JP2004143086A - Iminomethyl-substituted phthalocyanine compound and method for producing metallocene-substituted phthalocyanine compound - Google Patents

Iminomethyl-substituted phthalocyanine compound and method for producing metallocene-substituted phthalocyanine compound Download PDF

Info

Publication number
JP2004143086A
JP2004143086A JP2002310178A JP2002310178A JP2004143086A JP 2004143086 A JP2004143086 A JP 2004143086A JP 2002310178 A JP2002310178 A JP 2002310178A JP 2002310178 A JP2002310178 A JP 2002310178A JP 2004143086 A JP2004143086 A JP 2004143086A
Authority
JP
Japan
Prior art keywords
phthalocyanine compound
general formula
formula
metal atom
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002310178A
Other languages
Japanese (ja)
Other versions
JP4259849B2 (en
Inventor
Tomoyuki Kinoshita
木下 智之
Akihiro Kosaka
高坂 明宏
Hiroshi Terao
寺尾 博
Yojiro Kumagai
熊谷 洋二郎
Kazuhiro Kiyono
清野 和浩
Tsutayoshi Misawa
三沢 伝美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Chemicals Inc
Mitsui Chemicals Inc
Original Assignee
Yamamoto Chemicals Inc
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Chemicals Inc, Mitsui Chemicals Inc filed Critical Yamamoto Chemicals Inc
Priority to JP2002310178A priority Critical patent/JP4259849B2/en
Publication of JP2004143086A publication Critical patent/JP2004143086A/en
Application granted granted Critical
Publication of JP4259849B2 publication Critical patent/JP4259849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a new phthalocyanine compound useful as an intermediate for producing a metallocene-substituted phthalocyanine compound suitably useful for a near infrared absorption material. <P>SOLUTION: The method for producing the phthalocyanine compound represented by general formula (4) (R<SB>1</SB>-R<SB>4</SB>are each independently an alkyl group; M is two hydrogen atoms, a divalent metal atom, a trivalent or a tetravalent substituted metal atom or an oxymetal; X is a metallocenyl group; n is 1 or 2) comprises reacting the new phthalocyanine compound represented by general formula (1) with a metallocene amide represented by formula (3). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、新規なイミノメチル置換フタロシアニン化合物を中間体として用いるメタロセン置換フタロシアニン化合物の製造方法に関し、また新規なこのイミノメチル置換フタロシアニン化合物及びその製造方法に関する。
【0002】
本発明の製造方法により製造されるメタロセン置換フタロシアニン化合物は、レーザー光を利用した情報記録材料(例えば、光カード、有機光導電体、レーザー熱転写記録、レーザー感熱記録、レーザーダイレクト製版、CD−R媒体等)や近赤外線吸収能を要求される機材(例えば、近赤外線吸収フィルター、熱線遮蔽フィルム、保護眼鏡、シークレットインク、農業用フィルム等)等に用いられる近赤外線吸収剤として有用である。
【0003】
【従来の技術】
下記一般式(4)のメタロセニルカルボニルイミノメチル基を有するフタロシアニン化合物の製造方法は公知ではないが、このようなメタロセニル基を有するフタロシアニン化合物の製造方法としては、例えば特許文献1に開示されているような下記一般式(5)で表されるフタロシアニン化合物とメタロセンアミドを酸触媒の存在下、反応させるのが一般的である。
【0004】
【化4】

Figure 2004143086
【0005】
[式(4)中、R〜Rは各々独立にアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価または4価の置換金属原子、またはオキシ金属を表し、Xはメタロセン化合物を表し、nは1又は2を示す。]
【0006】
【化5】
Figure 2004143086
【0007】
〔式(5)中、R〜Rは各々独立にアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価または4価の置換金属原子、またはオキシ金属を表し、nは1又は2を示す。〕
【0008】
しかしながら、この方法では多量の副生物が生成し、純度、収率及び反応速度の点で不十分であり、改良が望まれていた。
【0009】
【特許文献1】
特表2001−522381号公報
【0010】
【発明が解決しようとする課題】
本発明の目的は、近赤外線吸収能力に優れる前記一般式(4)で表されるメタロセン置換フタロシアニン化合物の製造にあたって、副生物の生成を抑制し、純度、収率および反応速度に優れる新規な製造方法を提供することである。また、本発明の目的は、この製造方法に使用される新規なフタロシアニン中間体を提供することにある。
【0011】
【課題を解決するための手段】
前記した課題を解決するために種々検討した結果、本発明者らは、新規化合物であるイミノメチル置換フタロシアニン化合物を中間体とし、これとメタロセンアミドを反応させることにより目的とするメタロセン置換フタロシアニン化合物を短時間で収率良く、高品質で製造できることを見出した。
【0012】
すなわち、本発明は、まず、下記式(1)で表される新規なフタロシアニン化合物
【0013】
【化6】
Figure 2004143086
【0014】
〔式(1)中、R〜Rは各々独立にアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価または4価の置換金属原子、またはオキシ金属を表し、nは1又は2を示す。〕
と下記一般式(3)で表されるメタロセンアミドを反応させることを特徴とする、下記一般式(4)で表されるフタロシアニン化合物の製造方法に関する。
【0015】
X−CONH   (3)
〔式(3)中、Xは置換基を有していてもよいメタロセニル基を表す。〕
【0016】
【化7】
Figure 2004143086
[式(4)中、R〜Rは各々独立にアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価または4価の置換金属原子、またはオキシ金属を表し、Xは式(3)中のXと同一の意味を表し、nは1又は2を示す]
【0017】
また本発明は、上記の一般式(1)で表される新規フタロシアニン化合物に関し、更に、下記一般式(2)で表されるフタロシアニン化合物にジメチルホルムアミド又はN−メチルホルムアニリドとオキシ塩化リンから調製されるフィルスマイヤー(Vilsmeier)試薬を反応させ、次いでアンモニアガスを反応させることを特徴とする前記一般式(1)のフタロシアニン化合物の製造方法に関する。
【0018】
【化8】
Figure 2004143086
