JP2004127958A - Apparatus and method for performing high pressure anneal steam treatment - Google Patents

Apparatus and method for performing high pressure anneal steam treatment Download PDF

Info

Publication number
JP2004127958A
JP2004127958A JP2002285383A JP2002285383A JP2004127958A JP 2004127958 A JP2004127958 A JP 2004127958A JP 2002285383 A JP2002285383 A JP 2002285383A JP 2002285383 A JP2002285383 A JP 2002285383A JP 2004127958 A JP2004127958 A JP 2004127958A
Authority
JP
Japan
Prior art keywords
pressure
reaction vessel
oxygen
steam treatment
supply line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002285383A
Other languages
Japanese (ja)
Inventor
Masaru Kawahara
河原 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoshin Engineering KK
Original Assignee
Kyoshin Engineering KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoshin Engineering KK filed Critical Kyoshin Engineering KK
Priority to JP2002285383A priority Critical patent/JP2004127958A/en
Publication of JP2004127958A publication Critical patent/JP2004127958A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high pressure anneal steam treatment apparatus and method in which generation of SiOH radicals is suppressed in a quartz tube, i.e. a reaction vessel 7. <P>SOLUTION: After steam treatment is performed up to a given time (t2), pressure in a reaction vessel 24 is reduced slightly and oxygen is supplied into the reaction vessel 24 through an oxygen supply line 44 in order to compensate for the pressure reduction. Oxygen supply is stopped when the pressure in the reaction vessel returns back to p1. Consequently, an initial pressure p1 is substantially held in the reaction vessel 24. During that interval, temperature in the reaction vessel 24 is sustained at an initial level d1. The pressure reduction and oxygen supply operations are repeated several times. Subsequently, an oxygen substitution action is performed and oxidation reaction is repeated several times up to a specified time (t3). Undesirable SiOH radicals react on oxygen through oxidation reaction and the majority thereof disappears. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液晶用ガラス基板やシリコンウエーハ等を高圧アニール処理する方法及びそれを実施するための装置に関し、特に液晶用ガラス基板やシリコンウエーハ等を高圧アニール水蒸気処理するための新規な方法及び装置に関する。
【0002】
【従来の技術】
液晶用ガラス基板やシリコンウエーハ等を高圧アニール処理する場合にはエキシマレーザーを使用する方法が広く知られている。このエキシマレーザーアニール方法は、液晶用ガラス基板やシリコンウエーハ等の表面を600℃又はそれ以上の高温まで加熱し表面を酸化してそこに酸化膜を形成するというものである。しかしながら、この方法では、しばしば通常のソーダガラスのように軟化点が500−600℃程度のガラスはエキシマレーザーが発生する高熱に耐えることが出来ずガラス表面が溶解するという事故が発生した。そこで、多くの場合、エキシマレーザーを使用する場合には通常のソーダガラスの代わりに軟化点が1400−1700℃程度の石英ガラスを使用することが要求された。しかし、この石英ガラスは一般に高価であり経済的でない。この経済上の問題がネックとなり、エキシマレーザーの代替方法が真剣に検討された。
【0003】
その結果考え出された方法としてレーザーアニール方法である。この方法は、ガラス表面だけを瞬間的に酸化させるものである。この方法によれば、通常のソーダガラスを使用した場合でも表面が溶けるということが無く、高価な石英ガラスの使用が不要となった。しかしながら、このレーザーアニール方法では別の問題点が発生した。それは、レーザーアニール方法では精度の高い酸化膜を形成することが困難であり所望の高精度なガラスの酸化膜加工が期待出来ないことが判明したのである。
【0004】
そこで当業界において更に熱心な研究が継続された。その結果、今から約20数年前の1980年代になって図3及び図4に示すような高圧アニール水蒸気処理装置が開発された。この装置は、エンドキャップ即ち下部内部容器1内にて加熱手段2、3(図3においては省略)によって加熱された高温の水蒸気4を、ガラス基板カセット5へ配置された被加工物(液晶用ガラス基板やシリコンウエーハ)6を配置したクオーツチューブ即ち反応容器7内へ供給して高圧アニール水蒸気処理を施すものである。このときクオーツチューブ即ち反応容器7が容器内方からの高温高圧によって破壊されるのを防止するため、当該クオーツチューブ即ち反応容器7全体を大きな圧力容器8内へ収容し、かつ当該圧力容器8とクオーツチューブ即ち反応容器7との間に画定される空間を加圧することで当該クオーツチューブ即ち反応容器7の内外圧力のバランスを取っている。更に、処理反応を迅速化しかつ高品質な酸化膜形成を可能とするため、当該圧力容器8とクオーツチューブ即ち反応容器7との間において被加工物6の周囲に第1付加的加熱ヒーター9を、更にクオーツチューブ即ち反応容器7の上方部分に更に第2付加的加熱ヒーター10を設けて水蒸気を加熱するものである。
【0005】
そして、この約20数年前に開発された方式の具体例としては、図3に示すように装置全体を横方向に長く配置した形式のもの(例えば、非特許文献1参照)や、構造は全く同じであるが図4に示すように装置全体を縦方向に高く配置した形式のもの(例えば、非特許文献2及び特許文献1参照)がある。
【0006】
【非特許文献1】
坪内夏朗及び平山誠著、「高圧酸化」「Semiconductor World」誌 プレスジャーナル出版、1982年9月号、p.82−88
【非特許文献2】
カタログ「HIGH PRESSURE ANNEAL SYSTEM」(高圧アニール装置HPA) 石川島播磨重工業株式会社エネルギー事業本部 電子機器事業推進部 営業グループ カタログ番号36112−004−11−0103−500MR 発行日不明
【特許文献1】
特開平11−152567号公報(第1図)
【0007】
【発明が解決しようとする課題】
高圧アニール水蒸気処理方法はこれまでの問題点の多くを解消し比較的高い酸化レートを得ることが出来たのである。しかしながら、この方法においては、高圧アニール水蒸気処理の際に、水蒸気とガラスとが一部反応してクオーツチューブ即ち反応容器7内にSiOH基を発生するということが判明した。この僅かなSiOH基はその後の作業において、ガラス表面の酸化膜の平滑度や酸化膜自体の性能上、有害な作用を提供し、製品の品質の均質化を阻害する要因となることが判明した。このため、SiOH基をクオーツチューブ即ち反応容器7内から除去することが望ましい。本発明は高圧アニール水蒸気処理方法において、クオーツチューブ即ち反応容器7内に発生する、このSiOH基を減少させるための方法及び装置を提供する。
【0008】
【課題を解決するための手段】
