JP2004119112A - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP2004119112A
JP2004119112A JP2002278866A JP2002278866A JP2004119112A JP 2004119112 A JP2004119112 A JP 2004119112A JP 2002278866 A JP2002278866 A JP 2002278866A JP 2002278866 A JP2002278866 A JP 2002278866A JP 2004119112 A JP2004119112 A JP 2004119112A
Authority
JP
Japan
Prior art keywords
battery
battery pack
date
power supply
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002278866A
Other languages
Japanese (ja)
Other versions
JP4346881B2 (en
Inventor
Yoshitada Nakao
中尾 善忠
Nobuyasu Morishita
森下 展安
Toshifumi Ueda
植田 利史
Kazuhiro Okawa
大川 和宏
Takahisa Masashiro
正代 尊久
Keiichi Saito
斉藤 景一
Hiroshi Wakagi
若木 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Panasonic Holdings Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Matsushita Electric Industrial Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002278866A priority Critical patent/JP4346881B2/en
Publication of JP2004119112A publication Critical patent/JP2004119112A/en
Application granted granted Critical
Publication of JP4346881B2 publication Critical patent/JP4346881B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply device in which high capacity, space saving, and long life are realized, the estimation of the life span is easy, and the estimated life span is not affected by the work of maintenance and inspection, and in which the battery replacement date can be displayed surely. <P>SOLUTION: The battery ECU 7 estimates the life period during which a prescribed electric amount can be supplied from a date of manufacture of the battery packs 41, 42, and transmits the estimated life period to the MPU 10. The MPU adds the date of manufacture that is inputted from the input part 11 and stored inside and the life period transmitted from the battery ECU 7, and displays the next replacement date on the display part 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電源装置に関し、特に無線通信の基地局等に設置され、停電時等のバックアップ用電源としてニッケル−水素二次電池が塔載された通信用直流電源装置に関する。
【0002】
【従来の技術】
従来、携帯電話等の基地局に設置される通信用直流電源装置には、停電時や保守時等のバックアップ用電源として、鉛蓄電池が使用されてきた(例えば、特許文献1参照)。この鉛蓄電池は、商用電源の交流電圧を整流器により整流した直流電圧によりフロート充電され、特に充電制御は行われていなかった。
【0003】
また、このような電源装置に用いられる鉛蓄電池の劣化や寿命を判定する方法としては、(1)環境温度に依存して劣化の進行とともに電池の内部抵抗が増大することで、負荷電流による電圧降下の程度を検出して判定する方法、(2)鉛蓄電池を定期的に放電試験することにより、その放電電気量を算出して判定する方法、(3)現在の日付と鉛畜電池の設置日付から電池設置後の経過年数を求め、鉛蓄電池の平均温度に該当する標準寿命年数から経過年数を差し引いて、寿命までの残り年数(残年数)または現在の日付に残年数を加算して寿命時期を表示する方法(例えば、特許文献2参照)がある。
【0004】
【特許文献1】
特開平5−315015号公報
【0005】
【特許文献2】
特開平7−312233号公報
【0006】
【発明が解決しようとする課題】
近年、通信用直流電源装置に対する電力需要が増大しており、またその設置スペースも限られている。しかしながら、通信用直流電源装置のバックアップ用電源として鉛蓄電池を用いた場合、高容量化や省スペース化の点で問題があり、また、経年劣化による寿命も短く、保守・点検等によりコストが増大するという問題もある。
【0007】
また、現在の日付に残年数を加算して寿命時期(次の交換日付)とする上記従来の方法(3)では、以下の問題点がある。
(A)保守・点検時に、時刻調整を行うことで、電池の状態を監視している電池監視手段(電池ECU(Electronic Control Unit))に設けられたカレンダICの現在の日付が変化するため、次の交換日付も変化してしまう。
(B)保守・点検時に、現在の日付を進ませて、交換要求信号が発せられるかを試験することができない。
(C)「電池交換を行った」旨の情報を、電池ECUに伝える必要があり、新たな信号が必要となる。
(D)電池交換を行ってから放電容量試験を行い、その結果に基づいて修正を行うまで、交換日付表示値に製造の新旧が反映されない。図5Aは、交換用電池の製造日付が不明である場合における実日付に対する交換日付表示値を示すグラフである。なお、図5Aにおいて、電池寿命を8年に設定している。2002年8月に、製造日付が2002年8月である電池に交換し、8年後の2010年8月に、交換時に製造日付が不明である(実際は、2008年8月に製造された)電池に交換すると、交換日付表示値は2018年となる。次に、2010年8月から例えば6ヶ月後、すなわち2011年2月の定期点検時に放電容量試験を行ったところ、蓄電能力の劣化が見られ、その結果に基づいて、交換日付表示値が、2018年8月から2年だけ差し引かれて、2016年8月に修正される。このように、交換日付表示値の更新にタイムラグが発生してしまう。
【0008】
本発明は、かかる問題点に鑑みてなされたものであり、その目的は、鉛蓄電池に代えてニッケル−水素二次電池を用いることで、高容量化や省スペース化、また長寿命化を図るとともに、寿命の推定が容易で、保守・点検時の作業で推定寿命に影響を与えず、電池交換日付を確実に表示可能な電源装置を提供することにある。
【0009】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る第1の電源装置は、ニッケル−水素二次電池を複数個直列に接続して成る組電池と、商用電源からの交流電力を整流して例えば通信機器を含む負荷および組電池に対して直流電力を供給する整流器と、整流器からの直流電力を受けて組電池に対する電気量の充電を制御する充電制御手段と、組電池に充電された電気量の放電を制御する放電制御手段と、組電池の電圧情報(V11、V12、V13、V14;V21、V22、V23、V24)、電流情報(I1;I2)、および温度情報(Tb1;Tb2)に基づいて、少なくとも組電池の残存容量(SOC1;SOC2)を演算し、組電池の状態を監視する電池監視手段(電池ECU)と、電池交換時に組電池の製造日付が入力される入力部とを備え、電池監視手段は、組電池の製造日付を起点として所定の電気量(例えば、80Ah)を供給可能な寿命期間を推定し、その推定寿命期間と製造日付とを加算した結果を次の交換日付とする演算を行うことを特徴とする。
【0010】
前記の目的を達成するため、本発明に係る第2の電源装置は、ニッケル−水素二次電池を複数個直列に接続して成る組電池と、商用電源からの交流電力を整流して例えば通信機器を含む負荷および組電池に対して直流電力を供給する整流器と、整流器からの直流電力を受けて組電池に対する電気量の充電を制御する充電制御手段と、組電池に充電された電気量の放電を制御する放電制御手段と、組電池の電圧情報(V11、V12、V13、V14;V21、V22、V23、V24)、電流情報(I1;I2)、および温度情報(Tb1;Tb2)に基づいて、少なくとも組電池の残存容量(SOC1;SOC2)を演算し、組電池の状態を監視する電池監視手段(電池ECU)と、整流器の出力電圧を制御するとともに、電池監視手段からの指示に応じて充電制御手段および放電制御手段を制御する監視制御部(MPU)と、電池交換時に組電池の製造日付が入力される入力部とを備え、電池監視手段は、組電池の製造日付を起点として所定の電気量(例えば、80Ah)を供給可能な寿命期間を推定し、推定した寿命期間(例えば、8年)を監視制御部に送信し、監視制御部は、入力部から入力され内部に格納している製造日付と、電池監視手段から送信された寿命期間とを加算して、次の交換日付とする演算を行うことを特徴とする。
【0011】
本発明に係る電源装置において、電池監視手段は、電池交換時に、寿命期間の推定に必要であった組電池の履歴を消去することを特徴とする。
【0012】
上記の構成によれば、鉛蓄電池に代えてニッケル−水素二次電池を用いることで、高容量化や省スペース化、また長寿命化を図ることができる。
【0013】
また、組電池の製造日付に推定寿命期間を加算して、交換日付を演算するので、上記従来の問題点(A)に対して、保守・点検時に時刻調整を行っても交換日付は変化せず、上記従来の問題点(B)に対して、現在の日付を進めることで、交換要求信号が発せられることが確認でき、上記従来の問題点(C)に対して、「電池製造日付」の変化を電池交換の合図に利用することで、新たな信号を必要とせず、さらに第2の電源装置の構成のように、電池製造日付と推定寿命期間との加算をMPUで行うことで、電池ECUからMPUへの信号伝送量を削減することができ、上記従来の問題点(D)に対して、電池交換後、直ちに、交換日付表示値に製造の新旧が反映される。従来の電源装置では、図5Aに示すように、2010年8月の電池交換時に、2008年8月に製造された寿命期間が8年である組電池に交換した場合、交換日付表示値は2018年8月と設定されるのに対して、本発明に係る第1または第2の電源装置では、図5Bに示すように、交換日付表示値は2016年8月と直ちに設定される。