【0019】
〔式(2)中、R〜Rは各々独立にアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価または4価の置換金属原子、またはオキシ金属を表す。〕
【0020】
【発明の実施の形態】
本発明の前記一般式(1)で表される新規なフタロシアニン化合物について説明する。
【0021】
一般式(1)のフタロシアニン化合物中間体において、R〜Rは、炭素数1〜18の直鎖または分岐のアルキル基が好ましく、炭素数1〜10の直鎖または分岐のアルキル基が特に好ましい。例としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、iso−プロピル基、sec−ブチル基、t−ブチル基、neo−ペンチル基、1,2−ジメチルプロピル基、シクロヘキシル基、1,3−ジメチルブチル基、1−iso−プロピルプロピル基、1,2−ジメチルブチル基、1,4−ジメチルペンチル基、2−メチル−1−iso−プロピルプロピル基、1−エチル−3−メチルブチル基、3−メチル−1−iso−プロピルブチル基、2−メチル−1−iso−プロピルブチル基、1−t−ブチル−2−メチルプロピル基、2、4−ジメチル−3−プロピル基、2−メチルペンチル基、2−エチルヘキシル基等のアルキル基が挙げられる。
【0022】
一般式(1)で表されるフタロシアニン化合物としては下記一般式(6)で表されるフタロシアニン化合物又はその異性体混合物が特に好ましい。
【0023】
【化9】
Figure 2004143086
【0024】
[式(6)中、Rはアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価または4価の置換金属原子、またはオキシ金属を表し、nは1又は2を示す。]
【0025】
MとしてはCu、Zn、Fe、Co、Ni、Ru、Rh、Pd、Pt、Mn、Mg、Be、Ca、Ba、Cd、Hg、Pb、Al−Cl、In−Cl、FeCl、SnCl、TiCl、Si(OH)、Mn(OH)、VO、TiOが好ましく、Cu、Zn、Ni、Pd、Pb、MnOH、AlCl、FeCl、InCl、SnCl、VO又はTiOが特に好ましい。
【0026】
Mが2価金属である場合の例としては、Cu(II)、Zn(II)、Fe(II)、Co(II)、Ni(II)、Ru(II)、Rh(II)、Pd(II)、Pt(II)、Mn(II)、Mg(II)、Ti(II)、Be(II)、Ca(II)、Ba(II)、Cd(II)、Hg(II)、Pb(II)、Sn(II)などなどが挙げられる。1置換3価金属の例としては、Al−Br、Al−F、Al−I、Ga−Cl、Ga−F、Ga−I、Ga−Br、In−Br、In−I、In−F、Tl−Cl、Tl−Br、Tl−I、Tl−F、Al−C、Al−C(CH)、In−C、In−C(CH)、In−C10、Mn(OH)、Mn(OC)、Mn[OSi(CH]、RuClなどが挙げられる。
【0027】
2置換の4価金属である場合の例としては、CrCl、SiCl、SiBr、SiF、SiI、ZrCl、GeCl、GeBr、GeI、GeF、SnBr、SnI、SnF、SnCl、TiBr、TiF、Si(OH)、Ge(OH)、Zr(OH)、Mn(OH)、Sn(OH)、TiR’、CrR’、SiR’、SnR’、GeR’[R’はアルキル基、フェニル基、ナフチル基およびその誘導体を表わす]、Si(OR”),Sn(OR”)、Ge(OR”)、Ti(OR”)、Cr(OR”)[R”はアルキル基、アルキルカルボニル基、フェニル基、ナフチル基、トリアルキルシリル基、ジアルキルアルコキシシリル基およびその誘導体を表わす]などが挙げられる。
【0028】
オキシ金属である場合の例としては、VO、MnO、TiOなどが挙げられる。
【0029】
一般式(1)で表される本発明のフタロシアニン化合物の具体例を以下に示す。
【0030】
【化10】
Figure 2004143086
【0031】
【表1】
Figure 2004143086
【0032】
【表2】
Figure 2004143086
【0033】
本発明の一般式(1)のフタロシアニン化合物は、次の方法により容易に製造することができる。すなわち、適当な溶媒中にて一般式(2)で表されるフタロシアニン化合物にジメチルホルムアミド又はN−メチルホルムアニリドとオキシ塩化リンから調製されるフィルスマイヤー(Vilsmeier)試薬を反応させ、次いでアンモニアガスを反応させることを特徴とする製造方法である。
【0034】
【化11】
Figure 2004143086
〔式(2)中、R〜R、Mは前記式(1)のR〜R、Mと同じものを示す。〕
【0035】
ここで、原料に使用する式(2)のフタロシアニン化合物は、公知の方法、例えば、特開平5−247363号記載の方法により容易に製造することができる。
【0036】
フィルスマイヤー試薬はジメチルホルムアミド或いはN−メチルホルムアニリドに0.1〜1当量のオキシ塩化リンを加えて調製する。調製温度は0℃〜50℃であり、好ましくは0℃〜30℃である。調製時間は5分〜10時間が好ましく、さらに好ましくは30分〜5時間である。
【0037】
溶媒としては、ピリジン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N,N’−ジメチルイミダゾリジノン、スルホラン等の極性溶媒、ベンゼン、トルエン、キシレン、トリメチルベンゼン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン等の芳香族炭化水素溶媒が好ましく、ベンゼン、トルエン、キシレン、トリメチルベンゼン、クロロベンゼン、ジクロロベンゼン或いはニトロベンゼンが特に好ましい。
【0038】
一般式(2)で表わされるフタロシアニン化合物にフィルスマイヤー試薬を反応させる工程の反応温度は0℃〜溶媒の還流温度であり、好ましくは20℃〜80℃である。反応時間は30分〜72時間が好ましく、さらに好ましくは2〜24時間である。
【0039】
フィルスマイヤー試薬の使用量は、1〜30倍当量、好ましくは1〜15倍当量である。
【0040】
次いでフィルスマイヤー試薬と一般式(2)のフタロシアニン化合物の反応が終わった反応液にアンモニアを反応させてイミノ化を行う。イミノ化工程の反応温度は0℃〜50℃、好ましくは20℃〜30℃である。反応時間は30分〜72時間が好ましく、さらに好ましくは1〜12時間である。
【0041】
アンモニアとしては通常、アンモニアガスを使用し、反応液に導入して反応させる。アンモニアガスの使用量はフィルスマイヤー試薬の3〜20倍当量、好ましくは5〜10倍当量である。
使用する溶媒の量は、一般式(2)のフタロシアニン化合物に対して1〜100倍質量、好ましくは5〜20倍質量である。
後処理としては反応液より生成した塩化アンモニウム等の無機物を除去した後、反応溶媒を留去した残さにリグロイン等の貧溶媒を添加、析出物を濾取することにより得られる。
【0042】
そして、前記一般式(1)のフタロシアニン化合物と下記一般式(3)のメタロセンアミドを反応させることで下記一般式(4)のフタロシアニン化合物を製造することができる。
【0043】
本発明の一般式(4)のフタロシアニン化合物の製造方法を下記に説明する。
本発明の製造方法において適当な溶媒中、一般式(1)のフタロシアニン化合物と一般式(3)のメタロセンアミドを好ましくは酸触媒の存在下に反応させる。
【0044】
X−CONH   (3)
〔式(3)中、Xは置換基を有していてもよいメタロセニル基、特に下記一般式(7)で表されるメタロセン化合物から誘導される基を示す。〕
M’(Cp)n’       (7)
〔M’は金属を表し、Cpは置換基を有していてもよいシクロペンタジエニル基を表し、n’は2又は3を表す。〕
【0045】
ここで、M’としてはFe、Co、Ni、Ru、Os、Mn、Cr、W、V、Sc、Y、La、Ce、Pr、Nd、Sm、Gd、Er、Tm、Ybが好ましく、Fe、Co、Ni、Ru、Os、Mn、Cr、W、Vが特に好ましい。又、メタロセニル基が有してもよい置換基としては、メチル基、エチル基等のアルキル基、アセチル基、ベンゾイル基等が挙げられる。
【0046】
【化12】
Figure 2004143086
〔式(4)中、R〜R、M、X、nは前記と同じものを示す。〕
【0047】
一般式(1)で表わされるフタロシアニン化合物に対する一般式(3)で表されるメタロセンアミドの使用量は、1〜20倍当量、好ましくは1〜10倍当量である。
【0048】
溶媒としては、ベンゼン、トルエン、キシレン、トリメチルベンゼン、クロルベンゼン、ジクロロベンゼン、ニトロベンゼン等の芳香族炭化水素溶媒が使用できる。使用する溶媒の量は、一般式(1)のフタロシアニン化合物に対して1〜100倍質量、好ましくは5〜20倍質量である。
【0049】
また、酸触媒としてベンゼンスルホン酸、トルエンスルホン酸、メタンスルホン酸等の有機酸や硫酸、燐酸等の無機酸類が使用できる。
【0050】
反応温度は0℃〜溶媒の還流温度であり、好ましくは20℃〜溶媒の還流温度である。
【0051】
反応時間は30分〜72時間が好ましく、さらに好ましくは2〜24時間である。
【0052】
後処理としては、反応後に溶媒を留去するか、又は反応液をフタロシアニン化合物に対する貧溶媒に排出して析出物を濾取することにより目的物が得られる。また、この生成物を更に再結晶あるいはカラムクロマトグラフィーにより精製することで、より高純度の目的物を得ることができる。
【0053】
また一般式(4)のフタロシアニン化合物は、一般式(2)のフタロシアニン化合物にジメチルホルムアミド又はN−メチルホルムアニリドとオキシ塩化リンから調製したフィルスマイヤー試薬を反応させ、次いでアンモニアガスを反応させ、反応液より生成した無機物を除去した後、生成した一般式(1)のフタロシアニンを単離することなく、更に一般式(3)のメタロセンアミドを添加、反応して製造することも出来る。
【0054】
本発明で製造される一般式(4)のフタロシアニン化合物の具体例を表−2に示す。
【0055】
【化13】
Figure 2004143086
【0056】
【表3】
Figure 2004143086
【0057】
【表4】
Figure 2004143086
【0058】
本発明の製造方法により得られた一般式(4)のフタロシアニン化合物は、レーザー光を利用した情報記録材料(例えば、光カード、有機光導電体、レーザー熱転写記録、レーザー感熱記録、レーザーダイレクト製版、CD−R媒体等)や近赤外線吸収能を要求される機材(例えば、近赤外線吸収フィルター、熱線遮蔽フィルム、保護眼鏡、シークレットインク、農業用フィルム等)等の用途に対し十分な純度を有し、収率も高いため、本発明の製造方法は極めて有用な製造法である。
【0059】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
【0060】
[実施例1] 一般式(1)のフタロシアニン化合物(前記具体例1−15)の合成
【0061】
特開平5−247363号記載の方法に従って製造したテトラ−(α−2,4−ジメチル−3−ペンチルオキシ)銅フタロシアニン10.32g(10mmol)をトルエン50mLに溶解し、N−メチルホルムアニリド8.1g(60mmol)を添加した後、室温にて20分間かけてオキシ塩化リン9.2g(60mmol)を滴下した。更に40〜50℃にて20時間攪拌した。冷却後、反応液に5℃以下でアンモニアガスを流速200ml/minにて1時間導入した。析出した無機物を濾過して除去した後、トルエンを留去して残さにリグロイン30mLを加え、冷却した。析出した結晶を濾取、乾燥して、具体例化合物(1−15)9.3g(収率87.9%)を暗緑色粉末として得た。
この化合物の元素分析値、トルエン溶液中の吸収極大波長(λmax)及びグラム吸光係数(εg)は以下の通りであった。
【0062】
【表5】
Figure 2004143086
【0063】
[実施例2] 一般式(1)のフタロシアニン化合物(前記具体例1−20)の合成実施例1において、テトラ−(α−2,4−ジメチル−3−ペンチルオキシ)銅フタロシアニン10.32gの代わりに特開平5−247363号記載の方法に従って製造したテトラ−(α−2,4−ジメチル−3−ペンチルオキシ)バナジルフタロシアニン10.36g(10mmol)を使用した以外は実施例1と同様な操作を行って、具体例化合物(1−20)9.0g(収率84.6%)を緑色粉末として得た。
この化合物の元素分析値、トルエン溶液中の吸収極大波長(λmax)及びグラム吸光係数(εg)は以下の通りであった。
【0064】
【表6】
Figure 2004143086
【0065】
[実施例3] 一般式(4)のフタロシアニン化合物(前記具体例2−15)の合成実施例1で製造した前記具体例1−15のフタロシアニン化合物10.6g(10mmol)をトルエン50mLに溶解し、メタンスルホン酸0.1g、フェロセンアミド3.44g(15mmol)を添加して5時間還流した。冷却後、未反応フェロセンアミドを濾過して除去した後、活性炭6gを添加、1時間還流した。次いで活性炭を濾過して除去後、トルエンを留去した。残さにメタノール200mlを添加、1時間還流した後、室温まで冷却して結晶を濾取、乾燥して具体例化合物(2−15) 11.3g(88.8%)を緑色粉末として得た。
この化合物の元素分析値、トルエン溶液中の吸収極大波長(λmax)及びグラム吸光係数(εg)は以下の通りであった。
【0066】
【表7】
Figure 2004143086
【0067】
[実施例4] 一般式(4)のフタロシアニン化合物(前記具体例2−20)の合成実施例3において実施例1で製造した前記具体例1−15のフタロシアニン化合物10.6g(10mmol)の代わりに実施例2で製造した前記具体例1−20のフタロシアニン化合物10.63g(10mmol)使用した以外は実施例1と同様な操作を行って、具体例化合物(2−20) 11.0g(86.3%)を緑色粉末として得た。
この化合物の元素分析値、トルエン溶液中の吸収極大波長(λmax)及びグラム吸光係数(εg)は以下の通りであった。
【0068】
【表8】
Figure 2004143086
【0069】
[実施例5] 一般式(4)のフタロシアニン化合物(2−15)の合成
特開平5−247363号記載の方法に従って製造したテトラ−(α−2,4−ジメチル−3−ペンチルオキシ)銅フタロシアニン10.32g(10mmol)をトルエン50mLに溶解し、N−メチルホルムアニリド8.1g(60mmol)を添加した後、室温にて20分間かけてオキシ塩化リン9.2g(60mmol)を滴下した。更に40〜50℃にて20時間攪拌した。冷却後、反応液に5℃以下でアンモニアガスを流速200ml/minにて1時間導入した。析出した無機物を濾過して除去した後、フェロセンアミド6.87g(30mmol)を加え還流下5時間攪拌した。冷却後、未反応のフェロセンアミドを濾過して除去した後、濾液を水洗して活性炭6gを添加、1時間還流した。次いで活性炭を濾過して除去後、トルエンを留去した。残さにメタノール200mlを添加、1時間還流した後、室温まで冷却して結晶を濾取、乾燥して具体例化合物(2−15) 10.9g(85.8%)を緑色粉末として得た。
この化合物の元素分析値、トルエン溶液中の吸収極大波長(λmax)及びグラム吸光係数(εg)は以下の通りであった。
【0070】
【表9】
Figure 2004143086
【0071】
[実施例6] 一般式(4)のフタロシアニン化合物(2−20)の合成
実施例5において、テトラ−(α−2,4−ジメチル−3−ペンチルオキシ)銅フタロシアニン10.32gの代わりに特開平5−247363号記載の方法に従って製造したテトラ−(α−2,4−ジメチル−3−ペンチルオキシ)バナジルフタロシアニン10.36g(10mmol)を使用した以外は実施例5と同様な操作を行って、具体例化合物(2−20) 10.1g(79.2%)を緑色粉末として得た。
この化合物の元素分析値、トルエン溶液中の吸収極大波長(λmax)及びグラム吸光係数(εg)は以下の通りであった。
【0072】
【表10】
Figure 2004143086
【0073】
[比較例1] 一般式(4)のフタロシアニン化合物(2−15)の合成
特表2001−522381号記載の方法で製造したモノホルミル−テトラ−(α−2,4−ジメチル−3−ペンチルオキシ)銅フタロシアニン10.6g(10mmol)をトルエン30mLに溶解し、トルエンスルホン酸0.3g及びフェロセンアミド6.87g(30mmol)を加え還流下20時間攪拌した。未反応のフェロセンアミドを濾過して除去した後、濾液を水洗して活性炭6gを添加、1時間還流した。次いで活性炭を濾過して除去後トルエンを留去した。残さにメタノール200mlを添加、1時間還流した後、室温まで冷却して結晶を濾取、乾燥して具体例化合物(2−15) 5.3g(41.7%)を緑色粉末として得た。
【0074】
この反応生成物のトルエン溶液中の吸収極大波長(λmax)及びグラム吸光係数(εg)は下記の通りであった。
λmax:717.0nm
εg:1.08×10mL/g.cm
【0075】
【発明の効果】
本発明の前記一般式(1)のフタロシアニン化合物とメタロセンアミドを反応させることにより近赤外線吸収材料用途に好適に用いられる前記一般式(4)のフタロシアニン化合物を高品質で収率良く製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a metallocene-substituted phthalocyanine compound using a novel iminomethyl-substituted phthalocyanine compound as an intermediate, and also relates to this novel iminomethyl-substituted phthalocyanine compound and a method for producing the same.
[0002]
The metallocene-substituted phthalocyanine compound produced by the production method of the present invention can be used as an information recording material (eg, optical card, organic photoconductor, laser thermal transfer recording, laser thermal recording, laser direct plate making, CD-R medium) using laser light. Etc.) and equipment that requires near-infrared absorption capability (for example, near-infrared absorption filters, heat ray shielding films, protective glasses, secret inks, agricultural films, etc.), and is useful as near-infrared absorbers.
[0003]
[Prior art]
Although a method for producing a phthalocyanine compound having a metallocenylcarbonyliminomethyl group represented by the following general formula (4) is not known, a method for producing such a phthalocyanine compound having a metallocenyl group is disclosed in, for example, Patent Document 1. Generally, a phthalocyanine compound represented by the following general formula (5) is reacted with a metalloceneamide in the presence of an acid catalyst.
[0004]
Embedded image
Figure 2004143086
[0005]
[In the formula (4), R 1 to R 4 each independently represent an alkyl group, M represents two hydrogen atoms, a divalent metal atom, a trivalent or tetravalent substituted metal atom, or an oxymetal. , X represents a metallocene compound, and n represents 1 or 2. ]
[0006]
Embedded image
Figure 2004143086
[0007]
[In formula (5), R 1 to R 4 each independently represent an alkyl group, M represents two hydrogen atoms, a divalent metal atom, a trivalent or tetravalent substituted metal atom, or an oxymetal. , N represents 1 or 2. ]
[0008]
However, this method produces a large amount of by-products and is insufficient in purity, yield, and reaction rate, and an improvement has been desired.
[0009]
[Patent Document 1]
JP 2001-522381 A
[Problems to be solved by the invention]
An object of the present invention is to provide a metallocene-substituted phthalocyanine compound represented by the general formula (4) having excellent near-infrared absorption capability, which suppresses the generation of by-products and provides novel production having excellent purity, yield, and reaction rate. Is to provide a way. Another object of the present invention is to provide a novel phthalocyanine intermediate used in this production method.
[0011]
[Means for Solving the Problems]
As a result of various studies to solve the above-described problems, the present inventors have obtained a novel metallocene-substituted phthalocyanine compound by reacting a novel compound, an iminomethyl-substituted phthalocyanine compound, with the metallocene amide as an intermediate. It has been found that it can be produced with high yield in a long time and with high quality.
[0012]
That is, the present invention firstly provides a novel phthalocyanine compound represented by the following formula (1):
Embedded image
Figure 2004143086
[0014]
[In the formula (1), R 1 to R 2 each independently represent an alkyl group, M represents two hydrogen atoms, a divalent metal atom, a trivalent or tetravalent substituted metal atom, or an oxymetal. , N represents 1 or 2. ]
And a metallocene amide represented by the following general formula (3). The method for producing a phthalocyanine compound represented by the following general formula (4).
[0015]
X-CONH 2 (3)
[In the formula (3), X represents a metallocenyl group which may have a substituent. ]
[0016]
Embedded image
Figure 2004143086
[In the formula (4), R 1 to R 4 each independently represent an alkyl group, M represents two hydrogen atoms, a divalent metal atom, a trivalent or tetravalent substituted metal atom, or an oxymetal. , X represents the same meaning as X in formula (3), and n represents 1 or 2.]
[0017]
The present invention also relates to a novel phthalocyanine compound represented by the above general formula (1), and a phthalocyanine compound represented by the following general formula (2) prepared from dimethylformamide or N-methylformanilide and phosphorus oxychloride. And then reacting with ammonia gas. The method for producing a phthalocyanine compound represented by the general formula (1), wherein the method comprises reacting a Vilsmeier reagent to be reacted with ammonia gas.
[0018]
Embedded image
Figure 2004143086
[0019]
[In formula (2), R 1 to R 4 each independently represent an alkyl group, and M represents two hydrogen atoms, a divalent metal atom, a trivalent or tetravalent substituted metal atom, or an oxymetal. . ]
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The novel phthalocyanine compound represented by the general formula (1) of the present invention will be described.
[0021]
In the phthalocyanine compound intermediate of the general formula (1), R 1 to R 4 are preferably a straight-chain or branched alkyl group having 1 to 18 carbon atoms, particularly preferably a straight-chain or branched alkyl group having 1 to 10 carbon atoms. preferable. Examples are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, iso-propyl, sec-butyl, t-butyl, neo-pentyl, 1,2-dimethylpropyl group, cyclohexyl group, 1,3-dimethylbutyl group, 1-iso-propylpropyl group, 1,2-dimethylbutyl group, 1,4-dimethylpentyl group, 2-methyl-1-iso -Propylpropyl group, 1-ethyl-3-methylbutyl group, 3-methyl-1-iso-propylbutyl group, 2-methyl-1-iso-propylbutyl group, 1-t-butyl-2-methylpropyl group, Examples thereof include an alkyl group such as a 2,4-dimethyl-3-propyl group, a 2-methylpentyl group, and a 2-ethylhexyl group.
[0022]
As the phthalocyanine compound represented by the general formula (1), a phthalocyanine compound represented by the following general formula (6) or an isomer mixture thereof is particularly preferable.
[0023]
Embedded image
Figure 2004143086
[0024]
[In the formula (6), R represents an alkyl group, M represents two hydrogen atoms, a divalent metal atom, a trivalent or tetravalent substituted metal atom, or an oxymetal, and n represents 1 or 2. Show. ]
[0025]
M is Cu, Zn, Fe, Co, Ni, Ru, Rh, Pd, Pt, Mn, Mg, Be, Ca, Ba, Cd, Hg, Pb, Al-Cl, In-Cl, FeCl, SnCl 2 , TiCl 2 , Si (OH) 2 , Mn (OH), VO, and TiO are preferred, and Cu, Zn, Ni, Pd, Pb, MnOH, AlCl, FeCl, InCl, SnCl 2 , VO or TiO are particularly preferred.
[0026]
Examples of the case where M is a divalent metal include Cu (II), Zn (II), Fe (II), Co (II), Ni (II), Ru (II), Rh (II), and Pd ( II), Pt (II), Mn (II), Mg (II), Ti (II), Be (II), Ca (II), Ba (II), Cd (II), Hg (II), Pb ( II), Sn (II) and the like. Examples of the monosubstituted trivalent metal include Al-Br, Al-F, Al-I, Ga-Cl, Ga-F, Ga-I, Ga-Br, In-Br, In-I, In-F, Tl-Cl, Tl-Br, Tl-I, Tl-F, Al-C 6 H 5, Al-C 6 H 4 (CH 3), In-C 6 H 5, In-C 6 H 4 (CH 3 ), In-C 10 H 7 , Mn (OH), Mn (OC 6 H 5), Mn [OSi (CH 3) 3], and the like RuCl.
[0027]
Examples of disubstituted tetravalent metals include CrCl 2 , SiCl 2 , SiBr 2 , SiF 2 , SiI 2 , ZrCl 2 , GeCl 2 , GeBr 2 , GeI 2 , GeF 2 , SnBr 2 , SnI 2 , SnF 2 , SnCl 2 , TiBr 2 , TiF 2 , Si (OH) 2 , Ge (OH) 2 , Zr (OH) 2 , Mn (OH) 2 , Sn (OH) 2 , TiR ′ 2 , CrR ′ 2 , SiR ′ 2 , SnR ′ 2 , GeR ′ 2 [R ′ represents an alkyl group, a phenyl group, a naphthyl group and derivatives thereof], Si (OR ″) 2 , Sn (OR ″) 2 , Ge (OR ″) 2 , Ti (OR ") 2, Cr (OR") 2 [R " is an alkyl group, an alkylcarbonyl group, a phenyl group, a naphthyl group, a trialkylsilyl group, Contact dialkyl alkoxysilyl group Beauty represents a derivative thereof], and the like.
[0028]
Examples of the case of oxymetal include VO, MnO, and TiO.
[0029]
Specific examples of the phthalocyanine compound of the present invention represented by the general formula (1) are shown below.
[0030]
Embedded image
Figure 2004143086
[0031]
[Table 1]
Figure 2004143086
[0032]
[Table 2]
Figure 2004143086
[0033]
The phthalocyanine compound of the general formula (1) of the present invention can be easily produced by the following method. That is, a phthalocyanine compound represented by the general formula (2) is reacted with a Vilsmeier reagent prepared from dimethylformamide or N-methylformanilide and phosphorus oxychloride in an appropriate solvent, and then ammonia gas is removed. A production method characterized by reacting.
[0034]
Embedded image
Figure 2004143086
Wherein (2), R 1 ~R 4 , M have the same meanings as R 1 to R 4, M in the formula (1). ]
[0035]
Here, the phthalocyanine compound of the formula (2) used as a raw material can be easily produced by a known method, for example, a method described in JP-A-5-247363.
[0036]
The Vilsmeier reagent is prepared by adding 0.1 to 1 equivalent of phosphorus oxychloride to dimethylformamide or N-methylformanilide. The preparation temperature is 0 ° C to 50 ° C, preferably 0 ° C to 30 ° C. The preparation time is preferably from 5 minutes to 10 hours, more preferably from 30 minutes to 5 hours.
[0037]
Examples of the solvent include polar solvents such as pyridine, dimethylformamide, dimethylacetamide, dimethylsulfoxide, N, N'-dimethylimidazolidinone, and sulfolane; and aromatic solvents such as benzene, toluene, xylene, trimethylbenzene, chlorobenzene, dichlorobenzene, and nitrobenzene. Hydrocarbon solvents are preferred, with benzene, toluene, xylene, trimethylbenzene, chlorobenzene, dichlorobenzene or nitrobenzene being particularly preferred.
[0038]
The reaction temperature in the step of reacting the phthalocyanine compound represented by the general formula (2) with the Vilsmeier reagent is from 0 ° C to the reflux temperature of the solvent, preferably from 20 ° C to 80 ° C. The reaction time is preferably from 30 minutes to 72 hours, more preferably from 2 to 24 hours.
[0039]
The used amount of the Vilsmeier reagent is 1 to 30 equivalents, preferably 1 to 15 equivalents.
[0040]
Next, the reaction solution after the reaction of the Vilsmeier reagent with the phthalocyanine compound of the general formula (2) is reacted with ammonia to perform iminoization. The reaction temperature in the imination step is 0 ° C to 50 ° C, preferably 20 ° C to 30 ° C. The reaction time is preferably 30 minutes to 72 hours, more preferably 1 to 12 hours.
[0041]
Usually, ammonia gas is used as ammonia and introduced into a reaction solution to cause a reaction. The amount of ammonia gas used is 3 to 20 equivalents, preferably 5 to 10 equivalents, of the Vilsmeier reagent.
The amount of the solvent used is 1 to 100 times, preferably 5 to 20 times the mass of the phthalocyanine compound of the general formula (2).
The post-treatment is obtained by removing inorganic substances such as ammonium chloride generated from the reaction solution, adding a poor solvent such as ligroin to the residue obtained by distilling off the reaction solvent, and collecting the precipitate by filtration.
[0042]
Then, a phthalocyanine compound represented by the following general formula (4) can be produced by reacting the phthalocyanine compound represented by the general formula (1) with a metallocene amide represented by the following general formula (3).
[0043]
The method for producing the phthalocyanine compound of the general formula (4) of the present invention will be described below.
In the production method of the present invention, the phthalocyanine compound of the general formula (1) is reacted with the metalloceneamide of the general formula (3) in a suitable solvent, preferably in the presence of an acid catalyst.
[0044]
X-CONH 2 (3)
[In the formula (3), X represents a metalloenyl group which may have a substituent, particularly a group derived from a metallocene compound represented by the following general formula (7). ]
M '(Cp) n' (7)
[M 'represents a metal, Cp represents a cyclopentadienyl group which may have a substituent, and n' represents 2 or 3. ]
[0045]
Here, M ′ is preferably Fe, Co, Ni, Ru, Os, Mn, Cr, W, V, Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Er, Tm, and Yb. , Co, Ni, Ru, Os, Mn, Cr, W and V are particularly preferred. Examples of the substituent that the metallocenyl group may have include an alkyl group such as a methyl group and an ethyl group, an acetyl group, and a benzoyl group.
[0046]
Embedded image
Figure 2004143086
[In the formula (4), R 1 to R 4 , M, X, and n represent the same as described above. ]
[0047]
The amount of the metallocene amide represented by the general formula (3) relative to the phthalocyanine compound represented by the general formula (1) is 1 to 20 equivalents, preferably 1 to 10 equivalents.
[0048]
As the solvent, an aromatic hydrocarbon solvent such as benzene, toluene, xylene, trimethylbenzene, chlorobenzene, dichlorobenzene, and nitrobenzene can be used. The amount of the solvent to be used is 1 to 100 times by mass, preferably 5 to 20 times by mass with respect to the phthalocyanine compound of the general formula (1).
[0049]
Organic acids such as benzenesulfonic acid, toluenesulfonic acid and methanesulfonic acid, and inorganic acids such as sulfuric acid and phosphoric acid can be used as the acid catalyst.
[0050]
The reaction temperature is from 0 ° C to the reflux temperature of the solvent, preferably from 20 ° C to the reflux temperature of the solvent.
[0051]
The reaction time is preferably from 30 minutes to 72 hours, more preferably from 2 to 24 hours.
[0052]
As the post-treatment, the target product can be obtained by distilling off the solvent after the reaction or discharging the reaction solution into a poor solvent for the phthalocyanine compound and collecting the precipitate by filtration. Further, by purifying this product further by recrystallization or column chromatography, a higher-purity target product can be obtained.
[0053]
The phthalocyanine compound of the general formula (4) is prepared by reacting a phthalocyanine compound of the general formula (2) with a Vilsmeier reagent prepared from dimethylformamide or N-methylformanilide and phosphorus oxychloride, and then reacting with ammonia gas. After removing the inorganic substance generated from the liquid, the metalloceneamide of the general formula (3) can be further added and reacted without isolating the generated phthalocyanine of the general formula (1).
[0054]
Table 2 shows specific examples of the phthalocyanine compound of the general formula (4) produced in the present invention.
[0055]
Embedded image
Figure 2004143086
[0056]
[Table 3]
Figure 2004143086
[0057]
[Table 4]
Figure 2004143086
[0058]
The phthalocyanine compound of the general formula (4) obtained by the production method of the present invention can be used for an information recording material (for example, an optical card, an organic photoconductor, a laser thermal transfer recording, a laser thermal recording, a laser direct plate making, It has sufficient purity for uses such as CD-R media) and equipment that requires near-infrared absorption capability (eg, near-infrared absorption filter, heat ray shielding film, protective glasses, secret ink, agricultural film, etc.). And the yield is high, the production method of the present invention is a very useful production method.
[0059]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
[0060]
Example 1 Synthesis of Phthalocyanine Compound of General Formula (1) (Specific Example 1-15)
10.32 g (10 mmol) of tetra- (α-2,4-dimethyl-3-pentyloxy) copper phthalocyanine produced according to the method described in JP-A-5-247363 was dissolved in 50 mL of toluene, and N-methylformanilide was added. After adding 1 g (60 mmol), 9.2 g (60 mmol) of phosphorus oxychloride was added dropwise at room temperature for 20 minutes. The mixture was further stirred at 40 to 50 ° C for 20 hours. After cooling, ammonia gas was introduced into the reaction solution at 5 ° C. or lower at a flow rate of 200 ml / min for 1 hour. After the precipitated inorganic substance was removed by filtration, toluene was distilled off, and 30 mL of ligroin was added to the residue, followed by cooling. The precipitated crystals were collected by filtration and dried to obtain 9.3 g (yield: 87.9%) of the specific compound (1-15) as a dark green powder.
The elemental analysis value, absorption maximum wavelength (λmax) and gram extinction coefficient (εg) of this compound in a toluene solution were as follows.
[0062]
[Table 5]
Figure 2004143086
[0063]
[Example 2] Synthesis of phthalocyanine compound of general formula (1) (the above specific example 1-20) In Example 1, tetra- (α-2,4-dimethyl-3-pentyloxy) copper phthalocyanine was obtained in an amount of 10.32 g. The same operation as in Example 1 except that 10.36 g (10 mmol) of tetra- (α-2,4-dimethyl-3-pentyloxy) vanadyl phthalocyanine produced according to the method described in JP-A-5-247363 was used instead. Was carried out to obtain 9.0 g (yield 84.6%) of the specific compound (1-20) as a green powder.
The elemental analysis value, absorption maximum wavelength (λmax) and gram extinction coefficient (εg) of this compound in a toluene solution were as follows.
[0064]
[Table 6]
Figure 2004143086
[0065]
[Example 3] Synthesis of phthalocyanine compound of general formula (4) (the specific example 2-15) 10.6 g (10 mmol) of the phthalocyanine compound of the specific example 1-15 produced in Example 1 was dissolved in 50 mL of toluene. , 0.1 g of methanesulfonic acid and 3.44 g (15 mmol) of ferroceneamide were added, and the mixture was refluxed for 5 hours. After cooling, unreacted ferroceneamide was removed by filtration, and then 6 g of activated carbon was added and refluxed for 1 hour. Then, the activated carbon was removed by filtration, and toluene was distilled off. After adding 200 ml of methanol to the residue and refluxing for 1 hour, the mixture was cooled to room temperature, and the crystals were collected by filtration and dried to obtain 11.3 g (88.8%) of the specific compound (2-15) as a green powder.
The elemental analysis value, absorption maximum wavelength (λmax) and gram extinction coefficient (εg) of this compound in a toluene solution were as follows.
[0066]
[Table 7]
Figure 2004143086
[0067]
Example 4 Synthesis of Phthalocyanine Compound of General Formula (4) (Specific Example 2-20) Instead of 10.6 g (10 mmol) of the phthalocyanine compound of Specific Example 1-15 produced in Example 1 in Example 3 In the same manner as in Example 1 except that 10.63 g (10 mmol) of the phthalocyanine compound of Specific Example 1-20 produced in Example 2 was used, 11.0 g (86 .3%) as a green powder.
The elemental analysis value, absorption maximum wavelength (λmax) and gram extinction coefficient (εg) of this compound in a toluene solution were as follows.
[0068]
[Table 8]
Figure 2004143086
[0069]
Example 5 Synthesis of phthalocyanine compound (2-15) of general formula (4) Tetra- (α-2,4-dimethyl-3-pentyloxy) copper phthalocyanine produced according to the method described in JP-A-5-247363 10.32 g (10 mmol) was dissolved in 50 mL of toluene, 8.1 g (60 mmol) of N-methylformanilide was added, and 9.2 g (60 mmol) of phosphorus oxychloride was added dropwise at room temperature for 20 minutes. The mixture was further stirred at 40 to 50 ° C for 20 hours. After cooling, ammonia gas was introduced into the reaction solution at 5 ° C. or lower at a flow rate of 200 ml / min for 1 hour. After removing the precipitated inorganic substance by filtration, 6.87 g (30 mmol) of ferroceneamide was added, and the mixture was stirred under reflux for 5 hours. After cooling, unreacted ferroceneamide was removed by filtration, and the filtrate was washed with water, 6 g of activated carbon was added, and the mixture was refluxed for 1 hour. Then, the activated carbon was removed by filtration, and toluene was distilled off. 200 ml of methanol was added to the residue, refluxed for 1 hour, cooled to room temperature, and the crystals were collected by filtration and dried to obtain 10.9 g (85.8%) of the specific compound (2-15) as a green powder.
The elemental analysis value, absorption maximum wavelength (λmax) and gram extinction coefficient (εg) of this compound in a toluene solution were as follows.
[0070]
[Table 9]
Figure 2004143086
[0071]
[Example 6] Synthesis of phthalocyanine compound (2-20) of general formula (4) In Example 5, instead of 10.32 g of tetra- (α-2,4-dimethyl-3-pentyloxy) copper phthalocyanine, The same operation as in Example 5 was performed except that 10.36 g (10 mmol) of tetra- (α-2,4-dimethyl-3-pentyloxy) vanadyl phthalocyanine produced according to the method described in JP-A-5-247363 was used. 10.1 g (79.2%) of the specific compound (2-20) was obtained as a green powder.
The elemental analysis value, absorption maximum wavelength (λmax) and gram extinction coefficient (εg) of this compound in a toluene solution were as follows.
[0072]
[Table 10]
Figure 2004143086
[0073]
Comparative Example 1 Synthesis of Phthalocyanine Compound (2-15) of General Formula (4) Monoformyl-tetra- (α-2,4-dimethyl-3-pentyloxy) produced by the method described in JP-T-2001-522381. 10.6 g (10 mmol) of copper phthalocyanine was dissolved in 30 mL of toluene, 0.3 g of toluenesulfonic acid and 6.87 g (30 mmol) of ferroceneamide were added, and the mixture was stirred under reflux for 20 hours. After removing unreacted ferroceneamide by filtration, the filtrate was washed with water, 6 g of activated carbon was added, and the mixture was refluxed for 1 hour. Then, the activated carbon was removed by filtration, and then toluene was distilled off. After adding 200 ml of methanol to the residue and refluxing for 1 hour, the mixture was cooled to room temperature, the crystals were collected by filtration, and dried to obtain 5.3 g (41.7%) of the specific compound (2-15) as a green powder.
[0074]
The maximum absorption wavelength (λmax) and gram extinction coefficient (εg) of this reaction product in a toluene solution were as follows.
λmax: 717.0 nm
εg: 1.08 × 10 5 mL / g. cm
[0075]
【The invention's effect】
By reacting the phthalocyanine compound of the general formula (1) of the present invention with a metalloceneamide, it is possible to produce the phthalocyanine compound of the general formula (4), which is suitably used for near-infrared absorbing materials, with high quality and high yield. it can.

Claims (8)

下記一般式(1)で表わされるフタロシアニン化合物
Figure 2004143086
〔式(1)中、R〜Rは各々独立にアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価または4価の置換金属原子、またはオキシ金属を表し、nは1又は2を示す〕
Phthalocyanine compound represented by the following general formula (1)
Figure 2004143086
[In formula (1), R 1 to R 4 each independently represent an alkyl group, M represents two hydrogen atoms, a divalent metal atom, a trivalent or tetravalent substituted metal atom, or an oxymetal. , N represents 1 or 2]
〜Rが炭素数1〜18の直鎖又は分岐のアルキル基である請求項1記載のフタロシアニン化合物。The phthalocyanine compound according to claim 1, wherein R 1 to R 4 are a linear or branched alkyl group having 1 to 18 carbon atoms. MがCu、Zn、Ni、Pd、Pb、MnOH、AlCl、FeCl、InCl、SnCl、VO又はTiOである請求項1又は2記載のフタロシアニン化合物。M is Cu, Zn, Ni, Pd, Pb, MnOH, AlCl, FeCl, InCl, SnCl 2, VO , or claim 1 or 2 phthalocyanine compound wherein the TiO. 下記一般式(2)で表されるフタロシアニン化合物にジメチルホルムアミド又はN−メチルホルムアニリドとオキシ塩化リンから調製されるフィルスマイヤー(Vilsmeier)試薬を反応させ、次いでアンモニアガスを反応させることを特徴とする請求項1に記載の一般式(1)のフタロシアニン化合物の製造方法。
Figure 2004143086
〔式(2)中、R〜Rは各々独立にアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価または4価の置換金属原子、またはオキシ金属を表す。〕
The phthalocyanine compound represented by the following general formula (2) is reacted with dimethylformamide or N-methylformanilide and a Vilsmeier reagent prepared from phosphorus oxychloride, and then reacted with ammonia gas. A method for producing the phthalocyanine compound of the general formula (1) according to claim 1.
Figure 2004143086
[In formula (2), R 1 to R 4 each independently represent an alkyl group, and M represents two hydrogen atoms, a divalent metal atom, a trivalent or tetravalent substituted metal atom, or an oxymetal. . ]
反応溶媒に芳香族炭化水素溶媒としてベンゼン、トルエン、キシレン、トリメチルベンゼン、クロロベンゼン、ジクロロベンゼン或いはニトロベンゼンを用いることを特徴とする請求項4に記載の方法。The method according to claim 4, wherein benzene, toluene, xylene, trimethylbenzene, chlorobenzene, dichlorobenzene or nitrobenzene is used as an aromatic hydrocarbon solvent as a reaction solvent. 請求項1の一般式(1)で表されるフタロシアニン化合物と一般式(3)で表されるメタロセンアミドを反応させることを特徴とする下記一般式(4)で表されるフタロシアニン化合物の製造方法。
X−CONH   (3)
〔式(3)中、Xは置換基を有していてもよいメタロセニル基を表す。〕
Figure 2004143086
[式(4)中、R〜Rは各々独立にアルキル基を表し、Mは2個の水素原子、2価の金属原子、3価または4価の置換金属原子、またはオキシ金属を表し、Xは式(3)中のXと同一の意味を表し、nは1又は2を示す]
A method for producing a phthalocyanine compound represented by the following general formula (4), wherein the phthalocyanine compound represented by the general formula (1) is reacted with a metallocene amide represented by the general formula (3). .
X-CONH 2 (3)
[In formula (3), X represents a metallocenyl group which may have a substituent. ]
Figure 2004143086
[In the formula (4), R 1 to R 4 each independently represent an alkyl group, M represents two hydrogen atoms, a divalent metal atom, a trivalent or tetravalent substituted metal atom, or an oxymetal. , X represents the same meaning as X in the formula (3), and n represents 1 or 2.]
酸触媒の存在下に反応させることを特徴とする請求項6に記載の方法。The method according to claim 6, wherein the reaction is carried out in the presence of an acid catalyst. 反応溶媒に芳香族炭化水素溶媒としてベンゼン、トルエン、キシレン、トリメチルベンゼン、クロロベンゼン、ジクロロベンゼン或いはニトロベンゼンを用いることを特徴とする請求項6または7に記載の方法。8. The method according to claim 6, wherein benzene, toluene, xylene, trimethylbenzene, chlorobenzene, dichlorobenzene or nitrobenzene is used as an aromatic hydrocarbon solvent as a reaction solvent.
JP2002310178A 2002-10-24 2002-10-24 Iminomethyl-substituted phthalocyanine compound and method for producing metallocene-substituted phthalocyanine compound using the same Expired - Fee Related JP4259849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310178A JP4259849B2 (en) 2002-10-24 2002-10-24 Iminomethyl-substituted phthalocyanine compound and method for producing metallocene-substituted phthalocyanine compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310178A JP4259849B2 (en) 2002-10-24 2002-10-24 Iminomethyl-substituted phthalocyanine compound and method for producing metallocene-substituted phthalocyanine compound using the same

Publications (2)

Publication Number Publication Date
JP2004143086A true JP2004143086A (en) 2004-05-20
JP4259849B2 JP4259849B2 (en) 2009-04-30

Family

ID=32455769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310178A Expired - Fee Related JP4259849B2 (en) 2002-10-24 2002-10-24 Iminomethyl-substituted phthalocyanine compound and method for producing metallocene-substituted phthalocyanine compound using the same

Country Status (1)

Country Link
JP (1) JP4259849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332261B2 (en) * 2002-02-15 2008-02-19 Ciba Specialty Chemicals Corporation Phthalocyanine compound, process for preparing the same, and optical recording medium containing the same
EP2154140A1 (en) * 2008-08-14 2010-02-17 Orgchem Technologies, Inc. Metallocenyl phthalocyanine compounds and use thereof in optical recording media
WO2015111531A1 (en) * 2014-01-21 2015-07-30 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut-off filter and method for manufacturing same, and camera module and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7332261B2 (en) * 2002-02-15 2008-02-19 Ciba Specialty Chemicals Corporation Phthalocyanine compound, process for preparing the same, and optical recording medium containing the same
EP2154140A1 (en) * 2008-08-14 2010-02-17 Orgchem Technologies, Inc. Metallocenyl phthalocyanine compounds and use thereof in optical recording media
WO2015111531A1 (en) * 2014-01-21 2015-07-30 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut-off filter and method for manufacturing same, and camera module and method for manufacturing same
JP2016006476A (en) * 2014-01-21 2016-01-14 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut-off filter and method for manufacturing the same, and camera module and method for manufacturing the same

Also Published As

Publication number Publication date
JP4259849B2 (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP2006321925A (en) Method for producing tetraazaporphyrin compound
JP4259849B2 (en) Iminomethyl-substituted phthalocyanine compound and method for producing metallocene-substituted phthalocyanine compound using the same
JPH11349588A (en) Production of phthalocyanine derivative
US5064951A (en) Naphthalocyanine compound and production thereof
JP3583162B2 (en) Phthalonitrile compound, diiminoisoindoline compound, phthalocyanine near-infrared absorber, and methods for producing them
Orzeszko et al. Investigation of the thionation reaction of cyclic imides
JP2698067B2 (en) Phthalocyanine compound and method for producing the same
CN113549083B (en) Phthalocyanine compound, preparation method thereof and optical filter
JP2009057430A (en) Phthalocyanine compound
JP3839073B2 (en) Phthalonitrile compound, diiminoisoindoline compound, phthalocyanine near-infrared absorbing material, and production method thereof
JPH0348661A (en) New pyridinedithiol compound and its production
JPH0435515B2 (en)
JP2004149752A (en) Alpha-tetra(fluoroalkoxy)-substituted phthalocyanine compound
JP4437637B2 (en) Method for producing phthalocyanines
JPH1088017A (en) Production of naphthalocyanine compound
JP3270695B2 (en) Method for producing vanadyl naphthalocyanine compound
JPH0796540B2 (en) Phthalocyanine compound and its intermediate
JP2002255968A (en) Calix arene-substituted phthalocyanine derivative and method for producing the same
JP2002226482A (en) Method for producing phthalocyanines
JP3780436B2 (en) Process for producing α-tetrasubstituted phthalocyanine
D'Ascanio A study of solvent and metal effects on the formation of phthalocyanines at room temperature
JPH02240167A (en) Azaannulene compound
JP3893712B2 (en) Dicyanophenothiazine compound and process for producing the same
JPH11310583A (en) Production of compound capable of absorbing near infrared ray
JP3780435B2 (en) Process for producing α-tetrasubstituted phthalocyanine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees