JP2004162535A - Air-fuel ratio control system for overall exhaust emission control - Google Patents

Air-fuel ratio control system for overall exhaust emission control Download PDF

Info

Publication number
JP2004162535A
JP2004162535A JP2002326470A JP2002326470A JP2004162535A JP 2004162535 A JP2004162535 A JP 2004162535A JP 2002326470 A JP2002326470 A JP 2002326470A JP 2002326470 A JP2002326470 A JP 2002326470A JP 2004162535 A JP2004162535 A JP 2004162535A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
purification catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002326470A
Other languages
Japanese (ja)
Inventor
Ikuo Ando
郁男 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002326470A priority Critical patent/JP2004162535A/en
Publication of JP2004162535A publication Critical patent/JP2004162535A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To purify all these three components at a further high purification rate by coping with the fact that self-contradiction originally exists in simultaneously purifying HC and CO requiring an oxidation atmosphere for purification and NOx requiring a reduction atmosphere by a three way catalyst. <P>SOLUTION: An oxygen storage quantity of an exhaust emission control catalyst is estimated when leanly operating an internal combustion engine for restraining exhaust of the HC and the CO, and exhaust of MOx is also restrained by performing engine lean operation until the oxygen storage quantity reaches a prescribed upper limit value. The engine may be richly operated until the oxygen storage quantity of the exhaust emission control catalyst reduces to a prescribed lower limit value in succession to this operation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の空燃比制御装置に係る。
【0002】
【従来の技術】
内燃機関の空燃比は、機関の性能を評価する観点に応じてその最適値が異なり、これまでそれぞれの観点からこれを最適制御することが種々提案されている。その内、排気浄化触媒による排気浄化性能との関連に於いて空燃比の最適制御を目指す技術として下記の特許文献に記載されているものがある。
【0003】
特許文献1に記載の技術は、機関の冷温始動時に燃焼を安定させるために空燃比をリッチにし、その結果燃焼室よりHCやCOが多く排出されてくることに対して排気浄化触媒の上流側にて二次空気を注入する従来の技術に於いては、燃料中に含まれる硫黄分により生じたSO2が二次空気の酸素により酸化されて硫酸塩となり、排気浄化触媒に付着するという問題があることに着目し、冷温時にリッチ運転される内燃機関に於いて、排気浄化触媒入口の空燃比がリーンとなるようリーン化処理を行う手段と、このリーン化処理後に排気浄化触媒入口の空燃比がリッチとなるようリッチ化処理を行う手段を設けるものである。尚、リッチおよびリーンは、それぞれ空燃比が理論空燃比より低い状態および理論空燃比より高い状態を指す。
【0004】
特許文献2に記載の技術は、機関冷温始動時に排気浄化触媒の早期活性化のために所定時間だけ機関をリーン運転する従来技術に於いては、設定された所定時間の不足によって触媒の活性化が不足したり或いはリーン運転の過剰によってNOxの排出が増大するという問題があることに着目し、機関冷温始動時に運転をリーン化したとき、機関冷却水温度が触媒活性化判定温度に達したときリーン運転を解除するものである。
【0005】
特許文献3に記載の技術は、機関冷温始動時の排気浄化触媒の活性化早めると共にHC排出量を低減するため、機関始動後空気量の増量と点火時期の遅角補正を行い、排気ガス温度に応じてHCの自然発火率を算出し、自然発火率に応じて目標空燃比係数を設定し、排気ガス温度が高くなるほど目標空燃比係数を増大させることにより、排気ガス温度が高くなるにつれて空気量の増量により高くされていた空燃比を元に戻すものである。
【特許文献1】
特開平9‐242528号公報
【特許文献2】
特開平9‐151759号公報
【特許文献3】
特開2000−2324552号公報
【0006】
【発明が解決しようとする課題】
内燃機関の運転に係る有害成分HC、CO、NOxの浄化については、HCおよびCOがその浄化に酸化雰囲気を必要とし、NOxがその浄化に還元雰囲気を必要とすることから、これら三成分を三元触媒により同時に浄化することには元来自己矛盾が存在する。本発明は、この自己矛盾に対処し、これら3成分のすべてをより高い浄化率にて浄化することを課題している。
【0007】
【課題を解決するための手段】
上記の課題を解決するものとして、本発明は、燃料供給手段と空気供給手段と酸化助勢機能および還元助勢機能を備えた排気浄化触媒とを有する内燃機関の空燃比制御装置にして、前記燃料供給手段と前記空気供給手段の少なくとも一方に作用して内燃機関の運転に於ける空燃比を設定する第一の手段と、前記第一の手段による空燃比の設定状況に基づいて前記排気浄化触媒に蓄積される酸素量を推定する第二の手段とを含み、前記第一の手段は内燃機関よりの未燃成分の排出を抑制すべく空燃比をリーンに設定するとき前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が所定の上限値を越えない範囲でそれを行うようになっていることを特徴とする空燃比制御装置を提供するものである。
【0008】
上記の如き空燃比制御装置に於いて、前記第一の手段は前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が前記上限値を越えたとき機関運転の空燃比をリッチに設定するようになっていてよい。また、前記第一の手段は機関運転の空燃比をリッチに設定したとき前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が所定の下限値に低下するまで機関運転の空燃比をリッチ状態とするようになっていてよい。更にまた、前記第一の手段は前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が前記所定の下限値まで低下したとき機関運転の空燃比を理論空燃比に設定するようになっていてよい。
【0009】
以上いずれの場合にも、前記第一の手段は機関が冷温始動されたとき内燃機関の空燃比をリーンに設定するようになっていてよい。
【0010】
また、以上いずれの場合にも、前記第二の手段は排気浄化触媒を流れた排気の量およびその空燃比と排気浄化触媒の温度に基づいて排気浄化触媒に蓄積された酸素の量を推定するようになっていてよい。
【0011】
【発明の作用及び効果】
上記の如く燃料供給手段と空気供給手段と酸化助勢機能および還元助勢機能を備えた排気浄化触媒とを有する内燃機関に於いて、その空燃比を制御する空燃比制御装置が、燃料供給手段と空気供給手段の少なくとも一方に作用して内燃機関の運転に於ける空燃比を設定する第一の手段と、該第一の手段による空燃比の設定状況に基づいて排気浄化触媒に蓄積される酸素量を推定する第二の手段とを含み、前記第一の手段が内燃機関よりの未燃成分の排出を抑制すべく空燃比をリーンに設定するとき前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が所定の上限値を越えない範囲でそれを行うようになっていれば、内燃機関よりのHCおよびCOの排出を抑制するためのリーン運転を、それによって生ずる排気浄化触媒の酸素蓄積がNOxの浄化妨げない範囲に抑え、HCおよびCOに対する浄化性能とNOxに対する浄化性能のいずれをも制御下に置くことにより、その間の平衡を最適状態に制御し、両者に対する浄化効果を総合的に最大化することができる。
【0012】
この場合、更に前記第一の手段が、前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が前記上限値を越えたとき、機関運転の空燃比をリッチに設定するようになっていれば、排気浄化触媒の酸素蓄積量が前記上限値を越えたときには、それに続いて機関運転がリッチにされることにより、排気浄化触媒に蓄積された酸素を排気中の未燃分により除去し、載置浄化触媒の酸素蓄積量を元に戻すことが効果的に行われる。また、かかるリッチ運転が、前記第二の手段により推定される排気浄化触媒の酸素蓄積量が所定の下限値に低下するまで行われるようになっていれば、排気浄化触媒の酸素蓄積量を元の値に低減させるリッチ運転の度合が最適の度合に制御される。そして、これらのリーン運転とリッチ運転を組み合わせた制御過程を経て機関運転が標準の空燃比にて運転されるようになっていれば、機関の冷温始動時の如く一時的にHCやCOの排出が増大する運転状態から正常な運転状態に移行する過程におけるHC、CO、NOxの排出抑制を総合的に改善することができる。
【0013】
