JP2004146583A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2004146583A
JP2004146583A JP2002309610A JP2002309610A JP2004146583A JP 2004146583 A JP2004146583 A JP 2004146583A JP 2002309610 A JP2002309610 A JP 2002309610A JP 2002309610 A JP2002309610 A JP 2002309610A JP 2004146583 A JP2004146583 A JP 2004146583A
Authority
JP
Japan
Prior art keywords
oxide film
forming
silicon substrate
semiconductor device
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002309610A
Other languages
Japanese (ja)
Inventor
Hidetatsu Nakamura
中村 英達
Mitsuhiro Togo
東郷 光洋
Toshiyuki Iwamoto
岩本 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2002309610A priority Critical patent/JP2004146583A/en
Publication of JP2004146583A publication Critical patent/JP2004146583A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device which prevents an interface from developing dry areas when oxidizing a silicon substrate having an off angle. <P>SOLUTION: In forming an oxide film 2 and a nitride film 1 which are deposited in layers on top of the silicon substrate having the off angle, as a mask for forming element isolation, radical oxygen is used for growing the oxide film 2. When implanting ions into the silicon substrate having the off angle, radical oxygen is used in growing a sacrifice oxide film 5. Gate oxidation is carried out using radical oxygen when forming a gate insulation film 7 on the silicon substrate having the off angle. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関し、特に、オフ角を有する基板を用いたMOS型半導体装置に関する。
【0002】
【従来の技術】
半導体装置の製造方法において、電界効果型トランジスタなどを含む素子を形成する際の酸化工程及びその前後の処理工程が重要な要素技術となっている。図6に半導体装置の製造における酸化に関わる工程順断面図を示す。従来、素子分離形成用窒化膜15による表面荒れや応力を抑制するために図6(a)に示すように酸化膜16を成膜し、イオン注入時のプロセスダメージを抑制するために図6(c)に示すように酸化膜20を成膜する。これらの酸化膜とゲート絶縁膜22はウエット酸化によって形成されることが一般的である。また、酸化前工程としてパーティクル除去のための洗浄工程(図7)、酸化後の工程として酸化膜16、20の除去のためのエッチング工程(図8)が入るのが一般的である。
【0003】
【発明が解決しようとする課題】
半導体装置の製造に用いられるシリコン基板は小さいとはいえオフ角が必ず存在し、シリコン基板表面と結晶面は完全には平行になっていない。例えば(110)面基板ではオフ角が1度以下にもかかわらず図4(a)に示すように従来のウエット酸化では酸化膜−基板間界面が荒れてしまう。また、酸化前の高温APM洗浄や酸化膜のエッチングによっても荒れが生じる。ゲート絶縁膜22を1nm程度にする場合、この荒れはゲート絶縁膜の信頼性を大きく下げてしまう。よって、酸化膜−基板間界面荒れを起こさない半導体装置の製造方法の開発が望まれる。
【0004】
本発明は、上記のような酸化膜−基板間界面荒れを抑制した酸化、洗浄、エッチング方法を備えた半導体装置の製造方法を提供することにある。そして、荒れを抑制することでゲート絶縁膜の信頼性を高めることを目的とする。
【0005】
【課題を解決するための手段】
本発明は、オフ角を有するシリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜形成時にラジカル酸素を用いることを特徴とする。また、前記酸化膜形成時に温度を300〜800℃の低温で成膜することが望ましい。
【0006】
オフ角を有するシリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜形成時にCVD酸化膜を用いることを特徴とする。また、前記酸化膜形成時に温度を500℃以下の低温で成膜することが望ましい。
【0007】
オフ角を有するシリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜形成前のAPM酸洗浄を50℃以下の低温で行うことを特徴とする。
【0008】
オフ角を有するシリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜形成前の酸洗浄をSPMで行うことを特徴とする。
【0009】
