JP2004158961A - Headphone device - Google Patents

Headphone device Download PDF

Info

Publication number
JP2004158961A
JP2004158961A JP2002321055A JP2002321055A JP2004158961A JP 2004158961 A JP2004158961 A JP 2004158961A JP 2002321055 A JP2002321055 A JP 2002321055A JP 2002321055 A JP2002321055 A JP 2002321055A JP 2004158961 A JP2004158961 A JP 2004158961A
Authority
JP
Japan
Prior art keywords
vibration
audible
signal
human body
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002321055A
Other languages
Japanese (ja)
Other versions
JP3875178B2 (en
Inventor
Manabu Okamoto
学 岡本
Masato Miyoshi
正人 三好
Yoshiaki Watanabe
好章 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002321055A priority Critical patent/JP3875178B2/en
Publication of JP2004158961A publication Critical patent/JP2004158961A/en
Application granted granted Critical
Publication of JP3875178B2 publication Critical patent/JP3875178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Headphones And Earphones (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a headphone device for irradiating a human body with an ultrasonic wave which has been amplitude-modulated by an audible signal to generate an audible sound in the human body, which can provide only audible tone vibration without applying ultrasonic wave vibration to the human body. <P>SOLUTION: The device consists of an ultrasonic wave signal generating means for generating an ultrasonic wave signal having a higher frequency than that in an audible band; modulating means for applying amplitude modulation to the ultrasonic signal by a sound signal in the audible band to obtain a modulated signal; exciting means for generating non-audible vibration by the modulated signal; vibrating member contacting the exciting means and consisting of any one of a natural cartilage and a reproduced cartilage, which is approximately equal to the acoustic impedance of the human body and has non-linear characteristics between a contact acceleration and the amplitude of acoustic output, and resin material having a Young's modulus of 0.5×10<SP>6</SP>-0.5×10<SP>8</SP>Pa; and a casing for storing the exiting means with the vibration surface of the exciting means upward. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は人体の一部に振動を与え、その振動を音として知覚させることに利用することができるヘッドホン装置に関する。
【0002】
【従来の技術】
人間に音を知覚させる方法の一つに骨導伝達方法が実用化されている。骨導伝達方法とは人体の主に頭部に音響振動を与え、この音響振動を人体の骨、肉等を通じて聴覚系に伝達し、音として知覚させる方法である。この骨導伝達方法によれば耳の不自由な者にも音を知覚させることができる。
骨導伝達方法を実現する場合、加振手段により可聴周波数で音響振動を発生させ、この音響振動を人の頭部に与える方法が考えられる。この方法をとる場合、音響振動が周囲に漏れ周囲の人に騒音として聴こえる欠点がある。
このため、非可聴振動である超音波信号を可聴信号で振幅変調し、この振幅変調された超音波信号により超音波振動子を駆動し、振幅変調された超音波振動で人体の頭部を加振することにより、人体の内部で超音波の復調作用により可聴振動を復調し、この可聴振動を聴覚系に伝達する方法も考えられている。この超音波方式の骨導伝達方法によれば周囲に音が漏れない利点が得られる。
【0003】
図22にその超音波方式の骨導ヘッドホンの概略の構成を示す。非可聴帯域(超音波帯域)で加振可能な加振手段1を皮膚に接触させ、人の体を加振できるように装着する。超音波信号発生手段2から出力された20kHz〜50kHz程度の非可聴の超音波信号を振幅変調手段4により、可聴信号である入力信号3により振幅変調し、加振手段1に入力する。加振手段1から人体内に伝えられた非可聴振動は非線形効果により可聴振動を生成し、音として知覚することが可能となる。生成された可聴振動は変調に用いた入力信号3に対応した振動となる。従って、入力信号3に音楽や音声などの信号を用いることにより、音楽や音声を受聴することが可能な骨導ヘッドホン装置を作ることが可能である。
しかし、従来の骨導ヘッドホンは加振手段1の非可聴振動を人体内の非線形効果により可聴振動に変換するため、人体内に高エネルギーの非可聴振動を伝達する必要があり、人体に負担がかかるという第一の課題があった。
また、従来の骨導ヘッドホンでは加振手段1自身が持つ音響インピーダンスと人体の音響インピーダンスは材質の違いにより大きく異なり、加振手段1と人体の接触面で振動エネルギーが反射し、振動を効率良く人体に伝達できないという第二の課題があった。
【0004】
これらの課題を解決すべく本出願人は加振手段1と人体との間に音響インピーダンスが人体の音響インピーダンスにほぼ等しい振動素材を介挿した構造の電気音響変換装置(特願2001−386312)を提案した。
先願で提案した電気音響変換装置によれば加振手段と人体との間に振動素材を挟むことにより、可聴振動の伝達効率を良くし、かつ非可聴振動の励振振幅を軽減することができる。この結果、前記した第一の課題及び第二の課題を解消することができた。
先願発明では実際に用いる振動素材として人体と音響インピーダンスがほぼ等しく、かつ音響特性が非線形特性を持つ材料として高分子ゲル材を挙げている。
【0005】
【発明が解決しようとする課題】
先願で提案した電気音響変換装置では、振動素材の音響インピーダンスが人体の音響インピーダンスにほぼ等しいものの、非線形効率が低く、振動素材内で効率良く可聴振動が発生しないという第三の課題が発生した。
この発明の目的は振動素材内で効率良く可聴振動を発生させ、第三の課題を解消することができるヘッドホン装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
