JP2004148070A - Detector of a pluralty of components in blood - Google Patents

Detector of a pluralty of components in blood Download PDF

Info

Publication number
JP2004148070A
JP2004148070A JP2002351793A JP2002351793A JP2004148070A JP 2004148070 A JP2004148070 A JP 2004148070A JP 2002351793 A JP2002351793 A JP 2002351793A JP 2002351793 A JP2002351793 A JP 2002351793A JP 2004148070 A JP2004148070 A JP 2004148070A
Authority
JP
Japan
Prior art keywords
artery
hemoglobin
oxygen saturation
vein
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351793A
Other languages
Japanese (ja)
Inventor
Takeshi Kosaka
武 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSE KK
Original Assignee
TSE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSE KK filed Critical TSE KK
Priority to JP2002351793A priority Critical patent/JP2004148070A/en
Publication of JP2004148070A publication Critical patent/JP2004148070A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve the non-invasive calculation of the blood concentration of a hemoglobin, the degree of oxygen saturation in the artery, the degree of oxygen saturation in the vein, the effective diameter of the blood vessel of the vein, the effective diameter of the blood vessel of the artery, the change in a capacity of the artery, and the like. <P>SOLUTION: A pressure is applied to a living body from outside for the formation of at least two states to obtain a biomedical signal in a non-invasive fashion, and moreover, the necessary signal is obtained from at least four operations of biospectroscopy in the absorption spectroscopic area of the hemoglobin to carry out the computation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の属する技術分野】
本発明は血中の多成分検出装置に関する。
【従来の技術】
動脈中の酸素飽和度を非侵襲的に計測する装置はすでにパルスオキシメーターとして商品になっているが他のものはほとんど成功していない。血中ヘモグロビン濃度を非侵襲的に計測する方法は既に試みられているが成功していない。これに関して理論的に整ったものとしては、特許公報(B2)平3□71135があげられる。測定原理は動脈パルス脈波を応用して、ヘモグロビンの吸収分光波長と水の吸収分光波長の二つの透過光信号を取り出し、脈動成分を消去し、水の濃度は一定としてヘモグロビン濃度を算出しているものである。理論的には問題の無いものと考えられるが、実際の装置においては各分光透過光信号のS/Nの大小で精度が決まり、これが問題となっている。この特許の場合、水の吸収分光は、例えば1.45μ或いは2.7μ等が考えられるが生体に対してのS/Nは悪く最終の精度を十分に保証できるものではない。受光素子、光源に問題がある。一方ヘモグロビンの吸収分光の可視、近赤外ではS/Nの良い透過光信号が得られることはパルスオキシメータの例からも解っている。
【発明が解決しようとする課題】
従来のヘモグロビン濃度測定は水の吸収分広域を用いており、生体に対してのS/Nが悪く最終精度が保証されていない。それに対して本発明はヘモグロビンの可視、近赤外の分光域のS/Nの良い生体信号を応用したもので、水の吸収分光域を用いないでヘモグロビンの濃度を算出し、その算出過程で動脈中の酸素飽和度、静脈中の酸素飽和度、動脈の実効的血径、静脈の実効的血管径が算出され、別途動脈の血流速度の計測を加えることによって血流量の計測ができるなど多成分の検出をするものである。
【課題を解決するための手段】
はじめに非侵襲的に動脈中の酸素飽和度を計測する測定原理を説明する。これは後の説明を助ける。測定原理は以下による。動脈中のヘモグロビンの動きを透過光の強さでみると、例えば指においては次のように説明される。
図1において
入射光:I0λ、λはある波長
入射光:Iλ、λはある波長
固定吸収部分:C0λ、動脈中の厚さ不変部分も含む
動脈の厚さの変動部分:f(t)、周期関数とする
f(t)は周期関数としているので

