JP2004119497A - Semiconductor manufacturing equipment and method therefor - Google Patents

Semiconductor manufacturing equipment and method therefor Download PDF

Info

Publication number
JP2004119497A
JP2004119497A JP2002277899A JP2002277899A JP2004119497A JP 2004119497 A JP2004119497 A JP 2004119497A JP 2002277899 A JP2002277899 A JP 2002277899A JP 2002277899 A JP2002277899 A JP 2002277899A JP 2004119497 A JP2004119497 A JP 2004119497A
Authority
JP
Japan
Prior art keywords
wafer
semiconductor manufacturing
manufacturing apparatus
light source
scattered light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002277899A
Other languages
Japanese (ja)
Inventor
Kozai Sai
蔡 高財
Yasuko Tabata
田端 康子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Winbond Electronics Corp
Original Assignee
Fujitsu Ltd
Winbond Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Winbond Electronics Corp filed Critical Fujitsu Ltd
Priority to JP2002277899A priority Critical patent/JP2004119497A/en
Publication of JP2004119497A publication Critical patent/JP2004119497A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide semiconductor manufacturing equipment and a method wherein uniformity of critical size of a wafer edge is improved by compensation of flare effect emerging on the wafer edge. <P>SOLUTION: A problem of variations of wafer edge critical size is solved by using an exposure plate arranged on a retaining pin by which a wafer table of a stepper is made to progress and retreat. An inclination angle of the exposure plate is adjusted with the retaining pin, and the exposure plate is tilted together with a wafer, thereby maintaining the same plane as a wafer surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は一種の半導体製造装置と方法に係り、特に、ウエハエッジに出現するフレア効果を補償することによりウエハエッジ臨界寸法均一度を向上する半導体製造装置と方法に関する。
【0002】
【従来の技術】
光学リソグラフィー工程で素子パターンを半導体ウエハ、例えばシリコンウエハ上に形成することは業界では周知であり且つ実用化されて久しい。一般にマスク上に使用されて光を感光材料に透過させる材料例えばホトレジストにはポジティブパターンとネガティブパターンが定義される。業界で実用化されている方法は、光反射材料クロムを光透過材料例えばガラス或いは石英に形成する。光反射材料クロムに反射されない光線はマスクを透過し並びにホトレジストが露光されてパターンが形成される。露光の領域が現像されるか或いは除去されるかは使用するホトレジスト材料がポジティブホトレジストであるかネガティブホトレジストであるかにより決まる。ホトレジストが除去された領域が暴露され、且つ続いて各種の技術例えばエッチング、イオンレイアウト或いは堆積技術により工程が進行されて例えばゲート電極、連接構造等の装置の特徴が形成される。しかし、表面に保留されたホトレジスト材料がマスクとされる場合はホトレジスト層の下の構造に対する更なる工程が必要となる。
【0003】
集積回路の特徴の臨界寸法均一度は集積回路の信頼度と機能に対して十分に重要である。ウエハー上の集積回路臨界寸法均一度に影響する因子の一つは、ウエハ上のホトレジスト正面に散乱する光線である。光線の散乱は物理学の有名な現象であり、光線の散乱は到達目標の画像を弱化する。物理回折方向に沿わずに前進し伝播される光は散乱光と見なされる。散乱光は通常光ノイズ或いはフレア(Flare)と見なされる。フレアは困った問題であり、且つ伝統的なリソグラフィー工程技術では多かれ少なかれこのフレア現象がある。伝統的なリソグラフィー工程装置中でフレアの形成される原因は非常に多く、時には工程に起因し、時には装置自体に関係がある。これらのフレア形成の原因は依然として不明である。
【0004】
以上から、周知のとおり、リソグラフィー工程中、ウエハ上のホトレジストパターンのリソグラフィー工程は位置により改変される。ホトレジストパターンの臨界寸法変動が光散乱自体によるか或いはその他の因子と結合により形成されるかのいずれであっても、臨界寸法の位置による改変の現象は工程上、人々を困らせる問題である。これは、ホトレジストの形成するパターン特徴寸法例えばゲート電極或いはトレンチが、露光ホトレジスト上への照射の正常回折と異常散乱の光線の結合した照射量(Dose)により決定されることによる。ホトレジストパターンの位置による改変の露光差異はウエハ上の集積回路特徴寸法の変動或いは不均一をもたらす。集積回路特徴寸法の変動或いは不均一は集積回路の機能と信頼度に影響を与えうるため、除去しなければならない。例えば、集積回路特徴寸法の変動例えば線幅の差異は信号電流の不安定をもたらす。
【0005】
工程上発現する光散乱により形成される集積回路特徴寸法の変動例えば線幅の差異は工程技術及び集積回路線幅の不断の縮小によりますます厳重となる。特に、それは線幅寸法が0.13ミクロン以下に縮小され、及び、リソグラフィー工程に波長が193μmのArFランプが光源として使用された時、この短波長の光散乱の形成する問題はさらに厳重となる。これはこのような短波長の照射量は非常に小さく且つ露光エネルギー量の変化が、もともと相当微小な特徴寸法を明らかに改変し並びに不均一な回路パターンを形成するか或いは臨界寸法均一度を下げることによる。図1から図5はフレア効果がいかに半導体ウエハの臨界寸法に影響を与えるか、及び、どこが臨界寸法変動の最も明らかな領域であるかを示す。図1は線幅とウエハ上の露光照射量(Exposure Dose)の相対関係を示す。図中にステッパ(Stepper)に設定された三種類のステップ露光ギャップが表示されている。図1に示されるように、同じ露光照射量では、小さいステップ露光ギャップのほうが大きな線幅を形成する。図2はウエハエッジのダイ臨界寸法変動の状況を示す。図2に示される現象から推測されることは、ウエハエッジのダイ臨界寸法の変動の激化の原因はフレア効果でありうることである。図3は散乱光がいかに各一つのダイに対して露光を行い、及び各一つのウエハ四周の隣り合うダイの露光照射量を増加するかを示す。ウエハエッジ部分のダイ臨界寸法変動の現象は図3から図5により解釈できる。図3に示されるように、各ダイは散乱する光104が隣り合うダイを露光させる時に散乱する露光照射量を受け取るが、ウエハエッジのダイは同じ散乱する露光照射量を受け取っていない。このほか、図2に示される現象は図4から図5により更に解釈されうる。図4は伝統的なウエハ台中において、光源がレンズ202を透過して支持ピン206上に位置するウエハ204を露光させる状態を示す。支持ピン206はウエハ台208(Wafer Stage)に取り付けられると共にウエハの傾斜度を調整するのに用いられる。図5は図4中のウエハ204の平面図である。図5中、隣り合うダイの数は四つのウエハエッジ部分のダイより少なく、四周より散乱する露光照射量を均一に受け取ることはできず、これにより臨界寸法の変動を形成する可能性が非常に大きい。
