confocal microscope
JP5448078B2 (en) Microscope equipment
WO2022050221A1 (en) Microscope
JP2004258142A (en) Scanning confocal probe
JP2004361645A (en) Stereoscopic microscope
JPH09281402A (en) Object observing device
JP2002107636A (en) Optical device
JP2010210998A (en) Objective lens and microscope device having the same
JP2002098907A (en) Illuminator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207