Figure 2004148070
すると
Figure 2004148070
ここで
λ:ヘモグロビンの散乱係数
λ:ヘモグロビンの吸収係数
この式はSλ、λの大小の関係を考慮したクベルカ.ムンクの方程式を解いた結果である。
ここで(1)の対数をとると
Figure 2004148070
(2)のAC成分をとる
λ=(ln(Iλ))acとして
λ=−(2Sλ.Kλ)・f(t)−−−−−−−−−−−−−−−−(3)
ここでKλを吟味すると酸化ヘモグロビンと還元ヘモグロビンの割合によって変る。
λ=δ・CtHb・{(SpO/100)(εHbO2 λ−εHb λ)+εHb λ}−−−−−(4)
ここで
δ:吸収係数の単位を合わせるための定数(観血により決める、一度でよい)
tHb:CtHbO2+CtHbのトータルヘモグロビン濃度
HbO2:酸化ヘモグロビン濃度
Hb:還元ヘモグロビン濃度
SpO:酸化飽和度、%表示
εHbO2 λ:酸化ヘモグロビンの波長λにおける吸収係数
εHb λ:還元ヘモグロビンの波長λにおける吸収係数
又Sλ(δと同様観血により決める)は酸化、還元ともヘモグロビンにおいては同じ係数をもつと考えられる。
ここで(3)、(4)の未知数、既知数に注意して整理すると
Figure 2004148070
ここで aλ:測定値
λ:2Sλ.Kλ (εHbO2 λ−εHb λ):λパラメーターの既知数
λ:2Sλ.εHb λ :λパラメーターの既知数
δ:定数であるがここでは未知数としてあつかう。
tHb:未知数
f(t):未知数
(5)は4個の未知数をもった式となっているが、掛け算の形を応用して
Figure 2004148070
とおく。すると
Figure 2004148070
すると(7)は未知数Sp、Xの二つであり、少なくとも独立した2式があれば解ける。
計測波長をλ、λとすると次式を得る。
Figure 2004148070
(8)÷(9)をとれば
Figure 2004148070
(10)から
Figure 2004148070
(11)よりSp、即ち酸素飽和度が解る。
これがパルスオキシメーターの測定原理である。
又別の解法を示す。
(2)の微分型をとる
Figure 2004148070
即ち
Figure 2004148070
これは(3)と同型であり次のように解くことが出来る。
Figure 2004148070
次に血中ヘモグロビン濃度、静脈中の酸素飽和度、等を計測する測定原理を説明する。
静脈は脈動していなく今までの方法では求められない。そこで静脈に対し外から圧力を加えあたかも脈動しているかのようにして計測する。
図2はそれら計測の説明図である。外圧 H(t)を加えて静脈がh(t)の脈動している図である。その影響を受けて動脈も又 k1・h(t)の脈動が加わっているとしている。又動脈f(t)の静脈への影響は少ないとされているが、ここではk2・f(t)を加えている。ここでk1、k2とも時間的に変化してもよい変数としている。k1は後述するように動脈の実効径に相当しており、またk2は時間的に任意変化してもよく、動脈と靜脈の固有の脈波変化の比であり、k2が求まるということは静脈の固有脈波の変化量がわかるということである。
又固定の吸収部分の外圧による変化する部分を
Figure 2004148070
とする。
すると▲1▼に相当する透過光Iλ
Figure 2004148070
h(t)は外圧による変化H(t)とは次のように関係しているとする。
Figure 2004148070
ここでDは計測部位の外径、PYは静脈の実効的な管の直径、H(t)は外径部の変化を表している。重要なことは(22)のように式で表されることである。(22)はその一例を示している。
動脈への静脈の影響k1・h(t)は上述と同じように考えて
Figure 2004148070
と考える。ここでPXは動脈の実効的な管の直径とし、他の定義は静脈と同様とする。
ここで(21)を再び式で表す。
Figure 2004148070
ここで
Figure 2004148070
H(t):外圧の変化部分
f(t)+(PX/D)・H(t):動脈の合成波
(PY/D)・H(t)+k2・f(t):静脈の合成波
K1λ:静脈中の酸素飽和度とヘモグロビン濃度により決まる吸収係数
Sλ:ヘモグロビンの散乱係数
k2:動脈と静脈の脈波の比
又、動脈中と静脈中のヘモグロビンの濃度は同じとしている。
(24)の対数をとり、そのAC成分をとると
Figure 2004148070
ここで
Figure 2004148070
(26)のSpOは先の動脈中の計測で解っているとする。又Cはトータルのヘモグロビン濃度を表し、SpO は静脈中の酸素飽和度を表す。
(25)を更に変形する。
Figure 2004148070
ここで
λ=Sλ(εHbO2 λ−εHb λ
S=SpO/100
λ=2Sλ・εHb λ
=SpO /100
δ:総合した吸収係数Kと、HbO2、Hbの吸収係数と、Cとを合わせるための定数
ここで求めたいものは第1にCである。
未知数はK0λ、C、f、PX、k2 、PY、Sの7個である。少なくとも7個の独立方程式があれば解くことができる可能性がある。しかしCについては
Figure 2004148070
く合わせた値からCの値を算出できる。後述する。
又K0λはλによる変化がないところを選ぶことにより、λとは独立の未知数となる。
これらの未知数を求める1例を以下示す。
(28)を更に変形する。
Figure 2004148070
夫々の変形部分は
Figure 2004148070
(29)は次のように変形される。
Figure 2004148070
ここでHがHに変化した時の(31)を考える。
Figure 2004148070
ここでFはHがHに変位した時のFの変位を表し、a λも同様である。
(31)×H−(32)×Hを行うと
Figure 2004148070
を得る。
(33)においてλをλ1、λ2、λと三つの領域で考える。
Figure 2004148070
ここで
Figure 2004148070
Figure 2004148070
(34)、(35)、(36)は未知数F、S、k2の3ヶであるから代数的に解ける。
(34)、(35)、(36)を変形して次式を得る。
Figure 2004148070
(41)と(42)からk2を消去してFについて整理すれば次式を得る。
Figure 2004148070
これはFについての2次方程式であって係数は一般的に0ではないから解くことができる。2個の解を吟味して答えを得る。
がもとまれば(41)、あるいは(42)よりk2が求められる。
更に(38)、(39)あるいは(40)によりSをもとめることが出来る。
これらの解法は3個の分光信号と外圧の二つの状態の組み合わせの計6個の独立方程式から代数的に解けるということを示している。
(31)に戻って他の未知数の一つの解き方を示す。
とk2は既知となったので(31)はK、F、Px、Pyの4個の未知数を解くことになる。これらは一次式で結ばれているのでここでは4個の分光による独立式を考える。すると
Figure 2004148070
ここで
Figure 2004148070
マトリックス表示をすると
Figure 2004148070
これらは代数的に解くことができる。
以上が一つの理論的解法である。
次にヘモグロビン濃度に注目する。例えばPyは(30)より
Figure 2004148070
即ち
C={D/(δPY)}・Py−−−−−(48)
(48)において
δは定数であり
Dは被計測部位の例えば指の外径で既知であり
Pyは一連の未知数の解である。
ここで一度採血してCの値が決まればPYは決まる。PYは実効的な静脈の血管径であるからCの変化に比較して変化するものではない。従ってPyの値が計測できればCは求まる。これがCを求める測定原理である。Pxに注目しても同様の結論となる。ただしFについては時間的変化が大きく安定したものを得るためにはPy、Pxにくらべ劣るので採用は適当ではないと思われる。
これら展開の中で外圧が内部に対しどう影響するかは最も重要な問題である。(22)に示したものは一つの近似であって、要は(22)のように、解析的に数式に表される、或いは実験的に式で表されることが最も重要なことである。式は、ここに示したように代数的な解をもとめる方法とか、あるいは近接法とかにより求めることが出来る。従ってここで示した方法は一つの例であるということである。
まとめると
動脈中の酸素飽和度はヘモグロビンの吸収分光域の2波長の生体信号があれば求めることが出来る。静脈中の酸素飽和度はヘモグロビンの吸収分光域の3波長と外圧の2つの変化の生体信号があれば求めることができる。ヘモグロビンの濃度はヘモグロビンの吸収分光域の4波長と外圧の2つの変化の生体信号があれば求めることができる。これらの分光域は可視光から近赤外光まで広がるもので、現在の受光素子、発光素子で十分なS/Nがあり動脈中の酸素飽和度では実用化されている。
【発明の実施の形態】
図3以下本発明装置の説明をする。
3図3は本発明装置の信号検出部を指につけた模式図である。
ALには発光素子群を、BDには受光素子群を配置する。図4はその中身を示したものでALにはλ、λ、λ、λの各波長を主成分にした発光素子を配し、BDにはλ、λ、λ、λの感度を有する受光素子を配する。この場合はそれぞれ同時に発光させ、同時に受光して信号をとり出すのが理想であるが生体の変化に比べて問題のない速さでデータのとりこみができれば時系列的にデータを取込む方法で問題ない。
図5はλ、λ、λ、λを同時に発光させ、かつ同一の光路で生体を照射し、受光では同一の受光路からλ、λ、λ、λを分離した後それぞれに受光素子を配し(受光素子は省く)、同時データ取込みの例である。或いは時系列的に取り組む場合はALと分光選択性のないBDか、逆の分光選択性のないALとBDの組み合わせでもよい。
図6は外部からH(t)を与えるための原理説明図である。あらかじめALとBDの間に指先を挿入し、調整機構ADJでAL−BD間の距離を指先の厚さに調整する。図示してはいないが、もちろんADJは自動調整であってもよい。その時カムKMの回転中心はその調整機構ADJとともに調整され、カム回転中心KMOの周りで回転する。KMにはカム溝KMMが設けられており、その溝にカムピンKMPが滑らかに入っていいる。KMPはALを保持しているアームに固定され、そのアームはBDを保持しているアームと支点中心CT1で回転できるよに固定されている。またADJを保持しているアームは一方はKMOで回転出来るようにKMに固定され、他方で回転できないようにFIX1で固定されている。この構成で、KMが回転するとKMPを介してAL保持アームとBD保持アームが相対的往復運動を始め、指にH(t)の外圧をあたえることになる。これがH(t)の動作のメカニズムである。H(t)の変位についてはここでは省いているがALとBDの距離の計測で(31)、(32)等で示されるH、Hは分かる。
図10は図6の変形型である。KMの代わりに回転板KBがCT4の回転中心の周りで回転できるように構成され、CT4は厚さ調整機構ADJ保持アームに固定され、この厚さ調整機構ADJ保持アームはFIX1でBD保持アームに固定され、又KMM−KMPの代わりにバーBARを用いて、BARの両端がCT3,CT5の各支点で回転できるように固定されている。CT3はAL保持アームに固定され、そのアームはBDを保持しているアームと支点中心CT1で回転できるよに固定されている。この構成でKBがCT4のまわりを回転するとBARによってAL保持アームが動き、ALとBDが相対的往復運動をはじめる。これによりH(t)が計測部位にかかり、図6と同様H、Hは計測することで分かる。
図11は他の変形型である。回転運動を用いないで電磁石を用いる。電磁石保持箱SYは電磁石EMSNを保持固定し、一方図のようにバネを介して永久磁石PMを保持し、PMはシリンダー内を滑らかに動くように構成されている。図はEMSNは下部がS極とし、PMは上部がS極とし、バネは反撥する方向にかけられているものとする。またPMはCT3においてAL保持アームに回転できる形で固定され、そのアームはCT1において回転できるようにBD保持アームに固定されている。
SYはCT4において回転できる形で調整ADJ保持アームに固定され、そのアームはFIXにおいてBDアームに固定されている。この構成でEMSNの極性が交互に変わるようにする。それにつれてPMが往復運動を始め、続いてCT3を介してAL保持アームが動きALとBDが相対的往復運動をはじめる。これによりH(t)が計測部位にかかり、図6と同様H、Hは計測することで分かる。