また、上記の如き空燃比制御が特に機関の冷温始動時に対し適用されるときには、機関の始動から暖機に至る過程に於いては、機関温度の上昇に伴って排気中に含まれるHCおよびCOは次第に減少し、逆にNOxは次第に増大する関係にあるので、制御の前半においては機関をリーン運転することにより主としてHCおよびCOのよりよい浄化を図り、その際排気浄化触媒への酸素の蓄積を許容限度とする注意を払い、制御の後半においては機関をリッチ運転することにより排気浄化触媒に蓄積された酸素を確実に消化しつつNOxの排出を抑制した運転を行うことができ、機関冷温始動時に於ける総合的排気浄化性能のより良い改善を図ることができる。
【0014】
排気浄化触媒に酸素が蓄積される量は、それを通って流れる排気の量と排気浄化触媒の温度により左右されるので、前記第二の手段が排気浄化触媒を流れた排気の量およびその空燃比と排気浄化触媒の温度に基づいて該酸素蓄積量を推定するようになっていれば、上記の空燃比制御に必要な酸素蓄積量の推定をその目的にとって十分高い精度にて達成することができる。
【0015】
【発明の実施の形態】
図1は一つの標準的内燃機関に本発明による空燃比制御装置を組み込んだ構成を示す概略図である。図に於いて、10は内燃機関のシリンダであり、12はピストンである。シリンダのヘッド部には吸気ポート14および排気ポート16が設けられており、それぞれ吸気弁18および排気弁20により開閉されるようになっている。吸気ポート14には、エアクリーナ22を経て取り入れられた空気が、吸気絞り弁24、排気ガス再循環制御弁26を備えた吸気通路28を経て供給されるようになっている。排気ポート16から排出された排気は三元触媒コンバータ30を含む排気通路32を経て大気へ排出される。排気通路32からは三元触媒コンバータ30より手前の位置より排気ガス再循環通路34が排気ガス再循環制御弁26を経て吸気通路28へ通じている。燃料は燃料噴射弁36より供給され、混合気は点火栓38により点火されるようになっている。
【0016】
吸気弁18、排気弁20、吸気絞り弁24、排気ガス再循環制御弁26、燃料噴射弁36、点火栓38はいずれもこの技術分野に於いては既に種々の態様にて公知のマイクロコンピュータを備えた電子式制御装置(ECU)40により制御されるようになっている。電子式制御装置40には、機関温度センサ42より機関温度に関する情報、触媒温度センサ44より三元触媒コンバータ30に於ける触媒温度に関する情報、図には示されていない機関回転数センサおよびアクセル開度センサより機関回転数Neおよびアクセル開度Daに関する情報、および機関運転制御に必要なその他の情報が供給されるようになっている。
【0017】
上記の如き構成により、内燃機関の運転は、基本的には、運転者が所望の機関回転数を得るべくアクセルペダルを踏み込む操作に基づき、機関回転数Neとアクセル開度Daに応じて吸気絞り弁24の開度が制御されて吸入空気量が制御され、それに対応した量の燃料を供給すべく燃料噴射弁36が制御され、その際吸入空気量と燃料供給量の一方または双方を他方に対し相対的に変化させることにより空燃比が制御される要領にて行われる。従って、本発明による空燃比制御装置は、実質的に、吸気絞り弁24、燃料噴射弁36、電子式制御装置40の組合せにより構成され、更に、排気浄化触媒に於ける酸素蓄積量の推定に触媒温度を考慮する場合には、これに触媒温度センサ44を加えたもの、或は触媒温度を機関温度に基づいて推定する場合には、これに機関温度センサ42を加えたものとして構成される。尚、本発明による空燃比制御装置が内燃機関冷温始動に適用される場合には、機関始動時の温度が所定値以下であるか否かを検出する機関温度センサが必要である。
【0018】
図2は本発明による空燃比制御装置を機関の冷温始動時の排気浄化向上のために機関に組み込んだ場合の作動を示すフローチャートである。機関始動と同時に空燃比制御装置の作動が開始されると、先ずステップ1にて機関温度Teが所定のしきい値温度Tea以上であるか否かが判断される。答がイエスであれば、本発明による空燃比制御装置の作動は必要とされないので、制御は後述のステップ8へ進み、初めから目標空燃比を所定の標準値に設定し、本発明による制御作動を終了する。
【0019】
ステップ1の答がノーのとき、制御はステップ2へ進み、目標空燃比を理論空燃比より高い例えば15.00の如き所定のリーン値R1に設定することが行われる。次いで制御はステップ3へ進み、排気浄化触媒に於ける酸素蓄積量Goが計算される。この酸素蓄積量Goは、機関の運転時間の経過に伴って増大し、その値は基本的には機関運転の時々刻々に於ける吸気量とステップ2にて制御される空燃比とによって定まるので、個々の設計による内燃機関について、吸気絞り弁24および燃料噴射弁36に対する指令信号と運転継続時間とに基づいて予め実験的に求めることができる。またこの酸素蓄積量Goは触媒温度にも影響されるので、酸素蓄積量Goは触媒温度センサ44により検出される触媒温度または機関温度センサ42からの信号に基づき推定される触媒温度によって修正されるようになっているのが好ましい。(尚、機関の冷温始動時には排気ガス再循環制御弁26は通常を全閉状態とされている。)
【0020】
この種の内燃機関運転のコンピュータ制御は、所定の制御フローチャートに従って各ステップを実行することを通常数十ミリセカンドの周期にて繰り返す態様にて行われる。図2のフローチャートによる制御に於いては、ステップ3にて触媒に於ける酸素蓄積量Goが計算されると、制御はステップ4へ進み、Goの値が酸素蓄積量の許容上限を示す所定のしきい値Go1を越えたか否かが判断される。答がノーである間、制御はステップ3へ戻り、再度Goを計算し、再度ステップ4にてGoがGo1を越えたか否かを判断する操作が数十ミリセカンドの周期にて繰り返される。
【0021】
図3はそのような制御の経過を時間に対する空燃比の変化として示すグラフである。図3に於いて、T0は機関の冷温始動に伴って本発明による空燃比制御装置による制御が開始された時点であり、空燃比R1は、冷温始動完了後に機関が運転される際の理論空燃比Rtより高い或る所定のリーン空燃比の値(上記の例では15.00)である。機関の冷温始動が順調に続けられ、ステップ3に於けるGoの計算が順調に続けられれば、やがてステップ4の答はノーからイエスに転ずる。その時点がT1である。
【0022】
こうしてステップ4の答がノーよりイエスに転ずると、制御はステップ5へ進み、目標空燃比を理論空燃比Rtよりも低い例えば14.45の如き所定のリッチ値R2に設定することが行われる。次いで制御はステップ6へ進み、空燃比がステップ5にてリッチに設定された運転状態での触媒酸素蓄積量Goがステップ3に於けると同様の要領にて計算される。空燃比がリッチに設定されれば、触媒に蓄積された酸素は次第に消化されていくので、Goの値は次第に低下していく。この場合にも、機関運転の時々刻々に於けるGoの値は吸気絞り弁24および燃料噴射弁36に対する指令信号と運転継続時間とに基づいて実験的に求めることができ、またその値が触媒温度によって修正されるようになっていれば、より高い精度による触媒酸素蓄積量の推定が得られる。そして得られた計算値Goはその都度次のステップ7にてリッチ運転を終了すべき所定の下限値Go2まで下がったか否かが判断される。答がノーである間、制御はステップ6へ戻り、再度Goを計算し、それがGo2以下に下がったか否かを判断する操作が数十ミリセカンドの周期にて繰り返される。
【0023】
かくしてリーン運転が順調に続けられれば、やがてGoはGo2以下に下がり、ステップ7の答はノーよりイエスに転ずる。この時点が図3のグラフに於ける時点T2である。それより制御はステップ8へ進み、以後目標空燃比を所定の標準値に設定することが行われ、本発明による空燃比制御装置の作動は終了する。かかる標準値は通常理論空燃比であってよく、車輌用内燃機関の燃料では一般に14.5である。
【0024】
以上に於いては本発明を一つの実施の形態について詳細に説明したが、かかる実施の形態について本発明の範囲内にて種々の変更が可能であることは当業者にとって明らかであろう。
【図面の簡単な説明】
【図1】一つの標準的内燃機関に本発明による空燃比制御装置を組み込んだ構成を示す概略図。
【図2】本発明による空燃比制御装置が内燃機関の冷温始動に適用された場合についてその作動の一例を示すフローチャート。
【図3】本発明による空燃比制御装置の制御の経過を時間に対する空燃比の変化として示すグラフ。
【符号の説明】
10…シリンダ、12…ピストン、14…吸気ポート、16…排気ポート、18…吸気弁、20…排気弁、22…エアクリーナ、24…吸気絞り弁、26…排気ガス再循環制御弁、28…吸気通路、30…三元触媒コンバータ、32…排気通路、34…排気ガス再循環通路、36…燃料噴射弁、38…点火栓、40…電子式制御装置、42…機関温度センサ、44…触媒温度センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air-fuel ratio control device for an internal combustion engine.
[0002]
[Prior art]
The optimum value of the air-fuel ratio of an internal combustion engine differs depending on the viewpoint of evaluating the performance of the engine, and various proposals have been made to optimally control the air-fuel ratio from each viewpoint. Among them, there is a technique described in the following patent document as a technique aiming at an optimal control of an air-fuel ratio in relation to an exhaust purification performance by an exhaust purification catalyst.
[0003]