この発明では、少なくとも可聴領域よりも高い周波数の超音波信号を発生する超音波信号発生手段と、超音波信号を可聴領域の音声信号で振幅変調して被変調信号を得る変調手段と、被変調信号によって非可聴振動を発生する加振手段と、加振手段に接触し、人体の音響インピーダンスに略等しく接触加速度と音響出力の振幅との間に非線形特性を有する天然軟骨又は再生軟骨の何れかで構成した振動素材と、加振手段の振動面を表面にして前記加振手段を格納する筺体と、を備えたヘッドホン装置を提案する。
【0007】
この発明では更に、少なくとも可聴領域よりも高い周波数の超音波信号を発生する超音波信号発生手段と、超音波信号を可聴領域の音声信号で振幅変調して被変調信号を得る変調手段と、被変調信号によって非可聴振動を発生する加振手段と、加振手段に接触し、人体の音響インピーダンスに略等しく接触加速と音響出力の振幅との間に非線形特性を有するヤング率が0.5×10乃至0.5×10Paである振動素材と、加振手段の振動面を表面にして前記加振手段を格納する筐体と、を備えたヘッドホン装置を提案する。
【0008】
作用
この発明によれば振動素材として天然軟骨或は再生軟骨、又はヤング率が0.5×10〜0.5×10Paの素材を用いたから、これらの素材は非線形効率が高く、振動素材の内部で高効率に可聴振動を発生し、この結果、第三の課題を解消することができる。従って、この発明によれば高能率で音漏れが少なく、かつ人体への負担の少ないヘッドホン装置を実現することができる。
【0009】
【発明の実施の形態】
図1にこの発明の実施例を示す。この発明では図22に示した従来の装置に対し、加振手段1の人体に接触する面に振動素材5を貼り付ける形で拡張したものとなる。ここで、振動素材5としては例えば動物の耳等から採取した天然軟骨或は人工的に製造された再生軟骨又はヤング率が0.5×10〜0.5×10Paで比重が0.5〜2.5である例えばエラストマ等の樹脂素材で構成することができる。振動素材5を配置したことにより加振手段1の振動が人体に伝わる際に、振動素材5を経由して伝わることになる。加振手段1は人体を直接加振するのではなく、振動素材5を非可聴帯域の振動で加振する。加振手段1を振動させる信号に非可聴帯域の超音波信号を可聴信号で振幅変調した信号を用い駆動した場合、振動素材5の非線形性により、非可聴振動が人体に伝わる前に振動素材5の内部で可聴振動が発生する。
振動素材5に、上記した天然軟骨、再生軟骨或はエラストマなどの樹脂素材を用いることにより、効率よく可聴振動を発生させることができ、また、これらの素材は人体の軟骨又は皮膚と音響インピーダンスに近いから、振動素材5で発生した可聴振動を人体との境界で減衰させることなく、効率よく人体内に可聴振動を伝えることが可能となる。また、高エネルギーの非可聴振動は振動素材5の内部で減衰するため、非可聴振動は人体に伝わりにくくなり、人体への負担も軽減する。
【0010】
図2及び図3に加振手段1と振動素材5の実施例を示す。加振手段1は例えば円盤形状の圧電振動素子等で構成され、この圧電振動素子の表面に、例えばアルミニウムのような金属板が被着されて振動面1Aが形成される。加振手段1は、例えば硬質プラスチック等で形成されたカップ形状の筐体1Bに格納される。
加振手段1の振動面1Aの直径D1は約15mm程度とされ、この振動面1Aに振動素材5が接着剤5Cにより接着される。接着剤5Cとしては、例えばゴム系の感圧性接着剤を用いることができる。
振動素材5に天然軟骨又は再生軟骨を用いる場合について説明する。天然軟骨としては、例えば豚等の動物の耳から採取することができる。採取した天然軟骨を加振手段1の振動面1Aの直径D1より僅かに例えば1〜2mm程度大きい直径D2=16〜17mm程度とし、厚みTが2〜5mm程度の円盤状に切り出す。所望の形状に切り出した天然軟骨又は再生軟骨、5A(図3参照)の表面を、例えば厚みが数ミクロン程度のポリプロピレンのラップ材5Bで包み、真空包装し密封する。
ラップ材5Bで包装された振動素材5の一方の円形面を接着剤5Cで加振手段1の振動面1Aに接着する。この接着により振動素材5の一方の円形面を加振手段1の振動面1Aが振幅変調された非可聴振動で加振することにより天然軟骨5A内ではその厚みT(図2参照)方向の途中で天然軟骨の非線形特性により音響振動が再生され、振動素材5の表面側は音響振動する。この音響振動が人体に伝達され音として知覚される。
【0011】
図4に振動素材5の材料の違いによる復調振動の測定結果の一例を比較のため、加振する超音波振動(非可聴振動)の強度を同じにし、各材料での復調振動加速度を各素材のほぼ同一位置に加速度計を直接設置して測定した。振幅変調に用いた可聴信号の周波数は250Hzから4KHzの正弦波振動とし、超音波信号の周波数は40KHzとして測定を行った。
図4に示す曲線Aは超音波振動の加速度測定値を示す。
曲線Bは天然軟骨で発生した復調振動の加速度測定値、
曲線Cは高分子ゲルで発生した復調振動の加速度測定値、
をそれぞれ示す。
この測定結果から、天然軟骨を振動素材5として利用することにより、高分子ゲルの場合と比較して復調効率が20〜30dB程度改着されることが分かる。
図2及び図3では振動素材5の内部を天然軟骨又は、再生軟骨として説明したがヤング率が0.5×10〜0.5×10Paで比重が0.5〜2.5程度のエラストマ等の樹脂素材を用いることができる。
【0012】
図5及び図6にこの発明によるヘッドホン装置の人体への装着例を示す。図5及び図6に示す10は、この発明によるヘッドホン装置を示す。この発明によるヘッドホン装置10は外観上は上述したように、加振手段1と、この加振手段1の振動面に装着した振動素材5とによって構成される。
11はヘッドバンドを示す。ヘッドバンド11の両端(図には一端側のみを示す)に蝶番12を装着する。蝶番12にレバー13が取り付けられ、このレバー13の回動遊端側が蝶番12に装着されているバネにより常時被装着者の耳に近い部分に圧接される。レバー13には更に支持棒14が装着され、この支持棒14の下端にヘッドホン装置10が装着され、その振動面に装着されている振動素材5が被装着者の皮膚に圧接される。
【0013】
図7にこの発明によるヘッドホン装置の他の実施例を示す。この実施例では、音質の制御を可能としたヘッドホン装置を提案するものである。一般に超音波振動を発生させることが可能なような加振手段1は、音響周波数特性が平坦ではない。また、入力電圧と出力となる加振パワーの関係も、線形ではない場合が多い。従って、超音波で振動を人体に伝える場合も、歪みが発生しやすく、また音質の制御が困難である。そのため、加振手段1に入力される信号等を補正手段6で補正することにより、非線形効果により発生する可聴音の周波数特性を平坦にすることができる。
【0014】
以下に補正手段6で補正する場合の方法の例を示す。超音波の非線形効果により振動素材5の内部に発生する可聴音の周波数特性は、変調の深さが一定の場合、理論的には周波数ωのほぼ二乗に比例し、従って図8に示すような特性となる。図8では生成する可聴音の最低周波数をωL(例えば20Hz)、最高周波数をωH(例えば20Hz)としている。
加振手段1の周波数特性が超音波の周波数(キャリアの周波数)を中心に±20KHzにわたって平坦な特性を持つものと仮定すると、非可聴振動から再現される可聴振動は図8に示した周波数の2乗(ω)に比例した周波数特性を有する。この周波数特性を補正して平坦な周波数特性を得るためには、補正手段6に1/ωの特性を持たせる必要がある。
【0015】
ところで、システム全体の構成は図7に示す如くであり、加振手段1の周波数特性は図9に各種示すように必要帯域内で平坦でなく、共振周波数ωを中心に左右対称的に減衰している特性を持つ、つまり、図9に示す曲線A1、A2、A3は超音波振動子の品種別の超音波出力の周波数特性を示す。
加振手段1が一般的な超音波振動子の周波数特性を持つ場合、補正手段6としては上述した1/ωの特性とは異なる特性が要求される。
いま、加振手段1の振幅周波数特性をA(ω)とすると、共振周波数を中心とする対象特性つまりA(ω+ω)=A(ω−ω)。また、A(ω)=1となるようにA(ω)を規格化したとすると、この場合の補正手段6の特性は1/(A(ω+ω)ω)となる。従って、図10に示すように、加振手段1の振幅周波数特性H(ω)の等価低域特性H(ω)が12dB/オクターブで減衰している場合には補正手段6が無くとも平坦な周波数特性と一定の高調波ひずみ率が得られる。
【0016】