オフ角を有するシリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜のエッチングをフッ酸濃度5%以下の低濃度溶液で行うことを特徴とする。
【0010】
特に、面方位が(110)、(111)のシリコン基板を用いることを特徴とする。
【0011】
このように、本発明の半導体装置の製造法を用いることによって、酸化膜−基板間界面の荒れが抑制され、ゲート絶縁膜の信頼性を高めることができる。
【0012】
【発明の実施の形態】
(第1の実施の形態)
図1は本発明の第1の実施の形態を示すオフ角を有するシリコン基板の酸化に関わる工程順断面図である。まず、図1(a)に示すように素子分離形成用のマスクとしてオフ角を有するシリコン基板の上に酸化膜2、窒化膜1を積層する。ここで酸化膜2の成長には従来はウエット酸化を用いるが本発明ではラジカル酸化を用いる。この積層膜を所望の形状に加工した後、素子分離形成用マスクとしてシリコン基板をエッチングする。酸化膜の積層、化学的機械的研磨、膜2、1の除去により図1(b)の形状を得る。ここで従来の方法では図4(a)のように酸化膜−基板間界面に荒れが生じるが本発明の方法では図4(b)のように荒れは抑制される。次にイオン注入の犠牲酸化膜5を成長する。この酸化膜も従来はウエット酸化を用いていたが本発明ではラジカル酸素を用いる。イオン注入後、犠牲酸化膜5を剥離して図1(d)の形状を得る。ここでも従来の方法では図4(a)に示すように荒れが激しいが、本発明の方法では図4(b)のように表面荒れを抑制できる。次にゲート絶縁膜7を形成する。この場合もウエット酸化の替わりに、ラジカル酸化を行うことによって荒れを低減できる。最後にゲート電極8を作製する。以降の工程は周知の半導体装置製造方法であり、ここでは説明を省略する。本発明ではゲート絶縁膜7とシリコン基板3の間の界面の荒れが小さいので、ゲート絶縁膜において高い信頼性を得ることができる。
【0013】
なお、上記ラジカル酸化は300〜800℃の低温で成膜することが望ましい。高温では例えばH2Oのようなラジカル酸素以外の物質による酸化が活発に起こり、図4(c)のようにウエット酸化同様に大きな荒れが生じるためである。また、上記ラジカル酸化の替わりにCVD積層膜を用いることもできる。CVD積層膜では酸化膜と基板の反応性が低いため荒れを低減できるからである。成膜温度は500℃以下の低温が望ましい。低温の方が酸化膜と基板の反応性が小さいためである。
【0014】
(第2の実施の形態)
図2は本発明の第2の実施の形態を示すオフ角を有するシリコン基板の酸化前洗浄に関わる工程順断面図である。パーティクル除去のため酸化前に図2(a)のように酸洗浄を行う。従来は薬液として高温のAPMを用いるが、本発明では50℃以下の低温のAPMを用いる。これにより図5のように本発明では従来に対して酸洗浄後の荒れが抑制される。
【0015】
また、従来の薬液である高温のAPMの替わりにSPMを用いることもできる。これにより酸洗浄後の荒れが抑制される。
上記の効果は特に面方位(110)、(111)のシリコン基板で大きい。
【0016】
以上のように酸化工程の前処理である酸洗浄による表面荒れを抑制することで、ゲート絶縁膜において高い信頼性を得ることができる。
【0017】
(第3の実施の形態)
図3は本発明の第3の実施の形態を示すオフ角を有するシリコン基板の酸化膜エッチングに関わる工程順断面図である。犠牲酸化膜のようにその役割を終えた酸化膜は図3のようにウエットエッチングされる必要がある。薬液として従来は約10%のフッ酸溶液を用いるが、本発明では5%以下の低濃度フッ酸溶液を用いる。これによりエッチング後の荒れが抑制される。上記の効果は特に面方位(110)のシリコン基板で大きい。以上のように酸化膜のエッチングによる表面荒れを抑制することで、ゲート絶縁膜において高い信頼性を得ることができる。
【0018】
【発明の効果】
本発明によれば、オフ角を持つシリコン基板の表面の荒れを抑制することができる。これにより荒れの小さいゲート絶縁膜−基板間界面を得ることができ、高い信頼性を持つゲート絶縁膜の形成が可能である。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示すオフ角を有するシリコン基板の酸化に関わる工程順断面図である。
【図2】本発明の第2の実施の形態を示すオフ角を有するシリコン基板の酸化前洗浄に関わる工程順断面図である。
【図3】本発明の第3の実施の形態を示すオフ角を有するシリコン基板の酸化膜エッチングに関わる工程順断面図である。
【図4】本発明の効果を示す図で酸化後の酸化膜−(110)基板間界面のAFM像((a)〜(c))である。(a)は従来のウエット酸化による場合、(b)は本発明のラジカル酸化(低温)による場合、(c)はラジカル酸化(高温)による場合をそれぞれ示す。(d)は各酸化(膜厚20nm)におけるRms(荒れの標準偏差)を示す。
【図5】本発明の効果を示す図で、高温APMと低温APM(10回洗浄後)におけるRms(荒れの標準偏差)である。
【図6】従来のシリコン基板の酸化に関わる工程順断面図である。
【図7】従来のシリコン基板の酸化前洗浄に関わる工程順断面図。
【図8】従来のシリコン基板の酸化膜エッチングに関わる工程順断面図である。
【符号の説明】
1、15 素子分離形成用窒化膜
2、16 素子分離形成用酸化膜
3、10、13、17、25、27 シリコン基板
4、19 素子分離絶縁膜
5、20 犠牲酸化膜
6、21 不純物層
7、22 ゲート酸化膜
8、23 ゲート電極
9、24 洗浄液
11、12、26 酸化膜
14、28 エッチング液
18  表面ラフネス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a MOS type semiconductor device using a substrate having an off angle.
[0002]
[Prior art]
2. Description of the Related Art In a method of manufacturing a semiconductor device, an oxidizing step in forming an element including a field effect transistor and the like and processing steps before and after the oxidizing step are important elemental technologies. FIG. 6 is a sectional view in the order of steps relating to oxidation in the manufacture of a semiconductor device. Conventionally, an oxide film 16 is formed as shown in FIG. 6A in order to suppress surface roughness and stress due to the nitride film 15 for forming an element isolation, and FIG. An oxide film 20 is formed as shown in c). These oxide films and gate insulating film 22 are generally formed by wet oxidation. In general, a cleaning step for removing particles (FIG. 7) is performed as a pre-oxidation step, and an etching step (FIG. 8) for removing the oxide films 16 and 20 is performed as a step after oxidation.
[0003]
[Problems to be solved by the invention]
Although a silicon substrate used for manufacturing a semiconductor device is small, it always has an off angle, and the silicon substrate surface and the crystal plane are not completely parallel. For example, in the case of the (110) plane substrate, the interface between the oxide film and the substrate is roughened by the conventional wet oxidation as shown in FIG. Roughness also occurs due to high-temperature APM cleaning before oxidation and etching of an oxide film. When the thickness of the gate insulating film 22 is set to about 1 nm, the roughness greatly reduces the reliability of the gate insulating film. Therefore, it is desired to develop a method for manufacturing a semiconductor device that does not cause roughness of an interface between an oxide film and a substrate.
[0004]
An object of the present invention is to provide a method of manufacturing a semiconductor device including an oxidation, cleaning, and etching method that suppresses the above-described roughening of the oxide film-substrate interface. It is another object of the present invention to improve the reliability of the gate insulating film by suppressing roughness.
[0005]
[Means for Solving the Problems]
The present invention is a method for manufacturing a semiconductor device having a step of forming an oxide film on a silicon substrate having an off angle, wherein radical oxygen is used at the time of forming the oxide film. In addition, it is desirable to form the oxide film at a low temperature of 300 to 800 ° C. when forming the oxide film.
[0006]
A method for manufacturing a semiconductor device including a step of forming an oxide film on a silicon substrate having an off angle, wherein a CVD oxide film is used at the time of forming the oxide film. It is desirable that the oxide film is formed at a low temperature of 500 ° C. or less at the time of formation.