The technology described in Patent Literature 1 enriches the air-fuel ratio in order to stabilize combustion at the time of cold start of the engine. As a result, a large amount of HC and CO is discharged from the combustion chamber, so that the upstream side of the exhaust purification catalyst is prevented. In the conventional technique of injecting secondary air at a time, there is a problem that SO2 generated by sulfur contained in fuel is oxidized by oxygen of the secondary air to form a sulfate, and adheres to an exhaust purification catalyst. Focusing on this fact, in an internal combustion engine that performs rich operation at cold temperature, means for performing a leaning process so that the air-fuel ratio at the exhaust purification catalyst inlet becomes lean, and an air-fuel ratio at the exhaust purification catalyst inlet after this leaning process Is provided to perform the enrichment process so as to be rich. Note that rich and lean indicate a state where the air-fuel ratio is lower than the stoichiometric air-fuel ratio and a state where the air-fuel ratio is higher than the stoichiometric air-fuel ratio, respectively.
[0004]
The technology described in Patent Literature 2 is based on the prior art in which the engine is operated lean for a predetermined time for early activation of the exhaust purification catalyst at the time of cold start of the engine. Noting that there is a problem that NOx emission is increased due to lack of fuel or excessive lean operation, when the operation is made lean at the time of engine cold start, when the engine coolant temperature reaches the catalyst activation determination temperature This is to cancel the lean operation.
[0005]
The technique described in Patent Literature 3 performs an increase in the amount of air after the engine is started and a retard correction of the ignition timing in order to accelerate the activation of the exhaust gas purification catalyst and reduce the amount of HC emission at the time of cold start of the engine. , The target air-fuel ratio coefficient is set according to the spontaneous ignition rate, and the target air-fuel ratio coefficient is increased as the exhaust gas temperature increases. This is to restore the air-fuel ratio that has been increased by increasing the amount.
[Patent Document 1]
JP-A-9-242528 [Patent Document 2]
JP-A-9-151759 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-232455
[Problems to be solved by the invention]
Regarding the purification of harmful components HC, CO, and NOx related to the operation of the internal combustion engine, since HC and CO require an oxidizing atmosphere for their purification and NOx requires a reducing atmosphere for their purification, these three components are used. There is inherent self-contradiction in purifying simultaneously with a primary catalyst. The present invention addresses this self-contradiction and seeks to purify all three components at a higher purification rate.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention provides an air-fuel ratio control device for an internal combustion engine having a fuel supply unit, an air supply unit, and an exhaust purification catalyst having an oxidation assisting function and a reduction assisting function. Means for setting an air-fuel ratio during operation of the internal combustion engine by acting on at least one of the means and the air supply means, and the exhaust purification catalyst based on the air-fuel ratio setting by the first means. Second means for estimating the amount of accumulated oxygen, wherein the first means estimates by the second means when the air-fuel ratio is set to lean to suppress the emission of unburned components from the internal combustion engine. The present invention is to provide an air-fuel ratio control device wherein the amount of oxygen stored in the exhaust purification catalyst is controlled so as not to exceed a predetermined upper limit.
[0008]
In the air-fuel ratio control device as described above, the first means makes the air-fuel ratio of the engine operation rich when the oxygen storage amount of the exhaust purification catalyst estimated by the second means exceeds the upper limit. It may be set. Further, the first means sets the air-fuel ratio of the engine operation to be rich until the oxygen storage amount of the exhaust purification catalyst estimated by the second means decreases to a predetermined lower limit when the air-fuel ratio of the engine operation is set to be rich. May be set to a rich state. Still further, the first means sets the air-fuel ratio of the engine operation to the stoichiometric air-fuel ratio when the oxygen storage amount of the exhaust gas purification catalyst estimated by the second means decreases to the predetermined lower limit. It may be.
[0009]
In any case, the first means may set the air-fuel ratio of the internal combustion engine to lean when the engine is cold started.
[0010]
In any of the above cases, the second means estimates the amount of oxygen accumulated in the exhaust gas purification catalyst based on the amount of exhaust gas flowing through the exhaust gas purification catalyst and the air-fuel ratio and the temperature of the exhaust gas purification catalyst. It may be like.
[0011]
Function and effect of the present invention
As described above, in the internal combustion engine having the fuel supply means, the air supply means, and the exhaust purification catalyst having the oxidation assisting function and the reduction assisting function, the air-fuel ratio control device for controlling the air-fuel ratio includes the fuel supply means and the air. A first means for acting on at least one of the supply means to set an air-fuel ratio during operation of the internal combustion engine, and an amount of oxygen accumulated in the exhaust purification catalyst based on the setting of the air-fuel ratio by the first means The exhaust gas purification estimated by the second means when the first means sets the air-fuel ratio to lean to suppress emission of unburned components from the internal combustion engine. If the oxygen accumulation amount of the catalyst is set so as not to exceed the predetermined upper limit, the lean operation for suppressing the emission of HC and CO from the internal combustion engine is performed, and the resulting exhaust purification catalyst Oxygen storage By controlling both the purification performance for HC and CO and the purification performance for NOx under control so that the equilibrium between them is controlled to an optimum state, and the purification effect for both is comprehensively controlled. Can be maximized.
[0012]
In this case, the first means sets the air-fuel ratio of the engine operation to be rich when the oxygen storage amount of the exhaust gas purification catalyst estimated by the second means exceeds the upper limit. If the amount of oxygen stored in the exhaust gas purification catalyst exceeds the upper limit, the engine operation is subsequently enriched to remove the oxygen accumulated in the exhaust gas purification catalyst by the unburned portion in the exhaust gas. Then, the amount of oxygen stored in the mounted purification catalyst is restored to the original amount. Further, if the rich operation is performed until the oxygen storage amount of the exhaust purification catalyst estimated by the second means decreases to a predetermined lower limit, the rich operation is performed based on the oxygen storage amount of the exhaust purification catalyst. Is controlled to an optimal degree. If the engine operation is operated at a standard air-fuel ratio through a control process combining the lean operation and the rich operation, the emission of HC and CO is temporarily stopped, such as at the time of a cold start of the engine. Can be comprehensively improved in controlling the emission of HC, CO, and NOx in the process of shifting from the operating state in which the pressure increases to the normal operating state.
[0013]
Further, when the air-fuel ratio control as described above is applied particularly to the cold start of the engine, in the process from the start of the engine to the warm-up, HC and CO contained in the exhaust gas with the rise of the engine temperature are increased. Is gradually reduced, and conversely, NOx is gradually increased. Therefore, in the first half of the control, the engine is operated lean to mainly purify better HC and CO, and at that time, the accumulation of oxygen in the exhaust purification catalyst is performed. In the latter half of the control, a rich operation of the engine is performed to ensure that the oxygen accumulated in the exhaust gas purification catalyst is digested and the operation of suppressing the emission of NOx can be performed. It is possible to improve the overall exhaust purification performance at the time of starting.
[0014]
The amount of oxygen stored in the exhaust gas purification catalyst depends on the amount of exhaust gas flowing therethrough and the temperature of the exhaust gas purification catalyst. If the oxygen storage amount is estimated based on the fuel ratio and the temperature of the exhaust purification catalyst, the estimation of the oxygen storage amount required for the air-fuel ratio control can be achieved with sufficiently high accuracy for the purpose. it can.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram showing a configuration in which an air-fuel ratio control device according to the present invention is incorporated in one standard internal combustion engine. In the figure, 10 is a cylinder of an internal combustion engine, and 12 is a piston. An intake port 14 and an exhaust port 16 are provided at the head of the cylinder, and are opened and closed by an intake valve 18 and an exhaust valve 20, respectively. The intake port 14 is supplied with air introduced through an air cleaner 22 through an intake passage 28 having an intake throttle valve 24 and an exhaust gas recirculation control valve 26. The exhaust gas discharged from the exhaust port 16 is discharged to the atmosphere via an exhaust passage 32 including a three-way catalytic converter 30. From the exhaust passage 32, an exhaust gas recirculation passage 34 communicates with the intake passage 28 via the exhaust gas recirculation control valve 26 from a position before the three-way catalytic converter 30. Fuel is supplied from a fuel injection valve 36, and the air-fuel mixture is ignited by an ignition plug 38.