本発明は、水蒸気処理の際に高温加圧状態の水蒸気と薄板表面とが反応して発生する望ましくないSiOH基を減少するために、水蒸気処理を所定時間(t2)まで行なった後、反応容器24内の圧力を僅かに減圧し、次いで、酸素供給ライン44を介して反応容器24内へ酸素を供給してその減圧分を補償する。酸素供給により反応容器内の圧力がp1に戻れば直ちに酸素供給を停止する。これにより実質的に反応容器24内部の圧力は当初の圧力p1を保持するようにする。この間中、反応容器24内の温度は当初の温度d1を維持するようにする。このような減圧及び酸素供給の動作を数回繰返す。これにより水蒸気と酸素とを置換する酸素置換作用を行ない、酸化反応を所定時間(t3)まで数回繰返す。この酸化の酸化作用により好ましくないSiOH基が酸素と反応を起こしその大部分を消滅させるのである。この酸素置換作用を3〜6回程度繰返すことでSiOH基の少なくとも70%以上が無くなる。
【0009】
【発明の実施の形態】
図1は本発明の高圧アニール水蒸気処理方法を実施する装置の概略図である。この高圧アニール水蒸気処理装置20は、圧力容器22を有しており、圧力容器22の内部には反応容器24が収容されている。反応容器24の内部には液晶用ガラス基板やシリコンウエーハ等の高圧アニール水蒸気処理されるべき薄板26及びこれらの薄板26を所定の間隔に保持するためのカセット28が収容されている。この反応容器24の下部はエンドキャップ30により閉じられている。また、このエンドキャップ30は圧力容器22の内部を上下に封止分断している。
【0010】
エンドキャップ30の内部には反応容器24内へ加熱水蒸気を供給するための加熱水蒸気供給装置32が収容されている。この装置32は、端部が純水等の給水源へ連結されている給水ライン34と、給水ライン34を開閉するための弁36と、給水ライン34により供給された水を収容するためタンク38と、タンク38から反応容器24内へ連結し当該容器24へ蒸気を提供する蒸気供給ライン40と、加熱水蒸気供給装置32全体を加熱するためのヒーター42と、により構成されている。更に本発明においては、前記タンク38へ対して、端部が例えば酸素ボンベ等へ接続され、そこから酸素を供給するための酸素供給ライン44が接続されており、この酸素供給ライン44には当該ライン44を開閉するための弁46が装着されている。
【0011】
圧力容器22と反応容器24との間に画定される空所48には、反応容器24を取り囲むように複数のヒーター50が配置されており、これらのヒーターは当該反応容器24を介して薄板26を加熱する作用をしている。また、圧力容器22の外部からは、先端が反応容器24内にて終わっている第1窒素供給ライン52と、同様に先端が前記空所48内にて終わっている第2窒素供給ライン54と、が接続されており、これらのラインにはそれぞれ弁56、58が設けてある。
【0012】
次に、本発明の高圧アニール水蒸気処理装置20の動作について、図2を参照しながら述べる。図2は反応容器24内の雰囲気の状態を示している作動グラフである。この図において、横軸は時間(T)を、縦軸は圧力(P)と温度(℃)とを示す。また、破線で示す曲線60は、給水ライン34を介して供給される水がヒーター42によって加熱され、その後、蒸気供給ライン40によって供給される水蒸気によって加熱される反応容器24内の温度変化を示している。また、実線で示す曲線62は加熱蒸気の導入により加圧される反応容器24内の圧力変化を示している。
【0013】
初め、反応容器24内のカセット28へ所定数の薄板26を配置する。次いで、弁36を開放し給水ライン34を介してタンク38内へ給水する。ここに溜められた水はヒーター42によって加熱され、蒸気となって反応容器24内へ供給される。即ち、給水ライン34より供給された水は加熱水蒸気供給装置32の作動により蒸気となって、反応容器24内へ供給される。このため、反応容器24内の温度は時間の経過に概ね比例した状態で次第に上昇する。同様に、蒸気の導入により反応容器24内の圧力も時間の経過に概ね比例した状態で次第に上昇する。
【0014】
反応容器24内の圧力上昇に対抗するため、第2窒素供給ライン54の弁58を開放して当該ライン54より当該圧力上昇に対応する圧力を提供するように窒素ガスをヒーター50が作用している空所48へ供給して、反応容器24の破損を防止する。
【0015】
一定時間(t1)後に、反応容器24内の温度及び圧力が高圧アニール水蒸気処理可能な状態(d1及びp1)に達する。この雰囲気下で薄板26へ対して所定の水蒸気処理が行なわれる。このとき、高温加圧状態の水蒸気と薄板表面とが反応して望ましくないSiOH基を発生する。そこで水蒸気処理を所定時間(t2)まで行なった後、反応容器24内の圧力を図示していない公知の減圧手段によって僅かに減圧する。反応容器24の内部が僅かに減圧したなら直ちに弁46を開放して酸素供給ライン44を介して反応容器24内へ酸素を供給してその減圧分を補償する。酸素供給により反応容器内の圧力がp1に戻れば直ちに酸素供給を停止する。これにより実質的に反応容器24内部の圧力は当初の圧力p1を保持するようにする。
【0016】
この間中、反応容器24内の温度は当初の温度d1を維持するようにする。このような減圧及び酸素供給の動作を数回繰返す。これにより水蒸気と酸素とを置換する酸素置換作用を行ない、酸化反応を所定時間(t3)まで数回繰返す。この酸化の酸化作用により好ましくないSiOH基が酸素と反応を起こしその大部分が消滅する。この酸素置換作用を3〜6回程度繰返すことでSiOH基の少なくとも70%以上が無くなることが実験の結果判明している。
【0017】
その後、弁56を開き第1窒素供給ライン52から反応容器24内へ窒素を供給しながら当該反応容器内の温度と圧力とを漸次低下させ、その後、高圧アニール水蒸気処理された薄板26を取り出す。
【0018】
【発明の効果】
本発明によれば、これまでの高圧アニール水蒸気処理装置において、高圧アニール水蒸気処理の際に液晶用ガラス基板やシリコンウエーハ等の製品の表面周辺に発生する好ましくないSiOH基を簡単な装置及び動作により確実に減少させることが出来た。これにより液晶用ガラス基板やシリコンウエーハ等の製品の表面酸化膜の平滑度や酸化膜自体の性能が著しく上昇し、更に、それらの製品の品質の均質化が達成される。
【図面の簡単な説明】
【図1】本発明の実施例を示す概略図である。
【図2】本発明の反応容器内の雰囲気の状態を示している作動グラフである。
【図3】公知の高圧アニール水蒸気処理装置の例を示す図である。
【図4】別の公知の高圧アニール水蒸気処理装置の例を示す図である。
【符号の説明】
20:高圧アニール水蒸気処理装置 22:圧力容器
24:反応容器          26:薄板
28:カセット          30:エンドキャップ
32:加熱水蒸気供給装置     34:給水ライン
36:弁             38:タンク
40:蒸気供給ライン       42:ヒーター
44:酸素供給ライン       46:弁
48:空所            50:ヒーター
52:第1窒素供給ライン     54:第2窒素供給ライン
56、58:弁          60、62:曲線
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for high-pressure annealing of a glass substrate for liquid crystal or a silicon wafer, and an apparatus for performing the same, and in particular, a novel method and apparatus for high-pressure annealing steam processing of a glass substrate for liquid crystal, a silicon wafer, or the like. About.
[0002]
[Prior art]
A method using an excimer laser is widely known when high-pressure annealing is performed on a liquid crystal glass substrate, a silicon wafer, or the like. In this excimer laser annealing method, the surface of a liquid crystal glass substrate or a silicon wafer is heated to a high temperature of 600 ° C. or more to oxidize the surface to form an oxide film thereon. However, with this method, glass having a softening point of about 500 to 600 ° C., such as ordinary soda glass, often cannot withstand the high heat generated by the excimer laser, and the glass surface melts. Therefore, in many cases, when an excimer laser is used, it is required to use quartz glass having a softening point of about 1400 to 1700 ° C. instead of ordinary soda glass. However, this quartz glass is generally expensive and not economical. This economic problem was a bottleneck, and serious consideration was given to alternatives to excimer lasers.
[0003]
As a result, a laser annealing method has been devised. In this method, only the glass surface is instantaneously oxidized. According to this method, even when ordinary soda glass is used, the surface does not melt, and the use of expensive quartz glass is unnecessary. However, this laser annealing method has another problem. That is, it has been found that it is difficult to form a highly accurate oxide film by the laser annealing method, and it is not possible to expect a desired highly accurate glass oxide film processing.
[0004]
Therefore, more ardent research was continued in this industry. As a result, in the 1980s, about 20 years ago, a high-pressure annealing steam treatment apparatus as shown in FIGS. 3 and 4 was developed. In this apparatus, high-temperature steam 4 heated by heating means 2, 3 (omitted in FIG. 3) in an end cap or lower inner container 1 is applied to a workpiece (liquid crystal) disposed in a glass substrate cassette 5. It is supplied into a quartz tube, that is, a reaction vessel 7 on which a glass substrate or a silicon wafer 6 is disposed, and is subjected to high-pressure annealing steam treatment. At this time, in order to prevent the quartz tube or the reaction vessel 7 from being destroyed by the high temperature and high pressure from inside the vessel, the quartz tube or the reaction vessel 7 as a whole is accommodated in a large pressure vessel 8 and the quartz vessel or the reaction vessel 7 is By pressurizing a space defined between the quartz tube, ie, the reaction vessel 7, the pressure inside and outside the quartz tube, ie, the reaction vessel 7, is balanced. Furthermore, a first additional heater 9 is provided around the workpiece 6 between the pressure vessel 8 and the quartz tube or reaction vessel 7 in order to speed up the processing reaction and to form a high quality oxide film. Further, a second additional heater 10 is further provided in the upper portion of the quartz tube or the reaction vessel 7 to heat the steam.
[0005]
As a specific example of the method developed about 20 years ago, as shown in FIG. 3, a device in which the entire device is arranged long in the horizontal direction (for example, see Non-Patent Document 1), There is a type in which the entire device is arranged vertically high as shown in FIG. 4 (for example, see Non-Patent Document 2 and Patent Document 1).
[0006]
[Non-patent document 1]
Natsuro Tsubouchi and Makoto Hirayama, "High Pressure Oxidation", "Semiconductor World", Press Journal, September 1982, p. 82-88
[Non-patent document 2]
Catalog "HIGH PRESSURE anneal system" (high-pressure annealing equipment HPA) Ishikawajima-Harima Heavy Industries, Ltd.
JP-A-11-152567 (FIG. 1)
[0007]
[Problems to be solved by the invention]
The high-pressure annealing steam treatment method solved many of the problems so far and was able to obtain a relatively high oxidation rate. However, it has been found that in this method, during the high-pressure annealing steam treatment, the steam and glass partially react to generate SiOH groups in the quartz tube, that is, the reaction vessel 7. It has been found that this slight SiOH group provides a detrimental effect on the smoothness of the oxide film on the glass surface and the performance of the oxide film itself in the subsequent work, and is a factor that hinders homogenization of product quality. . For this reason, it is desirable to remove the SiOH groups from the quartz tube, that is, the reaction vessel 7. The present invention provides a method and an apparatus for reducing the SiOH groups generated in a quartz tube or the reaction vessel 7 in the high-pressure annealing steam treatment method.
[0008]
[Means for Solving the Problems]
In order to reduce undesirable SiOH groups generated by the reaction between the steam under high pressure and the thin plate surface during the steam treatment, the steam treatment is performed until a predetermined time (t2). The pressure in the chamber 24 is slightly reduced, and then oxygen is supplied into the reaction vessel 24 through the oxygen supply line 44 to compensate for the reduced pressure. As soon as the pressure in the reaction vessel returns to p1 by the supply of oxygen, the supply of oxygen is stopped. Thereby, the pressure inside the reaction vessel 24 is substantially maintained at the initial pressure p1. During this time, the temperature in the reaction vessel 24 is maintained at the initial temperature d1. Such an operation of reducing pressure and supplying oxygen is repeated several times. Thus, an oxygen substitution action for replacing water vapor with oxygen is performed, and the oxidation reaction is repeated several times until a predetermined time (t3). Undesired SiOH groups react with oxygen due to the oxidizing action of this oxidation, and most of them are extinguished. By repeating this oxygen substitution action about 3 to 6 times, at least 70% or more of the SiOH groups are eliminated.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic view of an apparatus for performing the high-pressure annealing steam treatment method of the present invention. The high-pressure annealing steam treatment device 20 has a pressure vessel 22, and a reaction vessel 24 is housed inside the pressure vessel 22. Inside the reaction container 24, thin plates 26 to be subjected to high-pressure annealing steam treatment, such as a glass substrate for liquid crystal and silicon wafer, and a cassette 28 for holding these thin plates 26 at predetermined intervals are accommodated. The lower part of the reaction vessel 24 is closed by an end cap 30. Further, the end cap 30 vertically seals and separates the inside of the pressure vessel 22.
[0010]
Inside the end cap 30, a heated steam supply device 32 for supplying heated steam into the reaction vessel 24 is accommodated. The device 32 includes a water supply line 34 having an end connected to a water supply source such as pure water, a valve 36 for opening and closing the water supply line 34, and a tank 38 for containing water supplied by the water supply line 34. And a steam supply line 40 connected from the tank 38 to the inside of the reaction vessel 24 to supply steam to the vessel 24, and a heater 42 for heating the entire heated steam supply device 32. Further, in the present invention, an end of the tank 38 is connected to, for example, an oxygen cylinder or the like, and an oxygen supply line 44 for supplying oxygen from the end is connected to the oxygen supply line 44. A valve 46 for opening and closing the line 44 is mounted.
[0011]
In a space 48 defined between the pressure vessel 22 and the reaction vessel 24, a plurality of heaters 50 are arranged so as to surround the reaction vessel 24, and these heaters are connected to the thin plate 26 via the reaction vessel 24. Has the effect of heating. Also, from the outside of the pressure vessel 22, a first nitrogen supply line 52 whose tip ends in the reaction vessel 24, and a second nitrogen supply line 54 which similarly ends in the cavity 48. , And these lines are provided with valves 56 and 58, respectively.
[0012]
Next, the operation of the high-pressure annealing steam treatment apparatus 20 of the present invention will be described with reference to FIG. FIG. 2 is an operation graph showing the state of the atmosphere in the reaction vessel 24. In this figure, the horizontal axis represents time (T), and the vertical axis represents pressure (P) and temperature (° C.). A curve 60 indicated by a broken line indicates a temperature change in the reaction vessel 24 in which the water supplied through the water supply line 34 is heated by the heater 42 and then heated by the steam supplied by the steam supply line 40. ing. A curve 62 shown by a solid line indicates a pressure change in the reaction vessel 24 which is pressurized by the introduction of the heating steam.
[0013]
First, a predetermined number of thin plates 26 are arranged in a cassette 28 in the reaction container 24. Next, the valve 36 is opened to supply water into the tank 38 via the water supply line 34. The water stored here is heated by the heater 42 and is supplied into the reaction vessel 24 as steam. That is, the water supplied from the water supply line 34 is turned into steam by the operation of the heating steam supply device 32 and is supplied into the reaction vessel 24. For this reason, the temperature in the reaction vessel 24 gradually increases in a state substantially proportional to the passage of time. Similarly, the introduction of steam causes the pressure in the reaction vessel 24 to gradually increase in a state substantially proportional to the passage of time.
[0014]
In order to counter the pressure increase in the reaction vessel 24, the valve 50 of the second nitrogen supply line 54 is opened, and the heater 50 acts on the nitrogen gas so as to provide a pressure corresponding to the pressure increase from the line 54. Is supplied to the empty space 48 to prevent the reaction vessel 24 from being damaged.
[0015]
After a certain time (t1), the temperature and pressure in the reaction vessel 24 reach a state (d1 and p1) where high-pressure annealing steam treatment is possible. Under this atmosphere, the thin plate 26 is subjected to a predetermined steam treatment. At this time, the steam under the high temperature and pressurized state reacts with the surface of the thin plate to generate undesired SiOH groups. Therefore, after performing the steam treatment for a predetermined time (t2), the pressure in the reaction vessel 24 is slightly reduced by a known pressure reducing means (not shown). As soon as the pressure inside the reaction vessel 24 is slightly reduced, the valve 46 is opened and oxygen is supplied into the reaction vessel 24 via the oxygen supply line 44 to compensate for the reduced pressure. As soon as the pressure in the reaction vessel returns to p1 by the supply of oxygen, the supply of oxygen is stopped. Thereby, the pressure inside the reaction vessel 24 is substantially maintained at the initial pressure p1.
[0016]
During this time, the temperature in the reaction vessel 24 is maintained at the initial temperature d1. Such an operation of reducing pressure and supplying oxygen is repeated several times. Thus, an oxygen substitution action for replacing water vapor with oxygen is performed, and the oxidation reaction is repeated several times until a predetermined time (t3). Due to the oxidizing action of this oxidation, undesirable SiOH groups react with oxygen and most of them disappear. Experiments have shown that at least 70% or more of the SiOH groups are eliminated by repeating this oxygen substitution action about 3 to 6 times.
[0017]
Thereafter, the valve 56 is opened to gradually decrease the temperature and pressure in the reaction vessel while supplying nitrogen from the first nitrogen supply line 52 into the reaction vessel 24, and then the high-pressure annealed steam-treated thin plate 26 is taken out.
[0018]
【The invention's effect】
According to the present invention, in a conventional high-pressure annealing steam treatment apparatus, undesired SiOH groups generated around the surface of a product such as a liquid crystal glass substrate or a silicon wafer during high-pressure annealing steam treatment can be reduced by a simple apparatus and operation. It was able to be surely reduced. As a result, the smoothness of the surface oxide film of a product such as a glass substrate for a liquid crystal or a silicon wafer and the performance of the oxide film itself are remarkably improved, and the quality of the product is homogenized.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of the present invention.
FIG. 2 is an operation graph showing a state of an atmosphere in a reaction vessel of the present invention.
FIG. 3 is a diagram showing an example of a known high-pressure annealing steam treatment apparatus.
FIG. 4 is a diagram showing an example of another known high-pressure annealing steam processing apparatus.
[Explanation of symbols]
20: High pressure annealing steam treatment device 22: Pressure vessel 24: Reaction vessel 26: Thin plate 28: Cassette 30: End cap 32: Heated steam supply device 34: Water supply line 36: Valve 38: Tank 40: Steam supply line 42: Heater 44 : Oxygen supply line 46: Valve 48: Void 50: Heater 52: First nitrogen supply line 54: Second nitrogen supply line 56, 58: Valve 60, 62: Curve

Claims (7)

液晶用ガラス基板やシリコンウエーハ等の薄板26を高圧アニール水蒸気処理する装置20であって、圧力容器22と、圧力容器22の内部に収容されている反応容器24と、反応容器24の内部に収容されている薄板26及びこれらの薄板26を所定の間隔に保持するためのカセット28と、圧力容器22内部において反応容器24の下部を閉じておりかつ圧力容器22の内部を上下に封止分断しているエンドキャップ30と、エンドキャップ30と圧力容器22との間にあり反応容器24内へ加熱水蒸気を供給するための加熱水蒸気供給装置32と、を有しており、
加熱水蒸気供給装置32が、端部が給水源へ連結されている給水ライン34と、給水ライン34を開閉するための弁36と、給水ライン34により供給された水を収容するためタンク38と、タンク38から反応容器24内へ連結し当該容器24へ蒸気を提供する蒸気供給ライン40と、加熱水蒸気供給装置32全体を加熱するためのヒーター42と、により構成されており、
圧力容器22と反応容器24との間には空所48が画定されており、この空所48には、反応容器24を取り囲むように複数のヒーター50が配置され、
圧力容器22の外部からは、先端が反応容器24内にて終わっている第1窒素供給ライン52と、同様に先端が前記空所48内にて終わっている第2窒素供給ライン54と、が接続されており、これらのラインにはそれぞれ弁56、58が設けてある高圧アニール水蒸気処理装置において、
前記反応容器24へ対して、酸素を供給するための酸素供給ライン44が接続されていることを特徴とする高圧アニール水蒸気処理装置。
An apparatus 20 for subjecting a thin plate 26 such as a liquid crystal glass substrate or a silicon wafer to high-pressure annealing steam treatment, comprising a pressure vessel 22, a reaction vessel 24 contained in the pressure vessel 22, and a reaction vessel 24 contained in the reaction vessel 24. And a cassette 28 for holding the thin plates 26 at predetermined intervals, a lower portion of the reaction container 24 being closed inside the pressure container 22 and the inside of the pressure container 22 being vertically sealed and divided. An end cap 30, and a heated steam supply device 32 between the end cap 30 and the pressure vessel 22 for supplying heated steam into the reaction vessel 24.
A heated water vapor supply device 32 having a water supply line 34 having an end connected to a water supply source, a valve 36 for opening and closing the water supply line 34, a tank 38 for containing water supplied by the water supply line 34, A steam supply line 40 connected from the tank 38 to the inside of the reaction vessel 24 to supply steam to the vessel 24, and a heater 42 for heating the entire heated steam supply device 32;
A space 48 is defined between the pressure vessel 22 and the reaction vessel 24, and a plurality of heaters 50 are arranged in the space 48 so as to surround the reaction vessel 24,
From the outside of the pressure vessel 22, a first nitrogen supply line 52 whose end terminates in the reaction vessel 24, and a second nitrogen supply line 54 which similarly terminates in the cavity 48. Are connected, and these lines are provided with valves 56 and 58, respectively, in a high pressure annealing steam treatment apparatus,
An oxygen supply line 44 for supplying oxygen to the reaction vessel 24 is connected to the high-pressure annealing steam treatment apparatus.
酸素供給ラインが前記タンク38へ連結されていることを特徴とする請求項1に記載の高圧アニール水蒸気処理装置。The high pressure annealing steam treatment apparatus according to claim 1, wherein an oxygen supply line is connected to the tank (38). 酸素供給ラインの端部が酸素ボンベへ連結されかつ開閉弁46を有していることを特徴とする請求項1又は2に記載の高圧アニール水蒸気処理装置。The high-pressure annealing steam treatment apparatus according to claim 1 or 2, wherein an end of the oxygen supply line is connected to the oxygen cylinder and has an on-off valve (46). 液晶用ガラス基板やシリコンウエーハ等の薄板26を高圧アニール水蒸気処理する方法であって、
反応容器24内のカセット28へ所定数の薄板26を配置すること、
給水ライン34より供給された水を加熱水蒸気供給装置32により蒸気とし、この蒸気を反応容器24内へ供給し、反応容器24内の温度と圧力を上昇すること、
反応容器24内の圧力上昇に対抗するため、第2窒素供給ライン54より圧力を提供すること、
一定時間(t1)後に、反応容器24内の温度及び圧力を高圧アニール水蒸気処理可能な状態(d1及びp1)とし、この雰囲気下で所定の水蒸気処理を行なうこと、より成る高圧アニール水蒸気処理方法において、
水蒸気処理を所定時間(t2)まで行なった後、反応容器24内の圧力を僅かに減圧すること、
反応容器24の内部が僅かに減圧されたなら直ちに酸素供給ライン44から反応容器24内へ酸素を供給してその減圧分を補償し、酸素供給によって反応容器内の圧力がp1に戻れば直ちに酸素供給を停止すること、
このような反応容器24内の減圧及び酸素供給の動作を数回繰返し、これにより水蒸気と酸素とを置換する酸素置換作用を行なうこと、
酸素置換作業中、反応容器24内の温度を当初の温度d1に維持すること、
酸素置換作用によって置換された酸素により酸化反応を行なうこと、
その後、反応容器内の温度と圧力とを漸次低下させること、
の諸工程により水蒸気処理の際に発生するSiOH基を減少することをことを特徴とする高圧アニール水蒸気処理方法。
A method for subjecting a thin plate 26 such as a liquid crystal glass substrate or a silicon wafer to high-pressure annealing steam treatment,
Disposing a predetermined number of thin plates 26 in a cassette 28 in the reaction vessel 24;
Converting the water supplied from the water supply line 34 into steam by the heated steam supply device 32, supplying the steam into the reaction vessel 24, and increasing the temperature and pressure in the reaction vessel 24;
Providing pressure from the second nitrogen supply line 54 to counter the pressure increase in the reaction vessel 24;
After a certain time (t1), the temperature and pressure in the reaction vessel 24 are set to a state (d1 and p1) in which high-pressure annealing steam treatment is possible, and a predetermined steam treatment is performed in this atmosphere. ,
After performing the steaming for a predetermined time (t2), the pressure in the reaction vessel 24 is slightly reduced,
As soon as the pressure inside the reaction vessel 24 is slightly reduced, oxygen is supplied from the oxygen supply line 44 into the reaction vessel 24 to compensate for the reduced pressure. Stopping the supply,
Such an operation of reducing the pressure and supplying oxygen in the reaction vessel 24 is repeated several times, thereby performing an oxygen replacement action for replacing steam with oxygen.
Maintaining the temperature inside the reaction vessel 24 at the initial temperature d1 during the oxygen displacement operation;
Performing an oxidation reaction with oxygen replaced by oxygen displacement action,
Thereafter, gradually reducing the temperature and pressure in the reaction vessel,
A high pressure annealing steam treatment method characterized by reducing SiOH groups generated during steam treatment by the various steps.
前記酸素置換作用を3〜6回程度繰返すことを特徴とする請求項4に記載の高圧アニール水蒸気処理方法。The high-pressure annealing steam treatment method according to claim 4, wherein the oxygen substitution action is repeated about 3 to 6 times. 酸素置換の間中、反応容器内の圧力を実質的に当初圧力p1に保持していることを特徴とする請求項4又は5に記載の高圧アニール水蒸気処理方法。The high pressure annealing steam treatment method according to claim 4 or 5, wherein the pressure in the reaction vessel is substantially maintained at the initial pressure p1 during the oxygen substitution. 反応容器内での減圧及び酸素供給による酸素置換作用を3〜6回程度繰返すことを特徴とする請求項4、5又は6に記載の高圧アニール水蒸気処理方法。7. The high pressure annealing steam treatment method according to claim 4, wherein the oxygen replacement action by reducing the pressure and supplying oxygen in the reaction vessel is repeated about 3 to 6 times.
JP2002285383A 2002-09-30 2002-09-30 Apparatus and method for performing high pressure anneal steam treatment Pending JP2004127958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285383A JP2004127958A (en) 2002-09-30 2002-09-30 Apparatus and method for performing high pressure anneal steam treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285383A JP2004127958A (en) 2002-09-30 2002-09-30 Apparatus and method for performing high pressure anneal steam treatment

Publications (1)

Publication Number Publication Date
JP2004127958A true JP2004127958A (en) 2004-04-22

Family

ID=32278699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285383A Pending JP2004127958A (en) 2002-09-30 2002-09-30 Apparatus and method for performing high pressure anneal steam treatment

Country Status (1)

Country Link
JP (1) JP2004127958A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719867B1 (en) * 2005-11-17 2007-05-18 송영선 Painting apparatus for wooden goods using masking band
JP2007227436A (en) * 2006-02-21 2007-09-06 Ishikawajima Harima Heavy Ind Co Ltd Vacuum film formation apparatus
JP4553939B2 (en) * 2005-06-28 2010-09-29 カナン精機株式会社 Surface-modified member, surface treatment method and surface treatment apparatus
WO2019036157A1 (en) * 2017-08-18 2019-02-21 Applied Materials, Inc. High pressure and high temperature anneal chamber
WO2019036145A3 (en) * 2017-08-18 2019-03-28 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10529603B2 (en) 2017-03-10 2020-01-07 Micromaterials, LLC High pressure wafer processing systems and related methods
US10529585B2 (en) 2017-06-02 2020-01-07 Applied Materials, Inc. Dry stripping of boron carbide hardmask
US10566188B2 (en) 2018-05-17 2020-02-18 Applied Materials, Inc. Method to improve film stability
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10636669B2 (en) 2018-01-24 2020-04-28 Applied Materials, Inc. Seam healing using high pressure anneal
US10643867B2 (en) 2017-11-03 2020-05-05 Applied Materials, Inc. Annealing system and method
US10675581B2 (en) 2018-08-06 2020-06-09 Applied Materials, Inc. Gas abatement apparatus
US10685830B2 (en) 2017-11-17 2020-06-16 Applied Materials, Inc. Condenser system for high pressure processing system
US10704141B2 (en) 2018-06-01 2020-07-07 Applied Materials, Inc. In-situ CVD and ALD coating of chamber to control metal contamination
US10714331B2 (en) 2018-04-04 2020-07-14 Applied Materials, Inc. Method to fabricate thermally stable low K-FinFET spacer
US10720341B2 (en) 2017-11-11 2020-07-21 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US10847360B2 (en) 2017-05-25 2020-11-24 Applied Materials, Inc. High pressure treatment of silicon nitride film
US10854483B2 (en) 2017-11-16 2020-12-01 Applied Materials, Inc. High pressure steam anneal processing apparatus
US10957533B2 (en) 2018-10-30 2021-03-23 Applied Materials, Inc. Methods for etching a structure for semiconductor applications
US10998200B2 (en) 2018-03-09 2021-05-04 Applied Materials, Inc. High pressure annealing process for metal containing materials
US11177128B2 (en) 2017-09-12 2021-11-16 Applied Materials, Inc. Apparatus and methods for manufacturing semiconductor structures using protective barrier layer
US11227797B2 (en) 2018-11-16 2022-01-18 Applied Materials, Inc. Film deposition using enhanced diffusion process
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553939B2 (en) * 2005-06-28 2010-09-29 カナン精機株式会社 Surface-modified member, surface treatment method and surface treatment apparatus
KR100719867B1 (en) * 2005-11-17 2007-05-18 송영선 Painting apparatus for wooden goods using masking band
JP2007227436A (en) * 2006-02-21 2007-09-06 Ishikawajima Harima Heavy Ind Co Ltd Vacuum film formation apparatus
US10529603B2 (en) 2017-03-10 2020-01-07 Micromaterials, LLC High pressure wafer processing systems and related methods
US10622214B2 (en) 2017-05-25 2020-04-14 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US11705337B2 (en) 2017-05-25 2023-07-18 Applied Materials, Inc. Tungsten defluorination by high pressure treatment
US10847360B2 (en) 2017-05-25 2020-11-24 Applied Materials, Inc. High pressure treatment of silicon nitride film
US10529585B2 (en) 2017-06-02 2020-01-07 Applied Materials, Inc. Dry stripping of boron carbide hardmask
JP2020532106A (en) * 2017-08-18 2020-11-05 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Annealing chamber under high pressure and high temperature
US10276411B2 (en) 2017-08-18 2019-04-30 Applied Materials, Inc. High pressure and high temperature anneal chamber
US10636677B2 (en) 2017-08-18 2020-04-28 Applied Materials, Inc. High pressure and high temperature anneal chamber
CN111095513A (en) * 2017-08-18 2020-05-01 应用材料公司 High-pressure high-temperature annealing chamber
US11018032B2 (en) 2017-08-18 2021-05-25 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11462417B2 (en) 2017-08-18 2022-10-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11469113B2 (en) 2017-08-18 2022-10-11 Applied Materials, Inc. High pressure and high temperature anneal chamber
CN111095513B (en) * 2017-08-18 2023-10-31 应用材料公司 High-pressure high-temperature annealing chamber
US11694912B2 (en) 2017-08-18 2023-07-04 Applied Materials, Inc. High pressure and high temperature anneal chamber
WO2019036145A3 (en) * 2017-08-18 2019-03-28 Applied Materials, Inc. High pressure and high temperature anneal chamber
WO2019036157A1 (en) * 2017-08-18 2019-02-21 Applied Materials, Inc. High pressure and high temperature anneal chamber
US11177128B2 (en) 2017-09-12 2021-11-16 Applied Materials, Inc. Apparatus and methods for manufacturing semiconductor structures using protective barrier layer
US10643867B2 (en) 2017-11-03 2020-05-05 Applied Materials, Inc. Annealing system and method
US10720341B2 (en) 2017-11-11 2020-07-21 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US11756803B2 (en) 2017-11-11 2023-09-12 Applied Materials, Inc. Gas delivery system for high pressure processing chamber
US11527421B2 (en) 2017-11-11 2022-12-13 Micromaterials, LLC Gas delivery system for high pressure processing chamber
US10854483B2 (en) 2017-11-16 2020-12-01 Applied Materials, Inc. High pressure steam anneal processing apparatus
US10685830B2 (en) 2017-11-17 2020-06-16 Applied Materials, Inc. Condenser system for high pressure processing system
US11610773B2 (en) 2017-11-17 2023-03-21 Applied Materials, Inc. Condenser system for high pressure processing system
US10636669B2 (en) 2018-01-24 2020-04-28 Applied Materials, Inc. Seam healing using high pressure anneal
US11881411B2 (en) 2018-03-09 2024-01-23 Applied Materials, Inc. High pressure annealing process for metal containing materials
US10998200B2 (en) 2018-03-09 2021-05-04 Applied Materials, Inc. High pressure annealing process for metal containing materials
US10714331B2 (en) 2018-04-04 2020-07-14 Applied Materials, Inc. Method to fabricate thermally stable low K-FinFET spacer
US11581183B2 (en) 2018-05-08 2023-02-14 Applied Materials, Inc. Methods of forming amorphous carbon hard mask layers and hard mask layers formed therefrom
US10566188B2 (en) 2018-05-17 2020-02-18 Applied Materials, Inc. Method to improve film stability
US10704141B2 (en) 2018-06-01 2020-07-07 Applied Materials, Inc. In-situ CVD and ALD coating of chamber to control metal contamination
US11361978B2 (en) 2018-07-25 2022-06-14 Applied Materials, Inc. Gas delivery module
US10748783B2 (en) 2018-07-25 2020-08-18 Applied Materials, Inc. Gas delivery module
US11110383B2 (en) 2018-08-06 2021-09-07 Applied Materials, Inc. Gas abatement apparatus
US10675581B2 (en) 2018-08-06 2020-06-09 Applied Materials, Inc. Gas abatement apparatus
US10957533B2 (en) 2018-10-30 2021-03-23 Applied Materials, Inc. Methods for etching a structure for semiconductor applications
US11227797B2 (en) 2018-11-16 2022-01-18 Applied Materials, Inc. Film deposition using enhanced diffusion process
US11749555B2 (en) 2018-12-07 2023-09-05 Applied Materials, Inc. Semiconductor processing system
US11901222B2 (en) 2020-02-17 2024-02-13 Applied Materials, Inc. Multi-step process for flowable gap-fill film