[0007]
A method of manufacturing a semiconductor device having a step of forming an oxide film on a silicon substrate having an off-angle, wherein the APM acid cleaning before forming the oxide film is performed at a low temperature of 50 ° C. or less.
[0008]
A method for manufacturing a semiconductor device having a step of forming an oxide film on a silicon substrate having an off-angle, wherein the acid cleaning before forming the oxide film is performed by SPM.
[0009]
A method for manufacturing a semiconductor device, comprising a step of forming an oxide film on a silicon substrate having an off-angle, wherein the etching of the oxide film is performed with a low-concentration solution having a hydrofluoric acid concentration of 5% or less.
[0010]
In particular, a silicon substrate having a plane orientation of (110) or (111) is used.
[0011]
As described above, by using the method for manufacturing a semiconductor device of the present invention, roughness of the interface between the oxide film and the substrate can be suppressed, and the reliability of the gate insulating film can be increased.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
FIG. 1 is a cross-sectional view in the order of steps relating to oxidation of a silicon substrate having an off-angle according to a first embodiment of the present invention. First, as shown in FIG. 1A, an oxide film 2 and a nitride film 1 are stacked on a silicon substrate having an off-angle as a mask for element isolation formation. Here, wet oxidation is conventionally used for growing the oxide film 2, but radical oxidation is used in the present invention. After processing the laminated film into a desired shape, the silicon substrate is etched as a device isolation forming mask. By laminating the oxide film, chemical mechanical polishing, and removing the films 2 and 1, the shape shown in FIG. 1B is obtained. Here, in the conventional method, roughness occurs at the interface between the oxide film and the substrate as shown in FIG. 4A, but in the method of the present invention, the roughness is suppressed as shown in FIG. Next, a sacrificial oxide film 5 for ion implantation is grown. This oxide film has conventionally used wet oxidation, but in the present invention, radical oxygen is used. After the ion implantation, the sacrificial oxide film 5 is peeled to obtain the shape shown in FIG. Also in this case, the conventional method causes severe roughness as shown in FIG. 4A, but the method of the present invention can suppress the surface roughness as shown in FIG. 4B. Next, a gate insulating film 7 is formed. Also in this case, roughness can be reduced by performing radical oxidation instead of wet oxidation. Finally, the gate electrode 8 is manufactured. Subsequent steps are well-known semiconductor device manufacturing methods, and description thereof is omitted here. In the present invention, since the roughness of the interface between the gate insulating film 7 and the silicon substrate 3 is small, high reliability can be obtained in the gate insulating film.
[0013]
Note that the radical oxidation is desirably formed at a low temperature of 300 to 800 ° C. At a high temperature, oxidation by a substance other than radical oxygen, such as H 2 O, for example, occurs actively, and as shown in FIG. Further, a CVD laminated film can be used instead of the radical oxidation. This is because roughness of the CVD laminated film can be reduced because the reactivity between the oxide film and the substrate is low. The film formation temperature is desirably as low as 500 ° C. or less. This is because the lower the temperature, the lower the reactivity between the oxide film and the substrate.
[0014]
(Second embodiment)
FIG. 2 is a cross-sectional view in the order of steps relating to pre-oxidation cleaning of a silicon substrate having an off-angle according to a second embodiment of the present invention. Prior to oxidation, acid cleaning is performed as shown in FIG. 2A to remove particles. Conventionally, high-temperature APM is used as a chemical solution, but in the present invention, low-temperature APM of 50 ° C. or less is used. As a result, as shown in FIG. 5, in the present invention, roughness after acid cleaning is suppressed as compared with the related art.
[0015]
Also, SPM can be used in place of conventional high-temperature APM, which is a chemical solution. This suppresses roughness after acid cleaning.
The above-described effect is particularly large in silicon substrates having plane orientations of (110) and (111).
[0016]
As described above, by suppressing surface roughness due to acid cleaning which is a pretreatment of the oxidation step, high reliability can be obtained in the gate insulating film.