[0016]
The intake valve 18, the exhaust valve 20, the intake throttle valve 24, the exhaust gas recirculation control valve 26, the fuel injection valve 36, and the spark plug 38 are all microcomputers known in the art in various modes. It is controlled by an electronic control unit (ECU) 40 provided. The electronic control device 40 receives information about the engine temperature from the engine temperature sensor 42, information about the catalyst temperature in the three-way catalytic converter 30 from the catalyst temperature sensor 44, an engine speed sensor and an accelerator opening (not shown). The degree sensor supplies information on the engine speed Ne and the accelerator opening Da, and other information necessary for engine operation control.
[0017]
With the above configuration, the operation of the internal combustion engine is basically performed based on the operation of the driver depressing the accelerator pedal to obtain the desired engine speed, and the intake throttle according to the engine speed Ne and the accelerator opening Da. The opening degree of the valve 24 is controlled to control the amount of intake air, and the fuel injection valve 36 is controlled to supply a corresponding amount of fuel. At this time, one or both of the amount of intake air and the amount of fuel supply are set to the other. On the other hand, the air-fuel ratio is controlled by changing the air-fuel ratio relatively. Therefore, the air-fuel ratio control device according to the present invention is substantially constituted by a combination of the intake throttle valve 24, the fuel injection valve 36, and the electronic control device 40, and is further used for estimating the oxygen storage amount in the exhaust purification catalyst. When the catalyst temperature is taken into consideration, a catalyst temperature sensor 44 is added thereto, or when the catalyst temperature is estimated on the basis of the engine temperature, the engine temperature sensor 42 is added thereto. . When the air-fuel ratio control device according to the present invention is applied to a cold start of an internal combustion engine, an engine temperature sensor for detecting whether or not the temperature at the time of starting the engine is equal to or lower than a predetermined value is required.
[0018]
FIG. 2 is a flowchart showing an operation when the air-fuel ratio control device according to the present invention is incorporated in an engine for improving exhaust gas purification at the time of cold start of the engine. When the operation of the air-fuel ratio control device is started simultaneously with the start of the engine, first, at step 1, it is determined whether or not the engine temperature Te is equal to or higher than a predetermined threshold temperature Tea. If the answer is yes, the operation of the air-fuel ratio control device according to the present invention is not required, and the control proceeds to step 8 described below, where the target air-fuel ratio is set to a predetermined standard value from the beginning, and the control operation according to the present invention is performed. To end.
[0019]
If the answer to step 1 is no, the control proceeds to step 2, where the target air-fuel ratio is set to a predetermined lean value R1 higher than the stoichiometric air-fuel ratio, for example, 15.00. Next, the control proceeds to step 3, where the amount of stored oxygen Go in the exhaust purification catalyst is calculated. This oxygen accumulation amount Go increases with the elapse of the operation time of the engine, and its value is basically determined by the intake air amount every moment of the engine operation and the air-fuel ratio controlled in step 2. For the internal combustion engine of each design, it can be experimentally determined in advance based on the command signal for the intake throttle valve 24 and the fuel injection valve 36 and the operation continuation time. Further, since the oxygen storage amount Go is also affected by the catalyst temperature, the oxygen storage amount Go is corrected by the catalyst temperature detected by the catalyst temperature sensor 44 or the catalyst temperature estimated based on the signal from the engine temperature sensor 42. It is preferred that (At the time of cold start of the engine, the exhaust gas recirculation control valve 26 is normally fully closed.)