Similar Documents

Publication Publication Date Title
JP2004127958A (en) Apparatus and method for performing high pressure anneal steam treatment
CN1990910B (en) Film forming apparatus and its operating method
JP4640800B2 (en) Processing method of processing object, processing apparatus, thin film forming method, thin film forming apparatus, and program
KR950001953A (en) Wafer heat treatment method
JPS61216332A (en) Thermal xidization of silicon member
JP2003213421A (en) Substrate treatment apparatus
KR20100066403A (en) Semiconductor device manufacturing method and substrate processing apparatus
WO2017212728A1 (en) Treatment method, method for manufacturing semiconductor device, and substrate treatment apparatus
JPS62140413A (en) Vertical type diffusion equipment
JPH07161674A (en) Device and method for processing semiconductor wafer
JPS6224630A (en) Formation of thermal oxidation film and device therefor
JP2021109199A (en) Oxide removed member production method and oxide removal apparatus
JP2009016426A (en) Manufacturing method for semiconductor device, and board processing apparatus
JP4829013B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2020155718A (en) Contamination treatment method of substrate treatment apparatus and substrate treatment apparatus
JP4342559B2 (en) Substrate processing apparatus and method for forming semiconductor device
JP2005302887A (en) High precision high-pressure board treatment method and device thereof
JP5032766B2 (en) Substrate processing apparatus and maintenance method for substrate processing apparatus
JP4788315B2 (en) Vapor phase epitaxial growth system
JP2827515B2 (en) Heat treatment apparatus and heat treatment method
JP2010283153A (en) Method for manufacturing semiconductor device, heat treatment apparatus, and member for heat treatment
JP5037988B2 (en) Method for manufacturing SiC semiconductor device
JPH02150029A (en) Method and apparatus for forming insulating film
JP2005235962A (en) Heating furnace
JP2006165304A (en) Vapor anneal device and vapor introduction method therein

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050408

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050812

A131 Notification of reasons for refusal

Effective date: 20061107

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A02 Decision of refusal

Effective date: 20080501

Free format text: JAPANESE INTERMEDIATE CODE: A02