具体的に例示すると、共振周波数ωC(例えば40KHz)の超音波を可聴音(ωL=20Hz〜ωH=20KHz)で変調する場合、その変調後の超音波信号を中心周波数ωCと可聴信号(ωL〜ωHまで)との差の周波数領域に(ωC−ωH)〜(ωC+ωH)の側帯波として表れ、この範囲の加振手段1の周波数特性に影響を受けることになる。従って、図11に示すように、加振手段1の共振周波数ωCより低い周波数領域(ωC−ωH)〜(ωC−ωL)の範囲では、周波数の差の二乗(ωC−ω)に比例した特性に、加振手段1の共振周波数より高い周波数領域(ωC+ωL)〜(ωC+ωH)では周波数の差の二乗(ωC−ω)に反比例する周波数特性を加振手段1が持つ場合、非線形効果で生成される可聴音の特性が平坦になり望ましいことになる。
【0017】
しかし、現実には図12に示すように、圧電素子を使用した一般的な加振手段1の周波数特性は所望の特性と異なる。特に共振周波数ωCの近傍では、周波数ピークが所望の特性より低い特性となる。従って、図12の特性が図11に示す理想的な特性になるように、補正手段6の周波数特性は図13の様に設定される。尚、補正手段6としては、例えばデジタルフィルタによって構成することができる。
また、図14に一般的な加振手段1の入力体出力特性を示す。図14に示す入力対出力特性Aを持つ加振手段1を用いる場合、補正手段6の入力対出力特性Bを図15に示すような特性(図14の特性Aとは逆の非直線特性B)にすることにより、装置の入力と加振手段1の出力特性を図16に実線で示す様に直線化することができる。この結果、加振手段1から人体に伝わる振動の音圧の変化を直線化することが可能となる。
【0018】
図7では変調後の信号に補正をかけ、周波数特性及び入出力特性を所望の特性に補正したが、図17の様に、変調前の入力信号に対し、補正をかける構成も有効である。この場合には振幅変調により発生する側波帯SUL:SUH(図18A参照)の共振周波数(キャリアと同一周波数とする)ωCに近い周波数成分ωC−ωL及びωC+ωL側を強調した側波帯SUL´とSUH´に補正することにより、加振手段1の超音波放射の周波数特性を図18Aに示す曲線B1からB2に補正することができる。この結果加振手段1の共振周波数ωCより低い側では2乗曲線に比例した特性に補正することができ、また共振周波数ωCより高い側では2乗曲線に反比例した特性に補正することができる。このためには補正手段6の補正特性としては図18Bに示す様に低域強調特性とすればよい。
【0019】
図19は更に他の実施例を示す。この実施例では振動素材5を構成要素とする図1に示した実施例に補正手段6を加えたものである。補正手段6の周波数補正特性としては加振手段1に入力される信号に対し、あらかじめ加振手段1の周波数特性に加え、振動素材5の周波数特性に合わせて補正することにより、広い周波数特性で、平坦な特性の可聴振動を人体に与えることができる。図19は変調後の信号に補正をかけるものだが、図17の場合と同様、変調前の入力信号に対し補正をかけることも有効である。
【0020】
図20は、この発明の更に他の実施例を示す。この実施例では加振手段1に入力される信号を、図1に示した振幅変調された非可聴信号に、可聴信号を加算した信号を得る加算手段7を備えたものとする。
非可聴振動の非線形効果による可聴信号の発生は、非線形な特性であるため、非常に音質の制御が難しい。図7及び図19に示した実施例の様に、補正手段6により平坦にできる場合もあるが、加振手段1の特性によっては、補正手段6のみでは、補正が不可能な場合もある。その場合、可聴信号を混ぜることにより、非線形効果で発生する可聴信号を補う形で、人体に振動を伝えることが可能である。可聴帯域の信号は線形効果のみによる制御のため、非線形である非可聴帯域に比べ、制御が容易で、その結果、音質の制御がより容易になる。
【0021】
図21は、同じくこの発明の更に他の実施例で、補正手段6を可聴振動と非可聴の変調振動それぞれ個別にかける場合の実施例を示す。加振手段1、振動素材5、および人体の特性は、可聴振動の帯域の場合と非可聴振動の帯域の場合で、周波数特性や入出力特性が異なるため、それぞれ個別に補正を行った方が、より細かい音質の制御が可能となる。図21は変調後の非可聴信号に対して補正を行っているが、図17と同様に変調前の入力信号に対して補正を行うことも有効である。
【0022】
【発明の効果】
以上説明したように、この発明によれば、振動素材5の内部における非可聴振動の非線形効果により、可聴振動を発生させる加振手段により人体に効率よく可聴振動を伝えることが可能となる。また、非線形効率を発生させる非可聴振動を極力人体に伝えず、安全に非線形効果を起こすことが可能となる。
【図面の簡単な説明】
【図1】この発明で提案したヘッドホン装置の一実施例を説明するためのブロック図。
【図2】この発明の要部の構成を説明するための分解斜視図。
【図3】図2に示した要部を更に詳細に説明するための拡大断面図。
【図4】振動素材の違いによって生ずる復調効果の違いを説明するための測定結果を示すグラフ。
【図5】この発明で提案したヘッドホン装置を人体へ装着した状態を説明するための斜視図。
【図6】図5の側面図。
【図7】この発明で提案したヘッドホン装置の他の実施例を説明するためのブロック図。
【図8】超音波の非線形効果で発生する可聴音の周波数特性を説明するための特性曲線図。
【図9】一般的な超音波振動子の周波数特性を説明するための特性曲線図。
【図10】平坦な周波数特性を持つ可聴音を周波数補正無しに発生させるために必要な加振手段の等価低域特性と、加振手段の振幅周波数特性の一例を示す特性曲線図。
【図11】周波数補正することなく平坦な周波数特性を持つ可聴音を発生させることができる加振手段の周波数特性を示す特性曲線図。
【図12】加振手段の現実の周波数特性を説明するための特性曲線図。
【図13】図12に示した加振手段の周波数特性を図11に示した理想的な周波数特性に補正するための補正手段の補正特性を説明するための特性曲線図。
【図14】加振手段の入力対出力特性の一例を説明するための特性曲線図。
【図15】図14に示した入力対出力特性を直線化補正するための補正特性を説明するための特性曲線図。
【図16】図14に示した加振手段の入力対出力特性を図15に示した補正特性で補正した結果を説明するための特性曲線図。
【図17】この発明で提案したヘッドホン装置の変形実施例を説明するためのブロック図。
【図18】図17に示した実施例の補正特性を説明するための特性曲線図。
【図19】この発明で提案したヘッドホン装置の更に他の実施例を説明するためのブロック図。
【図20】この発明で提案したヘッドホン装置の更に他の実施例を説明するためのブロック図。
【図21】この発明で提案したヘッドホン装置の更に他の実施例を説明するためのブロック図。
【図22】従来の技術を説明するためのブロック図。
【符号の説明】
1 加振手段 5 振動素材
2 超音波信号発生手段 6 補正手段
3 入力信号 7 加算手段
4 振幅変調手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a headphone device that can be used to apply vibration to a part of a human body and perceive the vibration as sound.
[0002]
[Prior art]
A bone conduction transmission method has been put to practical use as one of the methods for causing humans to perceive sound. The bone conduction transmission method is a method in which acoustic vibration is mainly applied to the head of a human body, and this acoustic vibration is transmitted to the auditory system through bones, flesh, and the like of the human body to be perceived as sound. According to this bone conduction transmission method, it is possible to make a person who is deaf can perceive a sound.