[0017]
(Third embodiment)
FIG. 3 is a cross-sectional view in the order of steps relating to the etching of an oxide film on a silicon substrate having an off-angle according to a third embodiment of the present invention. An oxide film that has finished its role like a sacrificial oxide film must be wet etched as shown in FIG. Conventionally, about 10% hydrofluoric acid solution is used as a chemical solution, but in the present invention, a low concentration hydrofluoric acid solution of 5% or less is used. Thereby, roughness after etching is suppressed. The above-described effect is particularly great in a silicon substrate having a plane orientation of (110). As described above, by suppressing surface roughness due to etching of the oxide film, high reliability can be obtained in the gate insulating film.
[0018]
【The invention's effect】
According to the present invention, surface roughness of a silicon substrate having an off angle can be suppressed. As a result, an interface between the gate insulating film and the substrate with small roughness can be obtained, and a highly reliable gate insulating film can be formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a first embodiment of the present invention in the order of steps relating to oxidation of a silicon substrate having an off-angle.
FIG. 2 is a cross-sectional view in the order of steps relating to pre-oxidation cleaning of a silicon substrate having an off-angle according to a second embodiment of the present invention.
FIG. 3 is a cross-sectional view in the order of steps relating to an oxide film etching of a silicon substrate having an off-angle according to a third embodiment of the present invention.
FIG. 4 is a view showing an effect of the present invention, and is an AFM image ((a) to (c)) of an interface between an oxide film and a (110) substrate after oxidation. (A) shows the case of the conventional wet oxidation, (b) shows the case of the radical oxidation (low temperature) of the present invention, and (c) shows the case of the radical oxidation (high temperature). (D) shows Rms (standard deviation of roughness) in each oxidation (film thickness 20 nm).
FIG. 5 is a diagram showing the effect of the present invention, and is Rms (standard deviation of roughness) in high-temperature APM and low-temperature APM (after 10 cleanings).
FIG. 6 is a cross-sectional view in the order of steps related to oxidation of a conventional silicon substrate.
FIG. 7 is a sectional view in the order of steps related to a conventional pre-oxidation cleaning of a silicon substrate.
FIG. 8 is a cross-sectional view in the order of steps related to the conventional etching of an oxide film on a silicon substrate.
[Explanation of symbols]
1, 15 Element isolation forming nitride film 2, 16 Element isolation forming oxide film 3, 10, 13, 17, 25, 27 Silicon substrate 4, 19 Element isolation insulating film 5, 20 Sacrificial oxide film 6, 21 Impurity layer 7 , 22 Gate oxide film 8, 23 Gate electrode 9, 24 Cleaning solution 11, 12, 26 Oxide film 14, 28 Etching solution 18 Surface roughness

Claims (8)

オフ角を有する(0.5度以上)シリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜形成時にラジカル酸素を用いることを特徴とする半導体装置の製造方法。A method for manufacturing a semiconductor device, comprising a step of forming an oxide film on a silicon substrate having an off angle (0.5 degrees or more), wherein radical oxygen is used at the time of forming the oxide film. . 前記酸化膜形成時に温度を300〜800度Cの低温で成膜することを特徴とする半導体装置の製造方法。A method of manufacturing a semiconductor device, comprising: forming a film at a low temperature of 300 to 800 ° C. when forming the oxide film. オフ角を有するシリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜形成時にCVD酸化膜を用いることを特徴とする半導体装置の製造方法。A method for manufacturing a semiconductor device, comprising: forming an oxide film on a silicon substrate having an off-angle, wherein a CVD oxide film is used when forming the oxide film. 前記酸化膜形成時に温度を500度C以下の低温で成膜することを特徴とする半導体装置の製造方法。A method of manufacturing a semiconductor device, comprising: forming a film at a low temperature of 500 ° C. or less when forming the oxide film. オフ角を有するシリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜形成前のAPM酸洗浄を50度C以下の低温で行うことを特徴とする半導体装置の製造方法。A method of manufacturing a semiconductor device having a step of forming an oxide film on a silicon substrate having an off-angle, wherein the APM acid cleaning before forming the oxide film is performed at a low temperature of 50 ° C. or less. Production method. オフ角を有するシリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜形成前の酸洗浄をSPMで行うことを特徴とする半導体装置の製造方法。What is claimed is: 1. A method for manufacturing a semiconductor device, comprising: forming an oxide film on a silicon substrate having an off angle, wherein the acid cleaning before forming the oxide film is performed by SPM. オフ角を有するシリコン基板に酸化膜を形成する工程を有する半導体装置の製造方法であって、前記酸化膜のエッチングをフッ酸濃度5%以下の低濃度溶液で行うことを特徴とする半導体装置の製造方法。A method for manufacturing a semiconductor device, comprising a step of forming an oxide film on a silicon substrate having an off angle, wherein the etching of the oxide film is performed with a low concentration solution having a hydrofluoric acid concentration of 5% or less. Production method. 請求項1〜7記載の半導体装置の製造方法において面方位が(110)、(111)のシリコン基板を用いることを特徴とする半導体装置。8. The semiconductor device manufacturing method according to claim 1, wherein a silicon substrate having a plane orientation of (110) or (111) is used.
JP2002309610A 2002-10-24 2002-10-24 Method of manufacturing semiconductor device Withdrawn JP2004146583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309610A JP2004146583A (en) 2002-10-24 2002-10-24 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309610A JP2004146583A (en) 2002-10-24 2002-10-24 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2004146583A true JP2004146583A (en) 2004-05-20

Family

ID=32455367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309610A Withdrawn JP2004146583A (en) 2002-10-24 2002-10-24 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2004146583A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093562A (en) * 2003-09-12 2005-04-07 Tadahiro Omi Method of manufacturing semiconductor device
KR101017745B1 (en) * 2008-09-04 2011-02-28 주식회사 동부하이텍 Fabricating method of oxidation layer of semiconductor device
US8183670B2 (en) 2002-12-02 2012-05-22 Foundation For Advancement Of International Science Semiconductor device and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8183670B2 (en) 2002-12-02 2012-05-22 Foundation For Advancement Of International Science Semiconductor device and method of manufacturing the same
JP2005093562A (en) * 2003-09-12 2005-04-07 Tadahiro Omi Method of manufacturing semiconductor device
KR101017745B1 (en) * 2008-09-04 2011-02-28 주식회사 동부하이텍 Fabricating method of oxidation layer of semiconductor device

Similar Documents

Publication Publication Date Title
JPH11354760A (en) Soi wafer and its production
JP2003298031A (en) Method for forming soi board
JP2006173568A (en) Method of manufacturing soi substrate
KR100438772B1 (en) Method for manufacturing semiconductor device capable to prevent bubble defects
TW201203453A (en) Trench structure in multilayer wafer
JP2007194239A (en) Process for fabricating semiconductor device
JP2002043435A (en) Method for manufacturing system on chip and method for manufacturing semiconductor device
JP2004146583A (en) Method of manufacturing semiconductor device
TWI305017B (en) Semiconductor devices and methods for fabricating gate spacers
US7776624B2 (en) Method for improving semiconductor surfaces
CN110941046A (en) Method for manufacturing SOI silicon grating
JP2005142319A (en) Method of manufacturing semiconductor device
JP4511101B2 (en) Manufacturing method of semiconductor device
JP2003100860A (en) Semiconductor device
KR100609367B1 (en) Manufacturing method of silicon on insulator wafer
KR20020009213A (en) Method for forming dual-gate oxide layer in semiconductor device
JP2003258243A (en) Semiconductor device and its manufacturing method
JP3932816B2 (en) Manufacturing method of semiconductor device
KR960005554B1 (en) Semiconductor device isolation method
KR100609377B1 (en) Manufacturing method of silicon on insulator wafer
JP5458547B2 (en) Manufacturing method of semiconductor device
JP2008192907A (en) Forming method of sos substrate having silicon epitaxial film
TWI305937B (en)
JPH0582514A (en) Manufacture of semiconductor device
CN111883418A (en) Method for manufacturing semiconductor structure

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110