[0020]
Computer control of this type of internal combustion engine operation is performed in such a manner that the execution of each step in accordance with a predetermined control flowchart is repeated at a period of usually several tens of milliseconds. In the control according to the flowchart of FIG. 2, when the oxygen storage amount Go in the catalyst is calculated in step 3, the control proceeds to step 4, where the value of Go is a predetermined value indicating the allowable upper limit of the oxygen storage amount. It is determined whether or not the threshold value Go1 has been exceeded. While the answer is no, the control returns to step 3 and the operation of calculating Go again and judging again whether or not Go has exceeded Go1 in step 4 are repeated at intervals of several tens of milliseconds.
[0021]
FIG. 3 is a graph showing the progress of such control as a change in the air-fuel ratio with respect to time. In FIG. 3, T0 is the time when the control by the air-fuel ratio control device according to the present invention is started in association with the cold start of the engine, and the air-fuel ratio R1 is the theoretical air-fuel ratio when the engine is operated after the completion of the cold start. This is a predetermined lean air-fuel ratio value higher than the fuel ratio Rt (15.00 in the above example). If the cold start of the engine continues smoothly and the calculation of Go in step 3 continues smoothly, the answer in step 4 will turn from no to yes. That point is T1.
[0022]
When the answer to step 4 changes from no to yes, the control proceeds to step 5, where the target air-fuel ratio is set to a predetermined rich value R2 lower than the stoichiometric air-fuel ratio Rt, for example, 14.45. Next, the control proceeds to step 6, where the catalyst oxygen storage amount Go in the operating state in which the air-fuel ratio is set to rich in step 5 is calculated in the same manner as in step 3. If the air-fuel ratio is set to be rich, the oxygen stored in the catalyst is gradually digested, so that the value of Go gradually decreases. Also in this case, the value of Go at every moment of the engine operation can be experimentally obtained based on the command signal for the intake throttle valve 24 and the fuel injection valve 36 and the operation continuation time. If the correction is made depending on the temperature, the estimation of the amount of accumulated catalyst oxygen can be obtained with higher accuracy. Then, in each subsequent step 7, it is determined whether or not the obtained calculated value Go has fallen to a predetermined lower limit value Go2 at which the rich operation should be terminated. While the answer is no, the control returns to step 6 and the operation of calculating Go again and determining whether it has fallen below Go2 is repeated at intervals of several tens of milliseconds.
[0023]
Thus, if the lean operation continues smoothly, Go eventually falls below Go2, and the answer to step 7 turns from no to yes. This time is the time T2 in the graph of FIG. Then, the control proceeds to step 8, after which the target air-fuel ratio is set to a predetermined standard value, and the operation of the air-fuel ratio control device according to the present invention ends. Such a standard value may usually be a stoichiometric air-fuel ratio, which is generally 14.5 for fuel of a vehicle internal combustion engine.
[0024]
While the present invention has been described in detail with reference to one embodiment, it will be apparent to those skilled in the art that various modifications can be made to such embodiment within the scope of the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration in which an air-fuel ratio control device according to the present invention is incorporated into one standard internal combustion engine.
FIG. 2 is a flowchart showing an example of the operation of the air-fuel ratio control device according to the present invention when applied to cold start of an internal combustion engine.
FIG. 3 is a graph showing the progress of control of the air-fuel ratio control device according to the present invention as a change in air-fuel ratio with respect to time.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Cylinder, 12 ... Piston, 14 ... Intake port, 16 ... Exhaust port, 18 ... Intake valve, 20 ... Exhaust valve, 22 ... Air cleaner, 24 ... Intake throttle valve, 26 ... Exhaust gas recirculation control valve, 28 ... Intake Passages, 30: three-way catalytic converter, 32: exhaust passage, 34: exhaust gas recirculation passage, 36: fuel injection valve, 38: spark plug, 40: electronic control device, 42: engine temperature sensor, 44: catalyst temperature Sensor