In order to realize the bone conduction transmission method, a method of generating acoustic vibration at an audible frequency by a vibrating means and applying the acoustic vibration to a human head may be considered. When this method is used, there is a disadvantage that acoustic vibration leaks to the surroundings and can be heard as noise by surrounding people.
Therefore, an ultrasonic signal that is non-audible is amplitude-modulated with an audible signal, the ultrasonic transducer is driven by the amplitude-modulated ultrasonic signal, and the head of the human body is applied with the amplitude-modulated ultrasonic vibration. A method of demodulating audible vibrations by demodulation of ultrasonic waves inside the human body by shaking and transmitting the audible vibrations to the auditory system has also been considered. According to the ultrasonic bone transmission method, there is an advantage that sound does not leak to the surroundings.
[0003]
FIG. 22 shows a schematic configuration of the ultrasonic bone conduction headphone. The vibration means 1 capable of vibrating in a non-audible band (ultrasonic band) is brought into contact with the skin, and is mounted so as to vibrate a human body. The non-audible ultrasonic signal of about 20 kHz to 50 kHz output from the ultrasonic signal generation means 2 is amplitude-modulated by the amplitude modulation means 4 by the input signal 3 which is an audible signal, and is input to the vibration means 1. The non-audible vibration transmitted to the human body from the vibration means 1 generates an audible vibration by a non-linear effect and can be perceived as sound. The generated audible vibration is a vibration corresponding to the input signal 3 used for the modulation. Therefore, by using a signal such as music or voice as the input signal 3, it is possible to produce a bone conduction headphone device capable of listening to music or voice.
However, conventional bone conduction headphones convert non-audible vibrations of the vibration means 1 into audible vibrations by a non-linear effect in the human body, so that it is necessary to transmit high-energy non-audible vibrations to the human body. There was the first problem of this.
Further, in the conventional bone conduction headphones, the acoustic impedance of the vibration means 1 itself and the acoustic impedance of the human body greatly differ depending on the material, and the vibration energy is reflected on the contact surface between the vibration means 1 and the human body, and the vibration is efficiently performed. There was a second problem that it could not be transmitted to the human body.
[0004]
In order to solve these problems, the applicant of the present invention has an electroacoustic transducer having a structure in which a vibration material whose acoustic impedance is substantially equal to the acoustic impedance of the human body is interposed between the vibration means 1 and the human body (Japanese Patent Application No. 2001-38631). Suggested.
According to the electro-acoustic transducer proposed in the prior application, the transmission efficiency of audible vibration can be improved and the excitation amplitude of non-audible vibration can be reduced by sandwiching the vibration material between the vibration means and the human body. . As a result, the above-described first problem and second problem can be solved.
In the invention of the prior application, a polymer gel material is cited as a material having an acoustic impedance substantially equal to that of the human body as an actually used vibration material and having a non-linear acoustic characteristic.
[0005]
[Problems to be solved by the invention]
In the electro-acoustic transducer proposed in the prior application, although the acoustic impedance of the vibrating material is almost equal to the acoustic impedance of the human body, the third problem has occurred in that the nonlinear efficiency is low and audible vibration does not efficiently occur in the vibrating material. .
An object of the present invention is to provide a headphone device capable of efficiently generating audible vibration in a vibration material and solving the third problem.
[0006]
[Means for Solving the Problems]
According to the present invention, an ultrasonic signal generating means for generating an ultrasonic signal having a frequency higher than at least the audible region, a modulating means for amplitude-modulating the ultrasonic signal with an audio signal in the audible region to obtain a modulated signal, Exciting means for generating non-audible vibration by a signal, either natural cartilage or regenerated cartilage which is in contact with the exciting means and has a non-linear characteristic between the contact acceleration and the amplitude of the sound output substantially equal to the acoustic impedance of the human body. A headphone device comprising: a vibration material configured as described above; and a housing for storing the vibration means with the vibration surface of the vibration means as a surface.
[0007]
The present invention further provides an ultrasonic signal generating means for generating an ultrasonic signal having a frequency higher than at least the audible region, a modulating means for amplitude-modulating the ultrasonic signal with an audio signal in the audible region to obtain a modulated signal, Exciting means that generates non-audible vibrations by the modulation signal, and a Young's modulus having a non-linear characteristic between the contact acceleration and the amplitude of the acoustic output that is approximately equal to the acoustic impedance of the human body and is in contact with the exciting means, is 0.5 × A headphone device including a vibration material having a pressure of 10 6 to 0.5 × 10 8 Pa and a housing for storing the vibration means with the vibration surface of the vibration means as a surface is proposed.
[0008]
Action <br/> natural cartilage or regenerated cartilage as a vibration element according to the present invention, or from Young's modulus using a material of 0.5 × 10 6 ~0.5 × 10 8 Pa, these materials are non-linear efficiency Therefore, audible vibration is generated with high efficiency inside the vibration material, and as a result, the third problem can be solved. Therefore, according to the present invention, it is possible to realize a headphone device with high efficiency, less sound leakage, and less burden on the human body.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention. According to the present invention, the vibration device 5 is extended from the conventional device shown in FIG. Here, as the vibration material 5, for example, natural cartilage collected from animal ears or the like or artificially produced regenerated cartilage or a Young's modulus of 0.5 × 10 6 to 0.5 × 10 8 Pa and a specific gravity of 0 It can be made of a resin material such as an elastomer having a thickness of 0.5 to 2.5. When the vibration material 5 is disposed, the vibration of the vibration means 1 is transmitted to the human body via the vibration material 5. The vibrating means 1 does not directly vibrate the human body, but vibrates the vibration material 5 with vibration in a non-audible band. In the case of driving using a signal in which an ultrasonic signal in a non-audible band is amplitude-modulated with an audible signal as a signal for vibrating the vibration means 1, the non-audible vibration is transmitted to the human body due to the non-linearity of the vibration material 5 due to the non-linearity of the vibration material 5. An audible vibration is generated inside the camera.
By using a resin material such as the above-described natural cartilage, regenerated cartilage, or elastomer for the vibration material 5, audible vibration can be generated efficiently, and these materials have an acoustic impedance with cartilage or skin of a human body. Since it is close, the audible vibration generated in the vibration material 5 can be efficiently transmitted to the human body without being attenuated at the boundary with the human body. Further, since the non-audible vibration of high energy is attenuated inside the vibration material 5, the non-audible vibration is hardly transmitted to the human body, and the burden on the human body is reduced.
[0010]
2 and 3 show an embodiment of the vibration means 1 and the vibration material 5. The vibrating means 1 is composed of, for example, a disk-shaped piezoelectric vibration element, and a metal plate such as aluminum is adhered to the surface of the piezoelectric vibration element to form a vibration surface 1A. The vibration means 1 is stored in a cup-shaped housing 1B made of, for example, a hard plastic.
The diameter D1 of the vibration surface 1A of the vibration means 1 is about 15 mm, and the vibration material 5 is adhered to the vibration surface 1A with an adhesive 5C. As the adhesive 5C, for example, a rubber-based pressure-sensitive adhesive can be used.