図7は本発明の機能ブロックを示したものである。ALLは発光系及び振動系の一部を示し、BDDは受光系と信号処理系の一部を示している。BDDからの各信号をアナログからデジタルに変換し、上述した演算をCPU等(図示してない)でおこなってSpO、SpO 、C、f(t)、Px、Py、K、k2等を求める。必ずしも全てを出力する必要はない。又駆動系にはBDDの出力をみてフィードバックをかけ適当な発光になるようにコントロールする。それは演算の結果をみて行ってもよいし、A/D変換の結果であってもよい。
図8、図9は発光素子への印加の仕方を示している。これ以外にも図示していないが組み合わせのなかで考えられる。ここでは代表例をしめした。
図8はLα、Lαを交互に、或いは同時に印加し、更にLa、Lαの極性を交互に入れ替える。その結果各発光素子は順次、或いは同時に点灯する。
図9はLα、Lα、Lα、Lαに同時に印加してもよいし、順次に印加してもよい結線図である。
又図示していないが別途ドップラー効果等を応用した血流計により血流速度を測ることによりヘモグロビンの流量を算出できる。
単位時間の流量をVLとすれば
VL=π(Px/2)・C・V−−−−(49)
Vは速度である
以上のようにこの計測は他の計測の因子として役立つ。
【発明の効果】
以上のごとく、主に可視光、赤外光を用いて非侵襲的に生体信号を得るようにした装置において、生体に外部から圧力を加えて少なくとも2つの状態をつくり、その上にヘモグロビンの吸収分光域の複数の非侵襲的なS/Nのよい生体分光信号を得て、未知なる生体因子の数より少なくとも同数の独立方程式を得て、今まで算出できなかった血中のヘモグロビン濃度、動脈中の酸素飽和度、、静脈中の酸素飽和度、静脈の実効的血管径、動脈の実効的血管径 、動脈の容積変化、等が算出することが出来、別途ドップラー効果等を応用した血流計により血流速度を測ることによりヘモグロビンの流量を算出できる。
【図面の簡単な説明】
【図1】本発明にかかるパルスオキシメーターの説明図
【図2】本発明にかかる測定原理の説明図
【図3】本発明にかかる検出部の説明図
【図4】本発明にかかる検出部の発光受光の説明図
【図5】本発明にかかる検出部の光学系の説明図
【図6】本発明にかかる検出部の駆動系の説明図
【図7】本発明にかかる機能ブロックの説明図
【図8】本発明にかかる検出部の発光部の説明図
【図9】本発明にかかる検出部の発光部の説明図
【図10】本発明にかかる検出部の駆動系の説明図
【図11】本発明にかかる検出部の駆動系の説明図
【図12】本発明にかかる検出部の駆動系の説明図
【符号の説明】
AL 発光部
BD 受光部
ALL 発光部と駆動メカの一部
BDD 受光部と信号処理の一部
λ1、λ2、λ3、λ 各分光波長
KM カム
KMM カム溝
ADJ 厚さ調整機構
KMP カムピン
KMO カム回転中心
CT1 支点中心
CT3 支点中心
CT4 回転中心
CT5 支点中心
FIX1 固定部
FIX2 固定部
FIX 固定部
SY 電磁石保持箱
EMSN 電磁石
PM 永久磁石
N N極
S S極TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for detecting multi-components in blood.
[Prior art]
Devices that non-invasively measure oxygen saturation in arteries have already been commercialized as pulse oximeters, but others have had little success. A method for non-invasively measuring blood hemoglobin concentration has been attempted but has not been successful. Japanese Patent Application Laid-Open (B2) Hei 3 □ 71135 has theoretically been prepared in this regard. The measurement principle is to apply the arterial pulse pulse wave, take out the two transmitted light signals of the absorption spectral wavelength of hemoglobin and the absorption spectral wavelength of water, eliminate the pulsation component, calculate the hemoglobin concentration with the water concentration constant. Is what it is. Although it is thought that there is no problem theoretically, in an actual apparatus, the accuracy is determined by the magnitude of the S / N of each spectral transmission light signal, and this is a problem. In this patent, the absorption spectroscopy of water may be, for example, 1.45 μm or 2.7 μm, but the S / N for the living body is poor and the final accuracy cannot be sufficiently guaranteed. There is a problem with the light receiving element and light source. On the other hand, it is understood from the example of the pulse oximeter that a transmitted light signal having a good S / N is obtained in the visible and near infrared of the absorption spectroscopy of hemoglobin.
[Problems to be solved by the invention]
Conventional hemoglobin concentration measurement uses a wide range of water absorption, and the S / N for living organisms is poor, so that final accuracy is not guaranteed. On the other hand, the present invention is based on the application of a biological signal having good S / N in the visible and near-infrared spectral regions of hemoglobin, and calculates the hemoglobin concentration without using the water absorption spectral region. The arterial oxygen saturation, venous oxygen saturation, arterial effective blood diameter, and vein effective blood vessel diameter are calculated, and the blood flow rate can be measured by adding the arterial blood flow velocity measurement separately. This is to detect multiple components.
[Means for Solving the Problems]
First, a measurement principle for non-invasively measuring the oxygen saturation in an artery will be described. This will help later. The measurement principle is as follows. When the movement of hemoglobin in an artery is viewed in terms of the intensity of transmitted light, for example, the following description is given for a finger.
In FIG. 1, the incident light: I 0λ, λ is a certain wavelength incident light: I λ, λ is a certain wavelength fixed absorption part: C 0λ, and the arterial thickness variation part including the artery thickness invariable part: f (t ), F (t), which is a periodic function, is a periodic function.
Figure 2004148070
Then
Figure 2004148070
Here, S λ is the scattering coefficient of hemoglobin K λ is the absorption coefficient of hemoglobin This equation is based on Kubelka's method considering the relationship between S λ and K λ . This is the result of solving Munch's equation.
Here, taking the logarithm of (1)
Figure 2004148070
A lambda = the take AC component of (2) a λ = (ln (I λ)) ac - (2S λ .K λ) · f (t) -------------- --- (3)
Here examining the K lambda and vary with the percentage of oxygenated hemoglobin and reduced hemoglobin.
K λ = δ · C tHb · {(SpO 2/100) (ε HbO2 λ -ε Hb λ) + ε Hb λ} ----- (4)
Here, δ: a constant for adjusting the unit of the absorption coefficient (determined by invasion, only once)
C tHb: C tHbO2 + C tHb total hemoglobin concentration C HbO2: oxidized hemoglobin concentration C Hb: deoxyhemoglobin concentration SpO 2: saturation oxide, percentages epsilon HbO2 lambda: the absorption coefficient at the wavelength of oxyhemoglobin λ ε Hb λ: reduced hemoglobin It is considered that the absorption coefficient or S λ (determined by invasion similarly to δ) at the wavelength λ has the same coefficient in hemoglobin for both oxidation and reduction.
Here, if we pay attention to unknowns and knowns in (3) and (4),
Figure 2004148070
Here a λ: measured values A λ: 2S λ. K λ (ε HbO2 λ -ε Hb λ): known number B λ of λ parameter: 2S λ. ε Hb λ : known number of λ parameters δ: constant, but here treated as unknown.
C tHb : unknown f (t): unknown (5) is an expression having four unknowns, but by applying the form of multiplication
Figure 2004148070
far. Then
Figure 2004148070
Then, (7) is the two unknowns Sp and X, and can be solved if there are at least two independent equations.
Assuming that the measurement wavelengths are λ 1 and λ 2 , the following equation is obtained.
Figure 2004148070
(8) If we take (9)
Figure 2004148070
From (10)
Figure 2004148070
From (11), Sp, that is, the oxygen saturation is found.
This is the measurement principle of a pulse oximeter.
Here is another solution.
Take the differential type of (2)
Figure 2004148070
That is
Figure 2004148070
This is the same type as (3) and can be solved as follows.
Figure 2004148070
Next, the measurement principle for measuring blood hemoglobin concentration, venous oxygen saturation, and the like will be described.
The veins are not pulsed and cannot be sought by conventional methods. Then, pressure is applied to the vein from outside to measure as if it were pulsating.
FIG. 2 is an explanatory diagram of these measurements. It is a figure that the vein is pulsating with h (t) by applying the external pressure H (t). Under the influence, the artery is also said to have a pulsation of k1 · h (t). Although the influence of the artery f (t) on the vein is considered to be small, k2 · f (t) is added here. Here, both k1 and k2 are variables that may change over time. k1 corresponds to the effective diameter of the artery, as will be described later, and k2 may vary arbitrarily with time, and is the ratio of the specific pulse wave change between the artery and the venous vein. Means that the amount of change in the characteristic pulse wave is known.
Also, the part that changes due to the external pressure of the fixed absorption part
Figure 2004148070
And
Then ▲ 1 ▼ transmitted light I λ, which corresponds to the
Figure 2004148070
It is assumed that h (t) is related to the change H (t) due to the external pressure as follows.
Figure 2004148070
Here, D is the outer diameter of the measurement site, PY is the effective tube diameter of the vein, and H (t) is the change in the outer diameter. The important thing is that it is expressed by an equation as in (22). (22) shows an example.
The effect of vein on artery k1 · h (t) is considered in the same way as above.
Figure 2004148070
Think. Where PX is the effective vessel diameter of the artery and the other definitions are similar to vein.
Here, (21) is represented again by an equation.
Figure 2004148070
here
Figure 2004148070
H (t): External pressure change portion f (t) + (PX / D) · H (t): Synthetic wave of artery (PY / D) · H (t) + k2 · f (t): Synthetic wave of vein K1λ: absorption coefficient determined by oxygen saturation in the vein and hemoglobin concentration Sλ: scattering coefficient of hemoglobin k2: ratio of pulse wave between artery and vein Also, the concentrations of hemoglobin in the artery and vein are assumed to be the same.
Taking the logarithm of (24) and taking its AC component
Figure 2004148070
here
Figure 2004148070
It is assumed that SpO 2 in (26) is known by measurement in the artery. The C represents the concentration of hemoglobin total, it SpO 2 1 represents an oxygen saturation in the vein.
(25) is further modified.
Figure 2004148070
Here A λ = S λ (ε HbO2 λ -ε Hb λ)
S = SpO 2/100
B λ = 2S λ · ε Hb λ
S 1 = SpO 2 1/100
δ: a constant for matching the total absorption coefficient K, the absorption coefficients of HbO 2 and Hb, and C. First, C is desired to be obtained.
Unknowns K 0λ, C, f, PX , k2, PY, a seven S 1. There is a possibility that it can be solved if there are at least seven independent equations. But for C
Figure 2004148070
The value of C can be calculated from the combined value. It will be described later.
K becomes an unknown independent of λ by selecting a place where there is no change due to λ.
An example of obtaining these unknowns will be described below.
(28) is further modified.
Figure 2004148070
Each deformed part is
Figure 2004148070
(29) is modified as follows.
Figure 2004148070
Where H is considered (31) when the change in H 1.
Figure 2004148070
Here, F 1 represents the displacement of F when H is displaced to H 1 , and the same applies to a 1 λ .
(31) × H 1 − (32) × H
Figure 2004148070
Get.
Lambda 1 to lambda in (33), λ 2, considered in lambda 3 and three regions.
Figure 2004148070
here
Figure 2004148070
Figure 2004148070
(34), (35), and (36) can be solved algebraically because they are the three unknowns F 0 , S 1 , and k2.
By transforming (34), (35) and (36), the following equation is obtained.
Figure 2004148070
The following expression is obtained In summary for F 0 to erase k2 from (41) and (42).
Figure 2004148070
This is a quadratic equation for F 0 and the coefficients are generally not zero and can be solved. Examine the two solutions and get the answer.
If F 0 is found, k2 is obtained from (41) or (42).
Further (38), (39) or (40) makes it possible to determine a S 1.
These solutions show that they can be algebraically solved from a total of six independent equations, which are combinations of two states of three spectral signals and external pressure.
Returning to (31), one of the other unknowns is solved.
Since it was S 1 and k2 known (31) will be solved K, F, Px, four unknowns Py. Since these are connected by a linear expression, an independent expression based on four spectral components is considered here. Then
Figure 2004148070
here
Figure 2004148070
When the matrix display
Figure 2004148070
These can be solved algebraically.
The above is one theoretical solution.
Next, focus on the hemoglobin concentration. For example, Py is from (30)
Figure 2004148070
That is, C = {D 2 / (δPY 2 )} · Py --- (48)
In (48), δ is a constant, D is known as the outer diameter of the finger to be measured, for example, and Py is a solution of a series of unknowns.
Here, once blood is collected and the value of C is determined, PY is determined. Since PY is an effective vein diameter, it does not change as compared with the change in C. Therefore, C can be obtained if the value of Py can be measured. This is the measurement principle for obtaining C. Focusing on Px leads to the same conclusion. However, it is considered that the use of F is not appropriate because it is inferior to Py and Px in order to obtain a stable one with a large temporal change.
In these developments, how external pressure affects the inside is the most important issue. What is shown in (22) is one approximation. In short, as in (22), it is most important that it be analytically represented by a mathematical expression or experimentally represented by a mathematical expression. . The equation can be obtained by a method for finding an algebraic solution as shown here or a proximity method. Thus, the method presented here is one example.
In summary, the oxygen saturation in the artery can be determined if there are biological signals of two wavelengths in the hemoglobin absorption spectral range. The oxygen saturation in the vein can be determined if there are biological signals of two changes in the three wavelengths in the absorption spectral region of hemoglobin and the external pressure. The concentration of hemoglobin can be determined if there are two changes in the biological signal of the four wavelengths in the absorption spectral region of hemoglobin and the external pressure. These spectral ranges extend from visible light to near-infrared light, and there are sufficient S / N ratios with current light-receiving elements and light-emitting elements, and these are practically used for oxygen saturation in arteries.
BEST MODE FOR CARRYING OUT THE INVENTION
The apparatus of the present invention will be described with reference to FIG.
3 FIG. 3 is a schematic view showing the signal detection unit of the device of the present invention attached to a finger.
A light emitting element group is arranged in AL, and a light receiving element group is arranged in BD. FIG. 4 shows the contents thereof. A light-emitting element having wavelengths of λ 1 , λ 2 , λ 3 , and λ 4 as main components is arranged in AL, and λ 1 , λ 2 , λ 3 , to distribution to the light receiving element having sensitivity for lambda 4. In this case, it is ideal to emit light at the same time, receive light at the same time, and take out a signal.However, if data can be taken in at a speed that is no problem compared to changes in the living body, there is a problem with the method of taking in data in chronological order Absent.
FIG. 5 shows that λ 1 , λ 2 , λ 3 , and λ 4 are emitted at the same time, and the living body is irradiated with the same light path. In light reception, λ 1 , λ 2 , λ 3 , and λ 4 are separated from the same light reception path. In this example, light receiving elements are arranged after each (light receiving elements are omitted), and simultaneous data is fetched. Alternatively, when working in a time-series manner, a BD having no spectral selectivity with AL or a combination of AL and BD without spectral selectivity may be used.
FIG. 6 is a view for explaining the principle for giving H (t) from the outside. A fingertip is inserted between AL and BD in advance, and the distance between AL and BD is adjusted to the thickness of the fingertip by the adjustment mechanism ADJ. Although not shown, the ADJ may of course be automatic adjustment. At that time, the rotation center of the cam KM is adjusted together with the adjustment mechanism ADJ, and rotates around the cam rotation center KMO. The KM is provided with a cam groove KMM, and a cam pin KMP is smoothly inserted into the groove. KMP is fixed to an arm holding AL, and the arm is fixed to the arm holding BD so as to be rotatable around a fulcrum center CT1. One arm holding the ADJ is fixed to KM so that it can rotate with KMO, and FIX1 so that it cannot rotate with the other. With this configuration, when the KM rotates, the AL holding arm and the BD holding arm start a relative reciprocating movement via the KMP, and apply an external pressure of H (t) to the finger. This is the mechanism of the operation of H (t). H measured in (31) the distance but are omitted here for the displacement AL and BD of (t), is seen H, H 1 represented by the formula (32) or the like.
FIG. 10 is a modification of FIG. The rotating plate KB is configured to be rotatable around the rotation center of the CT 4 instead of the KM, and the CT 4 is fixed to a thickness adjusting mechanism ADJ holding arm. The thickness adjusting mechanism ADJ holding arm is fixed to the BD holding arm by FIX1. The BAR is fixed so that both ends of the BAR can be rotated at fulcrums CT3 and CT5 by using a bar BAR instead of the KMM-KMP. CT3 is fixed to the AL holding arm, and the arm is fixed so as to be rotatable about the fulcrum center CT1 with the arm holding BD. In this configuration, when the KB rotates around the CT4, the BAR moves the AL holding arm, and the AL and the BD start relative reciprocating motion. Thus it takes the H (t) is measurement portion, seen by the same manner as FIG. 6 H, where H 1 is measured.
FIG. 11 shows another modification. An electromagnet is used without rotating motion. The electromagnet holding box SY holds and fixes the electromagnet EMSN, while holding the permanent magnet PM via a spring as shown in the figure, and the PM is configured to move smoothly in the cylinder. In the figure, it is assumed that the EMSN has an S pole at the lower part, the PM has an S pole at the upper part, and the spring is applied in a repulsive direction. The PM is rotatably fixed to the AL holding arm at CT3, and the arm is fixed to the BD holding arm so as to be rotatable at CT1.
The SY is rotatably fixed to the adjustment ADJ holding arm in CT4, and the arm is fixed to the BD arm in FIX. With this configuration, the polarity of the EMSN is alternately changed. Accordingly, PM starts reciprocating motion, and subsequently, the AL holding arm moves via CT3, and AL and BD start relative reciprocating motion. Thus it takes the H (t) is measurement portion, seen by the same manner as FIG. 6 H, where H 1 is measured.
FIG. 7 shows functional blocks of the present invention. ALL indicates a part of the light emitting system and the vibration system, and BDD indicates a part of the light receiving system and the signal processing system. Each signal from the BDD and converted from analog to digital, CPU or the like operation as described above SpO 2 be done by (not shown), SpO 2 1, C, f (t), Px, Py, K, k2 , etc. Ask for. It is not necessary to output all. In addition, the drive system is controlled so that appropriate light emission is obtained by applying feedback based on the output of the BDD. It may be performed by observing the result of the operation, or may be the result of A / D conversion.
8 and 9 show how to apply the light to the light emitting element. Although not shown, other combinations can be considered. Here is a typical example.
In FIG. 8, Lα 1 and Lα 2 are alternately or simultaneously applied, and the polarities of La 1 and Lα 2 are alternately switched. As a result, each light emitting element lights up sequentially or simultaneously.
FIG. 9 is a connection diagram that may be applied to Lα 1 , Lα 2 , Lα 3 , and Lα 4 simultaneously or sequentially.
Although not shown, the flow rate of hemoglobin can be calculated by measuring the blood flow velocity using a blood flow meter to which the Doppler effect or the like is separately applied.
Assuming that the flow rate per unit time is VL, VL = π (Px / 2) 2 · C · V− (49)
As V is velocity, this measurement serves as a factor in other measurements.
【The invention's effect】
As described above, in a device in which a biological signal is obtained non-invasively using mainly visible light and infrared light, at least two states are created by externally applying pressure to a living body, and hemoglobin absorption is performed thereon. Obtain a plurality of noninvasive biospectroscopic signals with good S / N in the spectral range, obtain at least the same number of independent equations from the number of unknown biological factors, and obtain hemoglobin concentration in blood and artery Oxygen saturation in vein, oxygen saturation in vein, effective vein diameter of vein, effective vein diameter of artery, volume change of artery, etc. can be calculated, and blood flow separately applying Doppler effect etc. The flow rate of hemoglobin can be calculated by measuring the blood flow velocity with a meter.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a pulse oximeter according to the present invention. FIG. 2 is an explanatory diagram of a measurement principle according to the present invention. FIG. 3 is an explanatory diagram of a detecting unit according to the present invention. FIG. 5 is an explanatory diagram of an optical system of a detecting unit according to the present invention. FIG. 6 is an explanatory diagram of a driving system of the detecting unit according to the present invention. FIG. 7 is a functional block diagram of the present invention. FIG. 8 is an explanatory diagram of a light emitting unit of the detecting unit according to the present invention. FIG. 9 is an explanatory diagram of a light emitting unit of the detecting unit according to the present invention. FIG. 10 is an explanatory diagram of a driving system of the detecting unit according to the present invention. FIG. 11 is an explanatory diagram of a driving system of a detecting unit according to the present invention. FIG. 12 is an explanatory diagram of a driving system of a detecting unit according to the present invention.
AL emitting portion BD light receiving portion part lambda 1 part BDD light receiving unit and the signal processing and the driving mechanism ALL emitting portion, λ 2, λ 3, λ 4 each spectral wavelength KM cam KMM cam groove ADJ thickness adjusting mechanism KMP cam pin KMO cam rotation center CT1 fulcrum center CT3 fulcrum center CT4 rotation center CT5 fulcrum center FIX1 fixed part FIX2 fixed part FIX fixed part SY Electromagnet holding box EMSN Electromagnet PM Permanent magnet N N pole S S pole

Claims (1)

主に可視光、赤外光を用いて非侵襲的に生体信号を得るようにした装置において、生体に外部から圧力を加えて少なくとも2つの状態をつくり、その上にヘモグロビンの吸収分光域の複数の非侵襲的な生体分光信号を得て、未知なる生体因子の数より少なくとも多いい独立方程式を得て、血中のヘモグロビン濃度、動脈中の酸素飽和度、、静脈中の酸素飽和度、静脈の実効的血管径、動脈の実効的血管径 、動脈の容積変化、静脈の容積変化、等を算出する血中多成分検出装置。In a device that obtains a biological signal non-invasively using mainly visible light and infrared light, pressure is applied to the living body from the outside to create at least two states, and a plurality of hemoglobin absorption spectral ranges Obtain non-invasive biospectroscopic signals, obtain at least more independent equations than the number of unknown biological factors, blood hemoglobin concentration, arterial oxygen saturation, venous oxygen saturation, venous oxygen saturation Blood multi-component detection device that calculates the effective blood vessel diameter of an artery, the effective blood vessel diameter of an artery, the volume change of an artery, the volume change of a vein, and the like.
JP2002351793A 2002-10-29 2002-10-29 Detector of a pluralty of components in blood Pending JP2004148070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351793A JP2004148070A (en) 2002-10-29 2002-10-29 Detector of a pluralty of components in blood