Claims (6)

燃料供給手段と空気供給手段と酸化助勢機能および還元助勢機能を備えた排気浄化触媒とを有する内燃機関の空燃比制御装置にして、前記燃料供給手段と前記空気供給手段の少なくとも一方に作用して内燃機関の運転に於ける空燃比を設定する第一の手段と、前記第一の手段による空燃比の設定状況に基づいて前記排気浄化触媒に蓄積される酸素量を推定する第二の手段とを含み、前記第一の手段は内燃機関よりの未燃成分の排出を抑制すべく空燃比をリーンに設定するとき前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が所定の上限値を越えない範囲でそれを行うようになっていることを特徴とする空燃比制御装置。An air-fuel ratio control device for an internal combustion engine having a fuel supply means, an air supply means, and an exhaust purification catalyst having an oxidation assisting function and a reduction assisting function, acting on at least one of the fuel supply means and the air supply means First means for setting an air-fuel ratio in the operation of the internal combustion engine, and second means for estimating the amount of oxygen stored in the exhaust gas purification catalyst based on the setting of the air-fuel ratio by the first means. Wherein the first means has a predetermined amount of oxygen accumulated in the exhaust gas purification catalyst estimated by the second means when the air-fuel ratio is set to lean to suppress the emission of unburned components from the internal combustion engine. An air-fuel ratio control device wherein the control is performed within a range not exceeding an upper limit value. 前記第一の手段は前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が前記上限値を越えたとき機関運転の空燃比をリッチに設定するようになっていることを特徴とする請求項1に記載の空燃比制御装置。The first means is configured to set the air-fuel ratio of the engine operation to be rich when the oxygen storage amount of the exhaust gas purification catalyst estimated by the second means exceeds the upper limit value. The air-fuel ratio control device according to claim 1, wherein 前記第一の手段は機関運転の空燃比をリッチに設定したとき前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が所定の下限値に低下するまで機関運転の空燃比をリッチ状態とするようになっていることを特徴とする請求項2に記載の空燃比制御装置。The first means enriches the air-fuel ratio of the engine operation until the oxygen accumulation amount of the exhaust purification catalyst estimated by the second means decreases to a predetermined lower limit when the air-fuel ratio of the engine operation is set to rich. 3. The air-fuel ratio control device according to claim 2, wherein the air-fuel ratio control device is in a state. 前記第一の手段は前記第二の手段により推定される前記排気浄化触媒の酸素蓄積量が前記所定の下限値まで低下したとき機関運転の空燃比を理論空燃比に設定するようになっていることを特徴とする請求項3に記載の空燃比制御装置。The first means sets an air-fuel ratio for engine operation to a stoichiometric air-fuel ratio when the oxygen storage amount of the exhaust gas purification catalyst estimated by the second means decreases to the predetermined lower limit. The air-fuel ratio control device according to claim 3, wherein: 前記第一の手段は機関が冷温始動されたとき内燃機関の空燃比をリーンに設定するようになっていることを特徴請求項1〜4のいずれかに記載の空燃比制御装置。5. The air-fuel ratio control device according to claim 1, wherein the first means sets the air-fuel ratio of the internal combustion engine to lean when the engine is cold-started. 前記第二の手段は前記排気浄化触媒を流れた排気の量およびその空燃比と該排気浄化触媒の温度に基づいて該排気浄化触媒に蓄積された酸素の量を推定するようになっていることを特徴とする請求項1〜5のいずれかに記載の空燃比制御装置。The second means estimates an amount of oxygen stored in the exhaust gas purification catalyst based on an amount of exhaust gas flowing through the exhaust gas purification catalyst, an air-fuel ratio thereof, and a temperature of the exhaust gas purification catalyst. The air-fuel ratio control device according to any one of claims 1 to 5, wherein
JP2002326470A 2002-11-11 2002-11-11 Air-fuel ratio control system for overall exhaust emission control Pending JP2004162535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326470A JP2004162535A (en) 2002-11-11 2002-11-11 Air-fuel ratio control system for overall exhaust emission control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326470A JP2004162535A (en) 2002-11-11 2002-11-11 Air-fuel ratio control system for overall exhaust emission control