A case where natural cartilage or regenerated cartilage is used as the vibration material 5 will be described. Natural cartilage can be collected, for example, from ears of animals such as pigs. The collected natural cartilage is cut into a disk shape having a diameter D2 = about 16 to 17 mm slightly larger than the diameter D1 of the vibration surface 1A of the vibration means 1 by, for example, about 1 to 2 mm and a thickness T of about 2 to 5 mm. The surface of natural cartilage or regenerated cartilage 5A (see FIG. 3) cut into a desired shape is wrapped with, for example, a polypropylene wrap material 5B having a thickness of about several microns, vacuum-sealed, and sealed.
One circular surface of the vibrating material 5 wrapped with the wrapping material 5B is adhered to the vibrating surface 1A of the vibration means 1 with an adhesive 5C. By virtue of this bonding, one circular surface of the vibrating material 5 is vibrated by the non-audible vibration of the vibrating surface 1A of the vibrating means 1 whose amplitude has been modulated, so that the natural cartilage 5A has its thickness T (see FIG. 2) in the middle thereof. As a result, acoustic vibration is reproduced due to the nonlinear characteristics of natural cartilage, and the surface side of the vibration material 5 acoustically vibrates. This acoustic vibration is transmitted to the human body and is perceived as sound.
[0011]
For comparison, FIG. 4 shows an example of the measurement result of the demodulated vibration due to the difference in the material of the vibration material 5. For comparison, the intensity of the ultrasonic vibration (non-audible vibration) to be excited is set to be the same, and the demodulated vibration acceleration of each material is calculated. The accelerometer was directly installed at almost the same position in the measurement. The measurement was performed with the frequency of the audible signal used for amplitude modulation being a sinusoidal vibration of 250 Hz to 4 kHz and the frequency of the ultrasonic signal being 40 kHz.
Curve A shown in FIG. 4 shows the measured value of the acceleration of the ultrasonic vibration.
Curve B is the measured acceleration value of the demodulated vibration generated in the natural cartilage,
Curve C is the measured acceleration value of the demodulated vibration generated in the polymer gel,
Are respectively shown.
From this measurement result, it can be seen that demodulation efficiency is improved by about 20 to 30 dB by using natural cartilage as the vibration material 5 as compared with the case of the polymer gel.
2 and 3, the inside of the vibration material 5 is described as natural cartilage or regenerated cartilage, but the Young's modulus is 0.5 × 10 6 to 0.5 × 10 8 Pa and the specific gravity is about 0.5 to 2.5. A resin material such as an elastomer can be used.
[0012]
FIGS. 5 and 6 show an example of mounting the headphone device according to the present invention on a human body. 5 and 6 show a headphone device according to the present invention. As described above, the headphone device 10 according to the present invention includes the vibration means 1 and the vibration material 5 mounted on the vibration surface of the vibration means 1.
Reference numeral 11 denotes a headband. Hinges 12 are attached to both ends of the headband 11 (only one end is shown in the figure). A lever 13 is attached to the hinge 12, and the free end of the lever 13 is constantly pressed against a portion near the ear of the wearer by a spring mounted on the hinge 12. A support rod 14 is further mounted on the lever 13, and a headphone device 10 is mounted on the lower end of the support rod 14, and the vibration material 5 mounted on the vibration surface thereof is pressed against the skin of the wearer.
[0013]
FIG. 7 shows another embodiment of the headphone device according to the present invention. This embodiment proposes a headphone device capable of controlling sound quality. In general, the vibration means 1 capable of generating ultrasonic vibration does not have a flat acoustic frequency characteristic. Also, the relationship between the input voltage and the excitation power as the output is often not linear. Therefore, even when vibration is transmitted to the human body by ultrasonic waves, distortion is likely to occur, and it is difficult to control sound quality. Therefore, by correcting the signal or the like input to the vibration means 1 by the correction means 6, the frequency characteristic of the audible sound generated by the non-linear effect can be made flat.
[0014]
An example of a method in the case where the correction is performed by the correction unit 6 will be described below. The frequency characteristic of the audible sound generated inside the vibration material 5 due to the non-linear effect of the ultrasonic wave is theoretically approximately proportional to the square of the frequency ω when the modulation depth is constant. Characteristics. In FIG. 8, the lowest frequency of the audible sound to be generated is ωL (for example, 20 Hz), and the highest frequency is ωH (for example, 20 Hz).
Assuming that the frequency characteristic of the vibration means 1 has a flat characteristic over ± 20 KHz around the frequency of the ultrasonic wave (the frequency of the carrier), the audible vibration reproduced from the non-audible vibration has the frequency shown in FIG. It has a frequency characteristic proportional to the square (ω 2 ). In order to correct this frequency characteristic and obtain a flat frequency characteristic, it is necessary for the correction means 6 to have a 1 / ω 2 characteristic.
[0015]
Incidentally, the entire system configuration is as listed in Figure 7, the frequency characteristics of the vibration means 1 is not flat within the required band as shown various in FIG. 9 and symmetrically around the resonance frequency omega 0 attenuation The curves A1, A2, and A3 shown in FIG. 9 indicate the frequency characteristics of the ultrasonic output for each type of ultrasonic transducer.
When the vibration unit 1 has the frequency characteristics of a general ultrasonic transducer, the correction unit 6 is required to have a characteristic different from the above-described 1 / ω 2 characteristic.
Now, assuming that the amplitude frequency characteristic of the vibration means 1 is A (ω), a target characteristic centered on the resonance frequency, that is, A (ω 0 + ω) = A (ω 0 −ω). Further, if A (ω) is normalized so that A (ω 0 ) = 1, the characteristic of the correcting means 6 in this case is 1 / (A (ω 0 + ω) ω 2 ). Therefore, as shown in FIG. 10, when the equivalent low-frequency characteristic H 1 (ω) of the amplitude frequency characteristic H (ω) of the vibration means 1 is attenuated at 12 dB / octave, the flatness is obtained without the correction means 6. Frequency characteristics and a constant harmonic distortion rate.
[0016]
Specifically, when an ultrasonic wave having a resonance frequency ωC (for example, 40 KHz) is modulated by an audible sound (ωL = 20 Hz to ωH = 20 KHz), the modulated ultrasonic signal is converted into a center frequency ωC and an audible signal (ωL ( (ωC−ωH) to (ωC + ωH) in the frequency domain of the difference from the frequency band up to ωH, and is affected by the frequency characteristics of the vibration means 1 in this range. Therefore, as shown in FIG. 11, in the frequency range (ωC−ωH) to (ωC−ωL) lower than the resonance frequency ωC of the vibration means 1, it is proportional to the square of the frequency difference (ωC−ω) 2 . In the frequency range (ωC + ωL) to (ωC + ωH) higher than the resonance frequency of the vibration means 1, if the vibration means 1 has a frequency characteristic inversely proportional to the square of the frequency difference (ωC−ω) 2 , the nonlinear effect is generated. The characteristics of the audible sound generated are flattened, which is desirable.
[0017]
However, in reality, as shown in FIG. 12, the frequency characteristics of a general vibration unit 1 using a piezoelectric element are different from desired characteristics. In particular, near the resonance frequency ωC, the frequency peak has characteristics lower than desired characteristics. Therefore, the frequency characteristic of the correction means 6 is set as shown in FIG. 13 so that the characteristic of FIG. 12 becomes the ideal characteristic shown in FIG. Incidentally, the correction means 6 can be constituted by, for example, a digital filter.
