JP2004111856A - Nonvolatile organic semiconductor memory element, its manufacture, and noncontact information controlling and dysplaying device - Google Patents

Nonvolatile organic semiconductor memory element, its manufacture, and noncontact information controlling and dysplaying device Download PDF

Info

Publication number
JP2004111856A
JP2004111856A JP2002275803A JP2002275803A JP2004111856A JP 2004111856 A JP2004111856 A JP 2004111856A JP 2002275803 A JP2002275803 A JP 2002275803A JP 2002275803 A JP2002275803 A JP 2002275803A JP 2004111856 A JP2004111856 A JP 2004111856A
Authority
JP
Japan
Prior art keywords
organic semiconductor
film
ferroelectric
semiconductor memory
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002275803A
Other languages
Japanese (ja)
Inventor
Zenichi Akiyama
秋山 善一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002275803A priority Critical patent/JP2004111856A/en
Publication of JP2004111856A publication Critical patent/JP2004111856A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/472Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an MFS element which does not include Si as semiconductor material by forming a ferroelectric film out of inorganic material. <P>SOLUTION: A field-effect transistor is composed of organic semiconductor material 6 and a gate insulating film of the ferroelectric film 3. The nonvolatile semiconductor memory element which stores information by using intrinsic polarization of the ferroelectric film 3 is constituted. By forming the ferroelectric film 3 out of inorganic material, the MFS (metal-ferroelectrics-semiconductor) can be constituted. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、有機半導体を用いた記憶素子、高分子圧電体、これらを融合した有機物から成る不揮発性半導体記憶素子に関し、例えば、非接触式カード、スマートタグ、物流に応用される情報管理と情報表示が一体となったインテリジェントタグ等に適用して好適なものである。
【0002】
【従来の技術】
近年、有機半導体材料は、Si、GaAs、に続く第三の半導体材料として注目され、活発な開発がなされている。有機物材料を用いる利点として、膜形成においては150℃以下の低温で成膜され、使用する基板の選択の自由度が向上することはもとより、比較的安価な製造装置にて簡便に作製可能であることが挙げられる。また、有機EL素子に観られるように、電気的なスイッチング以外に発光特性もあり、Si単独、あるいはGaAs単独で成し得なかったモノリシックOEIC(optoelectronic integrated circuit=光電IC)も実現のものになりつつある。
【0003】
しかし、有機半導体材料は、その性能を示すキャリア移動度において1cm−1−1程であり、Siのそれと比較すると約2〜3桁低く、有機半導体から成る装置を現状のSiデバイスに置き換えることは困難であり、将来的に両者は住み分けされ、個々に発展していくものと予想される。即ち、有機半導体の最大の特徴である安価な製造コストと機能の融合化に基づき、演算の高度な機能ではなく、ローエンドユーザー向けの素子供給に特化されていくであろう。この様な中で、インテリジェントタグへの展開が、物流革命の要請により注目されてきた。
【0004】
図6は、インテリジェントタグの一例を示す図で、従来の非接触ICカードに表示機能を持たせたものである。すなわち、導電性高分子配線から成るアンテナ部11、有機半導体素子から成る演算部(CPU)12、記憶部13、有機EL素子から成る非接触ICカードIに表示部14を持たせてインテリジェントタグIIとしたもので、このインテリジェントタグIIは、全て有機物から形成でき、低コストで製造できる特徴を有する。
【0005】
従来技術に鑑みて、インテリジェントタグの実現にあたり、もっとも開発困難なものは不揮発性記憶素子である。従って、本発明は、このようなインテリジェントタグに観られる有機半導体材料を用いた半導体装置の不揮発性記憶素子の実現にある。
【0006】
Si半導体素子に観られる不揮発性記憶素子は大別すると2種あり、一つ目は浮遊ゲートにホットキャリアを注入し、この注入された電荷の作用によりトランジスタ動作点をシフトさせる、所謂EEPROMと、二つ目は強誘電体のヒステリシス特性を利用した素子である。強誘電体を用いた不揮発性記憶素子は2種類あり、現在製品化されているものはFRAMと呼ばれる強誘電体キャパシターの分極反転電流の差を検知する方式である。他方の方式は強誘電体ゲートトランジスタと呼ばれ、古くから提案されている(例えば、非特許文献1参照)ものの、いまだ実用化なされていない素子である。
【0007】
EEPROMと同じ原理に基づき、有機半導体素子を構成した場合、以下の様な原理的に不可能な事態が発生する。これは絶縁性有機物のエレクトレット現象として知られることで、浮遊ゲートに相当する有機絶縁膜に電荷を注入した場合、永久分極を示し、一旦、書き込まれた情報は再度、消去/書き込みが出来なくなってしまうからである。