【0006】
以上の数々の問題を鑑み、上述の欠点を克服できる装置と方法の提出が非常に必要とされており、本発明はこの要求に符合するものである。
【0007】
【発明が解決しようとする課題】
本発明の一つの目的は、ウエハエッジに出現するフレア効果を補償することによりウエハエッジ臨界寸法均一度を向上する半導体製造装置と方法を提供することにある。
【0008】
本発明のもう一つの目的は、生産歩留りを高められる半導体製造装置と方法を提供することにある。
【0009】
本発明のさらに一つの目的は、ウエハエッジが露光時に発生するフレア効果を補償できる半導体製造装置と方法を提供することにある。
【0010】
【課題を解決するための手段】
請求項1の発明は、ウエハエッジ臨界寸法均一度を向上する半導体製造装置において、該半導体製造装置が、
ウエハをリソグラフィー工程中にあってウエハ台に固定する、ウエハを支持及び傾斜させる装置と、
該ウエハを支持及び傾斜させる装置によりウエハ台に固定されてウエハと一体に傾斜する、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置と、
を具えたことを特徴とする、半導体製造装置としている。
請求項2の発明は、請求項1に記載の半導体製造装置において、ウエハを支持及び傾斜させる装置がウエハ台を進退する支持ピンを具えたことを特徴とする、半導体製造装置としている。
請求項3の発明は、請求項1に記載の半導体製造装置において、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置が、二酸化けい素を形成した平板を具えたことを特徴とする、半導体製造装置としている。
請求項4の発明は、ウエハエッジ臨界寸法均一度を向上する半導体製造装置において、該半導体製造装置が、
リソグラフィー工程中にあってウエハと連帯して傾斜し露光される、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置と、
該光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置をリソグラフィー工程中にあってウエハと連帯して傾斜させ露光させる、該光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置をウエハ台に固定する装置と、
を具えたことを特徴とする、半導体製造装置としている。
請求項5の発明は、請求項4に記載の半導体製造装置において、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置が、炭化けい素を形成した平板を具えたことを特徴とする、半導体製造装置としている。
請求項6の発明は、請求項4に記載の半導体製造装置において、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置をウエハ台に固定する装置が、ウエハ台を進退する支持ピンを具えたことを特徴とする、半導体製造装置としている。
請求項7の発明は、ウエハエッジ臨界寸法均一度を向上する方法において、
ウエハをステッパのウエハ台上に提供するステップと、
ウエハ四周を囲む露光板を提供するステップと、
該ウエハと該露光板を露光させるステップと、
を具えたことを特徴とする、ウエハエッジ臨界寸法均一度を向上する方法としている。
【0011】
【発明の実施の形態】
本発明はウエハエッジ臨界寸法均一度を向上できる半導体製造装置を提供する。この半導体製造装置は、ウエハを支持及び傾斜させる装置によりウエハをリソグラフィー工程中にあってウエハ台に固定し、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置であり、この光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置はウエハを支持及び傾斜させる装置により該ウエハ台上に固定され、並びにウエハと共に傾斜する。
【0012】
本発明の別の実施例によると、本発明はウエハエッジ臨界寸法均一度を向上できる半導体製造装置を提供し、この半導体製造装置は光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置を具え、この光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置はリソグラフィー工程中にあってウエハと共に傾斜し及び露光され、該半導体製造装置はさらに、ウエハ周囲に投射される散乱光線を阻止並びに受け取る装置を一つのウエハ台に固定する装置を具え、これによりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置をウエハと共にリソグラフィー工程中にあって連帯して傾斜及び露光させる。
【0013】
このほか本発明はリソグラフィー工程中にウエハエッジ臨界寸法均一度を向上する方法を提供する。このウエハエッジ臨界寸法均一度を向上する方法は、以下のステップを含む。まず、ウエハのステッパのウエハ台の上に提供する。続いてウエハ四周を囲む露光板を提供する。最後のウエハと該露光板を露光させる。
【0014】
【実施例】
図6は本発明のウエハ台装置図である。光源はレンズ302を透過して支持ピン306上に位置するウエハ304を露光させる。支持ピン306はウエハ台312を進退可能でありウエハ304の傾斜度を調整するのに用いられる。露光板308は支持ピン310上に位置している。露光板308は光源より散乱する光線を阻止並びに受け取るのに使用される。支持ピン310は支持ピン306と共にウエハ台312を進退して露光板308とウエハ304に一つの平面を形成させることができる。図7と図8は露光板308とウエハ304の平面図である。露光板308は光源からの惨落光線を近隣ダイのように阻止並びに受け取るのに用いられ、並びにウエハエッジのフレア効果を補償し、これによりウエハエッジ臨界寸法均一度が高められ、すなわちウエハエッジ臨界寸法均一度の変動現象が有効に解消される。
【0015】
露光板308は、例えば、炭化けい素層或いは二酸化けい素層を形成した平板とされうる。露光板308は任意の光源からの散乱光線を阻止並びに受け取れると共にウエハと連帯し傾斜しうる装置とされる。支持ピン310は支持ピン306と完全に同じであると共にウエハ台312を進退してウエハ304と露光板308の傾斜度を一つの平面となるように調整でき、また、任意のウエハ304と露光板308に一つの平面を形成させられる装置とされる。ステップ露光を実行する時、光源からの光線はウエハ304上の各一つのダイを露光させるにとどまらず、露光板308も露光させる。例えば、ウエハエッジのフレア効果を補償するため、露光はウエハ304の外周四周に延伸される。すなわち、余分の露光(Dummy Exposure Shot)がウエハエッジのダイ外周即ち露光板308に実行され、これによりウエハエッジのダイがウエハエッジ以外のダイと同じ露光照射量を獲得でき、これによりウエハエッジダイ臨界寸法の均一度が高められるか、甚だしくはウエハエッジダイ臨界寸法の均一度の変動現象が完全に除去される。図8に示されるウエハ304上の各一つの露光される外周はいずれも同様の余分の露光を伴う。
【0016】
上述の本発明の説明は本発明の実施範囲を限定するものではなく、本発明の精神より離脱しない等しい効果の改変或いは修飾はいずれも本発明の請求範囲に属するものとする。
【0017】
【発明の効果】
本発明はウエハエッジに出現するフレア効果の補償によりウエハエッジの臨界寸法均一度を向上する半導体製造装置と方法を提供している。
【図面の簡単な説明】
【図1】線幅とウエハ上の露光照射量(Exposure Dose)の関係図である。
【図2】ウエハエッジ部分のダイの臨界寸法変動の状況表示図である。
【図3】散乱光が各ダイに対して露光し各ダイの四周の隣接するダイの露光照射量を増加するかを表示する図である。
【図4】伝統的なウエハ台において光源がレンズを透過して支持ピン上のウエハを露光させる状態表示図である。
【図5】図4中のウエハの平面図である。
【図6】本発明のウエハ台装置図である。
【図7】本発明の露光板の平面図である。
【図8】図7中のウエハの平面図である。
【符号の説明】
102 ダイ
104 散乱光
202 レンズ
204 ウエハ
206 支持ピン
208 ウエハ台
302 レンズ
304 ウエハ
306 支持ピン
308 露光板
310 支持ピン
312 ウエハ台
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor manufacturing apparatus and method, and more particularly, to a semiconductor manufacturing apparatus and method for improving a wafer edge critical dimension uniformity by compensating for a flare effect appearing at a wafer edge.
[0002]
[Prior art]
Forming an element pattern on a semiconductor wafer, for example, a silicon wafer by an optical lithography process is well known in the art and has been used for a long time. Generally, a positive pattern and a negative pattern are defined for a material used on a mask to transmit light to a photosensitive material, for example, a photoresist. A method practiced in the industry is to form the light-reflective material chrome on a light-transmissive material, such as glass or quartz. Light rays that are not reflected by the light reflecting material chrome pass through the mask as well as expose the photoresist to form a pattern. Whether the exposed area is developed or removed depends on whether the photoresist material used is a positive photoresist or a negative photoresist. The areas from which the photoresist has been removed are exposed, and subsequently the process proceeds by various techniques, such as etching, ion layout or deposition techniques, to form device features such as gate electrodes, interconnecting structures, and the like. However, if the photoresist material retained on the surface is used as a mask, further processing of the structure below the photoresist layer is required.
[0003]
The critical dimension uniformity of integrated circuit features is sufficiently important to the reliability and function of the integrated circuit. One factor that affects the critical dimension uniformity of integrated circuits on a wafer is the light scattered in front of the photoresist on the wafer. Light scattering is a well-known phenomenon in physics, and light scattering weakens the target image. Light that travels and propagates along the direction of physical diffraction is considered scattered light. Scattered light is usually considered as light noise or flare. Flare is a problem and traditional lithographic process technology has more or less this phenomenon. The causes of flare formation in traditional lithographic process equipment are numerous, sometimes process-related, and sometimes related to the equipment itself. The cause of these flare formations remains unknown.
[0004]
As described above, as is well known, during the lithography process, the lithography process of the photoresist pattern on the wafer is changed depending on the position. Whether the critical dimension variation of the photoresist pattern is formed by light scattering itself or by a combination with other factors, the phenomenon of modification due to the position of the critical dimension is a problem in the process. This is due to the fact that the pattern feature size formed by the photoresist, for example, the gate electrode or trench, is determined by the combined dose (Dose) of the normal diffraction of the irradiation onto the exposed photoresist and the abnormally scattered light. Exposure differences in modification depending on the position of the photoresist pattern result in variations or non-uniformity of integrated circuit feature dimensions on the wafer. Variations or non-uniformities in integrated circuit feature dimensions may affect the function and reliability of the integrated circuit and must be removed. For example, variations in integrated circuit feature dimensions, such as differences in line width, result in signal current instability.
[0005]
Variations in integrated circuit feature dimensions, such as differences in line width, formed by light scattering emerging in the process become increasingly severe due to process technology and the ever-increasing reduction in integrated circuit line width. In particular, it has a reduced linewidth dimension to less than 0.13 microns, and the problem of this short wavelength light scattering formation becomes even more acute when an 193 μm wavelength ArF lamp is used as a light source in the lithography process. . This is because such short-wavelength radiation doses are very small and changes in exposure energy can significantly alter the inherently tiny feature dimensions and form non-uniform circuit patterns or reduce critical dimension uniformity. It depends. 1 to 5 show how the flare effect affects the critical dimension of a semiconductor wafer and where is the most obvious area of critical dimension variation. FIG. 1 shows a relative relationship between a line width and an exposure dose on a wafer. In the figure, three types of step exposure gaps set in the stepper (Stepper) are displayed. As shown in FIG. 1, for the same exposure dose, a smaller step exposure gap forms a larger line width. FIG. 2 shows the situation of the critical dimension change of the die at the wafer edge. It can be inferred from the phenomenon shown in FIG. 2 that the cause of the increase in the critical dimension of the die at the wafer edge may be the flare effect. FIG. 3 shows how scattered light exposes each one die and increases the exposure dose of adjacent dies on each wafer four rounds. The phenomenon of the critical dimension variation of the die at the wafer edge can be understood from FIGS. As shown in FIG. 3, each die receives the exposure dose at which the scattered light 104 scatters when exposing adjacent dies, but the die at the wafer edge do not receive the same scattered exposure dose. In addition, the phenomenon shown in FIG. 2 can be further interpreted with reference to FIGS. FIG. 4 shows a state in which a light source passes through a lens 202 and exposes a wafer 204 located on a support pin 206 in a traditional wafer stage. The support pins 206 are attached to a wafer stage 208 (Wafer Stage) and used to adjust the inclination of the wafer. FIG. 5 is a plan view of the wafer 204 in FIG. In FIG. 5, the number of adjacent dies is smaller than the dies at the four wafer edge portions, and the exposure dose scattered from four rounds cannot be received uniformly, so that the possibility of forming a critical dimension variation is very large. .
[0006]
In view of the above problems, there is a great need for an apparatus and method that can overcome the above disadvantages, and the present invention meets this need.
[0007]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor manufacturing apparatus and method for improving critical dimension uniformity of a wafer edge by compensating for a flare effect appearing at a wafer edge.
[0008]
Another object of the present invention is to provide a semiconductor manufacturing apparatus and method capable of improving the production yield.
[0009]
Still another object of the present invention is to provide a semiconductor manufacturing apparatus and method capable of compensating for a flare effect that occurs when a wafer edge is exposed at the time of exposure.
[0010]
[Means for Solving the Problems]
The invention according to claim 1 is a semiconductor manufacturing apparatus for improving wafer edge critical dimension uniformity, wherein the semiconductor manufacturing apparatus comprises:
Fixing the wafer to the wafer stage during the lithography process, a device for supporting and tilting the wafer,
A device fixed to the wafer stage and tilted integrally with the wafer by a device for supporting and tilting the wafer, a device for blocking and receiving scattered light projected from the light source around the wafer,
And a semiconductor manufacturing apparatus characterized by having:
According to a second aspect of the present invention, there is provided the semiconductor manufacturing apparatus according to the first aspect, wherein the device for supporting and tilting the wafer includes support pins for moving the wafer stage forward and backward.
According to a third aspect of the present invention, in the semiconductor manufacturing apparatus according to the first aspect, the device for blocking and receiving the scattered light projected from the light source around the wafer includes a flat plate on which silicon dioxide is formed. And a semiconductor manufacturing apparatus.
According to a fourth aspect of the present invention, there is provided a semiconductor manufacturing apparatus for improving uniformity of wafer edge critical dimension, wherein the semiconductor manufacturing apparatus comprises:
An apparatus that intercepts and receives scattered light projected from the light source to the periphery of the wafer during the lithography process and is tilted and exposed in solidarity with the wafer,
An apparatus for blocking and receiving scattered light projected from the light source to the periphery of the wafer during the lithography process while tilting and exposing the apparatus for blocking and receiving scattered light projected from the light source around the wafer. An apparatus for fixing to a wafer stage,
And a semiconductor manufacturing apparatus characterized by having:
According to a fifth aspect of the present invention, in the semiconductor manufacturing apparatus according to the fourth aspect, the device for blocking and receiving scattered light projected from the light source around the wafer includes a flat plate formed with silicon carbide. And a semiconductor manufacturing apparatus.
According to a sixth aspect of the present invention, in the semiconductor manufacturing apparatus according to the fourth aspect, the device for fixing the device for blocking and receiving the scattered light projected from the light source around the wafer to the wafer stage includes supporting pins for moving the wafer stage forward and backward. A semiconductor manufacturing apparatus characterized by having
The invention according to claim 7 is a method for improving the uniformity of critical dimension of a wafer edge,
Providing a wafer on a wafer holder of a stepper;
Providing an exposure plate surrounding the four circumferences of the wafer;
Exposing the wafer and the exposure plate;
And a method of improving the critical dimension uniformity of the wafer edge.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention provides a semiconductor manufacturing apparatus capable of improving the critical dimension uniformity of a wafer edge. This semiconductor manufacturing apparatus is an apparatus for fixing a wafer to a wafer stage during a lithography process by a device for supporting and tilting a wafer, and for preventing and receiving scattered light projected from the light source around the wafer. A device for blocking and receiving scattered light projected to the surroundings is fixed on the wafer stage by a device for supporting and tilting the wafer, and tilts with the wafer.
[0012]
According to another embodiment of the present invention, the present invention provides a semiconductor manufacturing apparatus capable of improving critical dimension uniformity of a wafer edge, the semiconductor manufacturing apparatus including an apparatus for blocking and receiving scattered light projected from a light source around a wafer. The apparatus for blocking and receiving scattered light projected from the light source around the wafer is tilted and exposed together with the wafer during the lithography process, and the semiconductor manufacturing apparatus further blocks and receives the scattered light projected around the wafer. An apparatus is provided for securing the receiving device to a wafer stage, thereby blocking and receiving the scattered light projected around the wafer so that the device with the wafer is tilted and exposed jointly during the lithographic process.
[0013]
In addition, the present invention provides a method for improving wafer edge critical dimension uniformity during a lithography process. The method of improving the critical dimension uniformity of the wafer edge includes the following steps. First, the wafer is provided on a wafer stage of a stepper. Subsequently, an exposure plate that surrounds the four circumferences of the wafer is provided. The last wafer and the exposure plate are exposed.
[0014]
【Example】
FIG. 6 is a diagram of a wafer stage apparatus of the present invention. The light source passes through the lens 302 and exposes the wafer 304 located on the support pins 306. The support pins 306 can move back and forth on the wafer table 312 and are used to adjust the inclination of the wafer 304. The exposure plate 308 is located on the support pins 310. Exposure plate 308 is used to block and receive light scattered from the light source. The support pins 310 together with the support pins 306 advance and retreat on the wafer table 312 to form one plane on the exposure plate 308 and the wafer 304. 7 and 8 are plan views of the exposure plate 308 and the wafer 304. Exposure plate 308 is used to block and receive the dimming light rays from the light source like neighboring dies, as well as to compensate for wafer edge flare effects, thereby increasing wafer edge critical dimension uniformity, ie, wafer edge critical dimension uniformity. Is effectively eliminated.
[0015]
The exposure plate 308 can be, for example, a flat plate on which a silicon carbide layer or a silicon dioxide layer is formed. The exposure plate 308 is a device that can block and receive scattered light from any light source, and is capable of tilting jointly with the wafer. The support pins 310 are completely the same as the support pins 306 and can adjust the inclination of the wafer 304 and the exposure plate 308 to be one plane by moving back and forth on the wafer table 312. 308 is a device that can form one plane. When performing the step exposure, the light beam from the light source not only exposes each one die on the wafer 304 but also exposes the exposure plate 308. For example, to compensate for the flare effect of the wafer edge, the exposure is extended around the outer circumference of the wafer 304. That is, an extra exposure shot is performed on the outer periphery of the die at the wafer edge, that is, on the exposure plate 308, so that the die at the wafer edge can obtain the same exposure dose as the dies other than the wafer edge, thereby reducing the critical dimension of the wafer edge die. Either the uniformity is enhanced, or severely, the phenomenon of variation in the critical dimension of the wafer edge die critical dimension is completely eliminated. Each exposed perimeter on the wafer 304 shown in FIG. 8 is accompanied by a similar extra exposure.
[0016]
The above description of the invention is not intended to limit the scope of the invention, and any alteration or modification of an equivalent effect that does not depart from the spirit of the invention falls within the scope of the invention.
[0017]
【The invention's effect】
The present invention provides a semiconductor manufacturing apparatus and method for improving critical dimension uniformity of a wafer edge by compensating for a flare effect appearing at the wafer edge.
[Brief description of the drawings]
FIG. 1 is a relationship diagram between a line width and an exposure dose on a wafer.
FIG. 2 is a view showing a state of a critical dimension variation of a die at a wafer edge portion.
FIG. 3 is a view showing whether or not scattered light is exposed to each die and the exposure dose of adjacent dies on the four circumferences of each die is increased.
FIG. 4 is a view showing a state in which a light source passes through a lens and exposes a wafer on a support pin in a traditional wafer stage.
FIG. 5 is a plan view of the wafer in FIG. 4;
FIG. 6 is a diagram of a wafer stage apparatus of the present invention.
FIG. 7 is a plan view of the exposure plate of the present invention.
FIG. 8 is a plan view of the wafer in FIG. 7;
[Explanation of symbols]
102 Die 104 Scattered light 202 Lens 204 Wafer 206 Support pin 208 Wafer table 302 Lens 304 Wafer 306 Support pin 308 Exposure plate 310 Support pin 312 Wafer table

Claims (7)

ウエハエッジ臨界寸法均一度を向上する半導体製造装置において、該半導体製造装置が、
ウエハをリソグラフィー工程中にあってウエハ台に固定する、ウエハを支持及び傾斜させる装置と、
該ウエハを支持及び傾斜させる装置によりウエハ台に固定されてウエハと一体に傾斜する、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置と、
を具えたことを特徴とする、半導体製造装置。
In a semiconductor manufacturing apparatus for improving wafer edge critical dimension uniformity, the semiconductor manufacturing apparatus includes:
Fixing the wafer to the wafer stage during the lithography process, a device for supporting and tilting the wafer,
A device fixed to the wafer stage and tilted integrally with the wafer by a device for supporting and tilting the wafer, a device for blocking and receiving scattered light projected from the light source around the wafer,
A semiconductor manufacturing apparatus, comprising:
請求項1に記載の半導体製造装置において、ウエハを支持及び傾斜させる装置がウエハ台を進退する支持ピンを具えたことを特徴とする、半導体製造装置。2. The semiconductor manufacturing apparatus according to claim 1, wherein the apparatus for supporting and tilting the wafer includes support pins for moving the wafer table forward and backward. 請求項1に記載の半導体製造装置において、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置が、二酸化けい素を形成した平板を具えたことを特徴とする、半導体製造装置。2. The semiconductor manufacturing apparatus according to claim 1, wherein the device for blocking and receiving the scattered light projected from the light source around the wafer includes a flat plate formed with silicon dioxide. ウエハエッジ臨界寸法均一度を向上する半導体製造装置において、該半導体製造装置が、
リソグラフィー工程中にあってウエハと連帯して傾斜し露光される、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置と、
該光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置をリソグラフィー工程中にあってウエハと連帯して傾斜させ露光させる、該光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置をウエハ台に固定する装置と、
を具えたことを特徴とする、半導体製造装置。
In a semiconductor manufacturing apparatus for improving wafer edge critical dimension uniformity, the semiconductor manufacturing apparatus includes:
An apparatus that intercepts and receives scattered light projected from the light source to the periphery of the wafer during the lithography process and is tilted and exposed in solidarity with the wafer,
An apparatus for blocking and receiving scattered light projected from the light source to the periphery of the wafer during the lithography process while tilting and exposing the apparatus for blocking and receiving scattered light projected from the light source around the wafer. An apparatus for fixing to a wafer stage,
A semiconductor manufacturing apparatus, comprising:
請求項4に記載の半導体製造装置において、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置が、炭化けい素を形成した平板を具えたことを特徴とする、半導体製造装置。5. The semiconductor manufacturing apparatus according to claim 4, wherein the device for blocking and receiving the scattered light projected from the light source around the wafer includes a flat plate formed with silicon carbide. 請求項4に記載の半導体製造装置において、光源よりウエハ周囲に投射される散乱光線を阻止並びに受け取る装置をウエハ台に固定する装置が、ウエハ台を進退する支持ピンを具えたことを特徴とする、半導体製造装置。5. The semiconductor manufacturing apparatus according to claim 4, wherein the device for fixing the device for blocking and receiving the scattered light beams projected from the light source to the periphery of the wafer to the wafer stage includes support pins for moving the wafer stage forward and backward. , Semiconductor manufacturing equipment. ウエハエッジ臨界寸法均一度を向上する方法において、
ウエハをステッパのウエハ台上に提供するステップと、
ウエハ四周を囲む露光板を提供するステップと、
該ウエハと該露光板を露光させるステップと、
を具えたことを特徴とする、ウエハエッジ臨界寸法均一度を向上する方法。
In a method for improving critical dimension uniformity of a wafer edge,
Providing a wafer on a wafer holder of a stepper;
Providing an exposure plate surrounding the four circumferences of the wafer;
Exposing the wafer and the exposure plate;
A method for improving wafer edge critical dimension uniformity, characterized by comprising:
JP2002277899A 2002-09-24 2002-09-24 Semiconductor manufacturing equipment and method therefor Pending JP2004119497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002277899A JP2004119497A (en) 2002-09-24 2002-09-24 Semiconductor manufacturing equipment and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002277899A JP2004119497A (en) 2002-09-24 2002-09-24 Semiconductor manufacturing equipment and method therefor

Publications (1)

Publication Number Publication Date
JP2004119497A true JP2004119497A (en) 2004-04-15

Family

ID=32273366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002277899A Pending JP2004119497A (en) 2002-09-24 2002-09-24 Semiconductor manufacturing equipment and method therefor

Country Status (1)

Country Link
JP (1) JP2004119497A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005122219A1 (en) * 2004-06-09 2005-12-22 Nikon Corporation Substrate holding device, exposure apparatus having same, exposure method, method for producing device, and liquid repellent plate
JP2006054427A (en) * 2004-06-09 2006-02-23 Nikon Corp Substrate holding device, aligner having the same, exposure method, method for producing device, and liquid repellent plate
US7541290B2 (en) 2007-03-08 2009-06-02 Samsung Electronics Co., Ltd. Methods of forming mask patterns on semiconductor wafers that compensate for nonuniform center-to-edge etch rates during photolithographic processing
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
WO2005122219A1 (en) * 2004-06-09 2005-12-22 Nikon Corporation Substrate holding device, exposure apparatus having same, exposure method, method for producing device, and liquid repellent plate
KR101421870B1 (en) * 2004-06-09 2014-07-22 가부시키가이샤 니콘 Substrate holding device, exposure apparatus having same, exposure method, method for producing device, and liquid repellent plate
CN102290365A (en) * 2004-06-09 2011-12-21 尼康股份有限公司 Substrate holding device, exposure apparatus having same, exposure method and method for producing device
JP2006054427A (en) * 2004-06-09 2006-02-23 Nikon Corp Substrate holding device, aligner having the same, exposure method, method for producing device, and liquid repellent plate
CN102290364A (en) * 2004-06-09 2011-12-21 尼康股份有限公司 Substrate holding device, exposure apparatus having same and method for producing device
US8705008B2 (en) 2004-06-09 2014-04-22 Nikon Corporation Substrate holding unit, exposure apparatus having same, exposure method, method for producing device, and liquid repellant plate
JP2011077544A (en) * 2004-06-09 2011-04-14 Nikon Corp Substrate holding device, substrate stage, exposure apparatus, exposure method, method for producing device, and liquid repellent plate
CN103558737A (en) * 2004-06-09 2014-02-05 尼康股份有限公司 Substrate holding device, exposure apparatus having the same and method for producing a device
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US7541290B2 (en) 2007-03-08 2009-06-02 Samsung Electronics Co., Ltd. Methods of forming mask patterns on semiconductor wafers that compensate for nonuniform center-to-edge etch rates during photolithographic processing
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method

Similar Documents

Publication Publication Date Title
JP3009925B2 (en) Lithographic patterning mask using off-axis illumination
US7604927B2 (en) Methods of patterning using photomasks including shadowing elements therein and related systems
US7718348B2 (en) Photolithography process and photomask structure implemented in a photolithography process
KR100564597B1 (en) Photomask and fabricating method the same
JP2004119497A (en) Semiconductor manufacturing equipment and method therefor
TW200304049A (en) Method of removing assist features utilized to improve process latitude
US5650250A (en) Light exposure mask for semiconductor devices
US6756158B2 (en) Thermal generation of mask pattern
US6835504B2 (en) Photomask with illumination control over patterns having varying structural densities
US20080182082A1 (en) Pattern forming method, electronic device manufacturing method and electronic device
JP3177948B2 (en) Photomask for exposure
CN107643651B (en) Design method of photoetching auxiliary pattern
US6791668B2 (en) Semiconductor manufacturing apparatus and method
US20040010769A1 (en) Method for reducing a pitch of a procedure
JP2002116529A (en) Correction method for semiconductor circuit design pattern data and photomask made by pattern data obtained by this correction method
KR100586549B1 (en) Photo mask and method for manufacturing pattern by using it
US6403285B1 (en) Method for exposing semiconductor wafers in a manner that promotes radial processing uniformity
KR100555531B1 (en) Optical element and fabrication method thereof
JPH063806A (en) Production of semiconductor device and mask for exposing
JP3914280B2 (en) Projection exposure method and mask used therefor
US7838181B2 (en) Photo mask and method for manufacturing semiconductor device using the same
KR100573469B1 (en) multi exposure method of photo mask using electron beam
JP3109946B2 (en) Exposure apparatus and device manufacturing method
JP2005108892A (en) Adjusting filter, aligner, and exposure method
KR100824904B1 (en) Reflective Mask with Notched Assist Feature

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060222

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081219

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090421