Publications (1)

Publication Number Publication Date
JP2004162535A true JP2004162535A (en) 2004-06-10

Family

ID=32805375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326470A Pending JP2004162535A (en) 2002-11-11 2002-11-11 Air-fuel ratio control system for overall exhaust emission control

Country Status (1)

Country Link
JP (1) JP2004162535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114439633A (en) * 2020-11-06 2022-05-06 赛格威科技有限公司 Control method, device and equipment of vehicle engine and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114439633A (en) * 2020-11-06 2022-05-06 赛格威科技有限公司 Control method, device and equipment of vehicle engine and storage medium

Similar Documents

Publication Publication Date Title
US7249453B2 (en) Control device for an internal combustion engine
US6901749B2 (en) Exhaust emission control system for internal combustion engine
JP2000265825A (en) Exhaust emission control device for engine
JP4111041B2 (en) Air-fuel ratio control device for internal combustion engine
JP4344953B2 (en) Exhaust gas purification device for internal combustion engine
US6453664B2 (en) Control system for internal combustion engine
JP2003522893A (en) Apparatus and method for determining the need for regeneration of a NOx storage catalyst
JP3988518B2 (en) Exhaust gas purification device for internal combustion engine
US6928808B2 (en) Device and method for controlling the nox regeneration of a nox storage catalyst
JP2009103017A (en) Control device for internal combustion engine
JP4378829B2 (en) Control device for internal combustion engine
JPH11148338A (en) Method to regenerate trap for nitrogen oxides of exhaust system of internal combustion engine
US6835357B2 (en) Exhaust emission control system for internal combustion engine
JP2007077913A (en) Fuel injection control device for internal combustion engine
JP4154596B2 (en) Exhaust gas purification device for internal combustion engine
JP5392021B2 (en) Fuel injection control device for internal combustion engine
EP1517030B1 (en) Method and apparatus for detecting deterioration in fuel injection amount of internal combustion engine
JP4134398B2 (en) Internal combustion engine
JPH09112308A (en) Air-fuel ratio controller for internal combustion engine
JP2004162535A (en) Air-fuel ratio control system for overall exhaust emission control
JP2000130212A (en) Exhaust emission control device for internal combustion engine
JP2000130221A (en) Fuel injection control device of internal combustion engine
JP3911917B2 (en) Exhaust gas purification device for internal combustion engine
JP4269279B2 (en) Control device for internal combustion engine
JP4363193B2 (en) Fuel injection control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051021

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

A02 Decision of refusal

Effective date: 20090224

Free format text: JAPANESE INTERMEDIATE CODE: A02