【0014】
さらに、寿命期間は電池特性のみに依存するので、寿命期間の推定が容易になる。
【0015】
【発明の実施の形態】
以下、本発明の好適な実施形態について、図面を参照して説明する。
【0016】
図1は、本発明の一実施形態に係る電源装置の一構成例を示すブロック図である。図1において、1は50Hzまたは60Hzの商用電源、2は商用電源1の交流電力を整流して直流電力(例えば、公称電圧VCC=−48V)を生成する整流器、3は通信機器等を含む負荷(電流定格としては、例えば60A)である。
【0017】
41はニッケル−水素二次電池からなる単位電池(例えば、電池モジュール)が4つ直列に接続された第1の組電池(例えば、容量100Ah)、42はニッケル−水素二次電池からなる単位電池(例えば、電池モジュール)が4つ直列に接続され、第1の組電池41と並列に接続された第2の組電池である。なお、図1には、2つの組電池が並列に接続された場合を例示しているが、必要に応じて、1つの組電池のみ、または3つ以上の組電池を並列に接続してもよいことは言うまでもない。
【0018】
5は整流器2からの直流電力を受けて第1の組電池41および第2の組電池42に対する電気量の充電を制御する充電制御手段で、6は第1の組電池41および第2の組電池42に充電された電気量の放電を制御する放電制御手段である。なお、充電制御手段5および放電制御手段6は、それぞれ、第1の組電池41および第2の組電池42に対応して、2組のパワースイッチ素子および逆流防止用ダイオードを含んで構成される。
【0019】
7は、電池監視手段(電池ECU(Electronic Control Unit))であり、第1の組電池41の電圧情報(V11、V12、V13、V14)、第1の組電池41の電流情報(I1)、および第1の組電池41の温度情報(Tb1)に基づいて、少なくとも第1の組電池41の残存容量SOC1を演算し、また第2の組電池42の電圧情報(V21、V22、V23、V24)、第2の組電池42の電流情報(I2)、および第2の組電池42の温度情報(Tb2)に基づいて、少なくとも第2の組電池42の残存容量SOC2を演算し、第1の組電池41および第2の組電池42の状態を監視する。
【0020】
81は第1の組電池41に流れる充放電電流を検出する電流センサ、82は第2の組電池42に流れる充放電電流を検出する電流センサである。
【0021】
9は昇圧手段であり、停電時や電池の放電容量試験時など整流器2からの直流電圧が低下しており、また放電末期で第1の組電池41と第2の組電池42の電圧が第1の電圧値(負荷3の動作保証電圧の下限値よりも高い電池電圧値、例えば46ボルト)を下回った場合に、負荷3に供給する電圧を昇圧して第1の電圧値に維持する働きをする。
【0022】
10は監視制御部(MPU)であり、第1の組電池41および第2の組電池42の放電容量試験時において、整流器2からの出力電圧を制御したり、電池ECU7からの指示(充電開始要求(CSTART)、充電停止要求(CSTOP)、放電開始要求(DSTART)、放電停止要求(DSTOP)など)に応じて、充電制御手段5および放電制御手段6による充放電動作を制御する。
【0023】
また、MPU10は、電池交換時に、作業員により入力部11から入力された組電池の製造日付を格納し、電池ECU7からの推定寿命期間を受けて、組電池の製造日付と推定寿命期間とを加算して、その加算結果を次の交換日付(交換日付表示値)として表示部12に表示する。
【0024】
次に、このように構成された電源装置の充放電動作について、図1に加えて、図2、図3、図4Aおよび図4Bを参照して説明する。
【0025】
図2は、図1の電源装置における基本的な充放電動作を示す図で、図3は、図1の電源装置における充電中断が発生した場合の充放電動作を示す図である。なお、図2および図3の上側は、充放電による第1の組電池41の残存容量SOC1の時間変化および第2の組電池42の残存容量SOC2の時間変化を示し、図2および図3の下側は、各種要求および状態を指示するフラグを示す。
【0026】
図4Aは、放電容量試験中における各部電圧の時間変化を示す図で、図4Bは、放電電流(I)および放電電気量(Q)の時間変化を示す図である。なお、図4Aにおいて、期間T31は定常状態の期間、期間T32は回路動作を確認するために整流器2の出力電圧VRを少しだけ低下させる期間、期間T33は待機期間、期間T34は電池電圧VBが低下していく放電期間でかつ昇圧手段9が非動作中の期間、期間T35は電池電圧VBが低下していく放電期間でかつ昇圧手段9が動作中の期間を示す。また、VLは負荷2に供給される電圧を、VOは負荷2が動作可能である電圧範囲を示す。
【0027】
図2において、期間T1(初期充電期間)の開始時(電池交換時)に、電池ECU7が、第1の組電池41に対する充電開始要求(CSTART1)を発すると、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第1の組電池41に対する充電(例えば、10Aの定電流充電)が行われる。
【0028】
次に、電池ECU7が第1の組電池41の残存容量SOC1が満充電(100%)に達したことを検出すると、充電電流制御要求CC1を発して、第1の組電池41に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART1)を解除する。この状態で、第1の組電池41はバックアップ用電源としての待機状態に入る。
【0029】
同時に、電池ECU7は、第2の組電池42に対する充電開始要求(CSTART2)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第2の組電池42に対する充電(例えば、10Aの定電流充電)が行われる。
【0030】
次に、電池ECU7が第2の組電池42の残存容量SOC2が満充電(100%)に達したことを検出すると、充電電流制御要求CC2を発して、第2の組電池42に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART2)を解除する。この状態で、第2の組電池42はバックアップ用電源としての待機状態に入る。
【0031】
第1の組電池41および第2の組電池42が待機状態にある期間T2において、組電池の自己放電に起因して、残存容量SOC1、SOC2が低下する。第1の組電池41の残存容量SOC1が第1の残存容量値SOCt1(例えば、80%)まで低下すると、電池ECU7は、第1の組電池41に対する充電開始要求(CSTART1)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第1の組電池41に対する充電(例えば、10Aの定電流充電)が行われる。
【0032】
次に、電池ECU7は、第1の組電池41の残存容量SOC1が満充電(100%)に達したことを検出すると、充電電流制御要求CC1を発して、第1の組電池41に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART1)を解除する。これにより、第1の組電池41に対して補充電が行われる。
【0033】
また、第2の組電池42の残存容量SOC2が第1の残存容量値SOCt1(例えば、80%)まで低下すると、電池ECU7は、第2の組電池42に対する充電開始要求(CSTART2)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第2の組電池42に対する充電(例えば、10Aの定電流充電)が行われる。
【0034】
次に、電池ECU7は、第2の組電池42の残存容量SOC2が満充電(100%)に達したことを検出すると、充電電流制御要求CC2を発して、第2の組電池42に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART2)を解除する。これにより、第2の組電池42に対して補充電が行われる。
【0035】
このようにして、期間T2では、第1の組電池41および第2の組電池42の自己放電と、それによる残存容量の低下を補償するための補充電とが繰り返し行われる。
【0036】
期間T3では、電池の劣化状態を判定するために、MPU10により、例えば交換時から6ヶ月毎に電池の放電容量試験が実施される。ここでは、第2の組電池42に対する放電容量試験を例にとって説明する。まず、試験待機中フラグ(WAIT)が立てられ、所定時間経過した後、試験待機中フラグ(WAIT)が下げられると同時に、試験充電中フラグ(TCS)が立てられる。電池ECU7は、MPU10からの試験要求を受けて、第2の組電池42に対する充電開始要求(CSTART2)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第2の組電池42に対する充電(例えば、10Aの定電流充電)が行われる。
【0037】
次に、電池ECU7は、第2の組電池42の残存容量SOC2が満充電(100%)に達したことを検出すると、充電電流制御要求CC2を発して、第2の組電池42に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART2)を解除する。
【0038】
同時に、電池ECU7は、第2の組電池42に対する放電容量試験中に停電などが発生し、また放電容量試験の結果、劣化判定対象である第2の組電池42が劣化している、または寿命であると判定された場合に備えて、バックアップ用の第1の組電池41に対する充電開始要求(CSTART1)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第1の組電池41に対する充電(例えば、10Aの定電流充電)が行われる。
【0039】
次に、電池ECU7は、第1の組電池41の残存容量SOC1が満充電(100%)に達したことを検出すると、充電電流制御要求CC1を発して、第1の組電池41に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART1)を解除する。
【0040】
これにより、試験充電中フラグ(TCS)が下げられ、試験充電終了フラグ(TCE)が所定時間立てられる。
【0041】
試験充電終了フラグ(TCE)が下げられると、電池ECU7は、第1の組電池41に対する放電停止要求(DSTOP1)を発し、これを受けて、MPU10は、放電制御手段6の対応するパワースイッチ素子をオフ状態に制御し、第1の組電池41からの放電を禁止する。この後、電池ECU7は、第2の組電池42に対する放電開始要求(DSTART2)を発し、これを受けて、MPU10は、試験中フラグTESTを立て、放電制御手段6の対応するパワースイッチ素子をオン状態に制御するとともに、整流器2を制御してその出力電圧VRを第2の電圧値(例えば、45ボルト)にまで低下させて(図4Aの期間T34)、第2の組電池42からの試験放電が開始される。
【0042】
ここで、整流器2の出力電圧VRが下がり、第2の組電池42からの放電により電池電圧VBが低下して、負荷3に供給される電圧VLが第1の電圧値(例えば、46ボルト)に達する(図4Aの期間T34)と、昇圧手段9が動作し、電池電圧VBを昇圧して、負荷3に供給する電圧VLを第1の電圧値(例えば、46ボルト)に維持する(図4Aの期間T35)。これにより、負荷3に動作保証電圧を供給することができる。
【0043】
次に、電池ECU7は、電圧情報V11〜V14、V21〜V24から電池電圧が放電下限電圧値に相当する第3の電圧値(例えば、43ボルト)に達したことを検出すると、試験終了をMPU10に通知する。これを受けて、MPU10は、試験終了フラグ(TEND)を立てる。このとき、電池ECU7は、図4Bに示すように、放電電流Iから放電終了時の放電電気量Qを算出し、放電電気量Qが第1の閾値(例えば、電池の定格容量の80%に相当する80Ah)以上であるか否かを判定する。判定した結果、放電電気量Qが第1の閾値以上である場合、蓄電能力の劣化が無く正常であるとして、放電電気量Qが第1の閾値未満でかつ第2の閾値(例えば、70Ah)以上である場合、蓄電能力の劣化有りとして、放電電気量Qが第2の閾値未満である場合、第2の組電池42は寿命であるとして、電池ECU7は、MPU10に試験結果を報告する。
【0044】
この試験結果には、第2の組電池42の推定寿命期間が含まれ、この推定寿命期間は、予め設定された例えば8年という初期寿命期間と、実使用期間に対する放電電気量Qの低下に基づく劣化程度とに応じて、電池ECU7により算出される。また、電池ECU7により、現在使用中の第2の組電池42は寿命であると判定された場合、後ほど、MPU10からの通知を受けた作業員により、交換用の組電池に交換され、交換された組電池の製造日付が入力部11から入力されると、MPU10は、内部のメモリ(不図示)に組電池の製造日付を格納し、その製造日付と電池ECU7から送信された推定寿命期間とを加算して、その加算結果を次の交換日付として表示部12に表示する。
【0045】
なお、電池交換時には、電池ECU7は、今まで使用していた第2の組電池42の温度状態(例えば、高温状態、低温状態等)や電圧状態(電池モジュールの電圧ばらつき具合等)などの使用履歴を消去し、新たに設置された組電池の履歴を取得することになる。
【0046】
このようにして放電容量試験が終了すると、期間T4において、電池ECU7は、第1の組電池41に対する放電停止要求(DSTOP1)を解除するとともに、第2の組電池42に対する充電開始要求(CSTART2)を発し、これを受けて、MPU10は、充電制御手段5の対応するパワースイッチ素子をオン状態に制御し、第2の組電池42に対する充電(例えば、10Aの定電流充電)が行われる。
【0047】
次に、電池ECU7は、第2の組電池42の残存容量SOC2が満充電(100%)に達したことを検出すると、充電電流制御要求CC2を発して、第2の組電池42に対して例えば3Aの充電を所定時間行わせ、充電開始要求(CSTART2)を解除する。
【0048】
以降の期間T5では、期間T2と同様に、第1の組電池41および第2の組電池42の自己放電と、それによる残存容量の低下を補償するための補充電とが繰り返し行われる。
【0049】
図3は、図1の電源装置における充電中断が発生した場合の充放電動作を示す図であるが、期間T2およびT4は、図2のそれらと同様である。図3が図2と異なる点は、初期充電期間である期間T1において、第2の組電池42に対して初期充電の中断が発生し、また電池容量試験期間である期間T3において、第1の組電池41に対して補充電の中断が発生している点にある。
【0050】
図3の期間T1において、第2の組電池42への初期充電中に、電池ECU7が、温度情報Tb2から第2の組電池42の温度が所定温度(例えば、60℃)以上になったことを検出した場合、高温により充電効率が低下しているため、立ち上げていた充電開始要求(CSTART2)を一旦解除して、充電を中断する。
【0051】
充電の中断により、第2の組電池42の温度が所定温度(例えば、60℃)未満にまで低下した場合、電池ECU7は、充電開始要求(CSTART2)を再度発して、第2の組電池42への充電を再開する。
【0052】
また、図3の期間T3において、第1の組電池41への補充電中に、電池ECU7が、温度情報Tb1から第1の組電池41の温度が所定温度(例えば、60℃)以上になったことを検出した場合、高温により充電効率が低下しているため、立ち上げていた充電開始要求(CSTART1)を一旦解除して、充電を中断する。
【0053】
充電の中断により、第1の組電池41の温度が所定温度(例えば、60℃)未満にまで低下した場合、電池ECU7は、充電開始要求(CSTART1)を再度発して、第1の組電池41への充電を再開する。
【0054】
以上のように、本実施形態によれば、エネルギー密度が高く(すなわち、コンパクトにエネルギーを蓄積できる)、出力密度も高いニッケル−水素二次電池を用いることで、高容量化や省スペース化、また長寿命化を図るとともに、組電池の製造日付と推定寿命期間とを加算して電池交換日付とすることで、寿命の推定が容易で、保守・点検時の作業で推定寿命に影響を与えず、電池交換日付を確実に表示可能な電源装置を実現することができる。
【0055】
なお、本実施形態において、放電制御手段6が降圧手段としての機能を兼ねることもできる。満充電に近い状態において電池電圧が上昇して第4の電圧値(例えば、55ボルト)に達した場合、降圧手段が動作し、電池電圧を降圧して、負荷3に供給する電圧を第4の電圧値(例えば、55ボルト)に維持する。これにより、負荷3に動作保証電圧を供給することができる。
【0056】
また、本実施形態において、放電制御手段6が過放電防止手段としての機能を兼ねることもできる。電池ECU7は、電池電圧が放電終端電圧値にまで低下したことにより深放電を検出した場合、放電停止要求を発して、放電制御手段6に組電池からの放電を停止させる。これにより、過放電を容易に防止することができる。
【0057】
また、本実施形態において、電源装置が組電池に対する冷却手段(例えば、冷却ファン)を備えてもよい。この場合、電池ECU7は、組電池への充電を行っている間、また充電終了後も電池温度が高ければ、冷却ファンをオンにし、組電池を冷却させる。これにより、組電池の充電効率の低下を抑えて、最適な充電制御を行うことができる。
【0058】
なお、本実施形態において、表示部は電源装置そのものに備えた構成としているが、電源装置には表示部を持たずに、各地の電源装置を集中管理している電源装置集中管理センターにおいてネットワーク経由で情報を収集し、交換日付はそのセンターに備えた表示部で表示されるように構成しても良い。その際、電源装置には表示部を重複して持っても持たなくても良いし、もしくは、交換日付になった場合や、寿命まで所定日数を切った際に、点灯・発音等のみするようにしても良い。作業員は、電源装置集中管理センターからの通知、もしくは電源装置の点灯・発音により、組電池の交換作業を行うことができる。
【0059】
【発明の効果】
以上説明したように、本発明によれば、エネルギー密度が高く(すなわち、コンパクトにエネルギーを蓄積できる)、出力密度も高いニッケル−水素二次電池を用いることで、高容量化や省スペース化、また長寿命化を図るとともに、寿命の推定が容易で、保守・点検時の作業で推定寿命に影響を与えず、電池交換日付を確実に表示可能な電源装置を実現することが可能になる、という格別な効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る電源装置の構成例を示すブロック図
【図2】図1の電源装置における基本的な充放電動作を示す図
【図3】図1の電源装置における充電中断が発生した場合の充放電動作を示す図
【図4A】放電容量試験中における各部電圧の時間変化を示す図
【図4B】放電電流(I)および放電電気量(Q)の時間変化を示す図
【図5A】従来の電源装置における実日付に対する交換日付表示値を示すグラフ
【図5B】本実施形態の電源装置における実日付に対する交換日付表示値を示すグラフ
【符号の説明】
1 商用電源
2 整流器
3 負荷
41 第1の組電池
42 第2の組電池
5 充電制御手段
6 放電制御手段
7 電池監視手段(電池ECU)
81、82 電流センサ
9 昇圧手段
10 監視制御部(MPU)
11 入力部
12 表示部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power supply device, and more particularly to a communication DC power supply device that is installed in a wireless communication base station or the like and has a nickel-hydrogen secondary battery mounted as a backup power supply at the time of a power failure or the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a lead storage battery has been used as a backup power supply at the time of power failure or maintenance in a communication DC power supply device installed in a base station such as a mobile phone (for example, see Patent Document 1). This lead storage battery is float-charged by a DC voltage obtained by rectifying an AC voltage of a commercial power supply with a rectifier, and no charge control is performed.
[0003]
In addition, methods for determining the deterioration and life of a lead-acid battery used in such a power supply include: (1) the internal resistance of the battery increases with the progress of deterioration depending on the environmental temperature, and the voltage due to the load current is increased. (2) A method of calculating and determining the amount of discharged electricity by periodically performing a discharge test on a lead storage battery, and (3) Installation of a current date and a lead storage battery. Obtain the number of years elapsed since the battery was installed from the date, subtract the number of years elapsed from the standard life corresponding to the average temperature of the lead-acid battery, and add the remaining years to the life (remaining years) or the current date to the remaining years. There is a method of displaying a time (for example, see Patent Document 2).
[0004]
[Patent Document 1]
JP-A-5-315015
[0005]
[Patent Document 2]
JP-A-7-310233
[0006]
[Problems to be solved by the invention]
In recent years, power demand for communication DC power supplies has been increasing, and their installation space is also limited. However, when a lead-acid battery is used as a backup power supply for a communication DC power supply, there is a problem in terms of high capacity and space saving, and the service life due to aging is short, and costs increase due to maintenance and inspection. There is also the problem of doing.
[0007]
Further, the above-described conventional method (3) in which the remaining years are added to the current date to determine the service life (the next replacement date) has the following problem.
(A) The current date of the calendar IC provided in the battery monitoring means (battery ECU (Electronic Control Unit)) for monitoring the state of the battery changes by adjusting the time during maintenance and inspection. The next exchange date will also change.
(B) At the time of maintenance / inspection, it is not possible to advance the current date and test whether a replacement request signal is issued.
(C) It is necessary to inform the battery ECU that the battery has been replaced, and a new signal is required.
(D) Until the discharge capacity test is performed after the battery replacement and the correction based on the result is performed, the new and old manufacturing is not reflected in the replacement date display value. FIG. 5A is a graph showing a replacement date display value with respect to an actual date when the production date of the replacement battery is unknown. In FIG. 5A, the battery life is set to eight years. In August 2002, the battery was replaced with a battery with a manufacturing date of August 2002. Eight years later, in August 2010, the manufacturing date was unknown at the time of replacement (actually, the battery was manufactured in August 2008). When the battery is replaced, the replacement date display value becomes 2018. Next, when a discharge capacity test was performed, for example, six months after August 2010, that is, at the time of a periodic inspection in February 2011, deterioration of the storage capacity was observed. It will be deducted by two years from August 2018 and revised in August 2016. Thus, a time lag occurs in updating the exchange date display value.
[0008]
The present invention has been made in view of such a problem, and an object of the present invention is to use a nickel-hydrogen secondary battery instead of a lead storage battery to achieve high capacity, space saving, and long life. It is another object of the present invention to provide a power supply device that can easily estimate the life, does not affect the estimated life during maintenance and inspection, and can reliably display the battery replacement date.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a first power supply device according to the present invention includes a battery pack formed by connecting a plurality of nickel-hydrogen rechargeable batteries in series, and rectifies AC power from a commercial power supply to perform communication, for example. A rectifier that supplies DC power to the load including the device and the assembled battery; charge control means for receiving the DC power from the rectifier to control charging of the electric energy to the assembled battery; Based on discharge control means for controlling discharge, voltage information (V11, V12, V13, V14; V21, V22, V23, V24), current information (I1; I2), and temperature information (Tb1; Tb2) of the battery pack. A battery monitoring means (battery ECU) for calculating at least the remaining capacity (SOC1; SOC2) of the assembled battery and monitoring the state of the assembled battery, and an input unit for inputting the date of manufacture of the assembled battery when replacing the battery. The battery monitoring unit estimates a life period in which a predetermined amount of electricity (for example, 80 Ah) can be supplied starting from the production date of the battery pack, and adds the estimated life period and the production date to the next replacement time. It is characterized in that an operation for a date is performed.
[0010]
In order to achieve the above object, a second power supply device according to the present invention includes a battery pack formed by connecting a plurality of nickel-hydrogen rechargeable batteries in series, and rectifies AC power from a commercial power supply, for example, to perform communication. A rectifier that supplies DC power to the load including the device and the assembled battery; charge control means for receiving the DC power from the rectifier to control charging of the electric energy to the assembled battery; Based on discharge control means for controlling discharge, voltage information (V11, V12, V13, V14; V21, V22, V23, V24), current information (I1; I2), and temperature information (Tb1; Tb2) of the battery pack. A battery monitoring means (battery ECU) for calculating at least the remaining capacity (SOC1; SOC2) of the assembled battery and monitoring the state of the assembled battery; an output voltage of the rectifier; A monitoring control unit (MPU) that controls the charge control unit and the discharge control unit in accordance with the instruction of (1), and an input unit that inputs the date of manufacture of the battery pack when the battery is replaced. Starting from the date, a life period capable of supplying a predetermined amount of electricity (for example, 80 Ah) is estimated, the estimated life period (for example, 8 years) is transmitted to the monitoring control unit, and the monitoring control unit receives an input from the input unit. Then, the production date stored therein and the life period transmitted from the battery monitoring means are added to perform an operation for setting the next replacement date.
[0011]
In the power supply device according to the present invention, the battery monitoring means erases the history of the battery pack required for estimating the life span when replacing the battery.
[0012]
According to the above configuration, by using a nickel-hydrogen secondary battery instead of a lead storage battery, high capacity, space saving, and long life can be achieved.
[0013]
Further, since the replacement date is calculated by adding the estimated life period to the manufacturing date of the battery pack, the replacement date does not change even if the time is adjusted at the time of maintenance / inspection for the conventional problem (A). However, it can be confirmed that, by advancing the current date with respect to the above-mentioned conventional problem (B), a replacement request signal is issued. By using the change in the signal for battery replacement, a new signal is not required, and the addition of the battery manufacturing date and the estimated life period is performed by the MPU as in the configuration of the second power supply device. The amount of signal transmission from the battery ECU to the MPU can be reduced, and for the above-mentioned conventional problem (D), immediately after battery replacement, the new and old manufacturing is reflected in the replacement date display value. In the conventional power supply device, as shown in FIG. 5A, when the battery is replaced in August 2010 and the battery is manufactured in August 2008 and the life is eight years, the replacement date display value is 2018. In the first or second power supply according to the present invention, the exchange date display value is immediately set to August 2016, as shown in FIG.
[0014]
Further, since the lifetime depends only on the battery characteristics, it is easy to estimate the lifetime.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[0016]
FIG. 1 is a block diagram illustrating a configuration example of a power supply device according to an embodiment of the present invention. In FIG. 1, 1 is a 50 Hz or 60 Hz commercial power supply, 2 is a rectifier that rectifies the AC power of the commercial power supply 1 to generate DC power (for example, nominal voltage VCC = −48 V), and 3 is a load including communication equipment and the like. (The current rating is, for example, 60 A).
[0017]
Reference numeral 41 denotes a first assembled battery (for example, a capacity of 100 Ah) in which four unit batteries (for example, battery modules) each composed of a nickel-hydrogen secondary battery are connected in series, and reference numeral 42 denotes a unit battery composed of a nickel-hydrogen secondary battery. (For example, a battery module) is a second assembled battery in which four are connected in series and connected in parallel with the first assembled battery 41. Although FIG. 1 illustrates a case where two battery packs are connected in parallel, if necessary, only one battery pack or three or more battery packs may be connected in parallel. Needless to say, it's good.
[0018]
Reference numeral 5 denotes charging control means for receiving the DC power from the rectifier 2 and controlling the charging of the amount of electricity to the first assembled battery 41 and the second assembled battery 42, and 6 designates the first assembled battery 41 and the second assembled battery. It is a discharge control unit that controls the discharge of the amount of electricity charged in the battery 42. The charge control means 5 and the discharge control means 6 are configured to include two sets of power switch elements and a backflow prevention diode corresponding to the first assembled battery 41 and the second assembled battery 42, respectively. .
[0019]
Reference numeral 7 denotes a battery monitoring unit (battery ECU (Electronic Control Unit)), which includes voltage information (V11, V12, V13, V14) of the first assembled battery 41, current information (I1) of the first assembled battery 41, And at least the remaining capacity SOC1 of the first assembled battery 41 is calculated based on the temperature information (Tb1) of the first assembled battery 41 and the voltage information (V21, V22, V23, V24) of the second assembled battery 42. ), The remaining capacity SOC2 of at least the second assembled battery 42 is calculated based on the current information (I2) of the second assembled battery 42 and the temperature information (Tb2) of the second assembled battery 42, The status of the assembled battery 41 and the second assembled battery 42 is monitored.
[0020]
Reference numeral 81 denotes a current sensor that detects a charge / discharge current flowing through the first assembled battery 41, and reference numeral 82 denotes a current sensor that detects a charge / discharge current flowing through the second assembled battery 42.
[0021]
Reference numeral 9 denotes a step-up means for reducing the DC voltage from the rectifier 2 at the time of a power failure or at the time of a battery discharge capacity test, and the voltage of the first assembled battery 41 and the second assembled battery 42 at the end of discharge. When the voltage falls below a voltage value of 1 (battery voltage value higher than the lower limit value of the operation guarantee voltage of the load 3, for example, 46 volts), the voltage supplied to the load 3 is boosted to maintain the first voltage value. do.
[0022]
Reference numeral 10 denotes a monitoring control unit (MPU) which controls the output voltage from the rectifier 2 and issues an instruction (charge start) from the battery ECU 7 during a discharge capacity test of the first assembled battery 41 and the second assembled battery 42. In response to a request (CSTART), a charge stop request (CSTOP), a discharge start request (DSTART), a discharge stop request (DSTOP), etc., the charge / discharge operation by the charge control unit 5 and the discharge control unit 6 is controlled.
[0023]
Further, the MPU 10 stores the manufacturing date of the battery pack input from the input unit 11 by the operator at the time of battery replacement, receives the estimated life time from the battery ECU 7, and determines the manufacturing date and the estimated life time of the battery pack. The result of the addition is displayed on the display unit 12 as the next exchange date (exchange date display value).
[0024]
Next, the charging / discharging operation of the power supply device configured as described above will be described with reference to FIGS. 2, 3, 4A, and 4B in addition to FIG.
[0025]
FIG. 2 is a diagram showing a basic charge / discharge operation in the power supply device of FIG. 1, and FIG. 3 is a diagram showing a charge / discharge operation in the case where a charge interruption occurs in the power supply device of FIG. The upper part of FIGS. 2 and 3 shows the time change of the remaining capacity SOC1 of the first assembled battery 41 and the time change of the remaining capacity SOC2 of the second assembled battery 42 due to charging and discharging. The lower side shows flags indicating various requests and states.
[0026]
FIG. 4A is a diagram showing a time change of each part voltage during a discharge capacity test, and FIG. 4B is a diagram showing a time change of a discharge current (I) and a discharge electric quantity (Q). In FIG. 4A, a period T31 is a period of a steady state, a period T32 is a period for slightly lowering the output voltage VR of the rectifier 2 to confirm the circuit operation, a period T33 is a standby period, and a period T34 is a period when the battery voltage VB is lower. The period T35 is a discharging period in which the battery voltage VB is falling and a period in which the boosting unit 9 is operating, and the period T35 is a period in which the boosting unit 9 is not operating. Further, VL indicates a voltage supplied to the load 2 and VO indicates a voltage range in which the load 2 can operate.
[0027]
In FIG. 2, when the battery ECU 7 issues a charge start request (CSTART1) for the first assembled battery 41 at the start of the period T1 (initial charge period) (at the time of battery replacement), the MPU 10 receives the request. The corresponding power switch element of the charging control means 5 is controlled to be turned on, and charging of the first assembled battery 41 (for example, constant current charging of 10 A) is performed.
[0028]
Next, when the battery ECU 7 detects that the state of charge SOC1 of the first assembled battery 41 has reached a full charge (100%), the battery ECU 7 issues a charge current control request CC1 to the first assembled battery 41, for example. 3A is charged for a predetermined time, and the charge start request (CSTART1) is released. In this state, the first assembled battery 41 enters a standby state as a backup power supply.
[0029]
At the same time, the battery ECU 7 issues a charge start request (CSTART2) to the second assembled battery 42, and in response to this, the MPU 10 controls the corresponding power switch element of the charge control means 5 to the ON state, and Charging of the assembled battery 42 (for example, constant current charging of 10 A) is performed.
[0030]
Next, when the battery ECU 7 detects that the state of charge SOC2 of the second assembled battery 42 has reached a full charge (100%), the battery ECU 7 issues a charge current control request CC2 to the second assembled battery 42, for example. 3A is charged for a predetermined time, and the charge start request (CSTART2) is released. In this state, the second assembled battery 42 enters a standby state as a backup power supply.
[0031]
In a period T2 in which the first assembled battery 41 and the second assembled battery 42 are in the standby state, the remaining capacities SOC1 and SOC2 decrease due to the self-discharge of the assembled battery. When the state of charge SOC1 of the first assembled battery 41 decreases to the first state of charge SOCt1 (for example, 80%), the battery ECU 7 issues a charge start request (CSTART1) to the first assembled battery 41, and issues this request. In response, the MPU 10 controls the corresponding power switch element of the charging control means 5 to the on state, and the first assembled battery 41 is charged (for example, constant current charging of 10 A).
[0032]
Next, when detecting that the state of charge SOC1 of the first assembled battery 41 has reached full charge (100%), the battery ECU 7 issues a charge current control request CC1 to the first assembled battery 41. For example, 3A charging is performed for a predetermined time, and the charging start request (CSTART1) is released. Thereby, the auxiliary battery 41 is supplementarily charged.
[0033]
When the state of charge SOC2 of the second assembled battery 42 decreases to the first state of charge SOCt1 (for example, 80%), the battery ECU 7 issues a charge start request (CSTART2) to the second assembled battery 42, In response to this, the MPU 10 controls the corresponding power switch element of the charging control means 5 to the on state, and the second assembled battery 42 is charged (for example, constant current charging of 10 A).
[0034]
Next, when detecting that the state of charge SOC2 of the second assembled battery 42 has reached the full charge (100%), the battery ECU 7 issues a charge current control request CC2 to the second assembled battery 42. For example, the charging of 3A is performed for a predetermined time, and the charging start request (CSTART2) is released. As a result, auxiliary charging is performed on the second assembled battery 42.
[0035]
In this manner, in the period T2, the self-discharge of the first assembled battery 41 and the second assembled battery 42 and the supplementary charge for compensating the decrease in the remaining capacity due to the self-discharge are repeatedly performed.
[0036]
In the period T3, in order to determine the deterioration state of the battery, the MPU 10 performs a battery discharge capacity test, for example, every six months from the time of replacement. Here, the discharge capacity test for the second assembled battery 42 will be described as an example. First, the test waiting flag (WAIT) is set, and after a predetermined time has elapsed, the test waiting flag (WAIT) is lowered and, at the same time, the test charging flag (TCS) is set. The battery ECU 7 receives a test request from the MPU 10 and issues a charge start request (CSTART2) for the second assembled battery 42. In response to this, the MPU 10 turns on the corresponding power switch element of the charge control unit 5 in the on state. And the second assembled battery 42 is charged (for example, constant current charging of 10 A).
[0037]
Next, when detecting that the state of charge SOC2 of the second assembled battery 42 has reached the full charge (100%), the battery ECU 7 issues a charge current control request CC2 to the second assembled battery 42. For example, 3A charging is performed for a predetermined time, and the charging start request (CSTART2) is released.
[0038]
At the same time, the battery ECU 7 determines that a power failure or the like has occurred during the discharge capacity test on the second assembled battery 42, and as a result of the discharge capacity test, the second assembled battery 42 that is the subject of the deterioration determination The MPU 10 turns on the corresponding power switch element of the charge control unit 5 in response to the request to start charging the backup first assembled battery 41 (CSTART1). The state is controlled, and charging of the first assembled battery 41 (for example, constant current charging of 10 A) is performed.
[0039]
Next, when detecting that the state of charge SOC1 of the first assembled battery 41 has reached full charge (100%), the battery ECU 7 issues a charge current control request CC1 to the first assembled battery 41. For example, 3A charging is performed for a predetermined time, and the charging start request (CSTART1) is released.
[0040]
As a result, the test charging flag (TCS) is lowered, and the test charging end flag (TCE) is set for a predetermined time.
[0041]
When the test charge end flag (TCE) is lowered, the battery ECU 7 issues a discharge stop request (DSTOP1) to the first assembled battery 41, and in response, the MPU 10 causes the corresponding power switch element of the discharge control means 6 to operate. Is turned off, and discharge from the first assembled battery 41 is prohibited. Thereafter, the battery ECU 7 issues a discharge start request (DSTART2) to the second assembled battery 42, and in response, the MPU 10 sets the test-in-progress flag TEST, and turns on the corresponding power switch element of the discharge control means 6. While controlling the state, the rectifier 2 is controlled to reduce its output voltage VR to a second voltage value (for example, 45 volts) (period T34 in FIG. 4A), and the test from the second assembled battery 42 is performed. Discharge starts.
[0042]
Here, the output voltage VR of the rectifier 2 decreases, the battery voltage VB decreases due to the discharge from the second assembled battery 42, and the voltage VL supplied to the load 3 becomes the first voltage value (for example, 46 volts). (Period T34 in FIG. 4A), the booster 9 operates to boost the battery voltage VB and maintain the voltage VL supplied to the load 3 at a first voltage value (for example, 46 volts) (FIG. 4). 4A period T35). Thereby, the operation assurance voltage can be supplied to the load 3.
[0043]
Next, when detecting that the battery voltage has reached the third voltage value (for example, 43 volts) corresponding to the discharge lower limit voltage value from the voltage information V11 to V14 and V21 to V24, the battery ECU 7 notifies the MPU 10 of the end of the test. Notify In response, the MPU 10 sets a test end flag (TEND). At this time, as shown in FIG. 4B, the battery ECU 7 calculates a discharge electric quantity Q at the end of discharge from the discharge current I, and sets the discharge electric quantity Q to a first threshold value (for example, 80% of the rated capacity of the battery). It is determined whether it is equal to or greater than 80 Ah). If the result of the determination is that the amount of discharged electricity Q is greater than or equal to the first threshold, it is determined that the storage capacity is normal without any deterioration of the storage capacity, and that the amount of discharged electricity Q is less than the first threshold and a second threshold (for example, 70 Ah). If the above is the case, the storage capacity is degraded, and if the amount of discharged electricity Q is less than the second threshold, the second assembled battery 42 is determined to have reached the end of life, and the battery ECU 7 reports the test result to the MPU 10.
[0044]
The test result includes the estimated life period of the second assembled battery 42. The estimated life period is determined by a preset initial life period of, for example, 8 years and a decrease in the amount of discharged electricity Q with respect to the actual use period. It is calculated by the battery ECU 7 in accordance with the degree of deterioration based on this. When the battery ECU 7 determines that the currently used second battery pack 42 has reached the end of its life, the worker who has been notified by the MPU 10 will later replace the battery pack with a replacement battery pack and replace it. When the manufacture date of the assembled battery is input from the input unit 11, the MPU 10 stores the manufacture date of the assembled battery in an internal memory (not shown), and stores the manufacture date and the estimated life period transmitted from the battery ECU 7. And displays the result of the addition on the display unit 12 as the next exchange date.
[0045]
At the time of battery replacement, the battery ECU 7 uses the temperature state (for example, a high temperature state, a low temperature state, etc.) and the voltage state (such as the voltage variation of the battery module, etc.) of the second assembled battery 42 used so far. The history is erased, and the history of the newly installed battery pack is obtained.
[0046]
When the discharge capacity test is completed in this way, in the period T4, the battery ECU 7 cancels the discharge stop request (DSTOP1) for the first assembled battery 41 and requests the start of charge (CSTART2) for the second assembled battery 42. In response to this, the MPU 10 controls the corresponding power switch element of the charge control means 5 to the ON state, and the second assembled battery 42 is charged (for example, constant current charging of 10 A).
[0047]
Next, when detecting that the state of charge SOC2 of the second assembled battery 42 has reached the full charge (100%), the battery ECU 7 issues a charge current control request CC2 to the second assembled battery 42. For example, the charging of 3A is performed for a predetermined time, and the charging start request (CSTART2) is released.
[0048]
In the subsequent period T5, as in the period T2, the self-discharge of the first assembled battery 41 and the second assembled battery 42 and the supplementary charge for compensating the decrease in the remaining capacity due to the self-discharge are repeatedly performed.
[0049]
FIG. 3 is a diagram showing a charging / discharging operation when charging is interrupted in the power supply device of FIG. 1, and periods T2 and T4 are the same as those of FIG. 2. FIG. 3 differs from FIG. 2 in that during the period T1 which is the initial charging period, the interruption of the initial charging of the second assembled battery 42 occurs, and in the period T3 which is the battery capacity testing period, the first charging is stopped. The point is that the supplementary charging of the assembled battery 41 is interrupted.
[0050]
During the period T1 in FIG. 3, during the initial charging of the second assembled battery 42, the battery ECU 7 determines that the temperature of the second assembled battery 42 has become equal to or higher than the predetermined temperature (for example, 60 ° C.) from the temperature information Tb2. Is detected, the charging efficiency has been lowered due to the high temperature, so the charging start request (CSTART2) that has been started is temporarily released, and charging is interrupted.
[0051]
When the temperature of the second assembled battery 42 drops below a predetermined temperature (for example, 60 ° C.) due to the interruption of charging, the battery ECU 7 issues a charge start request (CSTART2) again, and the second assembled battery 42 Resume charging.
[0052]
Further, during the period T3 of FIG. 3, during the supplementary charging of the first assembled battery 41, the battery ECU 7 determines that the temperature of the first assembled battery 41 becomes equal to or higher than the predetermined temperature (for example, 60 ° C.) from the temperature information Tb1. When it is detected that the charging efficiency has been lowered due to the high temperature, the charging start request (CSTART1) that has been started is temporarily released and charging is interrupted.
[0053]
When the temperature of the first assembled battery 41 decreases to a temperature lower than a predetermined temperature (for example, 60 ° C.) due to the interruption of the charging, the battery ECU 7 issues a charge start request (CSTART1) again, and the first assembled battery 41 Resume charging.
[0054]
As described above, according to the present embodiment, by using a nickel-hydrogen secondary battery having a high energy density (that is, capable of storing energy compactly) and a high output density, high capacity and space saving can be achieved. In addition to prolonging the service life, the battery replacement date is obtained by adding the manufacturing date and the estimated service life of the battery pack, making it easier to estimate the service life and affecting the service life during maintenance and inspection. In addition, it is possible to realize a power supply device capable of reliably displaying a battery replacement date.
[0055]
In the present embodiment, the discharge control means 6 can also function as a step-down means. When the battery voltage rises and reaches a fourth voltage value (for example, 55 volts) in a state close to full charge, the step-down means operates to step down the battery voltage and change the voltage supplied to the load 3 to the fourth voltage. (For example, 55 volts). Thereby, the operation assurance voltage can be supplied to the load 3.
[0056]
Further, in this embodiment, the discharge control means 6 can also function as an overdischarge prevention means. When the battery ECU 7 detects a deep discharge due to the battery voltage dropping to the discharge termination voltage value, it issues a discharge stop request and causes the discharge control means 6 to stop discharging from the assembled battery. Thus, overdischarge can be easily prevented.
[0057]
Further, in the present embodiment, the power supply device may include a cooling unit (for example, a cooling fan) for the battery pack. In this case, the battery ECU 7 turns on the cooling fan to cool the battery pack while charging the battery pack and when the battery temperature is high even after the charging is completed. Thereby, it is possible to perform optimal charging control while suppressing a decrease in charging efficiency of the battery pack.
[0058]
In the present embodiment, the display unit is configured to be provided in the power supply device itself. However, the power supply device does not have a display unit, and is connected via a network at a power supply centralized management center that centrally manages power supply devices in various places. , The exchange date may be displayed on a display unit provided at the center. At this time, the power supply unit may or may not have a duplicate display unit, or only emits light and sounds when the replacement date is reached or when a predetermined number of days is expired. You may do it. The worker can replace the battery pack by a notification from the power supply unit central management center or by turning on and off the power supply unit.
[0059]
【The invention's effect】
As described above, according to the present invention, by using a nickel-hydrogen secondary battery having a high energy density (that is, capable of storing energy compactly) and a high output density, high capacity and space saving can be achieved. In addition, it is possible to realize a power supply device that can extend the service life, easily estimate the service life, does not affect the estimated service life during maintenance and inspection, and can reliably display the battery replacement date. It has a special effect.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a configuration example of a power supply device according to an embodiment of the present invention.
FIG. 2 is a diagram showing a basic charge / discharge operation in the power supply device of FIG. 1;
FIG. 3 is a diagram showing a charging / discharging operation when a charging interruption occurs in the power supply device of FIG. 1;
FIG. 4A is a diagram showing a time change of each part voltage during a discharge capacity test.
FIG. 4B is a diagram showing a time change of a discharge current (I) and a discharge electric quantity (Q).
FIG. 5A is a graph showing an exchange date display value with respect to a real date in a conventional power supply device.
FIG. 5B is a graph showing an exchange date display value with respect to an actual date in the power supply device of the embodiment.
[Explanation of symbols]
1 Commercial power supply
2 Rectifier
3 Load
41 1st assembled battery
42 Second battery pack
5 Charge control means
6 Discharge control means
7 Battery monitoring means (battery ECU)
81, 82 Current sensor
9 Boost means
10 Monitoring control unit (MPU)
11 Input section
12 Display

Claims (4)

ニッケル−水素二次電池を複数個直列に接続して成る組電池と、
商用電源からの交流電力を整流して負荷および前記組電池に対して直流電力を供給する整流器と、
前記整流器からの直流電力を受けて前記組電池に対する電気量の充電を制御する充電制御手段と、
前記組電池に充電された電気量の放電を制御する放電制御手段と、
前記組電池の電圧情報、電流情報、および温度情報に基づいて、少なくとも前記組電池の残存容量を演算し、前記組電池の状態を監視する電池監視手段と、
電池交換時に前記組電池の製造日付が入力される入力部とを備え、
前記電池監視手段は、前記組電池の製造日付を起点として所定の電気量を供給可能な寿命期間を推定し、その推定寿命期間と前記製造日付とを加算した結果を次の交換日付とする演算を行うことを特徴とする電源装置。
An assembled battery comprising a plurality of nickel-hydrogen secondary batteries connected in series;
A rectifier that rectifies AC power from a commercial power supply and supplies DC power to the load and the battery pack;
Charge control means for receiving the DC power from the rectifier and controlling the charging of the amount of electricity to the battery pack,
Discharge control means for controlling the discharge of the amount of electricity charged in the battery pack,
Battery monitoring means for calculating at least the remaining capacity of the battery pack based on the voltage information, current information, and temperature information of the battery pack, and monitoring the state of the battery pack,
An input unit for inputting a manufacturing date of the battery pack at the time of battery replacement,
The battery monitoring unit estimates a life period during which a predetermined amount of electricity can be supplied starting from a production date of the battery pack, and calculates a result obtained by adding the estimated life period and the production date as a next replacement date. A power supply device characterized by performing:
ニッケル−水素二次電池を複数個直列に接続して成る組電池と、
商用電源からの交流電力を整流して負荷および前記組電池に対して直流電力を供給する整流器と、
前記整流器からの直流電力を受けて前記組電池に対する電気量の充電を制御する充電制御手段と、
前記組電池に充電された電気量の放電を制御する放電制御手段と、
前記組電池の電圧情報、電流情報、および温度情報に基づいて、少なくとも前記組電池の残存容量を演算し、前記組電池の状態を監視する電池監視手段と、
前記整流器の出力電圧を制御するとともに、前記電池監視手段からの指示に応じて前記充電制御手段および前記放電制御手段を制御する監視制御部と、
電池交換時に前記組電池の製造日付が入力される入力部とを備え、
前記電池監視手段は、前記組電池の製造日付を起点として所定の電気量を供給可能な寿命期間を推定し、推定した寿命期間を前記監視制御部に送信し、前記監視制御部は、前記入力部から入力され内部に格納している前記製造日付と、前記電池監視手段から送信された前記寿命期間とを加算して、次の交換日付とする演算を行うことを特徴とする電源装置。
An assembled battery comprising a plurality of nickel-hydrogen secondary batteries connected in series;
A rectifier that rectifies AC power from a commercial power supply and supplies DC power to the load and the battery pack;
Charge control means for receiving the DC power from the rectifier and controlling the charging of the amount of electricity to the battery pack,
Discharge control means for controlling the discharge of the amount of electricity charged in the battery pack,
Battery monitoring means for calculating at least the remaining capacity of the battery pack based on the voltage information, current information, and temperature information of the battery pack, and monitoring the state of the battery pack,
A monitoring control unit that controls the output voltage of the rectifier and controls the charge control unit and the discharge control unit in accordance with an instruction from the battery monitoring unit;
An input unit for inputting a manufacturing date of the battery pack at the time of battery replacement,
The battery monitoring unit estimates a life period in which a predetermined amount of electricity can be supplied starting from a manufacturing date of the battery pack, transmits the estimated life period to the monitoring control unit, and the monitoring control unit A power supply unit that adds the manufacturing date input from the unit and stored therein and the life period transmitted from the battery monitoring unit to calculate a next replacement date.
前記電池監視手段は、電池交換時に、前記寿命期間の推定に必要であった前記組電池の履歴を消去することを特徴とする請求項1または2記載の電源装置。3. The power supply device according to claim 1, wherein the battery monitoring unit erases a history of the battery pack required for estimating the life span when replacing the battery. 4. 前記負荷は、通信機器を含むことを特徴とする請求項1または2記載の電源装置。The power supply device according to claim 1, wherein the load includes a communication device.
JP2002278866A 2002-09-25 2002-09-25 Power supply Expired - Lifetime JP4346881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278866A JP4346881B2 (en) 2002-09-25 2002-09-25 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278866A JP4346881B2 (en) 2002-09-25 2002-09-25 Power supply

Publications (2)

Publication Number Publication Date
JP2004119112A true JP2004119112A (en) 2004-04-15
JP4346881B2 JP4346881B2 (en) 2009-10-21

Family

ID=32274036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278866A Expired - Lifetime JP4346881B2 (en) 2002-09-25 2002-09-25 Power supply

Country Status (1)

Country Link
JP (1) JP4346881B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044360A1 (en) 2006-10-05 2008-04-17 Nippon Telegraph And Telephone Corporation Discharger and discharge control method
JP2008306806A (en) * 2007-06-06 2008-12-18 Nippon Telegr & Teleph Corp <Ntt> Power supply system
JP2011160639A (en) * 2010-02-04 2011-08-18 Fuji Electric Co Ltd Instantaneous voltage drop countermeasure apparatus
CN111919329A (en) * 2018-04-06 2020-11-10 株式会社日立制作所 Electricity storage system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022178672A1 (en) * 2021-02-23 2022-09-01 宁德时代新能源科技股份有限公司 Charging control method and apparatus, and power management controller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044360A1 (en) 2006-10-05 2008-04-17 Nippon Telegraph And Telephone Corporation Discharger and discharge control method
US8278781B2 (en) 2006-10-05 2012-10-02 Nippon Telegraph And Telephone Corporation Discharger and discharger control method
JP2008306806A (en) * 2007-06-06 2008-12-18 Nippon Telegr & Teleph Corp <Ntt> Power supply system
JP2011160639A (en) * 2010-02-04 2011-08-18 Fuji Electric Co Ltd Instantaneous voltage drop countermeasure apparatus
CN111919329A (en) * 2018-04-06 2020-11-10 株式会社日立制作所 Electricity storage system
CN111919329B (en) * 2018-04-06 2024-04-02 株式会社日立制作所 Power storage system

Also Published As

Publication number Publication date
JP4346881B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
JP5924346B2 (en) Battery status monitoring system
US7633265B2 (en) Secondary-battery management apparatuses, secondary-battery management method, and secondary-battery management program
US8581554B2 (en) Battery charging method and apparatus
CN101267124B (en) Battery pack
US20140239908A1 (en) Stationary electrical storage system and control method
JP4691140B2 (en) Charge / discharge system and portable computer
CN109477871B (en) Power storage device, power storage system, and power supply system
JP2003244854A (en) Charge and discharge controller for storage apparatus, charge and discharge control method, and power storage system
JP2004120857A (en) Power supply
JP2004120856A (en) Power supply
KR102014719B1 (en) Battery life management device
JP2013160582A (en) Battery pack system and management method of battery pack system
WO2014076839A1 (en) Storage battery voltage leveling device and storage battery state monitoring system
US20110204852A1 (en) Power storage system
CN106797137A (en) Power supply control apparatus, method for controlling power supply and power supply device
JP2004120855A (en) Power supply
JP4346881B2 (en) Power supply
US20100312411A1 (en) Ac consumption controller, method of managing ac power consumption and a battery plant employing the same
JP2006166534A (en) Power supply
EP3905423A1 (en) Standby power supply device and method for charging secondary battery
AU2010271408B2 (en) Battery charging method and apparatus
WO2023126268A1 (en) Method and battery module with state of health determination
JP2022070363A (en) Electric vehicle charging system, charge/discharge control device, and method
JP2010252552A (en) Discharger, discharging method, and dc power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090715

R150 Certificate of patent or registration of utility model

Ref document number: 4346881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term