FIG. 14 shows the output characteristics of the input body of the general vibration means 1. When the vibration means 1 having the input-output characteristic A shown in FIG. 14 is used, the input-output characteristic B of the correction means 6 is changed to a characteristic shown in FIG. 15 (a non-linear characteristic B opposite to the characteristic A shown in FIG. 14). 16), the input characteristics of the device and the output characteristics of the vibration means 1 can be linearized as shown by the solid line in FIG. As a result, it is possible to linearize the change in the sound pressure of the vibration transmitted from the vibration means 1 to the human body.
[0018]
In FIG. 7, the signal after modulation is corrected to correct the frequency characteristic and the input / output characteristic to desired characteristics. However, a configuration in which the input signal before modulation is corrected as shown in FIG. 17 is also effective. In this case, the sideband SUL ′ in which the sidebands SUL ′ of the sidebands SUL: SUH (see FIG. 18A) generated by the amplitude modulation and the frequency components ωC−ωL and ωC + ωL close to the resonance frequency ωC (assumed to be the same frequency as the carrier) ωC. And SUH ′, the frequency characteristic of the ultrasonic radiation of the vibration means 1 can be corrected from the curve B1 shown in FIG. 18A to B2. As a result, on the side of the vibration means 1 lower than the resonance frequency ωC, the characteristic can be corrected to a characteristic proportional to the square curve, and on the side higher than the resonance frequency ωC, the characteristic can be corrected to the characteristic inversely proportional to the square curve. For this purpose, the correction characteristic of the correction means 6 may be a low-frequency emphasis characteristic as shown in FIG. 18B.
[0019]
FIG. 19 shows still another embodiment. In this embodiment, a correcting means 6 is added to the embodiment shown in FIG. As a frequency correction characteristic of the correcting means 6, a signal input to the vibrating means 1 is corrected in advance in accordance with the frequency characteristic of the vibrating material 5 in addition to the frequency characteristic of the vibrating means 1, thereby providing a wide frequency characteristic. Audible vibration with flat characteristics can be given to the human body. Although FIG. 19 shows a case where the signal after modulation is corrected, it is also effective to correct the input signal before modulation as in the case of FIG.
[0020]
FIG. 20 shows still another embodiment of the present invention. In this embodiment, the signal input to the vibration means 1 is provided with an adding means 7 for obtaining a signal obtained by adding an audible signal to the amplitude-modulated non-audible signal shown in FIG.
The generation of an audible signal due to the non-audible vibration non-linear effect is a non-linear characteristic, which makes it very difficult to control sound quality. As in the embodiment shown in FIGS. 7 and 19, there is a case where the flattening can be performed by the correcting unit 6, but in some cases, depending on the characteristics of the vibrating unit 1, the correction cannot be performed by the correcting unit 6 alone. In this case, by mixing the audible signals, it is possible to transmit vibration to the human body in a form that supplements the audible signals generated by the nonlinear effect. Since the signal in the audible band is controlled only by the linear effect, the control is easier than in the non-audible band which is non-linear, and as a result, the control of the sound quality becomes easier.
[0021]
FIG. 21 shows still another embodiment of the present invention, in which the audible vibration and the non-audible modulated vibration are individually applied to the correcting means 6. The characteristics of the vibration means 1, the vibration material 5, and the human body have different frequency characteristics and input / output characteristics between the case of the audible vibration band and the case of the non-audible vibration band. Thus, finer sound quality control becomes possible. In FIG. 21, correction is performed on the non-audible signal after modulation, but it is also effective to correct the input signal before modulation as in FIG.
[0022]
【The invention's effect】
As described above, according to the present invention, the audible vibration can be efficiently transmitted to the human body by the vibration means for generating the audible vibration due to the non-audible vibration nonlinear effect inside the vibration material 5. In addition, non-audible vibration that causes nonlinear efficiency is not transmitted to the human body as much as possible, so that the nonlinear effect can be safely generated.
[Brief description of the drawings]
FIG. 1 is a block diagram for explaining an embodiment of a headphone device proposed in the present invention.
FIG. 2 is an exploded perspective view for explaining a configuration of a main part of the present invention.
FIG. 3 is an enlarged cross-sectional view for explaining the main part shown in FIG. 2 in further detail;
FIG. 4 is a graph showing measurement results for explaining a difference in demodulation effect caused by a difference in vibration material.
FIG. 5 is a perspective view for explaining a state in which the headphone device proposed in the present invention is worn on a human body.
FIG. 6 is a side view of FIG. 5;
FIG. 7 is a block diagram for explaining another embodiment of the headphone device proposed in the present invention.
FIG. 8 is a characteristic curve diagram for explaining a frequency characteristic of an audible sound generated by a non-linear effect of ultrasonic waves.
FIG. 9 is a characteristic curve diagram for explaining frequency characteristics of a general ultrasonic transducer.
FIG. 10 is a characteristic curve diagram showing an example of an equivalent low-frequency characteristic of the vibration means required to generate an audible sound having a flat frequency characteristic without frequency correction, and an amplitude frequency characteristic of the vibration means.
FIG. 11 is a characteristic curve diagram showing a frequency characteristic of a vibrating unit capable of generating an audible sound having a flat frequency characteristic without performing frequency correction.
FIG. 12 is a characteristic curve diagram for explaining actual frequency characteristics of the vibration means.
FIG. 13 is a characteristic curve diagram for explaining the correction characteristic of the correction unit for correcting the frequency characteristic of the vibration unit shown in FIG. 12 to the ideal frequency characteristic shown in FIG.
FIG. 14 is a characteristic curve diagram for explaining an example of the input-output characteristics of the vibration means.
FIG. 15 is a characteristic curve diagram for explaining a correction characteristic for linearly correcting the input versus output characteristic shown in FIG.
FIG. 16 is a characteristic curve diagram for explaining a result of correcting the input versus output characteristics of the vibration means shown in FIG. 14 with the correction characteristics shown in FIG. 15;
FIG. 17 is a block diagram for explaining a modified embodiment of the headphone device proposed in the present invention.
FIG. 18 is a characteristic curve diagram for explaining the correction characteristic of the embodiment shown in FIG.
FIG. 19 is a block diagram for explaining still another embodiment of the headphone device proposed in the present invention.
FIG. 20 is a block diagram for explaining still another embodiment of the headphone device proposed in the present invention.
FIG. 21 is a block diagram for explaining still another embodiment of the headphone device proposed in the present invention.
FIG. 22 is a block diagram for explaining a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vibration means 5 Vibration material 2 Ultrasonic signal generation means 6 Correction means 3 Input signal 7 Addition means 4 Amplitude modulation means

Claims (2)

少なくとも可聴領域よりも高い周波数の超音波信号を発生する超音波信号発生手段と、
前記超音波信号を可聴領域の音声信号で振幅変調して被変調信号を得る変調手段と、
前記被変調信号によって非可聴振動を発生する加振手段と、
前記加振手段に接触し、人体の音響インピーダンスに略等しく接触加速度と音響出力の振幅との間に非線形特性を有する天然軟骨又は再生軟骨の何れかで構成した振動素材と、
前記加振手段の振動面を表面にして前記加振手段を格納する筺体と、
を備えたヘッドホン装置。
Ultrasonic signal generating means for generating an ultrasonic signal of a frequency higher than at least the audible region,
Modulation means for amplitude-modulating the ultrasonic signal with an audio signal in an audible region to obtain a modulated signal,
Exciting means for generating non-audible vibration by the modulated signal,
A vibrating material made of either natural cartilage or regenerated cartilage having a non-linear characteristic between the contact acceleration and the amplitude of the sound output substantially equal to the acoustic impedance of the human body,
A housing for storing the vibration means with the vibration surface of the vibration means as a surface,
Headphone device provided with.
少なくとも可聴領域よりも高い周波数の超音波信号を発生する超音波信号発生手段と、
前記超音波信号を可聴領域の音声信号で振幅変調して被変調信号を得る変調手段と、
前記被変調信号によって非可聴振動を発生する加振手段と、
前記加振手段に接触し、人体の音響インピーダンスに略等しく接触加速と音響出力の振幅との間に非線形特性を有するヤング率が0.5×10乃至0.5×10Paである樹脂素材で構成した振動素材と、
前記加振手段の振動面を表面にして前記加振手段を格納する筐体と、
を備えたヘッドホン装置。
Ultrasonic signal generating means for generating an ultrasonic signal of a frequency higher than at least the audible region,
Modulation means for amplitude-modulating the ultrasonic signal with an audio signal in an audible region to obtain a modulated signal,
Exciting means for generating non-audible vibration by the modulated signal,
A resin having a Young's modulus of 0.5 × 10 6 to 0.5 × 10 8 Pa, which is in contact with the vibration means and has a nonlinear characteristic between contact acceleration and the amplitude of sound output which is substantially equal to the acoustic impedance of the human body. A vibration material composed of materials,
A housing for storing the vibration unit with the vibration surface of the vibration unit as a surface,
Headphone device provided with.
JP2002321055A 2002-11-05 2002-11-05 Headphone device Expired - Fee Related JP3875178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321055A JP3875178B2 (en) 2002-11-05 2002-11-05 Headphone device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321055A JP3875178B2 (en) 2002-11-05 2002-11-05 Headphone device

Publications (2)

Publication Number Publication Date
JP2004158961A true JP2004158961A (en) 2004-06-03
JP3875178B2 JP3875178B2 (en) 2007-01-31

Family

ID=32801721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321055A Expired - Fee Related JP3875178B2 (en) 2002-11-05 2002-11-05 Headphone device

Country Status (1)

Country Link
JP (1) JP3875178B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006148295A (en) * 2004-11-17 2006-06-08 Nec Tokin Corp Bone conduction speaker and bone conduction receiving device
JP2012526587A (en) * 2009-05-15 2012-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Embedded device with communication means
JP2015130695A (en) * 2015-03-11 2015-07-16 株式会社ファインウェル Cellular phone
US9313306B2 (en) 2010-12-27 2016-04-12 Rohm Co., Ltd. Mobile telephone cartilage conduction unit for making contact with the ear cartilage
US9392097B2 (en) 2010-12-27 2016-07-12 Rohm Co., Ltd. Incoming/outgoing-talk unit and incoming-talk unit
US9479624B2 (en) 2012-01-20 2016-10-25 Rohm Co., Ltd. Mobile telephone
US9485559B2 (en) 2011-02-25 2016-11-01 Rohm Co., Ltd. Hearing system and finger ring for the hearing system
US9705548B2 (en) 2013-10-24 2017-07-11 Rohm Co., Ltd. Wristband-type handset and wristband-type alerting device
US9729971B2 (en) 2012-06-29 2017-08-08 Rohm Co., Ltd. Stereo earphone
US9742887B2 (en) 2013-08-23 2017-08-22 Rohm Co., Ltd. Mobile telephone
US10013862B2 (en) 2014-08-20 2018-07-03 Rohm Co., Ltd. Watching system, watching detection device, and watching notification device
CN109478102A (en) * 2016-07-22 2019-03-15 哈曼国际工业有限公司 For delivering the haptic system of audio content to user
US10356231B2 (en) 2014-12-18 2019-07-16 Finewell Co., Ltd. Cartilage conduction hearing device using an electromagnetic vibration unit, and electromagnetic vibration unit
WO2019155838A1 (en) * 2018-02-07 2019-08-15 国立大学法人 千葉大学 Acoustic transmission system
US10778824B2 (en) 2016-01-19 2020-09-15 Finewell Co., Ltd. Pen-type handset
US10795321B2 (en) 2015-09-16 2020-10-06 Finewell Co., Ltd. Wrist watch with hearing function
US10967521B2 (en) 2015-07-15 2021-04-06 Finewell Co., Ltd. Robot and robot system
US11483661B2 (en) 2011-12-23 2022-10-25 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11528562B2 (en) 2011-12-23 2022-12-13 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11528561B2 (en) 2011-12-23 2022-12-13 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11526033B2 (en) 2018-09-28 2022-12-13 Finewell Co., Ltd. Hearing device
US11540057B2 (en) 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11540066B2 (en) 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11570560B2 (en) 2015-08-13 2023-01-31 Shenzhen Shokz Co., Ltd. Systems for bone conduction speaker
US11575994B2 (en) 2011-12-23 2023-02-07 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11595760B2 (en) 2011-12-23 2023-02-28 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11601761B2 (en) 2011-12-23 2023-03-07 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11611834B2 (en) 2011-12-23 2023-03-21 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11632637B2 (en) 2014-01-06 2023-04-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11632636B2 (en) 2014-01-06 2023-04-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11638099B2 (en) 2011-12-23 2023-04-25 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11641552B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11641551B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11659341B2 (en) 2014-01-06 2023-05-23 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11665482B2 (en) 2011-12-23 2023-05-30 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
JP7360358B2 (en) 2018-08-02 2023-10-12 シェンヂェン ショックス カンパニー リミテッド System for bone conduction speakers

Cited By (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4541111B2 (en) * 2004-11-17 2010-09-08 Necトーキン株式会社 Method of using bone conduction speaker and method of using bone conduction receiver
JP2006148295A (en) * 2004-11-17 2006-06-08 Nec Tokin Corp Bone conduction speaker and bone conduction receiving device
JP2012526587A (en) * 2009-05-15 2012-11-01 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Embedded device with communication means
US9894430B2 (en) 2010-12-27 2018-02-13 Rohm Co., Ltd. Incoming/outgoing-talk unit and incoming-talk unit
US10779075B2 (en) 2010-12-27 2020-09-15 Finewell Co., Ltd. Incoming/outgoing-talk unit and incoming-talk unit
US9313306B2 (en) 2010-12-27 2016-04-12 Rohm Co., Ltd. Mobile telephone cartilage conduction unit for making contact with the ear cartilage
US9392097B2 (en) 2010-12-27 2016-07-12 Rohm Co., Ltd. Incoming/outgoing-talk unit and incoming-talk unit
US9716782B2 (en) 2010-12-27 2017-07-25 Rohm Co., Ltd. Mobile telephone
US9485559B2 (en) 2011-02-25 2016-11-01 Rohm Co., Ltd. Hearing system and finger ring for the hearing system
US9980024B2 (en) 2011-02-25 2018-05-22 Rohm Co., Ltd. Hearing system and finger ring for the hearing system
US11540066B2 (en) 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11638099B2 (en) 2011-12-23 2023-04-25 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11528562B2 (en) 2011-12-23 2022-12-13 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11659335B2 (en) 2011-12-23 2023-05-23 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11641552B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11665482B2 (en) 2011-12-23 2023-05-30 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11641551B2 (en) 2011-12-23 2023-05-02 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11540057B2 (en) 2011-12-23 2022-12-27 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11528561B2 (en) 2011-12-23 2022-12-13 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11611834B2 (en) 2011-12-23 2023-03-21 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11611833B2 (en) 2011-12-23 2023-03-21 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11601761B2 (en) 2011-12-23 2023-03-07 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11595760B2 (en) 2011-12-23 2023-02-28 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11575994B2 (en) 2011-12-23 2023-02-07 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US11483661B2 (en) 2011-12-23 2022-10-25 Shenzhen Shokz Co., Ltd. Bone conduction speaker and compound vibration device thereof
US10079925B2 (en) 2012-01-20 2018-09-18 Rohm Co., Ltd. Mobile telephone
US10158947B2 (en) 2012-01-20 2018-12-18 Rohm Co., Ltd. Mobile telephone utilizing cartilage conduction
US10778823B2 (en) 2012-01-20 2020-09-15 Finewell Co., Ltd. Mobile telephone and cartilage-conduction vibration source device
US9479624B2 (en) 2012-01-20 2016-10-25 Rohm Co., Ltd. Mobile telephone
US10506343B2 (en) 2012-06-29 2019-12-10 Finewell Co., Ltd. Earphone having vibration conductor which conducts vibration, and stereo earphone including the same
US9729971B2 (en) 2012-06-29 2017-08-08 Rohm Co., Ltd. Stereo earphone
US10834506B2 (en) 2012-06-29 2020-11-10 Finewell Co., Ltd. Stereo earphone
US10075574B2 (en) 2013-08-23 2018-09-11 Rohm Co., Ltd. Mobile telephone
US9742887B2 (en) 2013-08-23 2017-08-22 Rohm Co., Ltd. Mobile telephone
US10237382B2 (en) 2013-08-23 2019-03-19 Finewell Co., Ltd. Mobile telephone
US9705548B2 (en) 2013-10-24 2017-07-11 Rohm Co., Ltd. Wristband-type handset and wristband-type alerting device
US10103766B2 (en) 2013-10-24 2018-10-16 Rohm Co., Ltd. Wristband-type handset and wristband-type alerting device
US11991500B2 (en) 2014-01-06 2024-05-21 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11917373B2 (en) 2014-01-06 2024-02-27 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11659341B2 (en) 2014-01-06 2023-05-23 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11638105B2 (en) 2014-01-06 2023-04-25 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11632636B2 (en) 2014-01-06 2023-04-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US11632637B2 (en) 2014-01-06 2023-04-18 Shenzhen Shokz Co., Ltd. Systems and methods for suppressing sound leakage
US10380864B2 (en) 2014-08-20 2019-08-13 Finewell Co., Ltd. Watching system, watching detection device, and watching notification device
US10013862B2 (en) 2014-08-20 2018-07-03 Rohm Co., Ltd. Watching system, watching detection device, and watching notification device
US11601538B2 (en) 2014-12-18 2023-03-07 Finewell Co., Ltd. Headset having right- and left-ear sound output units with through-holes formed therein
US10356231B2 (en) 2014-12-18 2019-07-16 Finewell Co., Ltd. Cartilage conduction hearing device using an electromagnetic vibration unit, and electromagnetic vibration unit
US10848607B2 (en) 2014-12-18 2020-11-24 Finewell Co., Ltd. Cycling hearing device and bicycle system
JP2015130695A (en) * 2015-03-11 2015-07-16 株式会社ファインウェル Cellular phone
US10967521B2 (en) 2015-07-15 2021-04-06 Finewell Co., Ltd. Robot and robot system
US11611837B2 (en) 2015-08-13 2023-03-21 Shenzhen Shokz Co., Ltd. Systems for bone conduction speaker
US11570560B2 (en) 2015-08-13 2023-01-31 Shenzhen Shokz Co., Ltd. Systems for bone conduction speaker
US10795321B2 (en) 2015-09-16 2020-10-06 Finewell Co., Ltd. Wrist watch with hearing function
US10778824B2 (en) 2016-01-19 2020-09-15 Finewell Co., Ltd. Pen-type handset
CN109478102A (en) * 2016-07-22 2019-03-15 哈曼国际工业有限公司 For delivering the haptic system of audio content to user
JP2019523498A (en) * 2016-07-22 2019-08-22 ハーマン インターナショナル インダストリーズ インコーポレイテッド Haptic system for sending audio content to the user
US11392201B2 (en) 2016-07-22 2022-07-19 Harman International Industries, Incorporated Haptic system for delivering audio content to a user
US11275442B2 (en) 2016-07-22 2022-03-15 Harman International Industries, Incorporated Echolocation with haptic transducer devices
US11126263B2 (en) 2016-07-22 2021-09-21 Harman International Industries, Incorporated Haptic system for actuating materials
JP2019140447A (en) * 2018-02-07 2019-08-22 国立大学法人千葉大学 Acoustic transmission method
JP7220444B2 (en) 2018-02-07 2023-02-10 国立大学法人千葉大学 Acoustic transmission system
WO2019155838A1 (en) * 2018-02-07 2019-08-15 国立大学法人 千葉大学 Acoustic transmission system
JP7360358B2 (en) 2018-08-02 2023-10-12 シェンヂェン ショックス カンパニー リミテッド System for bone conduction speakers
US11526033B2 (en) 2018-09-28 2022-12-13 Finewell Co., Ltd. Hearing device

Also Published As

Publication number Publication date
JP3875178B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP3875178B2 (en) Headphone device
JP3640672B2 (en) Tinnitus masking using ultrasonic signals
JP4548783B2 (en) headphone
JP6651608B2 (en) System for bone conduction speaker
JP3174324B2 (en) Ultrasonic bone conduction hearing aid and hearing aid method
JP3548805B2 (en) Hearing aid system and hearing aid method
US6631196B1 (en) Method and device for using an ultrasonic carrier to provide wide audio bandwidth transduction
JP2005175985A (en) Acoustic vibration generation device
US20140254840A1 (en) Hearing enhancement systems and methods
JPH11164384A (en) Super directional speaker and speaker drive method
JP5774635B2 (en) Audio equipment and method of using the same
JP2000197168A (en) Acoustic equipment
JP3946127B2 (en) Electroacoustic transducer
JP6966392B2 (en) System for bone conduction speakers
JPS62296698A (en) Parametric speaker
WO2018051646A1 (en) Bone conduction wave generation device, bone conduction wave generation method, bone conduction wave generation device program, and bone conduction wave output apparatus
JP3714904B2 (en) Electroacoustic transducer
JPS60201799A (en) Electroacoustic transducer
JP2018186572A (en) System for bone conduction loudspeaker
JP2005101749A (en) Ultrasonic speaker and its tone reproduction controlling method
JP2004080198A (en) Electroacoustic transducer
JP2023525749A (en) hearing aid
JP2000209691A (en) Parametric speaker
JP3668187B2 (en) Sound reproduction method and sound reproduction apparatus
JP3581343B2 (en) Sound reproduction method and sound reproduction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees