JP2004144566A - Position measurement method for mobile station - Google Patents

Position measurement method for mobile station Download PDF

Info

Publication number
JP2004144566A
JP2004144566A JP2002308611A JP2002308611A JP2004144566A JP 2004144566 A JP2004144566 A JP 2004144566A JP 2002308611 A JP2002308611 A JP 2002308611A JP 2002308611 A JP2002308611 A JP 2002308611A JP 2004144566 A JP2004144566 A JP 2004144566A
Authority
JP
Japan
Prior art keywords
mobile station
gps
value
kalman filter
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002308611A
Other languages
Japanese (ja)
Other versions
JP2004144566A5 (en
JP4262964B2 (en
Inventor
Koichi Okamura
岡村 浩一
Satoshi Sugimoto
杉本 智
Tomoaki Higuchi
樋口 智明
Kenji Takahata
高畑 健二
Kenji Tokuyama
徳山 憲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Churyo Engineering Co Ltd
Original Assignee
Churyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Churyo Engineering Co Ltd filed Critical Churyo Engineering Co Ltd
Priority to JP2002308611A priority Critical patent/JP4262964B2/en
Publication of JP2004144566A publication Critical patent/JP2004144566A/en
Publication of JP2004144566A5 publication Critical patent/JP2004144566A5/ja
Application granted granted Critical
Publication of JP4262964B2 publication Critical patent/JP4262964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the precision of the position data of a mobile station by utilizing the position data acquired by a different measurement method. <P>SOLUTION: An estimation value is determined from a plurality of position data being measured by an inertial navigation method from a position (A) to a position (B) by a prediction Kalman filter (a). When the estimation value determined in (a) is smoothed by a smoothing Kalman filter, the measurement value of GPS is used as the boundary value of the smoothing Karman filter (b). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、異なる測定方法で得た移動局の位置データを、精度向上を図るためのデータの融合方法に関する。
【0002】
【従来の技術】
従来、移動局の位置測定方法として、図1に示すように、人工衛星を使用するGPS(Global Positioning System)が知られている。このGPSシステムは、複数の衛星からそれぞれ疑似雑音コード信号を用いてスペクトラム拡散処理された中心周波数が、L1帯(1575.42[MHz])及びL2帯(1227.6[MHz])の2つの測距信号を送信すると共に、移動局側でそのうち4つ以上の衛星の測距信号を受信して復調することにより、4つの衛星の軌道情報及び時計情報を得て、これに基づいて4つの衛星と当該移動局との測距信号の伝搬時間を知ることにより、移動局の位置を算出することができる。
又、移動局に積載して、その走行時における距離と方角を測定する慣性航法を用いるものがあり、この慣性航法は、X,Y,Z軸の軸方向の車両速度、加速度を測定するものであり、これらの測定値を用いて位置を測定する。
【0003】
前記したように、移動局の位置を測定する方法には、精度があるGPSと精度が悪い慣性航法があり、精度があるGPSで得られた位置と位置との間を慣性航法で補間して、移動局のより正確な位置を推定する方式として、特開平8−68654号公報がある。この公報によれば、カルマンフィルタを慣性航法に適用して、GPSからの移動局に方位、位置、速度の差を求めて距離係数を修正する案が提示されている。
一方、前記GPSと慣性航法で得たデータを「オフライン」で解析し、移動局の移動位置を推定することも行われている。
【0004】
【特許文献1】
特開平8−68654号公報
【0005】
【発明が解決しようとする課題】
しかし、精度があるGPSと精度が悪い慣性航法で得られたデータから精度ある移動局の位置を推定する案としてカルマンフィルタが用いられないかと種々検討した結果、良好な方式を見いだしたのでここに提供するものである。
【0006】
【課題を解決するための手段】
請求項1の移動局の位置測定方法は、先ず、(a)位置(A)から位置(B)の慣性航法で測定された複数位置データに対し、予測カルマンフィルタで推定値を求める。そして、(b)前記(a)で求めた推定値に対し平滑化カルマンフィルタを用いて平滑するに際し、平滑化カルマンフィルタの境界値としてGPS(キネマティックDGPS等を含む広義のGPS)での測定値を用いて行うものである。
【0007】
具体的には、図2に示す位置(A)と位置(B)において、δt毎のサンプリング値に対して予測カルマンフィルタで推定値を求める。
そして、この求めた推定値に対し、データの平滑化を行うに際して、位置(A)と位置(B)に於ける境界値として、GPSでの測定値を用いて行うことによって、精度の向上を図ることができる。
【0008】
【発明の実施の形態】
図1は本発明の概念図であり、4個の人工衛星、基地局及び移動局の関係を示すと共に基地局の機器構成図と移動局の機器構成図を示し、図2はGPSと慣性航法で測定される観測データの関係を示す。
移動局の位置を測定するため、単独GPSより精度の向上を図るために、ここでは基地局とでキネマティックDGPS(Differential Global Positioning System)を採用する。
【0009】
基地局は、地球座標系における位置(Xk、Yk、Zk)が既知であり、人工衛星からのL1帯(1575.42[MHz])或いはL2帯(1227.6[MHz])の搬送波コード信号をGPS受信アンテナを介して、GPS(GlobalPositioning System)受信機で受信する。そして、受信信号をCPU等を搭載のノートパソコンで予め設定の処理プログラムによって解読する。
【0010】
移動局にはGPS受信機を備え、GPS衛星からの信号をCPU等を搭載のデータ処理器で記憶すると共に、このデータ処理器からの信号はデータリンク受信機を介して、前記基地局に備えてあるデータリンク受信機に送受信し、移動局の位置補正処理を行う。
又、移動局を基準のX,Y,Z軸方向の車両角速度ω(p、q、r)等を得る慣性航法によるセンサからのデータは、CPU等を搭載のデータ処理器で記憶する。
【0011】
前記キネマティックDGPSは、よく知られているように、位置が正確に判っている基地局に備えたGPS受信機と、移動局に備えたGPS受信機によって、4個の人工衛星からの搬送波コード信号(C/A、Pコード等)によって、測位点の座標x、y、xと時計の誤差Δtの変数を求める。
そして、正確な位置(Xk、Yk、Zk)が既知である基準局の前記測定結果を比較し、その差が補正データとして移動局に送信し、移動局は、その補正データを、前記移動局におけるGPS受信機によって得られた測定値に対して補正するものである。
従って、このDGPSによって、移動局における位置(Xei、Yei、Zei)は、時間間隔(本実施例ではΔt(=200ms))で、精度よく得られる。
【0012】
しかし、前記における時間間隔で得られるデータでは、高速移動する移動局においては不充分である。
そこで、本発明では慣性センサを用いて、前記得られる時間間隔Δt(=200ms)の間における位置を、δt(20ms)毎に、図2に示す補間値を得る。この補間値は、少なくとも20ms以内で逐次出力する慣性センサの車両角速度ω(p、q、r)等から得ることができ、これらのデータをデータ処理器で記憶する。
【0013】
次に、前記データ処理器に記憶されたデータを走行後に取出し、走行軌跡を精度のよい解析をするために、位置(A)と位置(B)の間(Δt(=200ms))に得られた慣性センサによる測定値に対し、カルマンフィルタを用いて推定値を算出し、その推定値を用いて平滑化処理を実施し、より精度がよい移動局の位置を求める。
【0014】
カルマンフィルタは、よく知られた式であると共に、図3に示すブロック図に基づいている。尚、この制御ブロックにおいて、Y(t)は入力であり、Δt(=200ms)の間のサンプリング値δt(20ms)に対し、t=0,1,2,……とする。
(式1)
X(t+1|t)=F(t)*X(t|t) t=0、1、2…
(式2)
X(t|t)=X(t|t−1)+K(t)(Y(t)ーH(t))X(t|t−1)
カルマンゲイン(式3)
K(t)=P(t|t−1)H(t)[H(t)P(t|t−1)H(t)+R(t)]
(式4)
P(t|t)=P(t|t−1)−K(t)H(t)P(t|t−1)
(式5)
Y(t)=C*X(t|t)
【0015】
次に、前記状態値X[Xg,W,Vg,ω,d(VG)/dt,dω/dt]とする。
尚、Xg(xe,ye,ze)は地面固定座標系における車両重心位置(走行軌跡)、W(φ,θ,ψ)は地面固定座標系における車両姿勢角(車両固定座標と地面固定座標のなすオイラー角)、Vg(u,v,w)は車両重心位置の縦、横、上下方向の速度、ω(p,q,r)は車両角速度、d(Vg(du/dt,dv/dt,dw/dt))/dtは車両重心位置の並進加速度(Vg(u,v,w)の微分)、d(ω(dp/dt,dq/dt,dr/dt))/dtは車両角加速度(ωの微分)である。
【0016】
又、前記F(t)は、6ベクトル(Xg,W,Vg,ω,d(VG)/dt,dω/dt)に対し3次元であるので、18×18の行列である。
【数1】

Figure 2004144566
【0017】
ここで、E−1は変換行列であり、下記式で表される。
【数2】
Figure 2004144566
【0018】
又、α、β、[I]は下記の表による値を示し、α、βは発散を防止する時定数に役割を果たす。又、[I]は単位行列である。
【表1】
Figure 2004144566
ここで、
DR(Dead Reckoning):慣性データによる推測航法
τ1=Diag(τ1,τ2,τ3):並進加速度ダイナミックス同定時定数
τ2=Diag(τ4,τ5,τ6):角速度ダイナミックス同定時定数
【0019】
次に、前記カルマンフィルタはY(t)を入力、X(t+1|t)(或いはX(t|t))を出力とする線形確率システムである。
そこで、t=−1(図2の位置(A))におけるX(0|−1)=X0、P(0|−1)=Σ0の初期条件の基で、カルマンゲインK0を式3で解く。次に、t=0において、Y(0)を観測し、式2、式4によりX(0|−0)、P(0|0)が求まる。ついで、順次、t=1,2,…に対し、前記式1、2、3、4に基づいて、状態変数X(t+1|t)(或いはX(t|t))の推定値を得ることができる。即ち、位置(A)から位置(B)に到る移動局の位置推定値(XEi、YEi、ZEi)を得ることができる。
【0020】
次に、前記カルマンフィルタで求めた移動局の位置(A)と位置(B)におけるδt(20ms)毎の状態変数X(t+1|t)(或いはX(t|t))の推定値に対し、円滑化について説明する。
平滑推定値((式6))
X(t|N)=X(t|t)+C(t)(X(t+1|N)−X(t+1|t)
t=N−1、N−2、…0
平滑ゲイン(式7))
C(t)=P(t|t)F(t)(P(t+1|t)−1
平滑推定誤差分散行列(式8))
P(t|N)=P(t|t)+C(t)*[P(t+1|N)−P(t+1|t)]C(t)
t=N−1、N−2、…0
【0021】
次に、前記(式6〜8)に基づいく平滑化は、区間終点の境界値及び平滑化の終点の値を「DGPS」によって求められた移動局における位置(Xei、Yei、Zei)(t=0、t=N)に置き替えて算出する。
この平滑化の結果について説明すると、図4(A)は、区間終点の境界値及び平滑化の終点の値を慣性センサで得られた値を用いたもので、区間始点(位置(A))と区間の終点(位置(B))では平滑推定誤差共分散値が発散傾向にあり、平滑化した値が好ましくない。
【0022】
しかし、図4(B)に示す終点の境界値を「DGPS」によって求められた移動局における位置(Xei、Yei、Zei)(t=N)に置き替えて算出したり、図4(C)に示すように区間始点(位置(A))と区間の終点(位置(B))を「キネマティックDGPS」によって求められた移動局における位置(Xei、Yei、Zei)を用いて平滑化をすると、平滑推定誤差共分散値が減少して精度の良い推定値を得ることができる。
【0023】
以上のように、GPSで測定可能な位置(A)(B)の間にカルマンフィルタを適用することによって、精度がある走行軌跡の解析ができ、同様に、次の位置(B)(C)の位置に適用することによって全行程の精度ある解析ができる。
尚、前記カルマンフィルタの予測と平滑化を用いてデータ解析するのは、前記走行軌跡を求めることに限定されず、同様なデータ解析に適用可能であることはいうまでもない。
【0024】
【発明の効果】
本願発明は、異なる測定方法で得た移動局の位置データをカルマンフィルタを用いて解析することによって、精度向上を図ることができる。
【図面の簡単な説明】
【図1】基地局の機器構成図と移動局の機器構成図を示す。
【図2】GPSと慣性航法で測定される観測データの関係を示す図である。
【図3】カルマンフィルタ(予測)のブロック図である。
【図4】カルマンフィルタ(平滑化)のブロック図である。
【図5】(A)〜(C)は平滑化を実施した結果(平滑推定誤差共分散値)を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a data merging method for improving accuracy of position data of mobile stations obtained by different measurement methods.
[0002]
[Prior art]
Conventionally, as shown in FIG. 1, a GPS (Global Positioning System) using an artificial satellite is known as a method for measuring the position of a mobile station. In this GPS system, the center frequencies subjected to spread spectrum processing using a pseudo noise code signal from each of a plurality of satellites are divided into two frequencies, an L1 band (1575.42 [MHz]) and an L2 band (1227.6 [MHz]). In addition to transmitting ranging signals and receiving and demodulating ranging signals of four or more satellites on the mobile station side, orbit information and clock information of the four satellites are obtained, By knowing the propagation time of the ranging signal between the satellite and the mobile station, the position of the mobile station can be calculated.
In addition, there is an inertial navigation that loads on a mobile station and measures the distance and direction when traveling, and this inertial navigation measures the vehicle speed and acceleration in the X, Y, and Z axis directions. The position is measured using these measured values.
[0003]
As described above, the method of measuring the position of the mobile station includes the GPS with accuracy and the inertial navigation with poor accuracy, and interpolates between the position obtained by the accurate GPS with the inertial navigation. JP-A-8-68654 discloses a method for estimating a more accurate position of a mobile station. According to this publication, there is proposed a method in which a Kalman filter is applied to inertial navigation to obtain a difference in azimuth, position, and speed from a GPS mobile station to correct a distance coefficient.
On the other hand, data obtained by the GPS and inertial navigation is analyzed “offline” to estimate the moving position of the mobile station.
[0004]
[Patent Document 1]
JP-A-8-68654 gazette
[Problems to be solved by the invention]
However, as a result of various examinations as to whether a Kalman filter can be used as a plan for estimating the position of a mobile station with high accuracy from data obtained with accurate GPS and inertial navigation with low accuracy, a good method was found and provided here. To do.
[0006]
[Means for Solving the Problems]
In the mobile station position measuring method according to the first aspect, first, an estimated value is obtained by a predictive Kalman filter for a plurality of position data measured by (a) inertial navigation from position (A) to position (B). (B) When smoothing the estimated value obtained in (a) using a smoothed Kalman filter, GPS (measured value in a broad sense including Kinematic DGPS) is used as a boundary value of the smoothed Kalman filter. Is what you do.
[0007]
Specifically, at the positions (A) and (B) shown in FIG. 2, estimated values are obtained by the predictive Kalman filter for the sampling values for each δt.
Then, when smoothing the data with respect to the obtained estimated value, the accuracy is improved by using the measured value at the GPS as the boundary value at the position (A) and the position (B). Can be planned.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a conceptual diagram of the present invention, showing the relationship between four artificial satellites, a base station and a mobile station, and showing a device configuration diagram of the base station and a device configuration diagram of the mobile station. FIG. 2 is a diagram showing GPS and inertial navigation. The relationship of the observation data measured by is shown.
In order to measure the position of the mobile station, a kinematic DGPS (Differential Global Positioning System) is employed here with the base station in order to improve accuracy over the single GPS.
[0009]
The base station has a known position (Xk, Yk, Zk) in the earth coordinate system, and a carrier code signal of L1 band (1575.42 [MHz]) or L2 band (1227.6 [MHz]) from an artificial satellite. Is received by a GPS (Global Positioning System) receiver via a GPS receiving antenna. The received signal is decoded by a preset processing program on a notebook computer equipped with a CPU or the like.
[0010]
The mobile station is equipped with a GPS receiver, and a signal from a GPS satellite is stored in a data processor equipped with a CPU or the like, and the signal from this data processor is provided in the base station via a data link receiver. The data is transmitted to and received from a data link receiver, and the position correction processing of the mobile station is performed.
Further, data from the sensor by inertial navigation which obtains the vehicle angular velocity ω (p, q, r) in the X, Y, and Z axis directions based on the mobile station is stored in a data processor equipped with a CPU or the like.
[0011]
As is well known, the kinematic DGPS uses a GPS receiver provided in a base station whose position is accurately known and a GPS receiver provided in a mobile station to generate carrier codes from four artificial satellites. By using signals (C / A, P code, etc.), variables of coordinates x, y, x of the positioning point and clock error Δt are obtained.
Then, the measurement result of the reference station whose accurate position (Xk, Yk, Zk) is known is compared, and the difference is transmitted as correction data to the mobile station. The mobile station transmits the correction data to the mobile station. It corrects the measured value obtained by the GPS receiver.
Therefore, the position (Xei, Yei, Zei) in the mobile station can be obtained with high accuracy at time intervals (Δt (= 200 ms) in this embodiment) by this DGPS.
[0012]
However, the data obtained at the time intervals described above is insufficient for a mobile station moving at high speed.
Therefore, in the present invention, an inertial sensor is used to obtain an interpolated value shown in FIG. 2 for each position during the obtained time interval Δt (= 200 ms) every δt (20 ms). This interpolation value can be obtained from the vehicle angular velocity ω (p, q, r) of the inertial sensor that outputs sequentially within at least 20 ms, and these data are stored in the data processor.
[0013]
Next, the data stored in the data processor is taken out after traveling and is obtained between position (A) and position (B) (Δt (= 200 ms)) in order to analyze the traveling locus with high accuracy. An estimated value is calculated using a Kalman filter for the measured value obtained by the inertial sensor, and smoothing processing is performed using the estimated value to obtain a more accurate position of the mobile station.
[0014]
The Kalman filter is a well-known equation and is based on the block diagram shown in FIG. In this control block, Y (t) is an input, and t = 0, 1, 2,... With respect to the sampling value δt (20 ms) during Δt (= 200 ms).
(Formula 1)
X (t + 1 | t) = F (t) * X (t | t) t = 0, 1, 2,...
(Formula 2)
X (t | t) = X (t | t−1) + K (t) (Y (t) −H (t)) X (t | t−1)
Kalman gain (Formula 3)
K (t) = P (t | t−1) H (t) T [H (t) P (t | t−1) H (t) T + R (t)]
(Formula 4)
P (t | t) = P (t | t−1) −K (t) H (t) P (t | t−1)
(Formula 5)
Y (t) = C * X (t | t)
[0015]
Next, the state value X [Xg, W, Vg, ω, d (VG) / dt, dω / dt] is set to T.
Xg (xe, ye, ze) is the position of the center of gravity of the vehicle (running trajectory) in the ground fixed coordinate system, and W (φ, θ, ψ) is the vehicle attitude angle (of the vehicle fixed coordinates and the ground fixed coordinates) in the ground fixed coordinate system. Euler angle), Vg (u, v, w) is the vertical, horizontal and vertical speeds of the vehicle center of gravity, ω (p, q, r) is the vehicle angular speed, and d (Vg (du / dt, dv / dt). , Dw / dt)) / dt is the translational acceleration (Vg (u, v, w) derivative) of the vehicle center of gravity, and d (ω (dp / dt, dq / dt, dr / dt)) / dt is the vehicle angle. It is acceleration (differentiation of ω).
[0016]
The F (t) is an 18 × 18 matrix because it is three-dimensional with respect to the six vectors (Xg, W, Vg, ω, d (VG) / dt, dω / dt).
[Expression 1]
Figure 2004144566
[0017]
Here, E −1 is a transformation matrix and is represented by the following equation.
[Expression 2]
Figure 2004144566
[0018]
Further, α, β, and [I] represent values according to the following table, and α and β play a role in time constants for preventing divergence. [I] is a unit matrix.
[Table 1]
Figure 2004144566
here,
DR (Dead Reckoning): Dead reckoning navigation using inertial data τ1 = Diag (τ1, τ2, τ3): Translational acceleration dynamics identification time constant τ2 = Diag (τ4, τ5, τ6): Angular velocity dynamics identification time constant
Next, the Kalman filter is a linear probability system having Y (t) as an input and X (t + 1 | t) (or X (t | t)) as an output.
Therefore, Kalman gain K0 is solved by Equation 3 based on the initial conditions of X (0 | -1) = X0 and P (0 | -1) = Σ0 at t = -1 (position (A) in FIG. 2). . Next, at t = 0, Y (0) is observed, and X (0 | −0) and P (0 | 0) are obtained by Expressions 2 and 4. Then, for t = 1, 2,..., An estimated value of the state variable X (t + 1 | t) (or X (t | t)) is obtained based on the equations 1, 2, 3, and 4. Can do. That is, it is possible to obtain the estimated position values (XEi, YEi, ZEi) of the mobile station from the position (A) to the position (B).
[0020]
Next, with respect to the estimated value of the state variable X (t + 1 | t) (or X (t | t)) for each δt (20 ms) at the position (A) and the position (B) of the mobile station obtained by the Kalman filter, The smoothing will be described.
Smooth estimated value ((Expression 6))
X (t | N) = X (t | t) + C (t) (X (t + 1 | N) −X (t + 1 | t)
t = N−1, N−2,... 0
Smooth gain (Equation 7))
C (t) = P (t | t) F (t) T (P (t + 1 | t) −1
Smooth estimation error variance matrix (Equation 8))
P (t | N) = P (t | t) + C (t) * [P (t + 1 | N) −P (t + 1 | t)] C (t) T
t = N−1, N−2,... 0
[0021]
Next, the smoothing based on the above (Formulas 6 to 8) is performed by calculating the boundary value of the section end point and the smoothing end point value by the position (Xei, Yei, Zei) (t = 0, t = N).
The smoothing result will be described. FIG. 4A shows the boundary start value of the section and the smoothing end point using values obtained by the inertial sensor, and the section start point (position (A)). At the end point of the section (position (B)), the smooth estimation error covariance value tends to diverge, and the smoothed value is not preferable.
[0022]
However, the boundary value of the end point shown in FIG. 4B is calculated by replacing the position (Xei, Yei, Zei) (t = N) in the mobile station obtained by “DGPS”, or FIG. If the section start point (position (A)) and the end point (position (B)) of the section are smoothed using the position (Xei, Yei, Zei) in the mobile station obtained by “kinematic DGPS”, as shown in FIG. As a result, the smooth estimation error covariance value is reduced, and an accurate estimated value can be obtained.
[0023]
As described above, by applying the Kalman filter between the positions (A) and (B) that can be measured by the GPS, it is possible to analyze the traveling locus with high accuracy. Similarly, the next positions (B) and (C) By applying it to the position, an accurate analysis of the whole process can be performed.
It goes without saying that the data analysis using the prediction and smoothing of the Kalman filter is not limited to obtaining the travel locus, and can be applied to the same data analysis.
[0024]
【The invention's effect】
The present invention can improve accuracy by analyzing the position data of the mobile station obtained by different measurement methods using a Kalman filter.
[Brief description of the drawings]
FIG. 1 shows a device configuration diagram of a base station and a device configuration diagram of a mobile station.
FIG. 2 is a diagram showing a relationship between GPS and observation data measured by inertial navigation.
FIG. 3 is a block diagram of a Kalman filter (prediction).
FIG. 4 is a block diagram of a Kalman filter (smoothing).
FIGS. 5A to 5C are diagrams illustrating smoothing results (smooth estimation error covariance values).

Claims (1)

移動局が移動する位置(A)と位置(B)をGPSで測定すると共に、前記位置(A)から位置(B)の間を慣性航法によって複数箇所を測定し、
(a)前記位置(A)から位置(B)の慣性航法で測定された複数位置データに対し、予測カルマンフィルタで推定値を求め、
(b)前記推定値に対し平滑化カルマンフィルタを用いて平滑するに際し、平滑化カルマンフィルタの境界値としてGPSでの測定値を用いて行う移動局の位置測定方法。
The position (A) and the position (B) where the mobile station moves are measured by GPS, and a plurality of positions are measured by inertial navigation between the position (A) and the position (B).
(A) For a plurality of position data measured by inertial navigation from the position (A) to the position (B), an estimated value is obtained by a predictive Kalman filter,
(B) A method for measuring a position of a mobile station, which is performed using a measured value in GPS as a boundary value of the smoothed Kalman filter when the estimated value is smoothed using a smoothed Kalman filter.
JP2002308611A 2002-10-23 2002-10-23 Mobile station position measurement method Expired - Fee Related JP4262964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308611A JP4262964B2 (en) 2002-10-23 2002-10-23 Mobile station position measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308611A JP4262964B2 (en) 2002-10-23 2002-10-23 Mobile station position measurement method

Publications (3)

Publication Number Publication Date
JP2004144566A true JP2004144566A (en) 2004-05-20
JP2004144566A5 JP2004144566A5 (en) 2005-12-08
JP4262964B2 JP4262964B2 (en) 2009-05-13

Family

ID=32454707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308611A Expired - Fee Related JP4262964B2 (en) 2002-10-23 2002-10-23 Mobile station position measurement method

Country Status (1)

Country Link
JP (1) JP4262964B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177926A (en) * 2004-12-21 2006-07-06 Korea Electronics Telecommun Method and device for correcting position and attitude information of camera
JP2006236156A (en) * 2005-02-25 2006-09-07 Toshiba Corp On-vehicle device and management device
JP2008111272A (en) * 2006-10-30 2008-05-15 Toa Harbor Works Co Ltd Monitoring method and device of banking on weak underwater ground
JP2009501669A (en) * 2005-07-18 2009-01-22 エアバス フランス Method and apparatus for determining the ground position of a moving object, in particular an aircraft at an airport
JP2009097897A (en) * 2007-10-15 2009-05-07 Seiko Epson Corp Positioning method, program, positioning device, and electronic device
JPWO2007105294A1 (en) * 2006-03-13 2009-07-23 中菱エンジニアリング株式会社 Vehicle trajectory measuring device
JP2017106842A (en) * 2015-12-10 2017-06-15 三菱重工業株式会社 Position measuring device, position measuring method and program

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177926A (en) * 2004-12-21 2006-07-06 Korea Electronics Telecommun Method and device for correcting position and attitude information of camera
JP2006236156A (en) * 2005-02-25 2006-09-07 Toshiba Corp On-vehicle device and management device
JP4550624B2 (en) * 2005-02-25 2010-09-22 株式会社東芝 In-vehicle device and management device
JP2009501669A (en) * 2005-07-18 2009-01-22 エアバス フランス Method and apparatus for determining the ground position of a moving object, in particular an aircraft at an airport
JPWO2007105294A1 (en) * 2006-03-13 2009-07-23 中菱エンジニアリング株式会社 Vehicle trajectory measuring device
JP4846784B2 (en) * 2006-03-13 2011-12-28 中菱エンジニアリング株式会社 Vehicle trajectory measuring device
JP2008111272A (en) * 2006-10-30 2008-05-15 Toa Harbor Works Co Ltd Monitoring method and device of banking on weak underwater ground
JP2009097897A (en) * 2007-10-15 2009-05-07 Seiko Epson Corp Positioning method, program, positioning device, and electronic device
JP2017106842A (en) * 2015-12-10 2017-06-15 三菱重工業株式会社 Position measuring device, position measuring method and program

Also Published As

Publication number Publication date
JP4262964B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
JP5301762B2 (en) Carrier phase relative positioning device
KR101796322B1 (en) Apparatus and method for detecting location information using navigation algorithm
US7355549B2 (en) Apparatus and method for carrier phase-based relative positioning
JP5352422B2 (en) Positioning device and program
JP6413946B2 (en) Positioning device
JP5590010B2 (en) Positioning device and program
JP2004239643A (en) Hybrid navigator
JP2012207919A (en) Abnormal value determination device, positioning device, and program
US20110153266A1 (en) Augmented vehicle location system
JP2015230218A (en) Moving distance estimation apparatus
JP5605539B2 (en) MOBILE POSITION ESTIMATION TRACKING DEVICE, MOBILE POSITION ESTIMATION TRACKING METHOD, AND MOBILE POSITION ESTIMATION TRACKING PROGRAM
JP6509422B2 (en) Satellite positioning device and train control system
KR102172145B1 (en) Tightly-coupled localization method and apparatus in dead-reckoning system
JP5879977B2 (en) Speed estimation apparatus and program
JP2016206149A (en) Gradient estimation device and program
JP2023164553A (en) Position estimation device, estimation device, control method, program and storage medium
JP4262964B2 (en) Mobile station position measurement method
JP2008039691A (en) Carrier-wave phase type position measuring instrument
JPH0868654A (en) Current position detector for vehicle
JP2007003461A (en) Apparatus for measuring angle of side slip of mobile station
JP2001264409A (en) Multipass judgement method for car navigation device
JP2012098185A (en) Azimuth angle estimation device and program
WO2020110996A1 (en) Positioning device, speed measuring device, and program
JP4884109B2 (en) Moving locus calculation method, moving locus calculation device, and map data generation method
JPH11118499A (en) Method of measuring position of mobile station

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4262964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees