JP2004128286A - Chip-like electronic component and manufacturing method thereof, pseudo wafer used for the manufacturing and manufacturing method thereof, and mounting structure - Google Patents

Chip-like electronic component and manufacturing method thereof, pseudo wafer used for the manufacturing and manufacturing method thereof, and mounting structure Download PDF

Info

Publication number
JP2004128286A
JP2004128286A JP2002291736A JP2002291736A JP2004128286A JP 2004128286 A JP2004128286 A JP 2004128286A JP 2002291736 A JP2002291736 A JP 2002291736A JP 2002291736 A JP2002291736 A JP 2002291736A JP 2004128286 A JP2004128286 A JP 2004128286A
Authority
JP
Japan
Prior art keywords
chip
protective
electronic component
manufacturing
pseudo wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291736A
Other languages
Japanese (ja)
Inventor
Ayumi Senda
仙田 亜由美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002291736A priority Critical patent/JP2004128286A/en
Publication of JP2004128286A publication Critical patent/JP2004128286A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/96Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being encapsulated in a common layer, e.g. neo-wafer or pseudo-wafer, said common layer being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/12105Bump connectors formed on an encapsulation of the semiconductor or solid-state body, e.g. bumps on chip-scale packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the reliability in wiring formation or device characteristics by effectively preventing a void or a weld from being generated on a plate of a protecting material, reducing a step between a chip component and the protecting material, and preventing the protecting material from invading an electrode surface. <P>SOLUTION: On a wafer 1, a plurality of or a plurality of kinds of semiconductor chips 3, 3' are fixed while turning their electrode surfaces downwards, lateral sides 39 of the chip components 3, 3' are coated with a resin 38 as a isolator to surround an electrode pad 5, a plate 4 of the protecting material is mounted approximately all over the surface including a gap of the semiconductor chips around the resin 38, and a pseudo wafer 49 formed by mounting the plate 4 continuously between the semiconductor chips and over their rear surfaces is released from a wafer 1. Further, after the step of releasing the pseudo wafer 49, the pseudo wafer 49 is cut between the plurality of or the plurality of kinds of semiconductor chips to separate the chip-like electronic components 46. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、半導体装置の製造に好適なチップ状電子部品及びその製造方法、その製造に用いる疑似ウェーハ及びその製造方法、並びにチップ状電子部品を接続固定した実装構造に関するものである。
【0002】
【従来の技術】
従来、デジタルビデオカメラやデジタル携帯電話、更にノートPC(PersonalComputer)等に代表される携帯用電子機器の、小型化や薄型化、軽量化に対する要求は強く、半導体部品の表面実装密度をいかに向上させるかが重要なポイントである。この為、パッケージIC(QFP(Quad Flat Package)等)に代る、より小型のCSP(Chip Scale Package)の開発や一部での採用が既に進められているが、究極の半導体高密度実装を考えると、ベアチップ実装でしかもフリップチップ方式による接続技術の普及が強く望まれる。
【0003】
なお、前記フリップチップ実装におけるバンプ形成技術には、一般にAl電極パッド上にAu−Stud Bump法や電解めっき法によってAuバンプを形成する方法や、電解めっき法や蒸着法等ではんだバンプを一括して形成する方法が代表的である。しかし、民生用では、より低コストのフリップチップ実装の場合に、チップにしてからバンプを形成(Au−Stud Bump法がその代表例である)するのではなく、ウェーハ状態で一括してバンプを形成する方法が望ましい。
【0004】
このようなウェーハ一括処理法は、近年のウェーハの大口径化(150mmφ→200mmφ→300mmφ)と、LSI(大規模集積回路)チップの接続ピン数の増加傾向とを考えれば、当然の方向性である。
【0005】
以下に、従来のバンプ形成方法を説明する。例えば、図8には、低コスト化を目指して、Ni無電解めっきとはんだペーストの印刷とでウェーハ一括でバンプを形成する工程を示す。図4(a)は、SiO膜が形成されたSi基板(ウェーハ)を示し、同図(b)はその電極を含むチップ部分を拡大したものである。図4(a)、(b)において、51はSi基板(ウェーハ)、55はAl電極パッド、その他はSiO膜、Si、SiO膜やポリイミド膜から成るパッシベーション膜である。
【0006】
図4(c)では、Ni無電解めっき法により、開口されたAl電極パッド55の上面のみに、選択的にNi無電解めっき層(UBM:Under Bump Metal)が形成されている。このNi無電解めっき層(UBM)は、Al電極パッド55面をリン酸系エッチ液で前処理した後に、Zn処理によりZnを置換析出させ、さらに、Ni−Pめっき槽に浸漬することによって容易に形成でき、Al電極パッド55とはんだバンプとの接続を助けるUBMとして作用する。
【0007】
図4(d)は、メタルスクリーンマスク52を当てて、はんだペースト59を印刷法によりNi無電解めっき層(UBM)上に転写した状態を示す。図4(e)は、ウエットバック(加熱溶融)法ではんだペースト59を溶融して、はんだバンプ62を形成したものである。このように、Ni無電解めっき法及びはんだペーストスクリーン印刷法等を用いることにより、フォトプロセスを用いずに、簡単にはんだバンプ62を形成することができる。そして、この状態でスクライブラインに沿って切断して個片化し、個々のベアチップに加工する。
【0008】
他方、CSPは、1ケ1ケのLSIをいかに小さくして高密度で実装するかのアプローチであるが、デジタル機器の回路ブロックを見た場合、いくつかの共通回路ブロックで成り立っており、これらをマルチチップパッケージとしたり、モジュール化(MCM:Multi Chip Module)する技術も登場している。デジタル携帯電話におけるSRAM(スタティック・ラム)、フラッシュメモリー、マイコンの1パッケージ化等はその一例である。
【0009】
このMCM技術は、半導体部品や受動部品を複数個配置し、これらの部品を相互に電気的に接続して一つのモジュールとするものであって、最近の1チップシステムLSIにおいても大きな利点を発揮するものと期待されている。即ち、メモリーやロジック、更にアナログLSIを1チップ化する場合は、異なったLSI加工プロセスを同一ウェーハプロセスで処理することとなり、マスク数や工程数の著しい増加と開発TAT(Turn around time)の増加が問題となり、歩留りの低下も大きな懸念材料である。
【0010】
このために、各LSIを個別に作り、MCM化する方式が有力視されている。こうしたMCM化技術の例を図5に示す。
【0011】
ワイヤーボンディング方式と比べて、図5(a)、(b)、(c)に示すフリップチップ方式では、回路基板60上の電極63にフェイスダウンで半導体チップ64を接続するものであり、より小型化、薄型化にとって有利な方式である。今後の高速化での接続距離の縮小や各接続インピーダンスのバラツキを考えても、フリップチップ方式に変わっていくものと思われる。
【0012】
フリップチップ方式のMCMは、複数の異種のLSIについて各々のLSIのAl電極パッド55の面にAu−Stud Bumpを形成し、異方性導電フィルム(ACF:Aniso Conductive Film)を介して回路基板と接続する方法や、樹脂ペーストを用いて圧接する方法、更にバンプとしてAuめっきバンプやNi無電解めっきバンプ、はんだバンプを用いる方法等、種々のものが提案されている。図5(c)は、はんだバンプ65による基板60との金属間接合で、より低抵抗で確実に接合させた例である。
【0013】
上記した各バンプ形成法は既に完成されていて、量産ベースの技術として活用が始まっている。例えば、ウェーハ一括のはんだバンプ形成法は実装面でエリアパッド配置にも適用でき、一括リフローや両面実装が可能である等の利点がある。しかし、最先端の歩留まりが低いウェーハに対して処理をすると、良品チップ1個当たりのコストは極めて高くなる。
【0014】
即ち、図6には、従来のウェーハ一括処理における半導体ウェーハ53を示すが、最先端LSIでは高歩留りが必要とされるにも拘らず、スクライブライン21で仕切られたチップの内、×印で示す不良品チップ20の数が○印で示す良品チップ3の数より多くなるのが実情である。
【0015】
また、チップをベアチップの形で他所から入手した場合のバンプ形成は極めて難しいという問題があった。即ち、上記した2種類のバンプ形成方法は各々特徴を持つが、全ての領域に使える技術ではなく、各々の特徴を活かした使い分けをされるのが現状である。ウェーハ一括バンプ処理法は、歩留まりが高く、ウェーハ1枚の中に占める端子数が多い場合(例えば50000端子/ウェーハ)や、エリアパッド対応の低ダメージバンプ形成に特徴を発揮する。又、Auスタッドバンプは、チップ単位で入手した場合のバンプ処理や、簡便なバンプ処理に特徴を発揮している。
【0016】
なお、図6に示した半導体ウェーハ53をスクライブライン21に沿って切断すると、切断の影響でチップにストレス、亀裂等のダメージが生じて、故障の原因になることがある。さらに、良品チップ3及び不良品チップ20を共に半導体ウェーハ53として一括ではんだバンプ形成まで工程を進行させると、不良品チップ20に施した工程が無駄になり、これもコストアップの原因となる。
【0017】
また、特開平9−260581号公報には、Siウェーハ上に複数の半導体チップを接着固定し、これをアルミナの如き基板上に設けた樹脂に加圧下で埋め込んでから剥離することにより、ウェーハの表面を平坦にし、フォトリソグラフィの技術によりこのウェーハ上で素子間の接続用の配線層を形成する方法が示されている。
【0018】
この公知の方法によれば、ウェーハの一括処理が可能となり、大量生産による低価格化を達成できるとしているが、ウェーハにおいて個々の半導体チップの裏面側には上記のアルミナの如き硬質の基板が存在しているために、スクライビング時にチップ間の樹脂と共に、裏面側の硬質の基板も切断しなければならず、切断用のブレードが破損するおそれがある。しかもチップの側面は樹脂で覆われてはいるが、裏面は樹脂とは異質の硬質の基板が存在しているだけであるため、チップの裏面側は有効に保護されないことがあり、また両者間の密着性が悪くなる。
【0019】
【発明に至る経過】
そこで、本出願人は、上記のような従来の実情に鑑みて、ウェーハ一括処理の特徴を生かしつつ、最先端のLSIやベアチップで入手した場合でも、高歩留り、低コストにして信頼性良く提供可能でMCM化に好適な半導体チップ等のチップ状電子部品を特願2000−122112号において既に提起した。
【0020】
この先願に係る発明(以下、先願発明と称する。)に基づく好ましい実施の形態の一例を図7〜図10について説明する。
【0021】
まず、図7(a)に示す基板1上に、図7(b)のように、アクリル系等の粘着テープ(又はシート)2を貼り付ける。この場合、基板1は、仮の支持基板となるものであって石英基板1であってよい。但し、基板への加熱プロセスは400℃以下で行われるため、より安価なガラス基板も使用でき、また、この石英基板は繰り返し使用できる。また、粘着テープ(又はシート)2は、通常のダイシングで用いられていて、紫外線を照射されると粘着力が低下する例えばアクリル系であってよい。
【0022】
次に、図6に示した如き半導体ウェーハ53より切り出された後、オープン/ショート或いはDC(直流)電圧測定で良品と確認された良品の半導体ベアチップ(又はLSIチップ)3a、3bのみを、そのチップ表面(デバイス面又は電極面)28を下にして、図7(c)のように基板1上の粘着テープ(又はシート)2に等間隔に配列して貼り付ける。なお、基板1は、円形の石英基板であってよいが、角型のより大きなガラス基板を用いることにより、限られた面積に多数の良品チップを貼り付けると、その後の工程におけるコストメリットをより発揮することができる。
【0023】
次に、図7(d)のように、チップ3a、3b上から有機系絶縁性樹脂、例えばエポキシ樹脂又はアクリル系等の樹脂4を均一に塗布する。この塗布はスピンコート法か印刷法で容易に実現できる。
【0024】
次に、図7(e)のように、基板1の裏側31より紫外線を照射して、粘着テープ(又はシート)2の粘着力を弱くして、樹脂(以下、プレート材と称することがある。)4で側面及び裏面が連続して固められた複数の良品のベアチップ3a、3bからなる疑似ウェーハ29を基板1から接着面30又はデバイス面28で剥離する。この疑似ウェーハ29の一例をその斜視図及び一部拡大平面図として図10に示す。こうした疑似ウェーハを以下、プレートと称することがある。
【0025】
次に、図8(f)のように、良品ベアチップ表面28(デバイス面)が上になるように疑似ウェーハ29を上下反転させる。疑似ウェーハ29は同図に拡大して示すように、Si基板上にSiO膜を介してAl電極パッド5及びパッシベーション膜が形成されたものである。
【0026】
次に、図8(g)のように、MCM化のために、良品ベアチップ間において絶縁層上に、各パッド5を接続するためのAl又はCuの配線33を常法のフォトリソグラフィー技術によって形成する。
【0027】
次に、図8(h)に概略図示するように、必要とあれば配線33上にバンプ電極12を一括して形成した後、ブレード42(又はレーザ光照射)によってダイシング11を行い、個片化された良品チップ状電子部品26とする。
【0028】
なお、図9(g1)〜図9(g2)のように、既述した図4(c)〜(e)と同じ処理を施してもよい。即ち、UBMとなるNi無電解めっき処理を施した後、印刷マスク8を用いたはんだペースト9の印刷転写、更にはウエットバック法によるはんだバンプ12の形成を行ってもよい。
【0029】
上記のようにして、低歩留まりの最先端のLSIや他社から入手したチップであっても、良品のチップ3a、3bのみを再び基板1に貼り付けて、あたかも100%良品ベアチップのみで構成された疑似ウェーハ29を作製し、ウェーハ一括の低コストの配線及びバンプ形成が可能になる。
【0030】
そして、図8(g)において、プローブ検査による電気的特性の測定やバーンインを行って、図7(c)の工程前に良品ベアチップを選別したことに加えて、更により確実に良品チップのみを選別できる。
【0031】
図8(h)のようにして個片化された良品チップ状電子部品26は、図5に示したように配線基板(回路基板)上にマウントする。
【0032】
この際、良品チップ状電子部品26の側面と裏面はプレート材4で覆われているため、配線基板(実装基板)への実装時にチップ状電子部品26の吸着等のハンドリング等を行う際、チップ部品3a、3bがダメージを受けることがなく、そのために、高い信頼性を持つフリップチップ実装が期待できる。
【0033】
上述したように、先願発明によれば、良品の半導体チップをウェーハより切り出して、基板に等間隔で再配列して貼り付け、プレート材の塗布後に剥離して、あたかも全品が良品チップである疑似ウェーハを得るため、良品チップに対するウェーハ一括でのはんだバンプ処理等が可能となり、低コストのフリップチップ用はんだバンプチップを形成できる。また、自社製ウェーハのみならず、他社から購入したベアチップでも容易にはんだバンプ処理等が可能になる。
【0034】
また、プレート材によってチップ側面及び裏面が覆われているので、Ni無電解めっき処理も可能であると共に、プレート材によってチップ側面及び裏面が保護されているので、チップの個片化後の実装ハンドリングにおいてもチップが保護されて、良好な実装信頼性が得られる。良品チップを貼り付ける基板は疑似ウェーハ剥離後は繰り返し使用できて、バンプ形成等のコストや環境面で有利である。
【0035】
また、ウェーハ一括処理による低コストバンプ処理の特徴を活かして、最先端のLSIやベアチップの形で入手したチップでも使え、汎用性の高い新しいバンプ形成法を提供できる。また、半導体チップを疑似ウェーハから切り出す際に、プレート材(樹脂)の部分のみを切断するので、切断を容易に行え、ブレードの破損もなく、半導体チップ本体への悪影響(歪みやばり、亀裂等のダメージ)を抑えることができる。
【0036】
【発明が解決しようとする課題】
このように、先願発明は種々の優れた特長を有するが、なお改善すべき問題点があることが判明した。
【0037】
図11には、図7(c)〜(e)で述べた半導体チップ3a、3b及び3a’、3b’の固定、樹脂4の塗布及び疑似ウェーハ29の剥離の各工程を拡大して示すものである。但し、半導体チップは実際は多数個存在するが、図面では4個のみを示し、そのうち半導体チップ3a’、3b’は、デバイスを樹脂4中のフィラーからのα線の入射に対して保護するためのポリイミド等のオーバーコート31を電極パッド5以外に形成したものである。
【0038】
そして、図11(a)のように、基板1の粘着テープ(又はシート)2に各半導体チップを粘着固定した後に、図11(b)のように、プレート材4を例えば真空印刷法等の印刷法で塗布したり、或いは加熱加圧条件下で流し込んで成形して形成する場合、次の(1)〜(4)に示すような問題点が生じ易いことが判明した。
【0039】
(1)例えば、プレート材4を真空印刷法等の印刷法、或いは加熱加圧条件下での成形により形成する際、直接にプレート材4を形成すると、図11(b)のように、半導体チップのある箇所に存在している気泡をプレート材4が巻き込んでボイド32を生じ、また真空脱泡などを行っても、プレート厚が厚いために、ボイドが抜けにくく、プレート材4中やプレート表面に留まることがある。例えば、半導体チップが厚さ400μmのような厚いチップであったり、チップ間のギャップが300μmなどと狭い場合に、プレート材が未充填のボイド部分を発生することがある。特にプレート材表面にボイドが存在すると、その後に続くプレート材表面上での再配置配線工程用の層間絶縁膜の塗布等を安定して行えない。即ち、均一に塗布したい層間絶縁膜がボイドの部分で弾かれたり、凹凸になり、続く配線形成において回路的なオープンやショートを引き起こすなど、配線形成までの工程を安定して行えず、信頼性が悪くなることがある。
【0040】
(2)また、プレート材4を加熱加圧条件下で成形する際、直接にプレート材4を形成すると、プレート材4の成分や固定材(粘着テープ2)の成分、又その成分同士の混合物の流動の跡(以下、ウェルドと称する。)が、チップコーナー部やチップエッジに発生し易い。このウェルドには、プレート材に均一に含まれているフィラーのような低膨張の成分が含まれておらず、膨張率の大きい有機成分からなるため、チップとの密着力低下や、熱が加わったときの膨張など、信頼性に悪影響を及ぼす可能性がある。
【0041】
(3)また、プレート材4を加熱加圧条件下で成形する際、直接にプレート材4を形成すると、加熱加圧により固定材2が軟化し、この軟化部分43で硬いチップによってその下の固定材2が押されてチップが沈み込み(或いは浮き上り)、図11(c)のように、プレート材4を剥離したときにその表面において、チップ−プレート材の境界に段差34が発生する。この段差が例えば4μm以上発生すると、その後に続く層間絶縁膜の形成や配線の形成を安定して行えず、配線の導通不良を発生し、信頼性が悪くなることがある。この段差34は、配線ピッチの狭い配線を形成する際にも、パターニング性に悪影響を及ぼす。
【0042】
(4)更に、プレート材4を真空印刷法等の印刷法、或いは加熱加圧条件下での成形で形成する際、例えば、チップデバイス面の凹凸が大きく、或いはチップデバイス面の材質の差があるために、チップデバイス面と固定材2との密着性が悪い半導体チップや、チップデバイス面の電極5がチップの外周部にあり、チップエッジから電極まではオーバーコート31が抜いてある半導体チップ(3a’、3b’)では、チップデバイス面の電極5にプレート材が入りやすい構造となっているために、直接にプレート材4を形成すると、プレート材4を流し込む際又は真空脱泡する際に、気泡が抜けると同時にチップデバイス面の電極にプレート材4が入り込み、このまま硬化されることがある。このようにチップの電極5にプレート材4が入り込んで硬化すると、図11(b)、(c)に35で示すように、電極5が絶縁性物質で覆われることになるので、配線との導通不良が発生し、高抵抗化や信頼性低下を招くことになる。このような状況は、図11(b)に示したチップの沈み又は浮きにより生じた隙間にプレート材4が入り込むことによっても生じる。
【0043】
本発明の目的は、上記した先願発明の特長を生かしつつ、上記した問題点を解消し、プレート材としての保護物質でチップ部品の電極面以外が被覆されたチップ状電子部品、及びこのチップ状電子部品を用いた実装構造、並びに複数のチップ部品を保護物質で一体化した疑似ウェーハにおいて、保護物質にボイド及びウェルドが発生するのを効果的に防止すると共に、チップ部品と保護物質との間の段差を少なくし、かつ電極面に保護物質が侵入することを防止して、配線形成やデバイス特性の信頼性を向上させることにある。
【0044】
【課題を解決するための手段】
即ち、本発明は、少なくとも電極が一方の面側に設けられているチップ部品の前記一方の面以外のほぼ全面が連続した保護物質で覆われていて、前記電極と前記保護物質とを隔離するための隔離材が前記チップ部品と前記保護物質との間に設けられているチップ状電子部品に係り、また、このチップ状電子部品が、実装基板に接続固定されている実装構造に係るものである。
【0045】
本発明はまた、少なくとも電極が一方の面側に設けられているチップ部品の複数個又は複数種が、これらの間及びその裏面に連続して被着された保護物質によって互いに固着されていて、前記電極と前記保護物質とを隔離するための隔離材が前記チップ部品と前記保護物質との間に設けられている疑似ウェーハに係るものである。
【0046】
本発明はまた、支持体上に複数個又は複数種のチップ部品をその電極面を下にして固定する工程と、前記チップ部品の側面において前記電極を囲むように隔離材を被着する工程と、前記隔離材の周囲において保護物質を前記複数個又は複数種のチップ部品間を含むほぼ全面に被着する工程と、前記チップ部品間及びその裏面に連続して前記保護物質が被着してなる疑似ウェーハを前記支持体から剥離する工程とを有する疑似ウェーハの製造方法を提供し、更に、この疑似ウェーハの剥離工程後に、前記疑似ウェーハを前記複数個又は複数種のチップ部品間で切断して各チップ状電子部品を分離する工程を行う、チップ状電子部品の製造方法も提供するものである。
【0047】
本発明によれば、チップ状電子部品、その実装構造及び疑似ウェーハにおいて、少なくとも電極が一方の面側に設けられているチップ部品の前記一方の面以外のほぼ全面が連続した保護物質で覆われていて、前記電極と前記保護物質とを隔離するための隔離材が前記チップ部品と前記保護物質との間に設けられているので、既述した問題点と比べて次の(1)〜(4)の顕著な作用効果が得られる。
【0048】
(1)チップ部品の電極(例えばAl電極パッド(以下、同様)を保護物質(例えば絶縁性樹脂からなるプレート材:以下、同様)から隔離するための隔離材(例えば液状樹脂:以下、同様)を予め設けること(即ち、チップ部品の周囲を予め隔離材で囲むこと)により、保護物質を流し込む際に、チップ部品のある箇所に存在するボイドを保護物質が巻き込むことを防止することができる。そして、この隔離材をディスペンス後に真空脱泡する際には、隔離材の厚さが薄いために、ボイドが抜け易く、また隔離材の存在によってチップ部品の表面が緩やかな形状となるために、保護物質を流し込んだときにチップ周囲にボイドを巻き込み難くなり、表面にもボイドが発生しない。例えばチップ部品が厚かったり、チップ部品間のギャップが狭い場合でも、未充填のボイド部分が発生することがない。また、保護物質の表面にボイドが存在したまま硬化しないので、その後の配線を安定して形成できる。つまり、保護物質の材質、物性、保護物質を流し込む印刷条件、成形条件、脱泡条件、保護物質の厚み等を変更することなく、未充填のボイド部分の発生をなくすことができる。
【0049】
(2)また、保護物質を流し込む際、加熱加圧工程であっても、チップ部品の周囲を予め隔離材で囲んでいてチップ表面が緩やかな形状をなしているため、保護物質の流れがスムーズとなること等により、ウェルドがチップコーナー部やチップエッジに発生し難い。このウェルドがそれらの場所に発生しないので、チップ部品との密着力低下や、熱が加わったときの膨張など、信頼性に悪影響を及ぼす因子がなくなる。つまり、保護物質の材質、物性、保護物質を流し込むときの成形条件等を変更することなく、ウェルドの発生をなくすことができる。
【0050】
(3)また、保護物質を流し込む際、加熱加圧工程であっても、チップ部品の周囲が予め隔離材で囲まれているので、加熱によりチップ部品固定材と共に隔離材も軟化するので、この軟化した隔離材が固定材へのチップ部品の沈み込み又は浮き上りを抑制することになり、チップ部品−保護物質の境界に発生する段差を低減でき、その後に続く層間絶縁膜の形成や配線形成を信頼性よく、安定して行うことができる。この段差が小さいことにより、配線ピッチの狭い配線を形成する際にも、パターニング性が良好となる。つまり、保護物質の材質、物性、固定材の材質、物性、保護物質を流し込むときの成形条件等を変更することなく、段差の発生を低減し、安定した配線形成、微細配線にも対応することができる。
【0051】
(4)更に、保護物質を流し込む際に、チップデバイス面と固定材との密着性が悪いチップや、例えばチップデバイス面の電極がチップの外周部にあり、チップエッジから電極まではオーバーコートが抜いてあり、チップデバイス面の電極に保護物質が入りやすい構造のチップの場合でも、隔離材(特に樹脂硬化物)によってチップデバイス面の電極に保護物質が入り込まずに硬化可能となる。従って、チップの電極に保護物質が入り込んでいないので、配線との導通不良、高抵抗化が生じず、信頼性も良くなる。つまり、保護物質の材質、物性、固定材の材質、物性、保護物質を流し込む条件等を変更することなく、電極への保護物質の入り込みをなくすことができる。
【0052】
これらの作用効果に加えて、本発明は、上述した先願発明と同様に、良品のチップ部品を支持体に再配列して貼り付け、隔離材の被着及び保護物質の被着後に剥離して、あたかも全品が良品チップである疑似ウェーハを得ることができるため、良品チップに対するウェーハ一括での配線形成及びはんだバンプ処理等も可能となる。又、自社製ウェーハのみならず、他社から購入したベアチップでも容易にはんだバンプ処理等が可能になる。
【0053】
また、保護物質によってチップ側面及び裏面が覆われているので、Ni無電解めっき処理も可能であると共に、保護物質によってチップ側面及び裏面が保護されているので、チップの個片化後の実装ハンドリングにおいてもチップが保護されて、良好な実装信頼性が得られる。良品チップを貼り付ける基板はウェーハ剥離後は繰り返し使用できて、バンプ形成等のコストや環境面で有利である。
【0054】
また、チップ状電子部品を疑似ウェーハから切り出す際に、保護物質の部分のみを切断するので、切断を容易に行え、ブレードの破損もなく、チップ部品への悪影響(歪みやばり、亀裂等のダメージ)を抑えることができる。
【0055】
【発明の実施の形態】
本発明においては、前記隔離材が前記チップ部品の側面において前記チップ部品と前記保護物質との間及び/又は前記チップ部品間に被着されているのがよく、また、前記隔離材が絶縁性硬化物からなり、前記保護物質が有機系又は無機系の絶縁性物質からなっていてよく、特に前記隔離材が前記保護物質と同一材質からなるのがよい。
【0056】
そして、前記一方の面側において前記隔離材と前記保護物質とが同一面をなしていること、前記隔離材がディスペンスで局部的に被着されていることがよい。
【0057】
また、前記保護物質又は/及び前記隔離材の位置で切断され、実装基板に固定される単一の半導体チップ又は複数個又は複数種の半導体チップを有し、実装面側に前記電極が設けられ、前記半導体チップの側面が前記隔離材で覆われ、この隔離材及び前記半導体チップの裏面が前記保護物質で覆われているのがよい。
【0058】
また、前記電極上に配線又ははんだバンプが形成されていること、MCM用として複数個又は複数種の半導体チップが前記保護物質によって一体化されていることもよい。
【0059】
本発明においては、前記隔離材を液状物の状態で被着し、しかる後に有機系又は無機系の絶縁性物質からなる前記保護物質を被着するのがよい。
【0060】
この場合、前記チップ部品を前記支持体上に固定するための固定材の粘着力が低下しない温度で、ディスペンスで局部的に被着した前記液状物を硬化させ、しかる後に前記保護物質を流し込んで硬化させるのが効果的である。これは、前記固定材の耐熱性が十分なときには望ましい。
【0061】
また、ディスペンスで局部的に被着した前記液状物を硬化させない状態で前記保護物質を流し込んで硬化させるのもよい。これは、前記固定材の耐熱性が不十分なときには望ましい。
【0062】
前記液状物は真空脱泡するのがよいが、必ずしも行うことはない。
【0063】
前記液状物の粘度を前記保護物質の流し込み時の粘度よりも高くしてディスペンスすると、前記液状物が高粘度のために電極上にはみ出すことがない。これは、チップの電極上に樹脂が入り易い構造のチップに対して有効である。但し、前記液状物のディスペンス後は前記固定材の粘着力が低下しない温度で硬化させ、しかる後に前記保護物質を流し込んで硬化するのがよい。
【0064】
本発明においては、平坦な前記支持体上に固定材を設け、必要あればこの固定材上に枠を貼り付け、そしてこの枠の内側に良品の半導体チップの複数個又は複数種を電極面を下にして粘着固定し、必要あれば荷重及び/又は熱をかけながら真空引きを行い、しかる後に前記隔離材としての前記液状物を前記保護物質より高粘度で前記半導体チップの側面又は周囲にディスペンスで被着し、必要あれば真空脱泡及び低温での硬化後に、前記保護物質としての前記有機系又は無機系の絶縁性物質を半導体チップ裏面より均一に塗布して硬化させ、しかる後に前記複数個又は複数種の半導体チップを前記保護物質で固着した疑似ウェーハを前記支持体から剥離し、良品の半導体チップが複数個又は複数種配列されかつ電極面が露出した前記疑似ウェーハを得、しかる後に前記疑似ウェーハを前記複数個又は複数種の半導体チップ間で切断するのがよい。
【0065】
この場合、予めチップ周囲にディスペンスする前記液状物、例えば液状樹脂は、前記保護物質(プレート材)と同じ材質でもよいし、同系統の材質であって高粘度とした材料でもよい。特に上記(4)の作用効果を得るには、チップデバイス面の電極へのしみ込みを抑えるために、高粘度のものを用いる。なお、ディスペンスに代えて、印刷で塗布することも可能である。
【0066】
各材料を例示すると、前記液状樹脂は、材質:エポキシ樹脂、粘度:60Pa・sであってよく、粘度の高い樹脂(ダム)としては、材質:エポキシ樹脂、粘度:100〜200Pa・sとしてよい。また、エポキシ樹脂に代えて、液状セラミックス、例えば材質:アルミナ、無機媒体、粘度:50〜60Pa・s以下(濃度調整で比較的自由に設定可能)のセラミックスを用いてよい。
【0067】
また、前記液状樹脂をチップ周囲にディスペンスする際は、高精度のディスペンサで、チップエッジから一定の距離の外側位置まで一定高さでディスペンスするのがよい。チップエッジからその外側位置までの距離は、その上に配線形成するエリアまで広げてディスペンスすることが望ましい。即ち、プレート材上の配線は、ディスペンスした樹脂とプレート材との界面に生じる凹凸の影響を受けにくくなる。また、ディスペンス後の樹脂高さは、チップ裏面に回り込まない高さとし、チップ側面は樹脂で覆われている状態とするのが望ましい。チップ間ギャップが狭い箇所では、すべて樹脂で埋めておくことが望ましい。
【0068】
液状樹脂のディスペンス後は、ディスペンス時にボイドを巻き込む可能性があるので、真空脱泡をするのがよい。このとき、樹脂厚はチップの厚さ以下と薄いので、脱泡し易い。但し、上記(4)の作用効果を得る場合には、チップ近傍に存在する気泡を脱泡すると、そこにプレート材が入り込み易くなることがあるので、真空脱泡しない方がよいこともある。
【0069】
硬化については、プレート形成方法が、真空印刷法等の印刷法であれば、ディスペンス、真空脱泡後に硬化する必要はないが、加熱加圧による場合は、真空脱泡後にチップ周囲にディスペンスした樹脂が動かないように硬化する必要がある。この場合の硬化は、固定材のチップ保持力が低下してチップが動くことがなく、かつ固定材と基板(支持体)との剥離が起こらない温度条件以内で行うのがよい。
【0070】
本発明では、良品チップのみが多数配列され、デバイス面が露出した疑似ウェーハの作製方法において、チップを固定材に固定し、必要に応じて例えば真空下での加圧により密着力を向上させた後、チップの周囲に液状樹脂をディスペンスし、真空脱泡、必要に応じて低温で硬化する。これにより、チップが存在することにより巻き込まれるボイドをなくし、ディスペンス時にチップの周囲にボイドが発生しても抜け易くすることにより、ボイドを発生させない。
【0071】
また、ディスペンスした樹脂を低温で硬化しておくことにより、プレート材の加熱加圧による成形時に発生するプレート材のウェルドや、チップ−プレート材間の段差も低減する。これはまた、チップやチップの固定材への密着力が異なる材質、構造であっても、チップデバイス面の電極にプレート材が入り込まないように、ディスペンスした樹脂を硬化できる作製方法でもある。
【0072】
こうして、良品チップのみが多数配列され、デバイスの電極パッド部分が全て露出し、ボイドの無いプレートを信頼性よく作製することができ、またプレート材のウェルド又はチップ−プレート間の段差が少ないので、その後に続く再配線の工程まで信頼性よく行うことができる。
【0073】
そして、このプレート(疑似ウェーハ)に電極又は配線を形成し、単一又は複数個のチップからなるモジュールにカットすることにより、極めて低コストのチップモジュールを提供できる。このチップモジュールは、小型、軽量の携帯用電子機器のみならず、全てのエレクトロニクス機器に利用され得るものである。
【0074】
また、特性測定により良品と判定された前記チップ部品を前記支持体上に固定すること、前記保護物質で固着された状態において前記チップ部品の特性測定を行ない、良品のチップ状電子部品を選択することがよい。
【0075】
以下、本発明の好ましい実施の形態を図面参照下に説明する。
【0076】
図1〜図3は、隔離材としての液状樹脂を半導体チップ周囲にディスペンスする工程を経て、各種チップをモジュール化(プレート化)又は個片化する工程を示す。
【0077】
まず、図1(a)のように、例えばガラス板のような変形の少ない平坦な基板1上に、図1(b)のように、粘着性固定材2を均一に形成する。固定材2はフィルムであれば、ローラーラミネートなどの手法で貼り付け、液状であれば、スピンコートや印刷などの手法で形成する。
【0078】
次に、図1(c)のように、固定材2上に、良品を確認した半導体チップ3、3’をデバイス(電極)面を下にして、固定材2の粘着性を利用して固定する。このとき、表面にポリイミドなどのオーバーコート31を設けたチップ3’も固定するが、これも同様にオーバーコート面を下にして、固定材2の粘着性を利用して固定する。なお、オーバーコート31付きのチップについては、図11においても説明した。また、半導体チップ3、3’は同様のサイズで図示したが、図11に示したもの3a、3a’、3b、3b’のようにサイズが異なるチップとしてもよいことは勿論である。また、半導体チップ3、3’は実際には多数個存在するが、図面では4個のみを示す(以下、同様)。
【0079】
次に、必要あれば、図1(d)のように、固定材2とチップ3、3’との密着性を高めるために、真空装置36内に基板1ごと入れ、荷重治具37をチップ裏面に載せ、その治具の自重、又は機械的な荷重により、チップ裏面に荷重をかけ、真空引きして、チップ3、3’と固定材2との密着性を向上させる。
【0080】
次に、図2(e)のように、チップ3、3’の周囲に沿って各側面に、液状樹脂(或いはプレート材より粘度の高い液状樹脂)38Aをディスペンスして局部的に被着し、必要に応じて真空脱泡、低温での硬化を行う。
【0081】
この際、チップ周囲にディスペンスする液状樹脂38Aは、プレート材と同じ材質(例えばエポキシ樹脂)でもよいし、同系統の材質であってもよいが、より高粘度(例えば100〜200Pa・s)にしたものがよい。特にチップデバイス面の電極へのプレート材のしみ込みを抑えるために、高粘度のものを用いるのがよい。これは、液状樹脂38Aを硬化させないでプレート材を流し込む場合にも有効である。
【0082】
また、チップ周囲にディスペンスする際には、高精度のディスペンサを用い、チップエッジから一定の距離の外側位置まで一定高さでディスペンスするが、チップエッジから外側位置までの距離は、その上に配線を形成するエリアまで広げてディスペンスすることが望ましい。これによって、ディスペンス後に硬化した樹脂38とプレート材4との界面での凹凸の影響を受け難くなる。更に、ディスペンス後の樹脂38の高さは、チップ裏面に回り込まない高さとし、チップ側面39は樹脂38で覆われている状態が望ましく、チップ間ギャップが狭い箇所40は、すべて樹脂38で埋めておくことが望ましい。
【0083】
このディスペンス後は、ディスペンス時にボイドを巻き込む可能性があるので、真空脱泡をするのがよい。このとき、樹脂38Aの厚さはチップ厚さ以下と薄いので、脱泡し易い。但し、プレート材を流し込むときに脱泡箇所にプレート材が入り込むときは、真空脱泡しない方がよいこともある。
【0084】
この液状樹脂38Aの硬化については、プレート材の形成方法が、真空印刷法等の印刷法であれば、ディスペンス、真空脱泡後に硬化する必要はないが、加熱加圧による場合は、真空脱泡後に、チップ周囲にディスペンスした樹脂38が動かないように硬化する必要がある。この場合の硬化は、固定材2のチップ保持力が低下してチップが動くことがなく、かつ固定材2と基板1との剥離が起こらない温度条件以内で行う。
【0085】
次に、図2(f)のように、固定材2上に、チップ3、3’を囲むように、予め離型剤をスプレー塗布しておいた枠(又は金型)41を貼り付け、この状態で図2(g)のように、固定材2が離型作用を持つ液状エポキシ樹脂からなるプレート材4A(粘度は例えば60Pa・s)をチップ裏面より均一に流し込み、硬化する。
【0086】
次に、図2(h)のように、固定材2の離型作用を利用して、枠41ごと、チップ3、3’が電極面以外において硬化したプレート材4で覆われたプレートを平坦な基板1から剥離し、更に図3(i)のように、プレート4から枠41を外し、図3(j)に示す疑似ウェーハ49を作製する。
【0087】
次に、図3(k)のように、サブトラクティブ法によって、各チップ3、3’の電極パッド5に接続されるように再配置用の配線33をチップ上又はチップ間に形成する。こうしてMCM化用のチップ間接続を行う。この場合、配線33下に絶縁層を設けてよいが、疑似ウェーハ49の表面は電極パッド5を除いて絶縁性物質からなっているので、配線33をその上に設けることができ、配線33の下地に別の絶縁層を形成する必要はない。
【0088】
次に、図3(l)のように、切断刃42によってチップ間のプレート材4(又は/及び樹脂38)のダイシング11を行って個片化し、複数個又は複数種の半導体チップがプレート材4で側面及び裏面において覆われて一体化された良品チップ状電子部品46を作製する(なお、図3(k)にはダイシング位置を仮想線で示す)。
【0089】
また、図3(j)又は(k)の状態で各電極パッド5に接続されたはんだバンプ12を一括転写法によって形成した後に、個片化することもできる。
【0090】
本実施の形態によれば、各チップの周囲に硬化樹脂38からなる隔離材(ダム材)を設けた状態でプレート材4Aを流し込んで疑似ウェーハ49を作製しているので、プレートの形成時にチップの存在に起因するボイドの巻き込みがなく、プレート材4中又は表面にボイドが生じず、またチップ3、3’の電極パッド5にプレート材4が侵入して覆ってしまうこともなく、更にプレート材4表面のチップ−プレート材間の段差も低減し、プレートのウェルドの発生も抑えられる。
【0091】
従って、良品チップのみが多数配列され、デバイスの電極パッド部分が全て露出したボイドのない樹脂プレート(疑似ウェーハ)49を信頼性良く作成でき、またチップ−プレート材間の段差も少ないため、後続の再配線も精度及び信頼性良く形成することができる。
【0092】
即ち、例えば厚さの大きいチップ3、3’であって、チップの電極5にプレート材4Aが入り込みやすい構造のチップであっても、予め液状樹脂38Aなどをチップ周囲にディスペンスし、必要に応じて真空脱泡、加熱硬化することにより、樹脂38を設けずにプレート材4Aを流し込む方法に比べて、液状樹脂の厚さが薄い状態で真空引きしてチップ周辺部のボイドを容易に抜き、またチップの外形も樹脂38で覆われて緩やかな形状になるため、プレート材4Aを流し込む際もチップ周囲にボイドを巻き込みにくくなる。
【0093】
また、チップデバイス面の電極5にプレート材4Aが入り込むことがなく、所望のプレートを得ることができる。その後にプレート材を加熱加圧条件で成形する際も、予めチップの周囲を樹脂38で覆って緩やかな形状にしておくことにより、チップコーナー部やチップエッジに発生しやすいウェルドも低減できる。
【0094】
また、プレート材4Aを流し込むと、固定材2が軟化し、硬いチップ部分に押されて、チップ−プレート材間に段差が発生し易いが、予めチップの周囲を樹脂38で覆っているので、チップ周囲を柔軟にし、段差も少なくすることができるので、表面の平坦な良品チップからなる樹脂プレート49を安定して得ることができる。
【0095】
そして、疑似ウェーハ49においてバンプなどの電極形成や配線形成を安定して行うことができるようになり、個片化によって、複数の良品チップ(低歩留りで高価な最先端のLSIや、既製のダイシングされたチップ、チップ抵抗などのチップ部品等の実装部品)を一体化した所望の平坦なチップモジュール46を得ることができる(但し、単一のチップの個片化も可能である)。このチップ状電子部品46は、図5に示したと同様に実装基板に接続固定する。
【0096】
本実施の形態では更に、上述した先願発明と同様に、良品のチップ3、3’を基板1に再配列して貼り付け、樹脂38の被着及びプレート材4の被着後に剥離して、あたかも全品が良品チップである疑似ウェーハ49を得ることができるため、良品チップに対するウェーハ一括での配線形成及びはんだバンプ処理等も可能となる。又、自社製ウェーハのみならず、他社から購入したベアチップでも容易にはんだバンプ処理等が可能になる。
【0097】
また、プレート材4によってチップ側面及び裏面が覆われているので、Ni無電解めっき処理も可能であると共に、プレート材4によってチップ側面及び裏面が保護されているので、チップの個片化後の実装ハンドリングにおいてもチップが保護されて、良好な実装信頼性が得られる。良品チップを貼り付ける基板はウェーハ剥離後は繰り返し使用できて、バンプ形成等のコストや環境面で有利である。
【0098】
また、チップ状電子部品46を疑似ウェーハ49から切り出す際に、プレート材4の部分を切断するので、切断を容易に行え、ブレードの破損もなく、チップ部品への悪影響(歪みやばり、亀裂等のダメージ)を抑えることができる。
【0099】
以上に説明した実施の形態は、本発明の技術的思想に基づいて更に変形が可能である。
【0100】
例えば、上記の樹脂38のパターンや材質、形成方法等は種々変更してよい。またその位置についてもチップ3、3’とプレート材4との間又はチップ間であればよい。
【0101】
また、図3(k)の工程後に配線43上に一括してはんだバンプを形成してからスクライブしてよいし、或いはこのバンプを実装基板側に予め設けて個片化したチップ状電子部品46をマウントしてもよい。なお、図3(j)の工程後に配線43を形成せずにスクライブし、これを実装基板にマウントすることもできる。
【0102】
また、良品ベアチップを貼り付ける基板は、石英やガラスの他に同様の効果や強度があるならば、他の素材を用いてよいし、形や厚さも任意に変更できる。粘着テープ(又はシート)2もアクリル系等や、これと同様の目的を果たせば種々の素材でよいし、プレート材4の材質も広範囲のものから選択してよく、エポキシ樹脂等の有機系のみならず、SOG(Spin on Glass)のSiOx等の無機系も使用可能である。良品ベアチップは、形状やサイズ、種類が異なるものであってよいが、同一種であってもよい。
【0103】
そして、上記の石英基板等の基板は、何回でも繰り返して使用することができ、コストや環境面で有利である。また、本発明を適用する対象は、半導体チップを有するチップ状電子部品に限ることはなく、他のチップ部品を有する各種チップ状電子部品であってもよい。
【0104】
【発明の作用効果】
上述したように、本発明によれば、少なくとも電極が一方の面側に設けられているチップ部品の前記一方の面以外のほぼ全面が連続した保護物質で覆われていて、前記電極と前記保護物質とを隔離するための隔離材が前記チップ部品と前記保護物質との間に設けられているので、次の(1)〜(4)の顕著な作用効果が得られる。
【0105】
(1)チップ部品の電極を保護物質から隔離するための隔離材(例えば液状樹脂)を予め設けることにより、保護物質を流し込む際に、チップ部品のある箇所に存在するボイドを保護物質が巻き込むことを防止することができる。そして、この隔離材をディスペンス後に真空脱泡する際には、隔離材の厚さが薄いために、ボイドが抜け易く、また隔離材の存在によってチップ部品の表面が緩やかな形状となるために、保護物質を流し込んだときにチップ周囲にボイドを巻き込み難くなり、表面にもボイドが発生しない。例えばチップ部品が厚かったり、チップ部品間のギャップが狭い場合でも、未充填のボイド部分が発生することがない。また、保護物質の表面にボイドが存在したまま硬化しないので、その後の配線を安定して形成できる。
【0106】
(2)また、保護物質を流し込む際、加熱加圧工程であっても、チップ部品の周囲を予め隔離材で囲んでいてチップ表面が緩やかな形状をなしているため、保護物質の流れがスムーズとなること等により、ウェルドがチップコーナー部やチップエッジに発生し難い。このウェルドがそれらの場所に発生しないので、チップ部品との密着力低下や、熱が加わったときの膨張など、信頼性に悪影響を及ぼす因子がなくなる。
【0107】
(3)また、保護物質を流し込む際、加熱加圧工程であっても、チップ部品の周囲が予め隔離材で囲まれているので、加熱によりチップ部品固定材と共に隔離材も軟化するので、この軟化した隔離材が固定材へのチップ部品の沈み込みを抑制することになり、チップ部品−保護物質の境界に発生する段差を低減でき、その後に続く層間絶縁膜の形成や配線形成を信頼性よく、安定して行うことができる。この段差が小さいことにより、配線ピッチの狭い配線を形成する際にも、パターニング性が良好となる。
【0108】
(4)更に、保護物質を流し込む際に、チップデバイス面と固定材との密着性が悪いチップや、例えばチップデバイス面の電極がチップの外周部にあり、チップエッジから電極まではオーバーコートが抜いてあり、チップデバイスの面の電極に保護物質が入りやすい構造のチップの場合でも、隔離材(特に樹脂硬化物)によってチップデバイス面の電極に保護物質が入り込まずに硬化可能となる。従って、チップの電極に保護物質が入り込んでいないので、配線との導通不良、高抵抗化が生じず、信頼性もよくなる。
【0109】
そして、良品のチップ部品を支持体に再配列して貼り付け、隔離材の被着及び保護物質の被着後に剥離して、あたかも全品が良品チップである疑似ウェーハを得ることができるため、良品チップに対するウェーハ一括での配線形成及びはんだバンプ処理等も可能となる。又、自社製ウェーハのみならず、他社から購入したベアチップでも容易にはんだバンプ処理等が可能になる。
【0110】
また、保護物質によってチップ側面及び裏面が覆われているので、Ni無電解めっき処理も可能であると共に、保護物質によってチップ側面及び裏面が保護されているので、チップの個片化後の実装ハンドリングにおいてもチップが保護されて、良好な実装信頼性が得られる。良品チップを貼り付ける基板はウェーハ剥離後は繰り返し使用できて、バンプ形成等のコストや環境面で有利である。
【0111】
また、チップ状電子部品を疑似ウェーハから切り出す際に、保護物質の部分のみを切断するので、切断を容易に行え、ブレードの破損もなく、チップ部品への悪影響(歪みやばり、亀裂等のダメージ)を抑えることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態によるチップ状電子部品の作製方法を工程順に示す各断面図である。
【図2】図1の工程に続く工程を順次示す各断面図である。
【図3】図2の工程に続く工程を順次示す各断面図である。
【図4】従来のチップ状電子部品の作製方法を工程順に示す各断面図である。
【図5】同、MCM化された実装構造の一例の斜視図(a)とその一部断面側面図(b)、(c)である。
【図6】同、ウェーハ一括処理に対処する半導体ウェーハの斜視図である。
【図7】先願発明による疑似ウェーハの作製及びそれに続く実装方法を工程順に示す各断面図である。
【図8】図7の工程に続く工程を順次示す各断面図である。
【図9】同、バンプ形成工程を順次示す断面図である。
【図10】同、疑似ウェーハの斜視図及びその一部分の拡大平面図である。
【図11】図7の工程を詳細に説明する各断面図である。
【符号の説明】
1…石英基板、2…粘着性固定材又は粘着テープ(又はシート)、
3、3’、3a、3b…良品ベアチップ、4…プレート材又は樹脂、
4A…液状プレート材(樹脂)、5…電極パッド、8…印刷マスク、
9…はんだペースト、11…ダイシング、12…はんだバンプ、
29、49…疑似ウェーハ、31…オーバーコート、33…配線、
36…真空装置、37…荷重治具、38…硬化樹脂、38A…液状樹脂、
39…側面、40…狭ギャップ、41…枠、42…ブレード、
46…チップ状電子部品
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a chip-shaped electronic component suitable for manufacturing a semiconductor device and a method for manufacturing the same, a pseudo wafer used for the manufacturing, a method for manufacturing the same, and a mounting structure in which the chip-shaped electronic components are connected and fixed.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there is a strong demand for reduction in size, thickness, and weight of portable electronic devices such as digital video cameras, digital mobile phones, and notebook PCs (Personal Computers), and how to increase the surface mounting density of semiconductor components. Is an important point. For this reason, a smaller CSP (Chip Scale Package), which replaces a package IC (QFP (Quad Flat Package), etc.), has already been developed or adopted in some parts. Considering this, it is strongly desired to spread the connection technology using the bare chip and the flip chip method.
[0003]
Incidentally, the bump forming technique in the flip chip mounting generally includes a method of forming an Au bump on an Al electrode pad by an Au-Stud Bump method or an electrolytic plating method, or a method of collectively forming solder bumps by an electrolytic plating method or an evaporation method. A typical example is a method of forming the substrate by using the above method. However, in the case of consumer use, in the case of flip-chip mounting at a lower cost, bumps are formed in a wafer state at once instead of forming bumps after forming a chip (Au-Stump Bump method is a typical example). A forming method is desirable.
[0004]
Such a wafer batch processing method has a natural direction in consideration of the recent increase in the diameter of the wafer (150 mmφ → 200 mmφ → 300 mmφ) and the increasing number of connection pins of LSI (Large Scale Integrated Circuit) chips. is there.
[0005]
Hereinafter, a conventional bump forming method will be described. For example, FIG. 8 shows a process of forming bumps in a batch of wafers by Ni electroless plating and printing of a solder paste for cost reduction. FIG. 2 This figure shows a Si substrate (wafer) on which a film is formed, and FIG. 2B is an enlarged view of a chip portion including the electrode. 4 (a) and 4 (b), 51 is a Si substrate (wafer), 55 is an Al electrode pad, and others are SiO. 2 Film, Si 3 N 4 , SiO 2 It is a passivation film made of a film or a polyimide film.
[0006]
In FIG. 4C, a Ni electroless plating layer (UBM: Under Bump Metal) is selectively formed only on the upper surface of the opened Al electrode pad 55 by the Ni electroless plating method. This Ni electroless plating layer (UBM) is easily prepared by pre-treating the surface of the Al electrode pad 55 with a phosphoric acid-based etchant, substituting and depositing Zn by Zn treatment, and further immersing in a Ni-P plating bath. And acts as a UBM to assist the connection between the Al electrode pad 55 and the solder bump.
[0007]
FIG. 4D shows a state in which the solder paste 59 is transferred onto the Ni electroless plating layer (UBM) by a printing method with the metal screen mask 52 applied. FIG. 4E shows a state in which the solder paste 59 is melted by a wet back (heat melting) method to form the solder bumps 62. As described above, by using the Ni electroless plating method and the solder paste screen printing method, the solder bumps 62 can be easily formed without using a photo process. Then, in this state, the wafer is cut along the scribe line into individual pieces and processed into individual bare chips.
[0008]
On the other hand, the CSP is an approach of reducing the size of each LSI and mounting it at a high density. When looking at circuit blocks of digital equipment, CSP is composed of several common circuit blocks. A technology for making a multi-chip package or a module (MCM: Multi Chip Module) has also appeared. An example is a package of an SRAM (Static RAM), a flash memory, and a microcomputer in a digital mobile phone.
[0009]
This MCM technology involves arranging a plurality of semiconductor components and passive components, and electrically connecting these components to each other to form a single module. The MCM technology has a great advantage even in recent one-chip system LSIs. It is expected to do. That is, when a memory, logic, and an analog LSI are integrated into one chip, different LSI processing processes are processed by the same wafer process, so that the number of masks and the number of steps are significantly increased, and the development TAT (Turn around time) is increased. Is a problem, and a decrease in yield is also a major concern.
[0010]
For this reason, a method in which each LSI is individually manufactured and converted to MCM is considered to be promising. FIG. 5 shows an example of such an MCM technology.
[0011]
Compared to the wire bonding method, the flip chip method shown in FIGS. 5A, 5B, and 5C connects the semiconductor chip 64 face down to the electrode 63 on the circuit board 60, and is more compact. This is an advantageous method for reduction in thickness and thickness. Considering the reduction in connection distance and the variation in connection impedance due to future high speeds, it is expected that the flip chip method will be adopted.
[0012]
The flip-chip type MCM forms an Au-Stud Bump on the surface of the Al electrode pad 55 of each of a plurality of different types of LSIs, and connects the circuit board to the circuit board via an anisotropic conductive film (ACF: Anisotropic Conductive Film). Various methods have been proposed, such as a connection method, a pressure contact method using a resin paste, and a method using an Au plating bump, a Ni electroless plating bump, or a solder bump as a bump. FIG. 5C shows an example in which the metal is bonded to the substrate 60 by the solder bump 65 and the bonding is performed with lower resistance and reliability.
[0013]
Each of the above-described bump forming methods has already been completed, and utilization as a mass production-based technique has begun. For example, the method of forming solder bumps on a wafer at a time can be applied to area pad arrangement on the mounting surface, and has advantages such as batch reflow and double-sided mounting. However, when processing is performed on a wafer having a low cutting-edge yield, the cost per good chip becomes extremely high.
[0014]
That is, FIG. 6 shows a semiconductor wafer 53 in the conventional wafer batch processing. Although a high yield is required in a state-of-the-art LSI, among the chips partitioned by the scribe line 21, the cross mark is used. Actually, the number of defective chips 20 shown is larger than the number of non-defective chips 3 shown by a mark.
[0015]
Further, there is a problem that it is extremely difficult to form a bump when a chip is obtained from another place in the form of a bare chip. That is, although the above two types of bump forming methods have their respective characteristics, they are not technologies that can be used for all areas, and at present, they are selectively used taking advantage of each characteristic. The wafer batch bump processing method is characterized by high yield, a large number of terminals in one wafer (for example, 50,000 terminals / wafer), and formation of low-damage bumps corresponding to area pads. Au stud bumps are characterized by bump processing when obtained in chip units and simple bump processing.
[0016]
When the semiconductor wafer 53 shown in FIG. 6 is cut along the scribe line 21, the chip may be damaged by stress, cracks and the like due to the cutting, which may cause a failure. Furthermore, if the process is advanced to the formation of the solder bumps together with the non-defective chips 3 and the defective chips 20 as the semiconductor wafer 53, the steps performed on the defective chips 20 are wasted, which also causes an increase in cost.
[0017]
Japanese Patent Application Laid-Open No. 9-260581 discloses that a plurality of semiconductor chips are bonded and fixed on a Si wafer, embedded in a resin provided on a substrate such as alumina under pressure, and then peeled off. A method is shown in which the surface is flattened and a wiring layer for connection between elements is formed on this wafer by a photolithography technique.
[0018]
According to this known method, batch processing of wafers becomes possible, and it is possible to achieve cost reduction by mass production.However, a hard substrate such as the above alumina exists on the back side of individual semiconductor chips in a wafer. Therefore, the hard substrate on the back side must be cut together with the resin between the chips at the time of scribing, and the cutting blade may be damaged. In addition, although the side of the chip is covered with resin, the back only has a hard substrate different from the resin, so the back of the chip may not be protected effectively, and between the two. Of the adhesive becomes poor.
[0019]
[Procedure leading to the invention]
In view of the above-mentioned conventional circumstances, the present applicant takes advantage of the features of batch processing of wafers, and provides a high yield, low cost, and high reliability even when obtained with the most advanced LSI and bare chips. A possible chip-like electronic component such as a semiconductor chip suitable for MCM has already been proposed in Japanese Patent Application No. 2000-122112.
[0020]
An example of a preferred embodiment based on the invention according to the earlier application (hereinafter, referred to as the earlier application invention) will be described with reference to FIGS.
[0021]
First, as shown in FIG. 7B, an adhesive tape (or sheet) 2 made of acrylic or the like is attached on the substrate 1 shown in FIG. 7A. In this case, the substrate 1 serves as a temporary support substrate and may be the quartz substrate 1. However, since the heating process for the substrate is performed at 400 ° C. or lower, a cheaper glass substrate can be used, and the quartz substrate can be used repeatedly. Further, the adhesive tape (or sheet) 2 is used in ordinary dicing, and may be, for example, an acrylic-based adhesive, which has a reduced adhesive strength when irradiated with ultraviolet rays.
[0022]
Next, after being cut out from the semiconductor wafer 53 as shown in FIG. 6, only non-defective semiconductor bare chips (or LSI chips) 3a and 3b confirmed as non-defective by open / short or DC (direct current) voltage measurement are removed. With the chip surface (device surface or electrode surface) 28 facing down, they are arranged and attached at equal intervals to the adhesive tape (or sheet) 2 on the substrate 1 as shown in FIG. Note that the substrate 1 may be a circular quartz substrate. However, if a large number of non-defective chips are adhered to a limited area by using a rectangular glass substrate, the cost merit in the subsequent process is improved. Can be demonstrated.
[0023]
Next, as shown in FIG. 7D, an organic insulating resin, for example, an epoxy resin or an acrylic resin 4 is uniformly applied on the chips 3a and 3b. This coating can be easily realized by a spin coating method or a printing method.
[0024]
Next, as shown in FIG. 7 (e), ultraviolet rays are irradiated from the back side 31 of the substrate 1 to weaken the adhesive force of the adhesive tape (or sheet) 2, and the resin (hereinafter, may be referred to as a plate material). .) The pseudo wafer 29 composed of a plurality of non-defective bare chips 3a and 3b whose side and back surfaces are continuously solidified in step 4 is separated from the substrate 1 by the bonding surface 30 or the device surface 28. An example of the pseudo wafer 29 is shown in FIG. 10 as a perspective view and a partially enlarged plan view thereof. Hereinafter, such a pseudo wafer may be referred to as a plate.
[0025]
Next, as shown in FIG. 8F, the pseudo wafer 29 is turned upside down so that the non-defective bare chip surface 28 (device surface) is on the upper side. The pseudo-wafer 29 is made of SiO 2 on a Si substrate as shown in FIG. 2 An Al electrode pad 5 and a passivation film are formed via a film.
[0026]
Next, as shown in FIG. 8 (g), for the purpose of MCM, an Al or Cu wiring 33 for connecting each pad 5 is formed on the insulating layer between non-defective bare chips by a usual photolithography technique. I do.
[0027]
Next, as schematically shown in FIG. 8 (h), if necessary, the bump electrodes 12 are collectively formed on the wirings 33, and then the dicing 11 is performed by a blade 42 (or laser light irradiation). The non-defective chip-shaped electronic component 26 is obtained.
[0028]
9 (g1) to 9 (g2), the same processing as in FIGS. 4 (c) to (e) described above may be performed. That is, after performing the Ni electroless plating process to become the UBM, the print transfer of the solder paste 9 using the print mask 8 and the formation of the solder bumps 12 by the wet back method may be performed.
[0029]
As described above, even a chip obtained from a state-of-the-art LSI with a low yield or a chip obtained from another company, only the non-defective chips 3a and 3b are pasted on the substrate 1 again, and as if they were composed only of 100% non-defective bare chips. By manufacturing the pseudo wafer 29, it is possible to form wiring and bumps at a low cost for the whole wafer.
[0030]
Then, in FIG. 8 (g), in addition to the fact that the non-defective bare chips were selected before the step of FIG. Can be sorted out.
[0031]
The non-defective chip-shaped electronic components 26 singulated as shown in FIG. 8H are mounted on a wiring board (circuit board) as shown in FIG.
[0032]
At this time, since the side surface and the back surface of the non-defective chip-shaped electronic component 26 are covered with the plate member 4, the chip-shaped electronic component 26 is handled at the time of handling such as adsorption of the chip-shaped electronic component 26 at the time of mounting on the wiring board (mounting board). The components 3a and 3b are not damaged, so that flip-chip mounting with high reliability can be expected.
[0033]
As described above, according to the prior application, a non-defective semiconductor chip is cut out from a wafer, re-arranged and attached to a substrate at regular intervals, and peeled off after the plate material is applied, as if all products were non-defective chips. In order to obtain a pseudo wafer, it is possible to perform solder bump processing or the like on a non-defective chip in a batch of wafers, so that a low-cost flip-chip solder bump chip can be formed. Further, not only in-house manufactured wafers but also bare chips purchased from other companies can be easily solder bumped.
[0034]
In addition, since the chip side surface and the back surface are covered by the plate material, Ni electroless plating can be performed, and since the chip side surface and the back surface are protected by the plate material, mounting handling after chip singulation is performed. In this case, the chip is protected and good mounting reliability is obtained. The substrate to which the non-defective chip is attached can be used repeatedly after the pseudo wafer is peeled off, which is advantageous in terms of cost such as bump formation and environment.
[0035]
Also, by utilizing the features of low-cost bump processing by batch processing of wafers, it is possible to use a chip obtained in the form of a state-of-the-art LSI or bare chip, and to provide a highly versatile new bump forming method. Also, when cutting the semiconductor chip from the pseudo wafer, only the plate material (resin) is cut, so that the cutting can be easily performed, the blade is not damaged, and the semiconductor chip body is adversely affected (distortion, burrs, cracks, etc.). Damage).
[0036]
[Problems to be solved by the invention]
As described above, it has been found that the prior invention has various excellent features, but still has a problem to be improved.
[0037]
FIG. 11 is an enlarged view showing the steps of fixing the semiconductor chips 3a, 3b and 3a ', 3b', applying the resin 4, and peeling the pseudo wafer 29 described in FIGS. 7C to 7E. It is. However, although there are actually many semiconductor chips, only four semiconductor chips are shown in the drawing, and the semiconductor chips 3a 'and 3b' are used to protect the device from the incidence of α rays from the filler in the resin 4. An overcoat 31 made of polyimide or the like is formed on a portion other than the electrode pad 5.
[0038]
Then, as shown in FIG. 11A, after each semiconductor chip is adhesively fixed to the adhesive tape (or sheet) 2 of the substrate 1, as shown in FIG. It has been found that the following problems (1) to (4) are likely to occur when the composition is applied by a printing method or formed by casting under heat and pressure conditions.
[0039]
(1) For example, when the plate material 4 is formed directly by a printing method such as a vacuum printing method or a molding under heating and pressing conditions, if the plate material 4 is directly formed, as shown in FIG. The plate material 4 entrains the air bubbles existing at a certain position of the chip and generates a void 32. Even if vacuum defoaming is performed, the void is difficult to be removed because the plate thickness is large. May remain on the surface. For example, when the semiconductor chip is a thick chip having a thickness of 400 μm or a gap between the chips is narrow such as 300 μm, an unfilled void portion may be generated in the plate material. In particular, if voids exist on the surface of the plate material, it is not possible to stably apply the subsequent interlayer insulating film for the rearrangement wiring process on the surface of the plate material. In other words, the interlayer insulating film to be applied uniformly is repelled at the voids, becomes uneven, and causes a circuit-like open or short in subsequent wiring formation. May worsen.
[0040]
(2) Further, when the plate material 4 is formed directly under the heating and pressurizing condition, if the plate material 4 is directly formed, the components of the plate material 4, the components of the fixing material (adhesive tape 2), and the mixture of the components are obtained. Traces (hereinafter, referred to as welds) are likely to occur at chip corners and chip edges. This weld does not contain low-expansion components such as fillers uniformly contained in the plate material, and is made of an organic component with a high expansion coefficient. May have an adverse effect on reliability, such as expansion when exposed.
[0041]
(3) Further, when the plate material 4 is formed directly under the condition of heating and pressing, when the plate material 4 is directly formed, the fixing material 2 is softened by the heating and pressing, and the softened portion 43 is provided with a hard chip under the softened portion 43. When the fixing material 2 is pressed, the chips sink (or float), and as shown in FIG. 11C, when the plate material 4 is peeled off, a step 34 is generated at the boundary between the chip and the plate material on the surface thereof. . If this step occurs, for example, 4 μm or more, the subsequent formation of the interlayer insulating film and the formation of the wiring cannot be performed stably, resulting in poor wiring continuity and poor reliability. The step 34 has an adverse effect on the patterning property even when a wiring having a narrow wiring pitch is formed.
[0042]
(4) Further, when the plate member 4 is formed by a printing method such as a vacuum printing method or a molding under heating and pressing conditions, for example, the unevenness of the chip device surface is large, or the difference in the material of the chip device surface is large. Because of this, a semiconductor chip having poor adhesion between the chip device surface and the fixing material 2 or a semiconductor chip in which the electrode 5 on the chip device surface is on the outer periphery of the chip and the overcoat 31 is removed from the chip edge to the electrode In (3a ′, 3b ′), since the plate material is easily formed to enter the electrode 5 on the chip device surface, when the plate material 4 is directly formed, when the plate material 4 is poured or vacuum degassed. At the same time, the plate material 4 may enter the electrode on the surface of the chip device at the same time as the bubbles are released, and may be cured as it is. When the plate material 4 enters the electrode 5 of the chip and cures as described above, the electrode 5 is covered with an insulating material as shown by 35 in FIGS. 11B and 11C. Insufficient conduction results in higher resistance and lower reliability. Such a situation also occurs when the plate material 4 enters a gap generated by sinking or floating of the chip shown in FIG.
[0043]
An object of the present invention is to solve the above-mentioned problems while utilizing the features of the above-mentioned prior invention, to provide a chip-shaped electronic component in which a protective material as a plate material is coated on the chip components other than the electrode surface, and this chip In a mounting structure using electronic components, and in a pseudo wafer in which a plurality of chip components are integrated with a protective material, the generation of voids and welds in the protective material is effectively prevented, and the An object of the present invention is to improve the reliability of wiring formation and device characteristics by reducing a step between the electrodes and preventing a protective substance from entering the electrode surface.
[0044]
[Means for Solving the Problems]
That is, according to the present invention, at least almost the entire surface of the chip component provided with the electrode on one surface side other than the one surface is covered with a continuous protective material, and the electrode and the protective material are isolated from each other. The present invention relates to a mounting structure in which a separating material for the chip-shaped electronic component is provided between the chip component and the protective material, and the chip-shaped electronic component is connected and fixed to a mounting board. is there.
[0045]
The present invention also provides that a plurality or a plurality of types of chip components in which at least the electrodes are provided on one surface side are fixed to each other by a protective substance continuously applied between them and on the back surface thereof, The present invention relates to a pseudo wafer provided with an isolating material for isolating the electrode and the protective material between the chip component and the protective material.
[0046]
The present invention also provides a step of fixing a plurality or a plurality of types of chip components on a support with their electrode surfaces facing down, and a step of applying a separator to surround the electrodes on the side surfaces of the chip components. Applying a protective substance around substantially the entire surface including the plurality of or plural types of chip components around the isolation member, and applying the protective material continuously between the chip components and on the back surface thereof. Peeling off the pseudo wafer from the support, and further comprising, after the pseudo wafer peeling step, cutting the pseudo wafer between the plurality or a plurality of types of chip components In addition, the present invention also provides a method for manufacturing a chip-shaped electronic component, which performs a step of separating each chip-shaped electronic component.
[0047]
According to the present invention, in the chip-like electronic component, its mounting structure, and the pseudo wafer, at least electrodes are provided on at least one side of the chip component, and almost the entire surface other than the one surface is covered with the continuous protective material. In addition, since an isolating material for isolating the electrode and the protective material is provided between the chip component and the protective material, the following (1) to ( The remarkable effect of 4) is obtained.
[0048]
(1) Separation material (for example, liquid resin: the same applies hereinafter) for isolating an electrode (for example, an Al electrode pad (the same applies hereinafter)) of a chip component from a protective substance (for example, a plate material made of an insulating resin: the same applies hereinafter) Is provided in advance (that is, the periphery of the chip component is surrounded by an isolating material in advance), and when the protection material is poured, it is possible to prevent the protection material from being involved in a void existing at a certain position of the chip component. When vacuum degassing is performed after dispensing the isolating material, the thickness of the isolating material is thin, so that voids are easily removed, and the presence of the isolating material causes the surface of the chip component to have a gentle shape. When a protective material is poured, it is difficult to form voids around the chip and no voids are generated on the surface. In this case, no voids are left unfilled, and since the hardening does not occur while the voids are present on the surface of the protective material, the subsequent wiring can be formed in a stable manner. The generation of unfilled voids can be eliminated without changing the printing conditions, the molding conditions, the defoaming conditions, the thickness of the protective substance, and the like into which the protective substance is poured.
[0049]
(2) Also, when pouring the protective substance, the flow of the protective substance is smooth even in the heating and pressurizing step, since the periphery of the chip component is previously surrounded by the isolating material and the chip surface has a gentle shape. And the like, welds are less likely to occur at chip corners and chip edges. Since this weld does not occur at those places, there are no factors that adversely affect the reliability, such as a decrease in the adhesion to the chip component and expansion when heat is applied. That is, it is possible to eliminate the occurrence of welds without changing the material and physical properties of the protective substance, the molding conditions for pouring the protective substance, and the like.
[0050]
(3) Also, when pouring the protective substance, even in the heating and pressurizing step, since the periphery of the chip component is previously surrounded by the isolating material, the isolating material is softened together with the chip component fixing material by heating. The softened isolating material suppresses sinking or floating of the chip component into the fixing material, thereby reducing a step generated at the boundary between the chip component and the protective material, and subsequently forming an interlayer insulating film and forming a wiring. Can be performed reliably and stably. Since the step is small, the patterning property is improved even when a wiring having a narrow wiring pitch is formed. In other words, without changing the material and physical properties of the protective substance, the material and physical properties of the fixing material, and the molding conditions when pouring the protective substance, it is possible to reduce the occurrence of steps and to cope with stable wiring formation and fine wiring. Can be.
[0051]
(4) Further, when pouring a protective substance, a chip having poor adhesion between the chip device surface and the fixing material or, for example, an electrode on the chip device surface is located on the outer periphery of the chip, and an overcoat is formed from the chip edge to the electrode. Even in the case of a chip that has been pulled out and has a structure in which the protective substance easily enters the electrode on the chip device surface, the chip can be cured without the protective substance entering the electrode on the chip device surface by the isolating material (particularly, a cured resin). Therefore, since the protective substance does not enter the electrodes of the chip, poor conduction with the wiring and high resistance do not occur, and the reliability is improved. That is, it is possible to prevent the protection substance from entering the electrode without changing the material and physical properties of the protection substance, the material and properties of the fixing material, the conditions for pouring the protection substance, and the like.
[0052]
In addition to these functions and effects, the present invention rearranges and adheres non-defective chip components to a support similarly to the above-mentioned prior invention, and peels off after attaching a separator and attaching a protective substance. In addition, since it is possible to obtain a pseudo wafer in which all the products are non-defective chips, it is also possible to perform wiring formation and solder bump processing on the non-defective chips at a time. Also, solder bump processing and the like can be easily performed not only on in-house manufactured wafers but also on bare chips purchased from other companies.
[0053]
In addition, since the chip side surface and the back surface are covered with the protective material, Ni electroless plating can be performed, and the chip side surface and the back surface are protected by the protective material. In this case, the chip is protected and good mounting reliability is obtained. The substrate to which a good chip is attached can be used repeatedly after the wafer is peeled off, which is advantageous in terms of cost such as bump formation and environment.
[0054]
In addition, when cutting chip-shaped electronic components from a pseudo wafer, only the protective material is cut, so cutting can be easily performed, blades are not damaged, and chip components are adversely affected (strains, burrs, cracks, etc. ) Can be suppressed.
[0055]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, it is preferable that the isolating material is applied between the chip component and the protective material and / or between the chip components on a side surface of the chip component, and the isolating material has an insulating property. The protective material may be made of a cured product, and the protective material may be made of an organic or inorganic insulating material. In particular, the isolating material may be made of the same material as the protective material.
[0056]
It is preferable that the isolating material and the protective material are on the same surface on the one surface side, and that the isolating material is locally applied by dispensing.
[0057]
A single semiconductor chip or a plurality or a plurality of types of semiconductor chips that are cut at the position of the protective material and / or the isolating material and fixed to a mounting substrate, and the electrodes are provided on a mounting surface side; Preferably, a side surface of the semiconductor chip is covered with the isolating material, and the isolating material and the back surface of the semiconductor chip are covered with the protective material.
[0058]
Further, a wiring or a solder bump may be formed on the electrode, and a plurality or a plurality of types of semiconductor chips for MCM may be integrated by the protective material.
[0059]
In the present invention, it is preferable to apply the separating material in a liquid state, and then apply the protective material made of an organic or inorganic insulating material.
[0060]
In this case, at a temperature at which the adhesive force of the fixing material for fixing the chip component on the support does not decrease, the liquid material locally applied by dispensing is cured, and then the protective substance is poured. It is effective to cure. This is desirable when the heat resistance of the fixing material is sufficient.
[0061]
Further, the protective substance may be poured and cured in a state where the liquid material locally applied by dispensing is not cured. This is desirable when the heat resistance of the fixing material is insufficient.
[0062]
The liquid material is preferably degassed in a vacuum, but is not always necessary.
[0063]
When dispensing with the viscosity of the liquid material being higher than the viscosity at the time of pouring the protective substance, the liquid material does not protrude onto the electrode due to the high viscosity. This is effective for a chip having a structure in which resin easily enters the electrodes of the chip. However, after dispensing the liquid material, it is preferable to cure at a temperature at which the adhesive strength of the fixing material does not decrease, and then to cure by pouring the protective substance.
[0064]
In the present invention, a fixing material is provided on the flat support, a frame is attached to the fixing material if necessary, and a plurality of non-defective semiconductor chips or a plurality of types of semiconductor chips are provided with an electrode surface inside the frame. The adhesive is fixed downward, and if necessary, vacuum is applied while applying a load and / or heat. Thereafter, the liquid material as the isolating material is dispensed on the side surface or around the semiconductor chip with a higher viscosity than the protective substance. And, if necessary, after vacuum degassing and curing at a low temperature, the organic or inorganic insulating material as the protective material is uniformly applied and cured from the backside of the semiconductor chip, and then the plurality of A pseudo wafer in which one or more kinds of semiconductor chips are fixed by the protective substance is peeled off from the support, and a plurality of or more non-defective semiconductor chips are arranged and the pseudo wafer in which an electrode surface is exposed is provided. Give Ha, it is preferable to cut the pseudo wafer thereafter between the plurality or more semiconductor chips.
[0065]
In this case, the liquid material to be dispensed around the chip in advance, for example, the liquid resin, may be the same material as the protective substance (plate material), or may be a material of the same system and having a high viscosity. In particular, in order to obtain the effect (4), a material having a high viscosity is used in order to suppress penetration of the chip device surface into the electrode. In addition, it is also possible to apply by printing instead of dispensing.
[0066]
To exemplify each material, the liquid resin may be material: epoxy resin, viscosity: 60 Pa · s, and the resin (dam) having high viscosity may be material: epoxy resin, viscosity: 100 to 200 Pa · s. . Instead of the epoxy resin, a liquid ceramic, for example, a ceramic having a material of alumina, an inorganic medium, and a viscosity of 50 to 60 Pa · s or less (which can be set relatively freely by adjusting the concentration) may be used.
[0067]
Further, when dispensing the liquid resin around the chip, it is preferable that a high-precision dispenser be used to dispense the liquid resin at a constant height from a chip edge to a position outside a fixed distance. It is desirable that the distance from the chip edge to a position outside the chip edge is extended to an area where a wiring is formed thereon, and dispensing is performed. That is, the wiring on the plate material is less likely to be affected by irregularities generated at the interface between the dispensed resin and the plate material. Also, it is desirable that the height of the resin after dispensing is a height that does not go around the back surface of the chip, and that the side surface of the chip is covered with resin. It is desirable that all portions where the gap between chips is narrow be filled with resin.
[0068]
After dispensing the liquid resin, there is a possibility that a void may be involved during dispensing, so it is preferable to perform vacuum defoaming. At this time, since the resin thickness is as thin as the chip thickness or less, it is easy to remove bubbles. However, in order to obtain the effect of the above (4), if air bubbles existing near the chip are defoamed, the plate material may easily enter there.
[0069]
For curing, if the plate forming method is a printing method such as a vacuum printing method, it is not necessary to cure after dispensing and vacuum degassing, but when heating and pressing, the resin dispensed around the chip after vacuum degassing is used. Must be cured so that it does not move. In this case, the curing is preferably performed within a temperature condition under which the chip does not move due to a decrease in the chip holding force of the fixing material and the separation between the fixing material and the substrate (support) does not occur.
[0070]
In the present invention, in the method of manufacturing a pseudo wafer in which only a number of non-defective chips are arranged and the device surface is exposed, the chips are fixed to a fixing material, and the adhesion is improved as necessary by, for example, pressing under vacuum. Thereafter, a liquid resin is dispensed around the chip, degassed in a vacuum, and cured at a low temperature if necessary. This eliminates voids that are trapped by the presence of the chip, and makes it easier to remove even if a void is generated around the chip during dispensing, so that no void is generated.
[0071]
Further, by curing the dispensed resin at a low temperature, the weld of the plate material generated at the time of molding by heating and pressing the plate material and the step between the chip and the plate material are reduced. This is also a manufacturing method capable of curing the dispensed resin so that the plate material does not enter the electrode on the chip device surface even if the material and the structure have different adhesive strengths of the chip and the chip to the fixing material.
[0072]
In this way, only a number of non-defective chips are arranged, the electrode pad portions of the device are all exposed, a plate without voids can be manufactured with high reliability, and the weld of the plate material or the step between the chip and the plate is small, so that The subsequent rewiring process can be performed with high reliability.
[0073]
Then, an electrode or a wiring is formed on this plate (pseudo wafer) and cut into a module composed of a single or a plurality of chips, whereby an extremely low-cost chip module can be provided. This chip module can be used not only for small and lightweight portable electronic devices but also for all electronic devices.
[0074]
Further, the chip component determined to be non-defective by the characteristic measurement is fixed on the support, and the characteristic of the chip component is measured in a state where the chip component is fixed with the protective substance, and a non-defective chip-shaped electronic component is selected. Good.
[0075]
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0076]
FIGS. 1 to 3 show a process of dispensing a liquid resin as a separating material around a semiconductor chip and then modularizing (plating) or dividing each chip into various chips.
[0077]
First, as shown in FIG. 1A, an adhesive fixing material 2 is uniformly formed on a flat substrate 1 with little deformation, such as a glass plate, as shown in FIG. 1B. If the fixing material 2 is a film, it is attached by a method such as roller lamination, and if it is a liquid, it is formed by a method such as spin coating or printing.
[0078]
Next, as shown in FIG. 1C, the semiconductor chips 3, 3 ′ which have been confirmed as non-defective products are fixed on the fixing material 2 with the device (electrode) face down using the adhesiveness of the fixing material 2. I do. At this time, the chip 3 ′ provided with an overcoat 31 of polyimide or the like on the surface is also fixed. Similarly, the chip 3 ′ is fixed with the overcoat surface down, using the adhesiveness of the fixing material 2. Note that the chip with the overcoat 31 is also described in FIG. Although the semiconductor chips 3 and 3 'are illustrated in the same size, it is a matter of course that the semiconductor chips 3 and 3' may have different sizes, such as the chips 3a, 3a ', 3b and 3b' shown in FIG. Although a large number of semiconductor chips 3 and 3 'actually exist, only four are shown in the drawing (the same applies hereinafter).
[0079]
Next, if necessary, as shown in FIG. 1 (d), in order to enhance the adhesion between the fixing material 2 and the chips 3, 3 ', the entire substrate 1 is placed in a vacuum device 36, and the load jig 37 is attached to the chip. The chip is placed on the back surface, a load is applied to the chip back surface by the own weight of the jig, or a mechanical load, and the chip is evacuated to improve the adhesion between the chips 3, 3 'and the fixing member 2.
[0080]
Next, as shown in FIG. 2 (e), a liquid resin (or a liquid resin having a higher viscosity than the plate material) 38A is dispensed on each side surface along the periphery of the chips 3, 3 ′, and is locally applied. Vacuum defoaming and curing at low temperature if necessary.
[0081]
At this time, the liquid resin 38A dispensed around the chip may be the same material as the plate material (for example, epoxy resin) or a material of the same system, but has a higher viscosity (for example, 100 to 200 Pa · s). What you did is good. In particular, in order to prevent the plate material from seeping into the electrode on the chip device surface, a material having a high viscosity is preferably used. This is also effective when a plate material is poured without curing the liquid resin 38A.
[0082]
Also, when dispensing around the chip, use a high-precision dispenser to dispense at a constant height from the chip edge to a position outside a certain distance, but the distance from the chip edge to the outside position must be It is desirable to dispense by spreading to the area where the is formed. This makes it less likely to be affected by irregularities at the interface between the resin 38 cured after dispensing and the plate member 4. Further, the height of the resin 38 after dispensing is set so as not to go around the back surface of the chip, and it is desirable that the chip side surface 39 is covered with the resin 38. It is desirable to keep.
[0083]
After this dispensing, there is a possibility that a void may be involved at the time of dispensing, so it is preferable to perform vacuum defoaming. At this time, since the thickness of the resin 38A is as thin as the chip thickness or less, it is easy to remove bubbles. However, when the plate material enters the defoaming portion when the plate material is poured, it may be better not to perform the vacuum defoaming.
[0084]
Regarding the hardening of the liquid resin 38A, if the plate material is formed by a printing method such as a vacuum printing method, it is not necessary to harden after dispensing and vacuum defoaming. Later, it is necessary to cure the dispensed resin 38 around the chip so as not to move. In this case, the curing is performed within a temperature condition under which the chip holding force of the fixing material 2 is reduced and the chip does not move, and the separation of the fixing material 2 and the substrate 1 does not occur.
[0085]
Next, as shown in FIG. 2 (f), a frame (or a mold) 41 on which a release agent has been spray-coated in advance is attached on the fixing material 2 so as to surround the chips 3 and 3 ′. In this state, as shown in FIG. 2 (g), a plate material 4A (having a viscosity of, for example, 60 Pa.s), in which the fixing material 2 is made of a liquid epoxy resin having a releasing function, is uniformly poured from the back surface of the chip and hardened.
[0086]
Next, as shown in FIG. 2 (h), by utilizing the releasing action of the fixing material 2, the plate with the frame 41 and the chips 3, 3 ′ covered with the hardened plate material 4 other than the electrode surface is flattened. 3 (i), the frame 41 is removed from the plate 4, and a pseudo wafer 49 shown in FIG. 3 (j) is produced.
[0087]
Next, as shown in FIG. 3 (k), wirings 33 for rearrangement are formed on the chips or between the chips by a subtractive method so as to be connected to the electrode pads 5 of the chips 3, 3 '. In this manner, the connection between chips for MCM is performed. In this case, an insulating layer may be provided under the wiring 33, but since the surface of the pseudo wafer 49 is made of an insulating material except for the electrode pad 5, the wiring 33 can be provided thereon, and It is not necessary to form another insulating layer on the base.
[0088]
Next, as shown in FIG. 3 (l), the plate material 4 (or / and the resin 38) between the chips is diced 11 by a cutting blade 42 into individual pieces. A non-defective chip-shaped electronic component 46 covered and integrated on the side surface and the back surface is manufactured in 4 (the dicing position is indicated by a virtual line in FIG. 3K).
[0089]
Further, after the solder bumps 12 connected to the respective electrode pads 5 are formed by the batch transfer method in the state of FIG. 3 (j) or (k), the solder bumps 12 can be separated into individual pieces.
[0090]
According to the present embodiment, the pseudo wafer 49 is manufactured by pouring the plate material 4A in a state where the separating material (dam material) made of the cured resin 38 is provided around each chip. There is no void entrapment due to the presence of, no voids in or on the plate material 4, and no plate material 4 penetrates and covers the electrode pads 5 of the chips 3, 3 ′. The step between the chip and the plate material on the surface of the material 4 is also reduced, and the occurrence of weld on the plate is suppressed.
[0091]
Therefore, a void-free resin plate (pseudo-wafer) 49 in which only non-defective chips are arranged in a large number and all the electrode pad portions of the device are exposed can be produced with high reliability. Rewiring can also be formed with high accuracy and reliability.
[0092]
That is, for example, even for the chips 3 and 3 'having a large thickness and having a structure in which the plate material 4A easily enters the electrode 5 of the chip, the liquid resin 38A or the like is dispensed around the chip in advance, and if necessary, By vacuum defoaming and heat curing, compared to the method of pouring the plate material 4A without providing the resin 38, the liquid resin is evacuated in a thin state and the voids around the chip are easily removed, Further, since the outer shape of the chip is covered with the resin 38 and has a gentle shape, it is difficult for the plate material 4A to be wound around the chip even when the plate material 4A is poured.
[0093]
In addition, a desired plate can be obtained without the plate material 4A entering the electrode 5 on the chip device surface. When the plate material is subsequently formed under heating and pressing conditions, the periphery of the chip is covered with the resin 38 in advance to form a gentle shape, so that welds that are likely to occur at chip corners and chip edges can be reduced.
[0094]
Also, when the plate material 4A is poured, the fixing material 2 is softened and pushed by the hard chip portion, so that a step is easily generated between the chip and the plate material. However, since the periphery of the chip is covered with the resin 38 in advance, Since the periphery of the chip can be made flexible and the step can be reduced, the resin plate 49 made of a good chip having a flat surface can be stably obtained.
[0095]
Then, the formation of electrodes such as bumps and the formation of wiring on the pseudo wafer 49 can be stably performed. By dividing into individual chips, a plurality of good chips (high-end LSIs with low yield and expensive state-of-the-art A desired flat chip module 46 in which integrated chips (chip parts such as chip resistors and chip parts) are integrated (however, a single chip can be separated). This chip-shaped electronic component 46 is connected and fixed to a mounting board in the same manner as shown in FIG.
[0096]
Further, in the present embodiment, similarly to the above-described prior application, the non-defective chips 3 and 3 ′ are rearranged and attached to the substrate 1, and are peeled off after the resin 38 is attached and the plate material 4 is attached. Since it is possible to obtain the pseudo wafer 49 in which all the products are non-defective chips, it is possible to perform wiring formation and solder bump processing on the non-defective chips at a time. Also, solder bump processing and the like can be easily performed not only on in-house manufactured wafers but also on bare chips purchased from other companies.
[0097]
In addition, since the chip side surface and the back surface are covered by the plate member 4, Ni electroless plating can be performed, and the chip side surface and the back surface are protected by the plate member 4, so that the chip after individualization is separated. The chip is also protected during mounting handling, and good mounting reliability is obtained. The substrate to which a good chip is attached can be used repeatedly after the wafer is peeled off, which is advantageous in terms of cost such as bump formation and environment.
[0098]
Further, when the chip-shaped electronic component 46 is cut from the pseudo wafer 49, the portion of the plate material 4 is cut, so that the cutting can be easily performed, the blade is not damaged, and the chip component is adversely affected (distortion, burrs, cracks, etc.). Damage).
[0099]
The embodiment described above can be further modified based on the technical idea of the present invention.
[0100]
For example, the pattern, material, forming method and the like of the resin 38 may be variously changed. The position may be between the chips 3 and 3 'and the plate material 4 or between the chips.
[0101]
Also, after the process of FIG. 3 (k), solder bumps may be collectively formed on the wiring 43 and then scribed, or the bumps may be provided in advance on the mounting substrate side to separate the chip-shaped electronic components 46. May be mounted. After the step of FIG. 3 (j), it is also possible to scribe without forming the wiring 43 and mount it on the mounting substrate.
[0102]
The substrate on which the non-defective bare chip is attached may be made of another material as long as it has the same effect and strength in addition to quartz and glass, and the shape and thickness may be arbitrarily changed. The adhesive tape (or sheet) 2 may be made of acrylic or the like, or various materials as long as it serves the same purpose. The material of the plate material 4 may be selected from a wide range, and only organic materials such as epoxy resin are used. Instead, inorganic materials such as SOG (Spin on Glass) SiOx can also be used. The non-defective bare chips may be different in shape, size and type, but may be of the same type.
[0103]
A substrate such as the above quartz substrate can be used repeatedly as many times as possible, which is advantageous in terms of cost and environment. The object to which the present invention is applied is not limited to a chip-shaped electronic component having a semiconductor chip, but may be various chip-shaped electronic components having other chip components.
[0104]
Operation and Effect of the Invention
As described above, according to the present invention, at least substantially the entire surface of the chip component provided with the electrode on one surface side other than the one surface is covered with a continuous protective material, and the electrode and the protective Since the isolating material for isolating the substance is provided between the chip component and the protective substance, the following remarkable effects (1) to (4) can be obtained.
[0105]
(1) By providing an insulating material (for example, a liquid resin) for isolating the electrodes of the chip component from the protection material in advance, the protection material is involved in a void existing at a certain position of the chip component when the protection material is poured. Can be prevented. And, when vacuum defoaming after dispensing this isolating material, since the thickness of the isolating material is thin, it is easy for voids to come off, and the presence of the isolating material causes the surface of the chip component to have a gentle shape, When the protective substance is poured, it is difficult to wind the void around the chip, and no void is generated on the surface. For example, even when the chip components are thick or the gap between the chip components is narrow, an unfilled void does not occur. In addition, since the curing is not performed while the voids are present on the surface of the protective material, the subsequent wiring can be formed stably.
[0106]
(2) Also, when pouring the protective substance, the flow of the protective substance is smooth even in the heating and pressurizing step, since the periphery of the chip component is previously surrounded by the isolating material and the chip surface has a gentle shape. And the like, welds are less likely to occur at chip corners and chip edges. Since this weld does not occur at those places, there are no factors that adversely affect the reliability, such as a decrease in the adhesion to the chip component and expansion when heat is applied.
[0107]
(3) Also, when pouring the protective substance, even in the heating and pressurizing step, since the periphery of the chip component is previously surrounded by the isolating material, the isolating material is softened together with the chip component fixing material by heating. The softened isolating material suppresses the sinking of the chip component into the fixing material, reducing the step that occurs at the boundary between the chip component and the protective material, and ensuring the subsequent formation of the interlayer insulating film and wiring formation. Can be performed well and stably. Since the step is small, the patterning property is improved even when a wiring having a narrow wiring pitch is formed.
[0108]
(4) Further, when pouring a protective substance, a chip having poor adhesion between the chip device surface and the fixing material, or, for example, an electrode on the chip device surface is located on the outer periphery of the chip, and an overcoat is formed from the chip edge to the electrode. Even in the case of a chip that has been pulled out and has a structure in which the protective substance easily enters the electrode on the surface of the chip device, it can be cured without the protective substance entering the electrode on the surface of the chip device by the isolating material (particularly, a cured resin). Therefore, since the protective substance does not enter the electrodes of the chip, poor conduction with the wiring, high resistance does not occur, and the reliability is improved.
[0109]
Then, the non-defective chip components are rearranged and adhered to the support, peeled off after the attachment of the isolating material and the deposition of the protective substance, and a pseudo wafer can be obtained as if all products were non-defective chips. It is also possible to perform wiring formation, solder bump processing, and the like on the chip in a batch of wafers. Also, solder bump processing and the like can be easily performed not only on in-house manufactured wafers but also on bare chips purchased from other companies.
[0110]
In addition, since the chip side surface and the back surface are covered with the protective material, Ni electroless plating can be performed, and the chip side surface and the back surface are protected by the protective material. In this case, the chip is protected and good mounting reliability is obtained. The substrate to which a good chip is attached can be used repeatedly after the wafer is peeled off, which is advantageous in terms of cost such as bump formation and environment.
[0111]
In addition, when cutting chip-shaped electronic components from a pseudo wafer, only the protective material is cut, so cutting can be easily performed, blades are not damaged, and chip components are adversely affected (strains, burrs, cracks, etc. ) Can be suppressed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a method of manufacturing a chip-shaped electronic component according to an embodiment of the present invention in the order of steps.
FIG. 2 is a sectional view sequentially showing a step that follows the step of FIG. 1;
FIG. 3 is a cross-sectional view sequentially showing a step that follows the step of FIG. 2;
4A to 4C are cross-sectional views illustrating a conventional method of manufacturing a chip-shaped electronic component in the order of steps.
FIG. 5A is a perspective view of an example of an MCM mounting structure, and FIGS. 5B and 5C are partial cross-sectional side views thereof.
FIG. 6 is a perspective view of a semiconductor wafer for coping with wafer batch processing.
7A to 7C are cross-sectional views showing a pseudo wafer according to the invention of the prior application and a subsequent mounting method in the order of steps.
8 is a cross-sectional view sequentially showing a step that follows the step of FIG.
FIG. 9 is a cross-sectional view sequentially showing a bump forming step.
FIG. 10 is a perspective view of the pseudo wafer and an enlarged plan view of a part thereof.
11 is a cross-sectional view for explaining the step of FIG. 7 in detail.
[Explanation of symbols]
1: quartz substrate, 2: adhesive fixing material or adhesive tape (or sheet),
3, 3 ', 3a, 3b: good bare chip, 4: plate material or resin,
4A: liquid plate material (resin), 5: electrode pad, 8: printing mask,
9: solder paste, 11: dicing, 12: solder bump,
29, 49: pseudo wafer, 31: overcoat, 33: wiring,
36: vacuum device, 37: load jig, 38: cured resin, 38A: liquid resin,
39 ... side surface, 40 ... narrow gap, 41 ... frame, 42 ... blade,
46 ... Chip electronic components

Claims (53)

少なくとも電極が一方の面側に設けられているチップ部品の前記一方の面以外のほぼ全面が連続した保護物質で覆われていて、前記電極と前記保護物質とを隔離するための隔離材が前記チップ部品と前記保護物質との間に設けられているチップ状電子部品。At least an electrode is provided on one surface side of the chip component, and substantially the entire surface other than the one surface is covered with a continuous protective material, and the isolating material for isolating the electrode from the protective material is provided. A chip-shaped electronic component provided between the chip component and the protective substance. 前記隔離材が前記チップ部品の側面において前記チップ部品と前記保護物質との間及び/又は前記チップ部品間に被着されている、請求項1に記載したチップ状電子部品。The chip-shaped electronic component according to claim 1, wherein the isolation member is applied between the chip component and the protective material and / or between the chip components on a side surface of the chip component. 前記隔離材が絶縁性硬化物からなり、前記保護物質が有機系又は無機系の絶縁性物質からなる、請求項1に記載したチップ状電子部品。The chip-shaped electronic component according to claim 1, wherein the isolation material is made of an insulating cured material, and the protective material is made of an organic or inorganic insulating material. 前記隔離材が前記保護物質と同一材質からなる、請求項3に記載したチップ状電子部品。The chip-shaped electronic component according to claim 3, wherein the isolation member is made of the same material as the protective substance. 前記一方の面側において前記隔離材と前記保護物質とが同一面をなしている、請求項1に記載したチップ状電子部品。The chip-shaped electronic component according to claim 1, wherein the isolation member and the protective material are on the same surface on the one surface side. 前記隔離材がディスペンスで局部的に被着されている、請求項1に記載したチップ状電子部品。The chip-shaped electronic component according to claim 1, wherein the separator is locally applied by dispensing. 前記保護物質又は/及び前記隔離材の位置で切断され、実装基板に固定される単一の半導体チップ又は複数個又は複数種の半導体チップを有し、実装面側に前記電極が設けられ、前記半導体チップの側面が前記隔離材で覆われ、この隔離材及び前記半導体チップの裏面が前記保護物質で覆われている、請求項1に記載したチップ状電子部品。A single semiconductor chip or a plurality or a plurality of types of semiconductor chips cut at the position of the protective material and / or the separating material and fixed to a mounting substrate, wherein the electrode is provided on a mounting surface side; The chip-shaped electronic component according to claim 1, wherein a side surface of the semiconductor chip is covered with the isolating material, and the isolating material and the back surface of the semiconductor chip are covered with the protective material. 前記電極上に配線又ははんだバンプが形成されている、請求項1に記載したチップ状電子部品。The chip-shaped electronic component according to claim 1, wherein a wiring or a solder bump is formed on the electrode. 複数個又は複数種の半導体チップが前記保護物質によって一体化されている、請求項1に記載したチップ状電子部品。The chip-shaped electronic component according to claim 1, wherein a plurality or a plurality of types of semiconductor chips are integrated by the protective substance. 少なくとも電極が一方の面側に設けられているチップ部品の複数個又は複数種が、これらの間及びその裏面に連続して被着された保護物質によって互いに固着されていて、前記電極と前記保護物質とを隔離するための隔離材が前記チップ部品と前記保護物質との間に設けられている疑似ウェーハ。A plurality or a plurality of types of chip components provided with at least one electrode on one surface side are fixed to each other by a protective substance continuously applied between them and on the back surface thereof, and the electrode and the protection A pseudo wafer in which an isolating material for isolating a substance is provided between the chip component and the protective substance. 前記隔離材が前記チップ部品の側面において前記チップ部品と前記保護物質との間及び/又は前記チップ部品間に被着されている、請求項10に記載した疑似ウェーハ。The pseudo wafer according to claim 10, wherein the separating material is applied between the chip component and the protective material and / or between the chip components on a side surface of the chip component. 前記隔離材が絶縁性硬化物からなり、前記保護物質が有機系又は無機系の絶縁性物質からなる、請求項10に記載した疑似ウェーハ。The pseudo wafer according to claim 10, wherein the isolation material is made of an insulating cured material, and the protective material is made of an organic or inorganic insulating material. 前記隔離材が前記保護物質と同一材質からなる、請求項12に記載した疑似ウェーハ。13. The pseudo wafer according to claim 12, wherein the isolation material is made of the same material as the protective material. 前記一方の面側において前記隔離材と前記保護物質とが同一面をなしている、請求項10に記載した疑似ウェーハ。The pseudo wafer according to claim 10, wherein the isolation material and the protective material are on the same surface on the one surface side. 前記隔離材がディスペンスで局部的に被着されている、請求項10に記載した疑似ウェーハ。The pseudo wafer according to claim 10, wherein the separator is locally applied by dispensing. 前記保護物質又は/及び前記隔離材の位置で切断され、実装基板に固定される単一の半導体チップ又は複数個又は複数種の半導体チップを有し、実装面側に前記電極が設けられ、前記半導体チップの側面が前記隔離材で覆われ、この隔離材及び前記半導体チップの裏面が前記保護物質で覆われている、請求項10に記載した疑似ウェーハ。A single semiconductor chip or a plurality or a plurality of types of semiconductor chips cut at the position of the protective material and / or the separating material and fixed to a mounting substrate, wherein the electrode is provided on a mounting surface side; The pseudo wafer according to claim 10, wherein a side surface of the semiconductor chip is covered with the separating material, and a back surface of the separating material and the semiconductor chip are covered with the protective material. 前記電極上に配線又ははんだバンプが形成されている、請求項10に記載した疑似ウェーハ。The pseudo wafer according to claim 10, wherein a wiring or a solder bump is formed on the electrode. 複数個又は複数種の前記半導体チップが前記保護物質によって一体化されている、請求項10に記載した疑似ウェーハ。The pseudo wafer according to claim 10, wherein a plurality or a plurality of types of the semiconductor chips are integrated by the protective material. 少なくとも電極が一方の面側に設けられているチップ部品の前記一方の面以外のほぼ全面が連続した保護物質で覆われていて、前記電極と前記保護物質とを隔離するための隔離材が前記チップ部品と前記保護物質との間に設けられているチップ状電子部品が、実装基板に接続固定されている実装構造。At least an electrode is provided on one surface side of the chip component, and substantially the entire surface other than the one surface is covered with a continuous protective material, and the isolating material for isolating the electrode from the protective material is provided. A mounting structure in which a chip-shaped electronic component provided between the chip component and the protective substance is connected and fixed to a mounting substrate. 前記隔離材が前記チップ部品の側面において前記チップ部品と前記保護物質との間及び/又は前記チップ部品間に被着されている、請求項19に記載した実装構造。20. The mounting structure according to claim 19, wherein the separating material is applied between the chip component and the protective material and / or between the chip components on a side surface of the chip component. 前記隔離材が絶縁性硬化物からなり、前記保護物質が有機系又は無機系の絶縁性物質からなる、請求項19に記載した実装構造。20. The mounting structure according to claim 19, wherein the insulating material is made of an insulating cured material, and the protective material is made of an organic or inorganic insulating material. 前記隔離材が前記保護物質と同一材質からなる、請求項21に記載した実装構造。22. The mounting structure according to claim 21, wherein the isolation member is made of the same material as the protective substance. 前記一方の面側において前記隔離材と前記保護物質とが同一面をなしている、請求項19に記載した実装構造。20. The mounting structure according to claim 19, wherein the isolation member and the protective material are on the same surface on the one surface side. 前記隔離材がディスペンスで局部的に被着されている、請求項19に記載した実装構造。20. The mounting structure according to claim 19, wherein the separator is locally applied by dispensing. 前記保護物質又は/及び前記隔離材の位置で切断され、実装基板に固定される単一の半導体チップ又は複数個又は複数種の半導体チップを有し、実装面側に前記電極が設けられ、前記半導体チップの側面が前記隔離材で覆われ、この隔離材及び前記半導体チップの裏面が前記保護物質で覆われている、請求項19に記載した実装構造。A single semiconductor chip or a plurality or a plurality of types of semiconductor chips cut at the position of the protective material and / or the separating material and fixed to a mounting substrate, wherein the electrode is provided on a mounting surface side; 20. The mounting structure according to claim 19, wherein a side surface of the semiconductor chip is covered with the isolating material, and the isolating material and the back surface of the semiconductor chip are covered with the protective material. 前記電極上に形成された配線又ははんだバンプによって前記接続固定が行われている、請求項19に記載した実装構造。20. The mounting structure according to claim 19, wherein the connection and fixing are performed by a wiring or a solder bump formed on the electrode. 複数個又は複数種の半導体チップが前記保護物質によって一体化されている、請求項19に記載した実装構造。20. The mounting structure according to claim 19, wherein a plurality or a plurality of types of semiconductor chips are integrated by the protection material. 支持体上に複数個又は複数種のチップ部品をその電極面を下にして固定する工程と、前記チップ部品の側面において前記電極を囲むように隔離材を被着する工程と、前記隔離材の周囲において保護物質を前記複数個又は複数種のチップ部品間を含むほぼ全面に被着する工程と、前記チップ部品間及びその裏面に連続して前記保護物質が被着してなる疑似ウェーハを前記支持体から剥離する工程と、前記複数個又は複数種のチップ部品間を切断して各チップ状電子部品を分離する工程とを有する、チップ状電子部品の製造方法。Fixing a plurality of or a plurality of types of chip components on a support with their electrode surfaces facing down, applying a separator on the side surface of the chip component so as to surround the electrodes, A step of applying a protective substance on substantially the entire surface including the plurality of or a plurality of types of chip components around, and the pseudo wafer formed by continuously applying the protective material between the chip components and the back surface thereof. A method for manufacturing a chip-shaped electronic component, comprising: a step of separating the chip-shaped electronic component from a support; and a step of cutting the plurality of or a plurality of types of chip components to separate each chip-shaped electronic component. 前記隔離材を前記チップ部品の側面において前記チップ部品と前記保護物質との間及び/又は前記チップ部品間に被着する、請求項28に記載したチップ状電子部品の製造方法。29. The method for manufacturing a chip-shaped electronic component according to claim 28, wherein the isolating material is applied between the chip component and the protective material and / or between the chip components on a side surface of the chip component. 前記隔離材を液状物の状態で被着し、しかる後に有機系又は無機系の絶縁性物質からなる前記保護物質を被着する、請求項28に記載したチップ状電子部品の製造方法。29. The method for manufacturing a chip-shaped electronic component according to claim 28, wherein the separating material is applied in a liquid state, and then the protective material made of an organic or inorganic insulating material is applied. 前記チップ部品を前記支持体上に固定するための固定材の粘着力が低下しない温度で、ディスペンスで局部的に被着した前記液状物を硬化させ、しかる後に前記保護物質を流し込んで硬化させる、請求項30に記載したチップ状電子部品の製造方法。At a temperature at which the adhesive force of the fixing material for fixing the chip component on the support does not decrease, the liquid material locally applied by dispensing is cured, and then the protective material is poured and cured. A method for manufacturing a chip-shaped electronic component according to claim 30. ディスペンスで局部的に被着した前記液状物を硬化させない状態で前記保護物質を流し込んで硬化させる、請求項30に記載したチップ状電子部品の製造方法。31. The method for manufacturing a chip-shaped electronic component according to claim 30, wherein the protective substance is poured and cured in a state where the liquid material locally applied by dispensing is not cured. 前記液状物を真空脱泡する、請求項31又は32に記載したチップ状電子部品の製造方法。33. The method for manufacturing a chip-shaped electronic component according to claim 31, wherein the liquid material is vacuum degassed. 前記液状物の粘度を前記保護物質の流し込み時の粘度よりも高くしてディスペンスする、請求項31又は32に記載したチップ状電子部品の製造方法。33. The method for manufacturing a chip-shaped electronic component according to claim 31, wherein the liquid material is dispensed with a viscosity higher than a viscosity at the time of pouring the protective substance. 前記一方の面側において、前記隔離材と前記保護物質とを同一面に存在させる、請求項28に記載したチップ状電子部品の製造方法。29. The method for manufacturing a chip-shaped electronic component according to claim 28, wherein, on the one surface side, the isolation material and the protective material are present on the same surface. 平坦な前記支持体上に固定材を設け、必要あればこの固定材上に枠を貼り付け、そしてこの枠の内側に良品の半導体チップの複数個又は複数種を電極面を下にして粘着固定し、必要あれば荷重及び/又は熱をかけながら真空引きを行い、しかる後に前記隔離材としての前記液状物を前記保護物質より高粘度で前記半導体チップの側面又は周囲にディスペンスで被着し、必要あれば真空脱泡及び低温での硬化後に、前記保護物質としての前記有機系又は無機系の絶縁性物質を半導体チップ裏面より均一に塗布して硬化させ、しかる後に前記複数個又は複数種の半導体チップを前記保護物質で固着した疑似ウェーハを前記支持体から剥離し、良品の半導体チップが複数個又は複数種配列されかつ電極面が露出した前記疑似ウェーハを得、しかる後に前記疑似ウェーハを前記複数個又は複数種の半導体チップ間で切断する、請求項30に記載したチップ状電子部品の製造方法。A fixing material is provided on the flat support, and if necessary, a frame is attached to the fixing material, and a plurality of non-defective semiconductor chips or a plurality of types are adhesively fixed inside the frame with the electrode surface facing down. Then, if necessary, vacuuming is performed while applying a load and / or heat, and then the liquid material as the isolating material is applied with a higher viscosity than the protective substance on the side surface or the periphery of the semiconductor chip by dispensing, If necessary, after vacuum degassing and curing at a low temperature, the organic or inorganic insulating material as the protective material is uniformly applied and cured from the backside of the semiconductor chip, and then the plurality or plural kinds of the A pseudo wafer in which semiconductor chips are fixed with the protective substance is peeled off from the support, and a plurality of non-defective semiconductor chips or a plurality of kinds of semiconductor chips are arranged and the pseudo wafer in which an electrode surface is exposed is obtained. It said pseudo wafer is cut between the plurality or more of the semiconductor chip, a manufacturing method of the chip-like electronic components according to claim 30. 前記保護物質及び/又は前記隔離材の位置で切断して、実装基板に固定される単一の半導体チップ又は複数個又は複数種の半導体チップがその側面にて前記隔離材で覆われ、この隔離材及び前記半導体チップの裏面が前記保護物質によって一体化された前記チップ状電子部品を得る、請求項28に記載したチップ状電子部品の製造方法。A single semiconductor chip or a plurality or a plurality of types of semiconductor chips fixed to a mounting substrate by being cut at the position of the protective material and / or the isolating material are covered with the isolating material on the side surface, and the isolation is performed. The method for manufacturing a chip-shaped electronic component according to claim 28, wherein the chip-shaped electronic component in which a material and a back surface of the semiconductor chip are integrated by the protective substance is obtained. 前記電極上に配線又ははんだバンプを形成する、請求項28に記載したチップ状電子部品の製造方法。The method for manufacturing a chip-shaped electronic component according to claim 28, wherein a wiring or a solder bump is formed on the electrode. 特性測定により良品と判定された前記チップ部品を前記支持体上に固定する、請求項28に記載したチップ状電子部品の製造方法。The method for manufacturing a chip-shaped electronic component according to claim 28, wherein the chip component determined as a non-defective product by characteristic measurement is fixed on the support. 前記保護物質で固着された状態において前記チップ部品の特性測定を行ない、良品のチップ状電子部品を選択する、請求項28に記載したチップ状電子部品の製造方法。29. The method for manufacturing a chip-like electronic component according to claim 28, wherein the characteristics of the chip-like component are measured in a state where the chip-like electronic component is fixed with the protective material, and a good-quality chip-like electronic component is selected. 支持体上に複数個又は複数種のチップ部品をその電極面を下にして固定する工程と、前記チップ部品の側面において前記電極を囲むように隔離材を被着する工程と、前記隔離材の周囲において保護物質を前記複数個又は複数種のチップ部品間を含むほぼ全面に被着する工程と、前記チップ部品間及びその裏面に連続して前記保護物質が被着してなる疑似ウェーハを前記支持体から剥離する工程とを有する、疑似ウェーハの製造方法。Fixing a plurality of or a plurality of types of chip components on a support with their electrode surfaces facing down, applying a separator on the side surface of the chip component so as to surround the electrodes, A step of applying a protective substance on substantially the entire surface including the plurality of or a plurality of types of chip components around, and the pseudo wafer formed by continuously applying the protective material between the chip components and the back surface thereof. Separating the pseudo wafer from the support. 前記隔離材を前記チップ部品の側面において前記チップ部品と前記保護物質との間及び/又は前記チップ部品間に被着する、請求項41に記載した疑似ウェーハの製造方法。42. The method of manufacturing a pseudo wafer according to claim 41, wherein the isolation member is applied between the chip component and the protective material and / or between the chip components on a side surface of the chip component. 前記隔離材を液状物の状態で被着し、しかる後に有機系又は無機系の絶縁性物質からなる前記保護物質を被着する、請求項41に記載した疑似ウェーハの製造方法。42. The method of manufacturing a pseudo wafer according to claim 41, wherein the isolating material is applied in a liquid state, and then the protective material made of an organic or inorganic insulating material is applied. 前記チップ部品を前記支持体上に固定するための固定材の粘着力が低下しない温度で、ディスペンスで局部的に被着した前記液状物を硬化させ、しかる後に前記保護物質を流し込んで硬化させる、請求項43に記載した疑似ウェーハの製造方法。At a temperature at which the adhesive force of the fixing material for fixing the chip component on the support does not decrease, the liquid material locally applied by dispensing is cured, and then the protective material is poured and cured. A method for manufacturing a pseudo wafer according to claim 43. ディスペンスで局部的に被着した前記液状物を硬化させない状態で前記保護物質を流し込んで硬化させる、請求項43に記載した疑似ウェーハの製造方法。44. The method of manufacturing a pseudo wafer according to claim 43, wherein the protective substance is poured and cured in a state where the liquid material locally applied by dispensing is not cured. 前記液状物を真空脱泡する、請求項44又は45に記載した疑似ウェーハの製造方法。The method for manufacturing a pseudo wafer according to claim 44 or 45, wherein the liquid material is vacuum degassed. 前記液状物の粘度を前記保護物質の流し込み時の粘度よりも高くしてディスペンスする、請求項44又は45に記載した疑似ウェーハの製造方法。The method of manufacturing a pseudo wafer according to claim 44 or 45, wherein the dispensing is performed by setting the viscosity of the liquid material to be higher than the viscosity at the time of pouring the protective substance. 前記一方の面側において、前記隔離材と前記保護物質とを同一面に存在させる、請求項41に記載した疑似ウェーハの製造方法。42. The method for manufacturing a pseudo wafer according to claim 41, wherein the isolation material and the protective material are present on the same surface on the one surface side. 平坦な前記支持体上に固定材を設け、必要あればこの固定材上に枠を貼り付け、そしてこの枠の内側に良品の半導体チップの複数個又は複数種を電極面を下にして粘着固定し、必要あれば荷重及び/又は熱をかけながら真空引きを行い、しかる後に前記隔離材としての前記液状物を前記保護物質より高粘度で前記半導体チップの側面又は周囲にディスペンスで被着し、必要あれば真空脱泡及び低温での硬化後に、前記保護物質としての前記有機系又は無機系の絶縁性物質を半導体チップ裏面より均一に塗布して硬化させ、しかる後に前記複数個又は複数種の半導体チップを前記保護物質で固着した疑似ウェーハを前記支持体から剥離し、良品の半導体チップが複数個又は複数種配列されかつ電極面が露出した前記疑似ウェーハを得る、請求項41に記載した疑似ウェーハの製造方法。A fixing material is provided on the flat support, and if necessary, a frame is attached to the fixing material, and a plurality of non-defective semiconductor chips or a plurality of types are adhesively fixed inside the frame with the electrode surface facing down. Then, if necessary, vacuuming is performed while applying a load and / or heat, and then the liquid material as the isolating material is applied with a higher viscosity than the protective substance on the side surface or the periphery of the semiconductor chip by dispensing, If necessary, after vacuum degassing and curing at a low temperature, the organic or inorganic insulating material as the protective material is uniformly applied and cured from the backside of the semiconductor chip, and then the plurality or plural kinds of the A pseudo wafer in which semiconductor chips are fixed with the protective substance and the pseudo wafer is peeled off from the support to obtain the pseudo wafer in which a plurality of or more non-defective semiconductor chips are arranged and the electrode surfaces are exposed. Method for producing a pseudo wafer described in 1. 前記保護物質及び/又は前記隔離材の位置で切断して、実装基板に固定される単一の半導体チップ又は複数個又は複数種の半導体チップがその側面にて前記隔離材で覆われ、この隔離材及び前記半導体チップの裏面が前記保護物質によって一体化された前記チップ状電子部品に加工される、請求項41に記載した疑似ウェーハの製造方法。A single semiconductor chip or a plurality or a plurality of types of semiconductor chips fixed to a mounting substrate by being cut at the position of the protective material and / or the isolating material is covered with the isolating material on a side surface thereof. 42. The method of manufacturing a pseudo wafer according to claim 41, wherein a material and a back surface of the semiconductor chip are processed into the chip-shaped electronic component integrated by the protective substance. 前記電極上に配線又ははんだバンプを形成する、請求項41に記載した疑似ウェーハの製造方法。42. The method of manufacturing a pseudo wafer according to claim 41, wherein a wiring or a solder bump is formed on the electrode. 特性測定により良品と判定された前記チップ部品を前記支持体上に固定する、請求項41に記載した疑似ウェーハの製造方法。42. The method for manufacturing a pseudo wafer according to claim 41, wherein the chip component determined to be non-defective by characteristic measurement is fixed on the support. 前記保護物質で固着された状態において前記チップ部品の特性測定を行ない、良品のチップ状電子部品を選択する、請求項41に記載した疑似ウェーハの製造方法。42. The method of manufacturing a pseudo wafer according to claim 41, wherein the characteristic of the chip component is measured in a state where the chip component is fixed with the protective substance, and a good chip-shaped electronic component is selected.
JP2002291736A 2002-10-04 2002-10-04 Chip-like electronic component and manufacturing method thereof, pseudo wafer used for the manufacturing and manufacturing method thereof, and mounting structure Pending JP2004128286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291736A JP2004128286A (en) 2002-10-04 2002-10-04 Chip-like electronic component and manufacturing method thereof, pseudo wafer used for the manufacturing and manufacturing method thereof, and mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291736A JP2004128286A (en) 2002-10-04 2002-10-04 Chip-like electronic component and manufacturing method thereof, pseudo wafer used for the manufacturing and manufacturing method thereof, and mounting structure

Publications (1)

Publication Number Publication Date
JP2004128286A true JP2004128286A (en) 2004-04-22

Family

ID=32283212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291736A Pending JP2004128286A (en) 2002-10-04 2002-10-04 Chip-like electronic component and manufacturing method thereof, pseudo wafer used for the manufacturing and manufacturing method thereof, and mounting structure

Country Status (1)

Country Link
JP (1) JP2004128286A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109181A (en) * 2008-10-30 2010-05-13 Shinko Electric Ind Co Ltd Method of manufacturing substrate with built-in semiconductor device
WO2010070103A1 (en) * 2008-12-19 2010-06-24 3D Plus Method for the collective production of electronic modules for surface mounting
JP2010165940A (en) * 2009-01-16 2010-07-29 Shinko Electric Ind Co Ltd Resin sealing method of semiconductor device
CN102683279A (en) * 2010-03-12 2012-09-19 新科金朋有限公司 Semiconductor device and method of forming sacrificial protective layer to protect semiconductor die edge during singulation
JP2013038300A (en) * 2011-08-10 2013-02-21 Fujitsu Ltd Electronic device and method for manufacturing the same
JP2014033151A (en) * 2012-08-06 2014-02-20 Fujitsu Ltd Manufacturing method of semiconductor device and pseudo wafer
JP2014123733A (en) * 2012-12-19 2014-07-03 Intel Corp Package with dielectric or anisotropic conductive film (acf) buildup layer
JP2014192170A (en) * 2013-03-26 2014-10-06 Fujitsu Ltd Semiconductor device manufacturing method and semiconductor device
US9087930B2 (en) 2007-12-14 2015-07-21 Stats Chippac, Ltd. Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief
JP2017228763A (en) * 2016-06-21 2017-12-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fan-out semiconductor package
US10998248B2 (en) 2007-12-14 2021-05-04 JCET Semiconductor (Shaoxing) Co. Ltd. Semiconductor device and method of forming sacrificial adhesive over contact pads of semiconductor die

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9087930B2 (en) 2007-12-14 2015-07-21 Stats Chippac, Ltd. Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief
US10998248B2 (en) 2007-12-14 2021-05-04 JCET Semiconductor (Shaoxing) Co. Ltd. Semiconductor device and method of forming sacrificial adhesive over contact pads of semiconductor die
US9666500B2 (en) 2007-12-14 2017-05-30 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming insulating layer disposed over the semiconductor die for stress relief
JP2010109181A (en) * 2008-10-30 2010-05-13 Shinko Electric Ind Co Ltd Method of manufacturing substrate with built-in semiconductor device
WO2010070103A1 (en) * 2008-12-19 2010-06-24 3D Plus Method for the collective production of electronic modules for surface mounting
FR2940521A1 (en) * 2008-12-19 2010-06-25 3D Plus COLLECTIVE MANUFACTURING METHOD OF ELECTRONIC MODULES FOR SURFACE MOUNTING
JP2012513109A (en) * 2008-12-19 2012-06-07 トロワデー、プリュ Wafer scale manufacturing method for surface mount electronic module
JP2010165940A (en) * 2009-01-16 2010-07-29 Shinko Electric Ind Co Ltd Resin sealing method of semiconductor device
US8368235B2 (en) 2009-01-16 2013-02-05 Shinko Electric Industries Co., Ltd. Resin sealing method of semiconductor device
US8610292B2 (en) 2009-01-16 2013-12-17 Shinko Electric Industries Co., Ltd. Resin sealing method of semiconductor device
US9558958B2 (en) 2010-03-12 2017-01-31 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming sacrificial protective layer to protect semiconductor die edge during singulation
US8907476B2 (en) 2010-03-12 2014-12-09 Stats Chippac, Ltd. Semiconductor device and method of forming sacrificial protective layer to protect semiconductor die edge during singulation
US10204866B2 (en) 2010-03-12 2019-02-12 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming sacrificial protective layer to protect semiconductor die edge during singulation
CN102683279A (en) * 2010-03-12 2012-09-19 新科金朋有限公司 Semiconductor device and method of forming sacrificial protective layer to protect semiconductor die edge during singulation
JP2013038300A (en) * 2011-08-10 2013-02-21 Fujitsu Ltd Electronic device and method for manufacturing the same
JP2014033151A (en) * 2012-08-06 2014-02-20 Fujitsu Ltd Manufacturing method of semiconductor device and pseudo wafer
JP2014123733A (en) * 2012-12-19 2014-07-03 Intel Corp Package with dielectric or anisotropic conductive film (acf) buildup layer
US9543197B2 (en) 2012-12-19 2017-01-10 Intel Corporation Package with dielectric or anisotropic conductive (ACF) buildup layer
JP2014192170A (en) * 2013-03-26 2014-10-06 Fujitsu Ltd Semiconductor device manufacturing method and semiconductor device
JP2017228763A (en) * 2016-06-21 2017-12-28 サムソン エレクトロ−メカニックス カンパニーリミテッド. Fan-out semiconductor package
KR20170143404A (en) * 2016-06-21 2017-12-29 삼성전기주식회사 Fan-out semiconductor package
KR101982040B1 (en) * 2016-06-21 2019-05-24 삼성전기주식회사 Fan-out semiconductor package
US10332855B2 (en) 2016-06-21 2019-06-25 Samsung Electro-Mechanics Co., Ltd. Fan-out semiconductor package

Similar Documents

Publication Publication Date Title
JP4757398B2 (en) Manufacturing method of semiconductor device
US8169065B2 (en) Stackable circuit structures and methods of fabrication thereof
TWI357643B (en) Wafer level package with die receiving through-hol
TWI239581B (en) Semiconductor device and method of manufacturing the same
US8048781B2 (en) Methods and systems for packaging integrated circuits
JP5563814B2 (en) Semiconductor device and manufacturing method thereof
US20110156239A1 (en) Method for manufacturing a fan-out embedded panel level package
TWI796522B (en) Semiconductor device packaging method and semiconductor device
JP2008258582A (en) Wafer level image sensor package having die receiving cavity, and method thereof
KR20080077934A (en) Multi-chips package with reduced structure and method for forming the same
US8327532B2 (en) Method for releasing a microelectronic assembly from a carrier substrate
JP2002033411A (en) Semiconductor device with heat spreader and its manufacturing method
JP2002093830A (en) Manufacturing method of chip-like electronic component, and manufacturing method of pseudo-wafer used for the manufacturing method
JP2004128286A (en) Chip-like electronic component and manufacturing method thereof, pseudo wafer used for the manufacturing and manufacturing method thereof, and mounting structure
JP2001338932A (en) Semiconductor device and method of manufacturing semiconductor device
TWI471952B (en) Method of forming chip scale package
JP2002110714A (en) Chip-integrating board, its manufacturing method, chip- like electronic component, its manufacturing method, and electronic equipment and its manufacturing method
JP2002299500A (en) Method for fabricating chip electronic component and chip electronic component, method for producing dummy wafer for use in its fabrication and dummy wafer
JP4206779B2 (en) Manufacturing method of semiconductor device
JP2004087661A (en) Chip-shaped electronic component and method for manufacturing the same and pseudo wafer used for its manufacturing and method for manufacturing the same, and mounting structure
JP4724988B2 (en) Method of manufacturing a pseudo wafer for manufacturing a multichip module
JP2004079816A (en) Chip-shaped electronics component and its fabricating process, quasi-wafer used for the process and its fabricating process and mounting structure
JP2003197659A (en) Chip-like electronic part and their manufacturing method, and pseudo-wafer used for manufacturing the part and its manufacturing method
JP2002124527A (en) Method for manufacturing chip electronic component and method for manufacturing dummy wafer used therefor
JP2020004926A (en) Wiring board and manufacturing method thereof