【0008】
強誘電体ゲートトランジスタは1T(1トランジスタ)で記憶が可能であるのに対し、FRAMの1つの記憶ビットは、1T1C(1トランジスタ、1キャパシター)で構成され、構造的に不利であり、従って、強誘電体ゲートトランジスタ構造で不揮発性有機半導体記憶素子を作製するのが好適と思われる。
【0009】
また、低温で素子形成可能な有機半導体の特徴を用い、プラスチック基板上に、150℃以下のプロセス温度にて有機トランジスタを作製し、その特性向上の為に、無機酸化物や無機強誘電体材料をゲート絶縁膜として採用する提案がなされている(例えば、特許文献1参照)。
一般に、強誘電体は比誘電率が高いのでゲート絶縁膜直下のチャネル形成部への電界強度が稼げ好適に振る舞う。しかし、この特許文献1には、強誘電体の自発分極に基づく不揮発性メモリ動作については記載されていない。
良好な強誘電体自発分極を利用するには、150℃以上、好ましくは500℃以上の熱プロセスが必要であり、その為には石英ガラス、Siウェハ等の耐熱性基板上に素子形成する必要がある。
【0010】
Si半導体を用いた強誘電体ゲートトランジスタは、MFS(金属(Metal)−強誘電体(Ferroelectrics)−半導体(Semiconductor))構造が理想である。この場合、Sの半導体にはシリコン、Fの強誘電体には金属酸化物セラミックスが用いられる。一般に、金属酸化物セラミックの強誘電体は、その膜形成において、結晶化の為の熱が必要である(通常スパッタリングでは500℃以上、CVD(化学気相成長法)では450℃、sol−gel法では550℃など)。この時、下地シリコン材料と反応し、二酸化ケイ素膜が形成され、または、下地シリコン材料が強誘電体材料に拡散して特性劣化を招く。
【0011】
このような特性劣化の対策として、MFIS(金属(Metal)−強誘電体(Ferroelectrics)−絶縁体(Insulator)−半導体(Semiconductor))構造が提案されているが、絶縁体の反電界による強誘電体分極情報の劣化が問題となり、実用化になっていない。
【0012】
また、MFMIS(金属(Metal)−強誘電体(Ferroelectrics)− 金属(Metal)−絶縁体(Insulator)−半導体(Semiconductor))構造が提案されているものの、リーク電流による強誘電体分極情報の劣化により、これも実用になっていない。
【0013】
【非特許文献1】
J.L.Moll and Y.Tarui: IEEE Trans.Electron Devices (Solid−State Res.Conf.Abs.), ED−10, 338 (1963)
【0014】
【非特許文献2】
Lin et al.IEEE 54th Annual Device Research Conference, 1996, page 80
【0015】
【非特許文献3】
Brown et al.J.Appl.Phys.79, 4 (1996) 2136
【0016】
【非特許文献4】
Sirringhus et al.SCIENCE 290 15
(2000) 2123
【0017】
【非特許文献5】
T.Hirai et al. Jpn.J.Appl.Phys:33(1994) 5219
【0018】
【特許文献1】
特開2000−269515号公報
【0019】
【特許文献2】
特開平11−251601号公報
【0020】
【発明が解決しようとする課題】
上述のように、強誘電体の自発分極を用いた不揮発性記憶素子はMFS構造が理想的であるが、半導体材料にSiを用いた場合、理想的なSi/強誘電体界面が形成できないので実用化に至らない。逆に言えば、Si半導体を用いないでMFSを作ることが、この解決策になる。
【0021】
本発明は、上述のごとき実情に鑑みてなされたもので、有機半導体材料と強誘電体膜を用いて電界効果型トランジスタを構成し、この強誘電体膜の自発分極を利用して情報を記憶する不揮発性半導体記憶素子において、前記強誘電体膜を無機材料とすることによって、半導体材料にSiを用いないMFS素子を提供するものである。
【0022】
また、本発明はSiウェハ上に絶縁膜を形成後、ゲート電極膜、強誘電体膜、有機半導体膜、を積層し、ソース・ドレイン電極膜を形成する不揮発性有機半導体記憶素子の好適な製造方法を提供するものである。
【0023】
【課題を解決するための手段】
本発明は、有機半導体材料と強誘電体膜のゲート絶縁膜にて電界効果型トランジスタを形成し、前記強誘電体膜の自発分極を利用して情報を記憶する不揮発性半導体記憶素子において、前記強誘電体膜が無機材料からなること,更には、前記無機材料が鉛系強誘電体材料、又は、ビスマス層状強誘電体材料、又は、ニオブ酸塩系の強誘電体材料からなることを特徴としたものである。
【0024】
また,本発明は、絶縁性の耐熱性基板及び/または絶縁膜を形成したSiウェハの上に、ゲート電極膜、無機材料、有機半導体膜、ソース・ドレイン電極膜を順次積層してなること、更には、前記ゲート電極膜の材料がPt、Rh、Ir金属の単体、もしくはこれらの2成分または3成分合金材料であること、又は、Ru、Ir、Rhの酸化物であること、又は、導電性の多元系複合金属酸化物からなること、又は、SrRuOであることを特徴としたものである。
【0025】
更に、本発明は、有機半導体材料がアセン系材料群から選ばれる材料であること、又は、π共役高分子材料から選ばれる材料であることを特徴としたものである。
【0026】
また、本発明は、有機半導体材料と無機材料からなる電界効果空トランジェスタ記憶素子と、高周波アンテナと、受信した高周波を電力に変換する素子と、情報演算素子と、表示素子とを備えたインテリジェントタグを特徴とするものである。
【0027】
【発明の実施の形態】
図1は、有機半導体材料を用いた電界効果型トランジスタの構成例を示す図で、図示のように、基板1上にゲート電極2、強誘電体膜3、ソース電極4及びドレイン電極5、有機半導体層6の順に積層構成されている。ソース、ドレイン電極材料としてはAu等の金属のほかに、PEDOT(ポリエチレンジオキシチオフェン)、ポリアニリン等の導電性高分子材料を用いてもよい。ゲート電極2は後述する強誘電体材料の膜形成時に十分化学的に安定、かつ、熱的に安定であることが要求され、Pt族元素やその合金、Pt族元素の酸化物、または、導電性セラミックス材料が好ましい。
【0028】
図2は、強誘電体のヒステリシス特性を示す図で、強誘電体は電界により分極構造が変化し2値の安定状態を保持するため、分極値において2値の状態を持つ。これは、強誘電体の自発分極によるものであり、一般に、図中、電界強度が0MV/mの時、Y軸と交わる点を残留分極といい、+Pr、−Prにて固有化される。
【0029】
この様な強誘電体材料にはジルコン酸チタン酸鉛(PZT)がある。この材料の結晶構造はペロブスカイト型構造を持ち、本発明でいう、鉛系強誘電体とは、ペロブスカイト型構造を持ち、一成分として酸化鉛を含むものを意味する。また、複合ペロブスカイト構造を持っても良い。PZT52/48はジルコン酸鉛52%、チタン酸鉛48%の比率からなる固溶体である。この材料の強誘電体特性は、Pr=37μC/cm、抗電界(Ec)=1.5MV/mを持つ。
【0030】
他の強誘電体材料としてBi層状強誘電体材料がある。SrBiTaはPr=8μC/cm、抗電界(Ec)=0.8MV/mを持つ。
【0031】
また、(Na0.50.5)NbOなどはニオブ酸塩でパイロナイオベートと呼ばれ、Pr=7μC/cm、抗電界(Ec)=0.3MV/mを持つ。
【0032】
上記3種の強誘電体材料はPZTが最も残留分極が大きく、且つ、抗電界が大きい、最も小さいのがパイロナイオベートで、その中間がビスマス層状構造強誘電体であり、所望する特性から、適宜材料の選定がなされるものである。
【0033】
図3は、強誘電状態とトランジスタ動作の関係を示す図で、ゲート電極2に−の電圧が印加されると、図3(A)に示すように、強誘電体層3は矢印で示す如く上向きに分極されており、したがって、有機半導体層6に逆極性電荷(+電荷)が誘起・保持されている。この時、有機半導体層6がp型であれば、ソース電極4・ドレイン電極5間のチャネルが形成され、トランジスタはON状態になる。一方、ゲート電極2に+の電圧が印加されると、図3(B)に示すように、強誘電体層3は矢印で示す如く、下向きに分極されており、チャネルは形成されない。この様に、強誘電体分極の方向によってチャネルコンダクタンスが2値を持つ。
【0034】
本発明の強誘電体膜は、その膜形成温度が500℃以上の高温で成されるため、耐熱性、かつ化学的に安定な電極膜が必要になる。Ptは最も安定した元素として一般に知られているものの、鉛系強誘電体膜形成においては不十分な場合があり、Pt−Rh、Pt−Irなどの合金膜を用いることがある。
【0035】
また、各種強誘電体材料は酸化物であり、膜形成時の下地金属の酸化反応が生じる場合には、あらかじめ金属酸化物電極を用いることが効果的である。この例として、RuO,IrO,RhOなどが効果的であり、また複合酸化物としてSrRuOやLSCO(ランタンストロンチウムコバルタイト)や、コバルト酸化物の代わりにMn酸化物を用いたLSMOなども知られている。ただし、LSC0は750℃において一部Coの還元反応により導電性の劣化があり、耐熱性の観点からSrRuOの方が優れている。
【0036】
本発明の有機半導体材料としてベンゼン環の縮合多環式炭化水素化合物が用いられる。これを慣用的にアセン系材料と呼ぶ。図4は、アセン系材料の化学式を示す図で、図4(A)はテトラセン、図4(B)はペンタセン、図4(C)はペリレンを示す。また、このハロゲン化やカルコゲン化誘導体も可能である。その中で、ペンタセンが好適である。ペンタセンは、例えば、非特許文献2,3にて言及されているが、これら材料は真空蒸着法にて簡便に形成可能できることが特徴である。
【0037】
同様に、真空蒸着法にて形成可能な材料として、フタロシアニン及び金属置換フタロシアニン配位化合物等の低分子有機半導体材料も好適である(例えば特許文献2参照)。また、アセン系材料であるペリレンも有効である。
【0038】
真空蒸着法を用いずに塗布・乾燥にて有機半導体膜を形成することは可能で、特にこれら好適な材料として、π共役高分子材料が挙げられる。ポリチオフェン材料はその典型的な化合物である。ポリチオフェン高分子は溶媒に対する溶解性が低いため、トルエン、クロロホルム等に可溶化させる為に、長鎖アルキル基を基本骨格に導入した長鎖アルキルポリチオフェンを用いてもよい。また、ポリチオフェン、フルオレン系化合物高分子の poly(9,9−dioctylfluorene−co−bithiopheneを用いてもよい(例えば、非特許文献4参照)。
【0039】
強誘電体の分極状態によりソース・ドレイン間のチャネルコンダクタンスが変化する現象は、半導体/強誘電体/電極を積層した試料の印加電圧−静電容量変化の測定にて確認出来る(例えば、非特許文献5参照)。これは後述実施例において、この様な素子を作製し、図5に示す電圧−静電容量測定例とメモリーウィンドウの定義からその動作の確認を行った。
【0040】
実施例1
シリコン基板上に熱酸化膜を配置して、上部積層素子との電気的絶縁を施した後、スパッタリング法で、基板温度650℃にてPtを100nm成膜した。次に、強誘電体材料としてPZT(52/48)をスパッタリング法で、基板温度600℃にて、100nm成膜した。有機半導体膜としてペンタセン材料を真空蒸着法にて80nm形成した。原料のペンタセン粉末は市販の粉末を昇華精製したものを用いた。ペンタセン蒸着膜はクライオポンプを用いた真空排気系で、チャンバー背圧1〜5×10−5Paにて実施した。前記ペンタセン粉末をMo金属でできた抵抗加熱用ボートに乗せ、ボートと基板の距離を30cmに設置し、蒸着時のボート温度200℃に加熱し、ペンタセンを昇華させ基板上に膜形成した。基板上の膜堆積量は水晶振動子センサーにて検知した。膜堆積速度は0.2nm/sである。上部電極として直径1mmのAu電極膜を形成し、Pt電極、強誘電体、半導体、上部電極からなる積層キャパシターを形成し、C−V特性をYHP社製インピーダンスアナライザ(4194A)にて測定した。この時の測定周波数は1kHz、交流振幅は0.05V、挿引電圧は、外部直流電源を用い、最大±40Vまで印加した。この時の、図5におけるメモリーウィンドウδVはバイアス電圧−17Vを中心に、最大幅12Vを得た。
【0041】
実施例2
下部電極形成までは実施例1と同じ、また有機半導体成膜も同じ。
強誘電体材料としてSrBiTaをスパッタリング法で、基板温度600℃にて、100nm成膜した。ペンタセンを成膜後、上部電極として直径1mmのAu電極膜を形成し、Pt電極、強誘電体、半導体、上部電極からなる積層キャパシターを形成し、C−V特性をYHP社製インピーダンスアナライザ(4194A)にて測定した。この時の測定周波数は1kHz、交流振幅は0.05V、挿引電圧は、外部直流電源を用い、最大±40Vまで印加した。この時の、図5におけるメモリーウィンドウδVはバイアス電圧−12Vを中心に、最大幅8Vを得た。
【0042】
実施例3
強誘電体材料に(Na0.5 K0.5)NbOをsol−gel法にて膜厚100nmを形成した。sol−gel溶液をスピンコーティングで塗布・乾燥させた後、熱処理温度900℃にて結晶化させた。同様の評価を行ったところ、図5におけるメモリーウィンドウδVはバイアス電圧−6Vを中心に、最大幅4Vを得た。
用いる強誘電体により電気動作が異なるのは、強誘電体の持つ抗電界と残留分極の違いに起因しており、これにより、所望する特性を得るための各種強誘電体を用いることが可能となる。
【0043】
実施例4
強誘電体の膜形成温度により用いられる下部電極材料が限定される。強薄膜形成に好適な電極材料を求めた結果を表1に記す。試験は熱酸化膜を配置したSiウェハに強誘電キャパシタ構造を形成し、強誘電特性を評価したものである。評価はPt電極を用いた場合の強誘電体残留分極を基準に、それより30%大きいもの(◎)、同等(○)、30%減少(△)、残留分極消失(×)とした。
【0044】
【表1】

Figure 2004111856
【0045】
実施例5
シリコン基板上に熱酸化膜を配置して、上部積層素子との電気的絶縁を施した後、スパッタリング法で、基板温度650℃にてPtを100nm成膜した。次に、強誘電体材料としてPZT(52/48)をスパッタリング法で、基板温度600℃にて、100nm成膜した。有機半導体膜としてペリレン材料を真空蒸着法にて80nm形成した。上部電極として直径1mmのAu電極膜を形成し、Pt電極、強誘電体、半導体、上部電極からなる積層キャパシターを形成し、実施例1と同様の評価を行った。この時の図5におけるメモリーウィンドウδVはバイアス電圧−16Vを中心に、最大幅10Vを得た。
【0046】
実施例6
π共役系高分子の poly(9,9−dioctylfluorene−co−bithiopheneを用い、実施例1と同様な素子構成を形成し、C−V特性を評価した。フルオレン系高分子化合物はトルエン、メトキシエタノール混合溶媒を用いて0.5wt%溶液を作製し、スピンコーティングにて膜厚80nm形成した。この時のメモリーウィンドウδVはバイアス電圧−30Vを中心に、最大幅4Vを得た。
【0047】
実施例7
熱酸化膜を配置したSiウェハにPtのゲート電極を100nm形成し、PZT(52/48)ゲート絶縁膜、100nmを形成し、ペンタセン半導体膜を80nm形成後、Au蒸着膜(シャドウマスクを用いて)にてソース、ドレイン電極を形成した。これにより、強誘電体不揮発性記憶素子が出来る。
【0048】
【発明の効果】
有機半導体材料を用いた、換言すれば、半導体材料にSiを用いないMFS不揮発性記憶素子の提供が可能になった。また、所望する電圧にて動作するMFS不揮発性記憶素子の提供が可能になった。更には、安定した強誘電特性を出現させることの出来る電極材料の提供が可能になった。
【図面の簡単な説明】
【図1】有機半導体材料を用いた電界効果型トランジスタの構成例を示す図である。
【図2】強誘電体のヒステリシス特性を示す図である。
【図3】強誘電状態とトランジスタ動作の関係を示す図である。
【図4】アセン系材料の化学式を示す図である。
【図5】電圧−静電容量測定例とメモリーウィンドウの関係を示す図である。
【図6】インテリジェントタグの一例を示す図である。
【符号の説明】
1…基板、2…ゲート電極、3…強誘電体層、4…ソース電極、5…ドレイン電極、6…有機半導体層、I…ICカード、II…インテリジェントタグ、11…アンテナ、12…CPU、13…記憶素子、14…表示素子。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a storage element using an organic semiconductor, a polymer piezoelectric material, and a nonvolatile semiconductor storage element made of an organic material obtained by fusing these, for example, a non-contact card, a smart tag, information management and information applied to physical distribution. This is suitable for application to an intelligent tag or the like with integrated display.
[0002]
[Prior art]
In recent years, organic semiconductor materials have attracted attention as third semiconductor materials following Si and GaAs, and have been actively developed. The advantage of using an organic material is that the film is formed at a low temperature of 150 ° C. or less in the film formation, so that the degree of freedom in selecting a substrate to be used is improved, and the film can be easily manufactured with a relatively inexpensive manufacturing apparatus. It is mentioned. Further, as seen in the organic EL element, there is a light emitting characteristic in addition to the electrical switching, and a monolithic OEIC (optoelectronic integrated circuit) which cannot be achieved by Si alone or GaAs alone is also realized. It is getting.
[0003]
However, the organic semiconductor material has a carrier mobility indicating its performance of about 1 cm 2 V −1 s −1, which is about two to three orders of magnitude lower than that of Si. It is difficult to replace them, and it is expected that both will be separated and develop independently in the future. In other words, based on the integration of the inexpensive manufacturing cost and the function, which are the biggest features of the organic semiconductor, the device will be specialized in supplying elements for low-end users instead of advanced functions of arithmetic. Under these circumstances, the development of intelligent tags has attracted attention due to the demand of the distribution revolution.
[0004]
FIG. 6 is a diagram showing an example of an intelligent tag, in which a display function is added to a conventional non-contact IC card. That is, the antenna unit 11 made of conductive polymer wiring, the operation unit (CPU) 12 made of an organic semiconductor element, the storage unit 13, and the non-contact IC card I made of an organic EL element are provided with a display unit 14 to provide an intelligent tag II. This intelligent tag II can be formed entirely of organic materials, and has a feature that it can be manufactured at low cost.
[0005]
In view of the prior art, the hardest to develop in implementing an intelligent tag is a non-volatile storage element. Therefore, the present invention resides in realizing a nonvolatile memory element of a semiconductor device using an organic semiconductor material found in such an intelligent tag.
[0006]
Non-volatile memory elements found in Si semiconductor elements are roughly classified into two types. The first type is a so-called EEPROM in which hot carriers are injected into the floating gate and the transistor operating point is shifted by the action of the injected charges. The second is an element utilizing the hysteresis characteristics of a ferroelectric. There are two types of non-volatile memory elements using ferroelectrics, and the one commercialized at present is a method for detecting a difference in polarization reversal current of a ferroelectric capacitor called FRAM. The other type is called a ferroelectric gate transistor, and has been proposed for a long time (for example, see Non-Patent Document 1), but has not yet been put to practical use.
[0007]
When an organic semiconductor element is configured based on the same principle as an EEPROM, the following principle is impossible. This is known as the electret phenomenon of an insulating organic material. When electric charge is injected into an organic insulating film corresponding to a floating gate, it shows permanent polarization, and once written information cannot be erased / written again. It is because.
[0008]
While a ferroelectric gate transistor can store data in 1T (one transistor), one storage bit of FRAM is composed of 1T1C (one transistor, one capacitor), which is structurally disadvantageous, and It seems suitable to fabricate a nonvolatile organic semiconductor storage element with a ferroelectric gate transistor structure.
[0009]
In addition, an organic transistor is manufactured at a process temperature of 150 ° C. or less on a plastic substrate using characteristics of an organic semiconductor that can form an element at a low temperature, and an inorganic oxide or an inorganic ferroelectric material is used to improve the characteristics. Is proposed as a gate insulating film (for example, see Patent Document 1).
In general, since a ferroelectric has a high relative permittivity, an electric field strength to a channel forming portion directly below a gate insulating film can be increased and the ferroelectric behaves suitably. However, Patent Document 1 does not describe a nonvolatile memory operation based on spontaneous polarization of a ferroelectric.
In order to utilize good ferroelectric spontaneous polarization, a thermal process of 150 ° C. or higher, preferably 500 ° C. or higher is required. For this purpose, it is necessary to form an element on a heat-resistant substrate such as quartz glass or a Si wafer. There is.
[0010]
An ideal ferroelectric gate transistor using an Si semiconductor has an MFS (Metal (Metal) -Ferroelectrics (Semiconductor)) structure. In this case, silicon is used for the semiconductor of S, and metal oxide ceramic is used for the ferroelectric of F. Generally, a ferroelectric of a metal oxide ceramic requires heat for crystallization in forming a film (usually 500 ° C. or higher for sputtering, 450 ° C. for CVD (chemical vapor deposition), sol-gel). 550 ° C in the method). At this time, it reacts with the underlying silicon material to form a silicon dioxide film, or the underlying silicon material diffuses into the ferroelectric material to cause deterioration in characteristics.
[0011]
As a countermeasure against such characteristic deterioration, an MFIS (Metal (Metal) -Ferroelectrics (Insulator) -Semiconductor (Semiconductor)) structure has been proposed. Deterioration of body polarization information has become a problem and has not been put to practical use.
[0012]
Further, although an MFMIS (Metal (Metal) -Ferroelectric (Ferroelectrics) -Metal (Metal) -Insulator (Semiconductor)) structure has been proposed, deterioration of ferroelectric polarization information due to leak current has been proposed. As a result, this has not become practical.
[0013]
[Non-patent document 1]
J. L. Moll and Y. Tarui: IEEE Trans. Electron Devices (Solid-State Res. Conf. Abs.), ED-10, 338 (1963).
[0014]
[Non-patent document 2]
Lin et al. IEEE 54th Annual Device Research Conference, 1996, page 80
[0015]
[Non-Patent Document 3]
Brown et al. J. Appl. Phys. 79, 4 (1996) 2136
[0016]
[Non-patent document 4]
Sirringhus et al. SCIENCE 290 15
(2000) 2123
[0017]
[Non-Patent Document 5]
T. Hirai et al. Jpn. J. Appl. Phys: 33 (1994) 5219
[0018]
[Patent Document 1]
JP 2000-269515 A
[Patent Document 2]
JP-A-11-251601
[Problems to be solved by the invention]
As described above, a nonvolatile memory element using spontaneous polarization of a ferroelectric material has an ideal MFS structure. However, when Si is used as a semiconductor material, an ideal Si / ferroelectric interface cannot be formed. It does not lead to practical use. Conversely, making MFS without using a Si semiconductor is the solution.
[0021]
SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and a field effect transistor is configured using an organic semiconductor material and a ferroelectric film, and information is stored using spontaneous polarization of the ferroelectric film. An object of the present invention is to provide an MFS element that does not use Si as a semiconductor material by making the ferroelectric film an inorganic material.
[0022]
Further, the present invention is suitable for manufacturing a nonvolatile organic semiconductor memory element in which a gate electrode film, a ferroelectric film, and an organic semiconductor film are laminated after forming an insulating film on a Si wafer to form source / drain electrode films. It provides a method.
[0023]
[Means for Solving the Problems]
The present invention provides a non-volatile semiconductor storage element which forms a field-effect transistor using an organic semiconductor material and a gate insulating film of a ferroelectric film and stores information using spontaneous polarization of the ferroelectric film. The ferroelectric film is made of an inorganic material, and the inorganic material is made of a lead-based ferroelectric material, a bismuth layered ferroelectric material, or a niobate-based ferroelectric material. It is what it was.
[0024]
Further, the present invention provides a method in which a gate electrode film, an inorganic material, an organic semiconductor film, and a source / drain electrode film are sequentially laminated on an insulating heat-resistant substrate and / or a Si wafer on which an insulating film is formed. Further, the material of the gate electrode film is a simple substance of Pt, Rh, or Ir metal, or a binary or ternary alloy material thereof, or an oxide of Ru, Ir, Rh, or a conductive material. It is characterized by being composed of a multi-component composite metal oxide having an intrinsic property or SrRuO 3 .
[0025]
Further, the present invention is characterized in that the organic semiconductor material is a material selected from the group of acene-based materials or a material selected from π-conjugated polymer materials.
[0026]
In addition, the present invention provides an intelligent device including a field-effect vacant-transistor storage element made of an organic semiconductor material and an inorganic material, a high-frequency antenna, an element for converting a received high-frequency power, an information processing element, and a display element. It features a tag.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a diagram showing a configuration example of a field-effect transistor using an organic semiconductor material. As shown, a gate electrode 2, a ferroelectric film 3, a source electrode 4 and a drain electrode 5 are formed on a substrate 1. The semiconductor layers 6 are stacked in this order. As the source and drain electrode materials, conductive polymer materials such as PEDOT (polyethylenedioxythiophene) and polyaniline may be used in addition to metals such as Au. The gate electrode 2 is required to be sufficiently chemically stable and thermally stable when a film of a ferroelectric material described later is formed, and a Pt group element or an alloy thereof, an oxide of a Pt group element, or a conductive material is used. A conductive ceramic material is preferred.
[0028]
FIG. 2 is a diagram showing a hysteresis characteristic of the ferroelectric substance. The ferroelectric substance has a polarization state of two values because its polarization structure changes due to an electric field and a binary stable state is maintained. This is due to spontaneous polarization of the ferroelectric substance. In general, when the electric field intensity is 0 MV / m in the figure, a point intersecting with the Y axis is called remanent polarization, and is specified by + Pr and -Pr.
[0029]
Such ferroelectric materials include lead zirconate titanate (PZT). The crystal structure of this material has a perovskite structure, and a lead-based ferroelectric as referred to in the present invention means a material having a perovskite structure and containing lead oxide as one component. Further, it may have a composite perovskite structure. PZT52 / 48 is a solid solution having a ratio of 52% of lead zirconate and 48% of lead titanate. The ferroelectric properties of this material have Pr = 37 μC / cm 2 and coercive electric field (Ec) = 1.5 MV / m.
[0030]
As another ferroelectric material, there is a Bi-layered ferroelectric material. SrBi 2 Ta 2 O 9 has Pr = 8 μC / cm 2 and coercive electric field (Ec) = 0.8 MV / m.
[0031]
Further, (Na 0.5 K 0.5 ) NbO 3 or the like is a niobate and is called pyroniobate, and has Pr = 7 μC / cm 2 and coercive electric field (Ec) = 0.3 MV / m.
[0032]
Among the above three types of ferroelectric materials, PZT has the largest remanent polarization and the largest coercive electric field, the smallest is pyroniobate, and the middle is a bismuth layered structure ferroelectric. Materials are selected as appropriate.
[0033]
FIG. 3 is a diagram showing a relationship between the ferroelectric state and the transistor operation. When a negative voltage is applied to the gate electrode 2, as shown in FIG. The organic semiconductor layer 6 is polarized upward, so that an opposite polarity charge (+ charge) is induced and held in the organic semiconductor layer 6. At this time, if the organic semiconductor layer 6 is p-type, a channel is formed between the source electrode 4 and the drain electrode 5, and the transistor is turned on. On the other hand, when a + voltage is applied to the gate electrode 2, as shown by an arrow in FIG. 3B, the ferroelectric layer 3 is polarized downward as shown by an arrow, and no channel is formed. Thus, the channel conductance has two values depending on the direction of the ferroelectric polarization.
[0034]
Since the ferroelectric film of the present invention is formed at a high temperature of 500 ° C. or higher, an electrode film having heat resistance and being chemically stable is required. Although Pt is generally known as the most stable element, it may be insufficient in forming a lead-based ferroelectric film, and an alloy film such as Pt-Rh or Pt-Ir may be used.
[0035]
Various ferroelectric materials are oxides, and when an oxidation reaction of a base metal occurs during film formation, it is effective to use a metal oxide electrode in advance. For example, RuO 2 , IrO 2 , RhO 2 and the like are effective, SrRuO 3 and LSCO (lanthanum strontium cobaltite) as a composite oxide, and LSMO using a Mn oxide instead of a cobalt oxide. Is also known. However, LSC0 partially deteriorates in conductivity due to a reduction reaction of Co at 750 ° C., and SrRuO 3 is superior from the viewpoint of heat resistance.
[0036]
As the organic semiconductor material of the present invention, a fused polycyclic hydrocarbon compound having a benzene ring is used. This is conventionally called an acene-based material. 4A and 4B show chemical formulas of acene-based materials. FIG. 4A shows tetracene, FIG. 4B shows pentacene, and FIG. 4C shows perylene. Further, this halogenated or chalcogenated derivative is also possible. Among them, pentacene is preferred. Pentacene is mentioned, for example, in Non-Patent Documents 2 and 3, but is characterized in that these materials can be easily formed by a vacuum evaporation method.
[0037]
Similarly, as a material that can be formed by a vacuum evaporation method, a low-molecular organic semiconductor material such as phthalocyanine and a metal-substituted phthalocyanine coordination compound is also suitable (for example, see Patent Document 2). In addition, perylene, which is an acene-based material, is also effective.
[0038]
It is possible to form an organic semiconductor film by coating and drying without using a vacuum deposition method, and a particularly preferable example of these materials is a π-conjugated polymer material. Polythiophene material is that typical compound. Since the polythiophene polymer has low solubility in a solvent, a long-chain alkyl polythiophene having a long-chain alkyl group introduced into a basic skeleton may be used for solubilization in toluene, chloroform, or the like. Alternatively, polythiophene or poly (9,9-dioctylfluorene-co-bithiophene), a polymer of a fluorene-based compound, may be used (for example, see Non-Patent Document 4).
[0039]
The phenomenon that the channel conductance between the source and the drain changes depending on the polarization state of the ferroelectric substance can be confirmed by measuring the applied voltage-capacitance change of the sample in which the semiconductor / ferroelectric / electrode is laminated (for example, Non-Patent Document 1). Reference 5). In the examples described later, such an element was manufactured, and its operation was confirmed from the voltage-capacitance measurement example shown in FIG. 5 and the definition of the memory window.
[0040]
Example 1
After arranging a thermal oxide film on the silicon substrate to provide electrical insulation from the upper stacked element, Pt was deposited to a thickness of 100 nm at a substrate temperature of 650 ° C. by a sputtering method. Next, PZT (52/48) was formed as a ferroelectric material by sputtering at a substrate temperature of 600 ° C. to a thickness of 100 nm. A pentacene material was formed as an organic semiconductor film to a thickness of 80 nm by a vacuum evaporation method. The pentacene powder used as a raw material was obtained by sublimation purification of a commercially available powder. The pentacene vapor-deposited film was formed by a vacuum evacuation system using a cryopump at a chamber back pressure of 1 to 5 × 10 −5 Pa. The pentacene powder was placed on a resistance heating boat made of Mo metal, the distance between the boat and the substrate was set to 30 cm, and the boat was heated to 200 ° C. during vapor deposition to sublimate pentacene to form a film on the substrate. The film deposition amount on the substrate was detected by a quartz oscillator sensor. The film deposition rate is 0.2 nm / s. An Au electrode film having a diameter of 1 mm was formed as an upper electrode, a multilayer capacitor including a Pt electrode, a ferroelectric substance, a semiconductor, and an upper electrode was formed, and the CV characteristics were measured with an impedance analyzer (4194A) manufactured by YHP. At this time, the measurement frequency was 1 kHz, the AC amplitude was 0.05 V, and the sweep voltage was applied up to ± 40 V using an external DC power supply. At this time, the memory window δV in FIG. 5 has a maximum width of 12 V around the bias voltage of −17 V.
[0041]
Example 2
Up to the formation of the lower electrode, the same as in Example 1, and the same applies to the organic semiconductor film formation.
SrBi 2 Ta 2 O 9 was formed as a ferroelectric material by sputtering at a substrate temperature of 600 ° C. to a thickness of 100 nm. After forming pentacene, an Au electrode film having a diameter of 1 mm is formed as an upper electrode, a multilayer capacitor including a Pt electrode, a ferroelectric substance, a semiconductor, and an upper electrode is formed, and the CV characteristics are measured with a YHP impedance analyzer (4194A). ). At this time, the measurement frequency was 1 kHz, the AC amplitude was 0.05 V, and the sweep voltage was applied up to ± 40 V using an external DC power supply. At this time, the memory window δV in FIG. 5 has a maximum width of 8 V around the bias voltage of −12 V.
[0042]
Example 3
A ferroelectric material (Na0.5 K0.5) NbO 3 to form a film thickness of 100nm by sol-gel method. After the sol-gel solution was applied by spin coating and dried, it was crystallized at a heat treatment temperature of 900 ° C. As a result of the same evaluation, the memory window δV in FIG. 5 obtained a maximum width of 4 V around the bias voltage of −6 V.
The difference in the electrical operation depending on the ferroelectric used is due to the difference between the coercive electric field and the remanent polarization of the ferroelectric, which makes it possible to use various ferroelectrics to obtain the desired characteristics. Become.
[0043]
Example 4
The lower electrode material used is limited depending on the ferroelectric film forming temperature. Table 1 shows the results of finding electrode materials suitable for forming strong thin films. In the test, a ferroelectric capacitor structure was formed on a Si wafer on which a thermal oxide film was arranged, and the ferroelectric characteristics were evaluated. The evaluation was based on the ferroelectric remanent polarization in the case of using a Pt electrode, which was 30% larger (◎), equivalent (○), reduced by 30% (△), and disappeared remanent polarization (×).
[0044]
[Table 1]
Figure 2004111856
[0045]
Example 5
After arranging a thermal oxide film on the silicon substrate to provide electrical insulation from the upper stacked element, Pt was deposited to a thickness of 100 nm at a substrate temperature of 650 ° C. by a sputtering method. Next, PZT (52/48) was formed as a ferroelectric material by sputtering at a substrate temperature of 600 ° C. to a thickness of 100 nm. A perylene material was formed as an organic semiconductor film to a thickness of 80 nm by a vacuum evaporation method. An Au electrode film having a diameter of 1 mm was formed as an upper electrode, and a multilayer capacitor including a Pt electrode, a ferroelectric, a semiconductor, and an upper electrode was formed. The same evaluation as in Example 1 was performed. At this time, the memory window δV in FIG. 5 has a maximum width of 10 V around the bias voltage of −16 V.
[0046]
Example 6
Using a π-conjugated polymer poly (9,9-dioctylfluorene-co-bithiophene), a device configuration similar to that of Example 1 was formed, and the CV characteristics were evaluated. A 0.5 wt% solution was prepared using a mixed solvent, and the film was formed to a thickness of 80 nm by spin coating, and the maximum width of the memory window δV was 4 V around a bias voltage of −30 V.
[0047]
Example 7
A Pt gate electrode is formed to a thickness of 100 nm on a Si wafer on which a thermal oxide film is disposed, a PZT (52/48) gate insulating film is formed to a thickness of 100 nm, a pentacene semiconductor film is formed to a thickness of 80 nm, and then an Au deposited film (using a shadow mask). ) To form source and drain electrodes. Thereby, a ferroelectric nonvolatile memory element can be obtained.
[0048]
【The invention's effect】
It has become possible to provide an MFS nonvolatile memory element using an organic semiconductor material, in other words, not using Si as a semiconductor material. Further, it has become possible to provide an MFS nonvolatile memory element that operates at a desired voltage. Further, it has become possible to provide an electrode material capable of exhibiting stable ferroelectric characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration example of a field-effect transistor using an organic semiconductor material.
FIG. 2 is a diagram showing a hysteresis characteristic of a ferroelectric.
FIG. 3 is a diagram showing a relationship between a ferroelectric state and transistor operation.
FIG. 4 is a view showing a chemical formula of an acene-based material.
FIG. 5 is a diagram illustrating a relationship between a voltage-capacitance measurement example and a memory window.
FIG. 6 is a diagram illustrating an example of an intelligent tag.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Substrate, 2 ... Gate electrode, 3 ... Ferroelectric layer, 4 ... Source electrode, 5 ... Drain electrode, 6 ... Organic semiconductor layer, I ... IC card, II ... Intelligent tag, 11 ... Antenna, 12 ... CPU, 13: storage element, 14: display element.

Claims (14)

有機半導体材料と強誘電体膜のゲート絶縁膜にて電界効果型トランジスタを形成し、前記強誘電体膜の自発分極を利用して情報を記憶する不揮発性半導体記憶素子において、前記強誘電体膜が無機材料からなることを特徴とする不揮発性有機半導体記憶素子。A non-volatile semiconductor storage element for forming a field effect transistor using an organic semiconductor material and a gate insulating film of a ferroelectric film and storing information by utilizing spontaneous polarization of the ferroelectric film. Is a non-volatile organic semiconductor storage element characterized by comprising an inorganic material. 前記無機材料が鉛系強誘電体材料からなることを特徴とする請求項1記載の不揮発性有機半導体記憶素子。2. The nonvolatile organic semiconductor memory device according to claim 1, wherein said inorganic material is made of a lead-based ferroelectric material. 前記無機材料がビスマス層状強誘電体材料からなることを特徴とする請求項1記載の不揮発性有機半導体記憶素子。2. The nonvolatile organic semiconductor memory device according to claim 1, wherein said inorganic material is made of a bismuth layered ferroelectric material. 前記無機材料がニオブ酸塩系の強誘電体材料からなることを特徴とする請求項1記載の不揮発性有機半導体記憶素子。2. The nonvolatile organic semiconductor memory device according to claim 1, wherein said inorganic material is made of a niobate ferroelectric material. 絶縁性の耐熱性基板及び/または絶縁膜を形成したSiウェハの上にゲート電極膜、無機材料膜、有機半導体膜、ソース・ドレイン電極膜を順次積層してなることを特徴とする請求項1乃至4のいずれかに記載の不揮発性有機半導体記憶素子。2. A gate electrode film, an inorganic material film, an organic semiconductor film, and a source / drain electrode film are sequentially laminated on an insulating heat-resistant substrate and / or an Si wafer on which an insulating film is formed. 5. The nonvolatile organic semiconductor memory device according to any one of items 1 to 4. 前記ゲート電極膜の材料はPt、Rh、Ir金属の単体、もしくはこれらの2成分または3成分の合金材料であることを特徴とする請求項5に記載の不揮発性有機半導体記憶素子。6. The nonvolatile organic semiconductor memory device according to claim 5, wherein a material of the gate electrode film is a simple substance of Pt, Rh, and Ir metals, or a binary or ternary alloy material thereof. 前記ゲート電極膜の材料はRu、Ir、Rhの酸化物であることを特徴とする請求項5に記載の不揮発性有機半導体記憶素子。The nonvolatile organic semiconductor memory device according to claim 5, wherein a material of the gate electrode film is an oxide of Ru, Ir, and Rh. 前記ゲート電極膜の材料は導電性の多元系複合金属酸化物からなることを特徴とする請求項5に記載の不揮発性有機半導体記憶素子。The nonvolatile organic semiconductor memory device according to claim 5, wherein a material of the gate electrode film is made of a conductive multi-component composite metal oxide. 前記ゲート電極膜の材料はSrRuOであることを特徴とする請求項8に記載の不揮発性有機半導体記憶素子。Nonvolatile organic semiconductor storage device according to claim 8, wherein the material of the gate electrode film is SrRuO 3. 前記有機半導体材料がアセン系材料群から選ばれる材料であることを特徴とする請求項1に記載の不揮発性有機半導体記憶素子。2. The nonvolatile organic semiconductor memory device according to claim 1, wherein the organic semiconductor material is a material selected from a group of acene-based materials. 前記アセン系材料がテトラセン、ペンタセン、ペリレン及びその誘導体であることを特徴とする請求項10に記載の不揮発性有機半導体素子。The nonvolatile organic semiconductor device according to claim 10, wherein the acene-based material is tetracene, pentacene, perylene, and a derivative thereof. 前記有機半導体材料がπ共役高分子材料から選ばれる材料であることを特徴とする請求項1に記載の不揮発性有機半導体記憶素子。The nonvolatile organic semiconductor memory device according to claim 1, wherein the organic semiconductor material is a material selected from π-conjugated polymer materials. Siウェハ上に絶縁膜を形成後、ゲート電極膜、強誘電体膜、有機半導体膜、を順次積層し、ソース・ドレイン電極膜を形成することを特徴とする不揮発性有機半導体記憶素子の製造方法。A method for manufacturing a nonvolatile organic semiconductor memory device, comprising: forming an insulating film on a Si wafer, sequentially stacking a gate electrode film, a ferroelectric film, and an organic semiconductor film to form source / drain electrode films. . 請求項1乃至12のいずれかに記載の記憶素子と、高周波アンテナと、受信した高周波を電力に変換する素子と、情報演算素子と、表示素子と、を備えたことを特徴とする非接触情報管理表示装置。Non-contact information comprising: the storage element according to any one of claims 1 to 12, a high-frequency antenna, an element for converting a received high-frequency to electric power, an information processing element, and a display element. Management display device.
JP2002275803A 2002-09-20 2002-09-20 Nonvolatile organic semiconductor memory element, its manufacture, and noncontact information controlling and dysplaying device Pending JP2004111856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275803A JP2004111856A (en) 2002-09-20 2002-09-20 Nonvolatile organic semiconductor memory element, its manufacture, and noncontact information controlling and dysplaying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275803A JP2004111856A (en) 2002-09-20 2002-09-20 Nonvolatile organic semiconductor memory element, its manufacture, and noncontact information controlling and dysplaying device

Publications (1)

Publication Number Publication Date
JP2004111856A true JP2004111856A (en) 2004-04-08

Family

ID=32271893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275803A Pending JP2004111856A (en) 2002-09-20 2002-09-20 Nonvolatile organic semiconductor memory element, its manufacture, and noncontact information controlling and dysplaying device

Country Status (1)

Country Link
JP (1) JP2004111856A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057417A1 (en) * 2004-11-26 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2006253381A (en) * 2005-03-10 2006-09-21 Seiko Epson Corp Organic ferroelectric memory and its fabrication method
JP2006253540A (en) * 2005-03-14 2006-09-21 Tohoku Univ Radio signal processor
JP2007073943A (en) * 2005-08-12 2007-03-22 Semiconductor Energy Lab Co Ltd Storage device and semiconductor device
JP2008028197A (en) * 2006-07-21 2008-02-07 Matsushita Electric Ind Co Ltd Ferroelectric film and manufacturing method thereof, ferroelectric capacitor, ferroelectric memory, and manufacturing method thereof
JP2010062221A (en) * 2008-09-01 2010-03-18 Sharp Corp Ferroelectric gate field effect transistor, memory element using the same, and method of manufacturing the ferroelectric gate field effect transistor
US8120538B2 (en) 2005-04-27 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Wireless chip
KR101146979B1 (en) 2005-11-28 2012-05-23 삼성모바일디스플레이주식회사 Organic memory device
US8847209B2 (en) 2005-08-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Memory device and a semiconductor device
JP2018032725A (en) * 2016-08-24 2018-03-01 株式会社村田製作所 Method for driving piezoelectric ceramic and piezoelectric ceramic

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7688624B2 (en) 2004-11-26 2010-03-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2006057417A1 (en) * 2004-11-26 2006-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8295104B2 (en) 2004-11-26 2012-10-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2006253381A (en) * 2005-03-10 2006-09-21 Seiko Epson Corp Organic ferroelectric memory and its fabrication method
JP4632034B2 (en) * 2005-03-10 2011-02-16 セイコーエプソン株式会社 Manufacturing method of organic ferroelectric memory
JP2006253540A (en) * 2005-03-14 2006-09-21 Tohoku Univ Radio signal processor
US8618987B2 (en) 2005-04-27 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Wireless chip
US8120538B2 (en) 2005-04-27 2012-02-21 Semiconductor Energy Laboratory Co., Ltd. Wireless chip
US8310399B2 (en) 2005-04-27 2012-11-13 Semiconductor Energy Laboratory Co., Ltd. Wireless chip
US9318800B2 (en) 2005-04-27 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Wireless chip
US9767406B2 (en) 2005-04-27 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Wireless chip
US10396447B2 (en) 2005-04-27 2019-08-27 Semiconductor Energy Laboratory Co., Ltd. Wireless chip
JP2007073943A (en) * 2005-08-12 2007-03-22 Semiconductor Energy Lab Co Ltd Storage device and semiconductor device
US8847209B2 (en) 2005-08-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Memory device and a semiconductor device
KR101146979B1 (en) 2005-11-28 2012-05-23 삼성모바일디스플레이주식회사 Organic memory device
JP2008028197A (en) * 2006-07-21 2008-02-07 Matsushita Electric Ind Co Ltd Ferroelectric film and manufacturing method thereof, ferroelectric capacitor, ferroelectric memory, and manufacturing method thereof
JP2010062221A (en) * 2008-09-01 2010-03-18 Sharp Corp Ferroelectric gate field effect transistor, memory element using the same, and method of manufacturing the ferroelectric gate field effect transistor
JP2018032725A (en) * 2016-08-24 2018-03-01 株式会社村田製作所 Method for driving piezoelectric ceramic and piezoelectric ceramic

Similar Documents

Publication Publication Date Title
Huang et al. Gate‐coupling‐enabled robust hysteresis for nonvolatile memory and programmable rectifier in van der Waals ferroelectric heterojunctions
US6812509B2 (en) Organic ferroelectric memory cells
KR100741222B1 (en) Transistor type ferroelectric memory and method of manufacturing the same
CN107146793B (en) Application of antiferroelectric material in nonvolatile memory device
Naber et al. Organic nonvolatile memory devices based on ferroelectricity
Ishiwara Current status of ferroelectric-gate Si transistors and challenge to ferroelectric-gate CNT transistors
Hou et al. Bi 3.25 La 0.75 Ti 3 O 12 thin films prepared on Si (100) by metalorganic decomposition method
KR20120001657A (en) Ferroelectric capacitor for flexible nonvolatile memory device, flexible nonvolatile ferroelectric memory device, and manufacturing method for the same
EP1700309B1 (en) Non-volatile ferroelectric thin film device using an organic ambipolar semiconductor and method for processing such a device
JP2003163331A (en) Nonvolatile organic semiconductor memory element and noncontact information management display
JP2004111856A (en) Nonvolatile organic semiconductor memory element, its manufacture, and noncontact information controlling and dysplaying device
JPH11514158A (en) Ferroelectric storage device using low Curie point ferroelectric and encapsulation
JP2002353422A (en) Mfmos capacitor having high dielectric constant material and manufacturing method therefor
JP2007173728A (en) Method of manufacturing organic ferroelectric capacitor, organic ferroelectric capacitor, organic ferroelectric memory, and electronic apparatus
JPH08102528A (en) Ferroelectric memory element
JP2010062221A (en) Ferroelectric gate field effect transistor, memory element using the same, and method of manufacturing the ferroelectric gate field effect transistor
Park et al. Recent development in polymer ferroelectric field effect transistor memory
Tang et al. Structural and electrical properties of metal-ferroelectric-insulator–semiconductor transistors using a Pt/Bi3. 25Nd0. 75Ti3O12/Y2O3/Si structure
Lim et al. Characteristics of LiNbO3 memory capacitors fabricated using a low thermal budget process
KR20090129270A (en) Organic pyroelectric sensors integrated in thin-film transistors and the method for producing the same
WO2005117103A1 (en) Semiconductor device and process for fabricating the same
Kim et al. Fabrication and electrical characteristics of metal–ferroelectric–semiconductor field effect transistor based on poly (vinylidene fluoride)
Zhou et al. Characteristics of metal-Pb (Zr 0.53 Ti 0.47) O 3-TiO 2-Si capacitor for nonvolatile memory applications
Park Non-volatile Ferroelectric Memory Transistors Using PVDF and P (VDF-TrFE) Thin Films
JPH05135570A (en) Non-volatile semiconductor memory device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303