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351793A JP2004148070A (en) 2002-10-29 2002-10-29 Detector of a pluralty of components in blood

Publications (1)

Publication Number Publication Date
JP2004148070A true JP2004148070A (en) 2004-05-27

Family

ID=32463185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351793A Pending JP2004148070A (en) 2002-10-29 2002-10-29 Detector of a pluralty of components in blood

Country Status (1)

Country Link
JP (1) JP2004148070A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009106314A1 (en) * 2008-02-25 2009-09-03 Mbr Optical Systems Gmbh Co Kg Method and measurement device for recording measurement signals from vital tissue
JP2010264112A (en) * 2009-05-15 2010-11-25 Konica Minolta Sensing Inc Biological information measuring probe
JP2010264114A (en) * 2009-05-15 2010-11-25 Konica Minolta Sensing Inc Biological information measuring probe
JP2010279651A (en) * 2009-06-08 2010-12-16 Tohoku Univ Physical condition diagnostic apparatus using biometric authentication by vein pattern of palm
JP2011519703A (en) * 2008-05-12 2011-07-14 カーディオ・アート・テクノロジーズ・リミテッド Optical sensor device and method of using the same
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8123695B2 (en) 2006-09-27 2012-02-28 Nellcor Puritan Bennett Llc Method and apparatus for detection of venous pulsation
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
US8989832B2 (en) 2009-08-19 2015-03-24 Covidien Lp Photoplethysmography with controlled application of sensor pressure
JP2019054940A (en) * 2017-09-20 2019-04-11 日本光電工業株式会社 Medical photometer and medical photometry system

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8528185B2 (en) 2005-08-08 2013-09-10 Covidien Lp Bi-stable medical sensor and technique for using the same
US8311602B2 (en) 2005-08-08 2012-11-13 Nellcor Puritan Bennett Llc Compliant diaphragm medical sensor and technique for using the same
US8386002B2 (en) 2005-09-30 2013-02-26 Covidien Lp Optically aligned pulse oximetry sensor and technique for using the same
US8123695B2 (en) 2006-09-27 2012-02-28 Nellcor Puritan Bennett Llc Method and apparatus for detection of venous pulsation
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
WO2009106314A1 (en) * 2008-02-25 2009-09-03 Mbr Optical Systems Gmbh Co Kg Method and measurement device for recording measurement signals from vital tissue
JP2011528234A (en) * 2008-02-25 2011-11-17 エム ベー アール オプティカル システムズ ゲーエムベーハー ウント コンパニー カーゲー Method and apparatus for generating measurement signals from biological tissue
US8437822B2 (en) 2008-03-28 2013-05-07 Covidien Lp System and method for estimating blood analyte concentration
JP2011519703A (en) * 2008-05-12 2011-07-14 カーディオ・アート・テクノロジーズ・リミテッド Optical sensor device and method of using the same
US8417309B2 (en) 2008-09-30 2013-04-09 Covidien Lp Medical sensor
JP2010264114A (en) * 2009-05-15 2010-11-25 Konica Minolta Sensing Inc Biological information measuring probe
JP2010264112A (en) * 2009-05-15 2010-11-25 Konica Minolta Sensing Inc Biological information measuring probe
JP2010279651A (en) * 2009-06-08 2010-12-16 Tohoku Univ Physical condition diagnostic apparatus using biometric authentication by vein pattern of palm
US8989832B2 (en) 2009-08-19 2015-03-24 Covidien Lp Photoplethysmography with controlled application of sensor pressure
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
JP2019054940A (en) * 2017-09-20 2019-04-11 日本光電工業株式会社 Medical photometer and medical photometry system
US11642053B2 (en) 2017-09-20 2023-05-09 Nihon Kohden Corporation Medical photometer and medical photometry system

Similar Documents

Publication Publication Date Title
JP2004148070A (en) Detector of a pluralty of components in blood
Yamakoshi et al. Pulse glucometry: a new approach for noninvasive blood glucose measurement using instantaneous differential near-infrared spectrophotometry
JP4830693B2 (en) Oxygen saturation measuring apparatus and measuring method
US6997879B1 (en) Methods and devices for reduction of motion-induced noise in optical vascular plethysmography
JP3625475B2 (en) Non-intrusive system for monitoring hematocrit values
EP2194842B1 (en) Blood oximeter
US20070043281A1 (en) Method and device for non-invasive measurements of blood parameters
EP0828533B1 (en) Method and apparatus for rapid non-invasive determination of blood composition parameters
US20080004513A1 (en) VCSEL Tissue Spectrometer
WO2003079900A1 (en) Noninvasive blood component value measuring instrument and method
WO2006040841A1 (en) Instrument for noninvasively measuring blood sugar level
WO1991015991A1 (en) Method and apparatus for monitoring blood analytes noninvasively by pulsatile photoplethysmography
JP2009520548A (en) Noninvasive measurement system for blood glucose concentration
JP2008203234A (en) Blood component concentration analysis method and device
JPH11244267A (en) Blood component concentration measuring device
TW201249403A (en) Concentration-measurement device and concentration-measurement method
JP2011516118A (en) Method and system for non-invasively detecting blood glucose using spectral data of one or more components other than glucose
US6442411B1 (en) Method for improving calibration of an instrument for non-invasively measuring constituents in arterial blood
JPH05269116A (en) Improved artery blood monitor device
AU2020204273A1 (en) Method for measuring blood oxygen saturation
JP5662700B2 (en) Biological light measurement device and biological light measurement method
Dzundza et al. Principles of construction of hybrid microsystems for biomedical applications
CA2074029A1 (en) Non invasive process for in vivo determination of oxygen saturation level of arterial blood, and device for using the process
JP4399847B2 (en) Pulse oximeter
JP4052461B2 (en) Non-invasive measuring device for blood glucose level