JP2004111718A - Method for manufacturing stacked piezoelectric actuator - Google Patents

Method for manufacturing stacked piezoelectric actuator Download PDF

Info

Publication number
JP2004111718A
JP2004111718A JP2002273360A JP2002273360A JP2004111718A JP 2004111718 A JP2004111718 A JP 2004111718A JP 2002273360 A JP2002273360 A JP 2002273360A JP 2002273360 A JP2002273360 A JP 2002273360A JP 2004111718 A JP2004111718 A JP 2004111718A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
laminate
piezoelectric actuator
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002273360A
Other languages
Japanese (ja)
Inventor
Matsuji Hirawatari
平渡 末二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2002273360A priority Critical patent/JP2004111718A/en
Publication of JP2004111718A publication Critical patent/JP2004111718A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated piezoelectric actuator, in which connection among internal electrodes and external electrodes cannot be secured fully, insulation deterioration and destruction due to a discharge phenomenon of the outer electrodes and the inner electrodes are suppressed, piezoelectric characteristics are stable, reliability is high and a manufacture process is not complicated. <P>SOLUTION: A plurality of piezoelectric materials 2 and a plurality of the inner electrodes 3a and 3b are laminated alternately. Notch grooves 5 are formed for each layer, along end parts of the inner electrodes 3a and 3b exposed to opposite sides, where the outer electrodes 4 are formed in an outer peripheral face of a laminate 1. The notch grooves 5 are filled with resin 6 and the outer electrodes 4 are formed on them. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、積層型圧電アクチュエータの製造方法に関し、特に、外部電極の電気的接続について、任意に選択された積層電極部分を電気的に保護する絶縁体被膜(絶縁層)の形成方法に関するものである。
【0002】
【従来の技術】
積層型圧電アクチュエータなどの、積層体からなる積層型電子部品の多くは、セラミックスなどの材料を薄い電極で挟んだものを何層も重ねた構造になっている。このような積層素子は、小型化も相まって、一層毎に電気的接続端子を取り出すことが難しい。そのような素子では、接続を望まない内部電極層に絶縁部分を形成し、例えばプラス極の電極だけ、あるいはマイナス極の電極だけが露出した面を素子の端面に形成し、その面上に外部電極を形成して電気的接続を得る方法が一般的である。
【0003】
上記のような構造の絶縁部分の形成方法には、主に2種類の方法がある。一つめは、図6(a)に示す全面電極構造と呼ばれる素子構造で、絶縁部分として絶縁層8を形成する方法である。これは、銀(Ag)または銀−パラジウム(Ag−Pd)の内部電極7a、7bを印刷形成した圧電セラミックグリーンシートを内部電極7a、7bと交互に複数積層させて圧電セラミック積層体を作製し、その圧電セラミック積層体を焼成した後、積層体の側面に内部電極7a、7bを一層毎に対向電極となるように絶縁層8を形成し、さらに絶縁層8の上に銀を主成分とする導電性ペーストを塗布して外部電極9を形成することにより構成されるものである。
【0004】
また二つめは、図6(b)で示すような部分電極構造と呼ばれる素子構造で、内部電極10bの一辺または一部を欠いて素子外部に電極の未露出部を形成し、電極間のセラミックス自体を絶縁物に用いる方法である。
【0005】
【発明が解決しようとする課題】
図6(a)に示す素子構造では、内部電極7a、7b部分の欠損がないため、特性低下が生じないなどの利点がある。しかしながら、露出した内部電極7a、7b端部においては、一層毎にガラス材からなる絶縁層8を電気泳動法により形成するため、セラミックの材質や表面状態により濡れ性が変わり、ガラス材の幅が広がってしまい絶縁に必要な厚みを確保するのが困難である。このように、絶縁層8が均一に十分厚く形成されない場合、絶縁されるはずの内部電極7bと外部電極9との間で放電現象を誘発し短絡状態に至る危険性があり、形成した絶縁層8が隣接する内部電極7aの端部までを被覆してしまうと、外部電極9との電気的な導通が確保されなくなる。従って、歩留の向上のためには、厳密な工程管理が必要となり、製造が困難であるという問題があった。
【0006】
一方、図6(b)に示す素子構造では、内部電極10bが外部に露出しないため放電現象を抑えるのに利点がある。しかしながら、内部電極を欠いてしまうため、電極のプラス、マイナス部分の重なりが小さくなり、圧電特性が低くなってしまう欠点があった。また、内部電極の形成には高い精度が要求されるため、製造工程が複雑となっていた。また、電極形成のわずかなずれにより特性のばらつきが発生しやすくなるなどの欠点もあった。
【0007】
本発明は、内部電極と外部電極との接続を十分に確保でき、外部電極と内部電極の放電現象による絶縁劣化や破壊を抑制し、その上、圧電特性が安定し、信頼性が高く、さらに、製造工程が複雑化しない積層型圧電アクチュエータの製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、圧電体と内部電極とを交互に積層して積層体を形成し、該積層体の表面に露出した内部電極を一層おきに外部電極に接続した積層型圧電アクチュエータの製造方法において、前記露出した内部電極に一層ごとに切り欠き溝を形成した後、前記内部電極が露出した側面に絶縁層を形成し、さらに、前記外部電極と同じ極性となる内部電極の端部のみを表面に露出するさせ、その後、前記側面に外部電極を形成することを特徴とする積層型圧電アクチュエータの製造方法である。
【0009】
また、本発明は、前記切り欠き溝を、前記積層体を貫通する穴を設けた後、該穴の中心を切断して形成することを特徴とする上記の積層型圧電アクチュエータの製造方法である。
【0010】
また、本発明は、前記貫通する穴を、打ち抜きプレス加工、レーザー加工、放電加工のいずれかの方法を用いて形成することを特徴とする上記の積層型圧電アクチュエータの製造方法である。
【0011】
また、本発明は、前記絶縁層を形成した後、前記外部電極と同じ極性となる内部電極の端部のみが表面に露出するまで前記側面を研削することを特徴とする上記の積層型圧電アクチュエータの製造方法である。
【0012】
また、本発明は、前記切り欠き溝に電気泳動法によりガラス粉末を塗布した後に熱処理し、前記ガラス粉末を溶融一体化することにより、前記切り欠き溝に前記絶縁層を形成することを特徴とする上記の積層型圧電アクチュエータの製造方法である。
【0013】
【発明の実施の形態】
本発明の積層型圧電アクチュエータは、次のようにして作製される。まず、図1及び図2に示すように、複数の圧電体2と複数の内部電極3a、3bとを交互に積層したグリーンシート積層体18を作製し、作製したグリーンシート積層体18にレーザー光、打ち抜きプレス法、放電加工などを用い、内部電極の端部に位置するようにあらかじめ決定した座標に積層体を貫通する穴11の加工を施す。
【0014】
次に、穴11の中心を切断するように縦方向に一定間隔で切断ブレードにより切断して溝20aを形成した後、横方向にも一定間隔で切断ブレードにより切断して溝20bを形成する。形成した溝20a、20bに沿って各個片を分離して積層体を得る。
【0015】
その後、脱バインダー、焼結を行い、焼結積層体を得る。焼結積層体表面の相対向する側面には、内部電極端部が底部に露出した切り欠き溝5が一層毎に形成される。次に、この積層体外周面に外装樹脂6を被覆し、さらに外部電極4が形成される相対向する側面に平面研削を施し、形成する外部電極4と同極性となる内部電極3aが表面に露出するまで研削加工する。これにより外部電極4の形成される側面は切り欠き溝5にのみ樹脂6が充填された状態が実現される。このように加工された積層体側面に外部電極4を形成し本発明の積層型圧電セラミックアクチュエータが得られる。
【0016】
次に、図3に、絶縁層の第1の形成方法を示す。図3(b)に示すように、同極性の内部電極3bと外部電極の電気的な接続は、積層体外周面に樹脂6を被覆した後、平面研磨することで確実に導通することができ、切り欠き溝5には十分な樹脂6が充填されるために異極性の内部電極3aと外部電極との絶縁は十分に維持される。
【0017】
さらに、図3(a)に示すように、切り欠き溝5の深さは、グリーンシート積層体に加工する円形の穴11の形状を楕円形状などにすることでコントロールすることが可能である。これにより、外部電極と内部電極3aとの距離を十分に確保することが可能となり、より高い信頼性を維持できる。また、切り欠き溝5に充填する樹脂6の厚みは、平面研削により容易かつ高精度にコントロールでき、溝の位置決めも高精度にコントロールできるため、内部電極層の重なりを一定に保つために、図6(b)の従来の部分電極構造のように内部電極の印刷工程での精度が要求されずコストを低く抑えることが可能である。
【0018】
次に、図4に、絶縁層の第2の形成方法を示す。図4に示すように、内部電極3bの端部を被覆する絶縁層12は、ICなどの半導体表面の絶縁保護技術として一般に使用されている電気泳動法によりガラス粉末を塗布し、しかる後に熱処理によりガラス粉末を溶融一体化する工程により形成する。
【0019】
図5に示すような電気泳動装置を用いて絶縁層を形成することができる。切り欠き溝5aが形成されている積層体16の側面17bに、電気泳動槽13のリファレンス電極15と対極となる電極平板14を密着させ、切り欠き溝の形成されていない内部電極3bと電気的な導通を確保することで、導通した内部電極3bの端部にガラス材からなる膜状の絶縁層12が形成される。この際、電極平板14と密着している側面17bには絶縁層は形成されず、対向する側面17aでは切り欠き溝5a内の内部電極3b端部に絶縁層12が形成される。
【0020】
次に、切り欠き溝5aに絶縁層12の形成された側面17aと電極平板14を密着させ電気泳動を行えば、対向する側面17bの切り欠き溝5b内の内部電極3aの端部に絶縁層が塗布形成されることになる。
【0021】
本発明によれば、これまで電気泳動法で積層体へ絶縁部分を形成する際に必要となっていた、特定の電極に針などで電気的導通を形成したり、一旦、部分電極構造で素子を作製し、絶縁層の形成後に不要になった部分電極部を切り落としたりする工程などがすべて必要なくなるため製造コストを低く抑えられる。
【0022】
また、図4で示したように、切り欠き溝5に形成される絶縁層12は、ガラス/セラミック間の濡れ性と表面張力でドーム状に形成されるため、特性の劣化等を抑える目的で切り欠き溝5の径を小さく形成しても絶縁層12は精度良く形成される。そのため、図6(b)の従来の部分電極構造に比べ、高い素子特性がばらつきを少なくして得ることができる。
【0023】
また、切り欠き溝は、打ち抜きプレス、レーザー光、放電加工のいずれかの方法を用いて形成でき、この製造方法によれば切り欠き溝は精度良く短時間で形成できるため高い生産性で実現できる。また、グリーンシートの切断後に切り欠き溝を形成することも可能であるが、グリーンシート積層体を切断する以前に形成する方が生産性が高く、焼成前のブロック体は柔軟な状態で加工できるためクラックの起こらない信頼性の高い切り欠き溝を形成できる。
【0024】
また、本発明の製造方法により得られた積層型圧電アクチュエータは、高温、高湿の環境下、高い電圧を印加して、高速で長時間連続動作させても、外部電極と内部電極の放電現象による絶縁劣化等が発生せず、信頼性が高い。
【0025】
【実施例】
(実施例1)
チタン酸ジルコン酸鉛Pb(Zr、Ti)Oなどの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、ドクターブレード法などの成膜機を用いて、厚み150μmのセラミックグリーンシートを作製した。
【0026】
このグリーンシートの片面に内部電極となる銀−パラジウムを主成分とする導電性ペーストを、スクリーン印刷法により5μmの厚みに印刷し、導電性ペーストを乾燥させた後、導電性ペーストが塗布された複数のグリーンシートを150枚積層し、その積層方向の両端部に、不活性層となる導電性ペーストが塗布されていないグリーンシートをそれぞれ10枚積層した。次に、これを100℃で加熱を行いながら加圧することでグリーンシート積層体を得た。
【0027】
次に、グリーンシート積層体に、レーザー光を用いて複数個の円形の穴を形成した。この穴は、内部電極の端部に位置するようにあらかじめ座標を決定し穴加工が施される。次に穴の中心を切断するように横方向に一定間隔で切断ブレードにより切断して溝を形成した後、縦方向にも一定間隔で切断ブレードにより切断して溝を形成する。形成した溝に沿って各個片を分離して積層体を得る。得られた積層体は、800℃で20時間の脱バインダーを行い、1000〜1150℃の空気中で2時間本焼成を行い焼結積層体とした。
【0028】
焼結積層体は、ディッピング等により外周面にシリコーン樹脂を被覆する。被覆する樹脂は、例えば、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、シリコーンゴム等でもよい。樹脂が被覆された積層体外周面のうち、内外部電極の形成される側面は平面研削を行い、セラミック層が露出し同極性の内部電極と外部電極が電気的な導通を確保できるように加工する。
【0029】
その後、表面研削した面にAgを主成分とする熱硬化型の導電性ペーストを塗布形成し室温〜400℃の空気中で硬化を行うことで外部電極を形成した。形成した外部電極は、正極用外部電極、負極用外部電極のリード線を接続した後、その本体外周面に、ディッピング法により、例えばエポキシ樹脂を被覆し、2kVの分極電圧を印加することによりアクチュエータ本体を分極処理して本発明の積層型圧電アクチュエータを作製した。
【0030】
(実施例2)
チタン酸ジルコン酸鉛Pb(Zr、Ti)Oなどの圧電体セラミックスの仮焼粉末と、有機高分子からなるバインダーと、可塑剤とを混合したスラリーを作製し、ドクターブレード法などの成膜機を用いて、厚み150μmのセラミックグリーンシートを作製した。
【0031】
このグリーンシートの片面に内部電極となる銀−パラジウムを主成分とする導電性ペーストを、スクリーン印刷法により5μmの厚みに印刷し、導電性ペーストを乾燥させた後、導電性ペーストが塗布された複数のグリーンシートを150枚積層し、その積層方向の両端部に、不活性層となる導電性ペーストが塗布されていないグリーンシートをそれぞれ10枚積層した。次に、これを100℃で加熱を行いながら加圧することでグリーンシート積層体を得た。
【0032】
次に、グリーンシート積層体に、レーザー光を用いて複数個の円形の穴を形成する。この穴は、内部電極の端部に位置するようにあらかじめ座標を決定し穴加工が施される。次に、穴の中心を切断するように横方向に一定間隔で切断ブレードにより切断して溝を形成した後、縦方向にも一定間隔で切断ブレードにより切断して溝を形成する。形成した溝に沿って各個片を分離して積層体を得る。得られた積層体は、800℃で20時間の脱バインダーを行い、1000〜1150℃の空気中で2時間本焼成を行い焼結積層体とした。
【0033】
焼結積層体は、電気泳動法により積層体表面に露出した内部電極端部にガラス粉末を付着させた。この実施例では、エチルアルコール中にガラス粉末を分散し、アンモニアを添加して発生した水素イオンがガラス粉末の表面に吸着した分散液中に焼結積層体を浸漬した後、浸漬液中のリファレンス電極にプラス電圧を印加する。同時に積層体の切り欠き溝の形成されている対向面の一方の側面に、リファレンス電極と対極となる電極平板を密着させ一定時間保持し、切り欠き溝内の内部電極端部にガラス粉末を付着させて絶縁層を形成した。次に、切り欠き溝に絶縁層の形成された側面に電極平板を密着するようにし、電圧印加後、一定時間保持し対向する側面の切り欠き溝内の内部電極端部にも絶縁層を形成した。
【0034】
その後、水洗し、電気炉中600℃で熱処理し、ガラス粉末を溶融一体化し絶縁層を形成した。切り欠き溝内部に絶縁層の形成した側面にAgまたはAg−Pdを主成分とする導電性ペーストを塗布形成し550〜650℃の空気中で焼き付けることにより外部電極を形成した。形成した外部電極は、正極用外部電極、負極用外部電極のリード線を接続した後、その本体外周面に、ディッピング法により例えばエポキシ樹脂を被覆し、2kVの分極電圧を印加することによりアクチュエータ本体を分極処理して本発明の積層型圧電アクチュエータを作製した。
【0035】
【発明の効果】
以上説明したように、本発明によれば、内部電極と外部電極との接続を十分に確保でき、外部電極と内部電極の放電現象による絶縁劣化や破壊を抑制し、その上、圧電特性が安定し、信頼性が高く、さらに、製造工程が複雑化しない積層型圧電アクチュエータの製造方法を提供することができた。
【図面の簡単な説明】
【図1】本発明の積層型圧電アクチュエータを示す説明図。
【図2】本発明におけるセラミックグリーンシート積層体の穴加工および切断工程を模式的に示す図。
【図3】本発明における絶縁層の第1の形成方法の説明図。図3(a)は、積層体へ穴加工を施した状態を模式的に示す図。図3(b)は、積層体外周面に外装樹脂を施した状態を模式的に示す図。
【図4】本発明における第2の絶縁層の形成方法の説明図。
【図5】本発明における第2の絶縁層の形成方法に用いた電気泳動装置を模式的に示す図。
【図6】従来の積層型圧電アクチュエータの説明図。図6(a)は、従来の全面電極構造の積層型圧電アクチュエータにおける絶縁形成例を模式的に示す図。図6(b)は、従来の部分電極構造の積層型圧電アクチュエータにおける絶縁形成例を模式的に示す図。
【符号の説明】
1  積層体
2  圧電体
3a、3b  内部電極
4  外部電極
5、5a、5b  切り欠き溝
6  (外装)樹脂
7a、7b  内部電極
8  絶縁層
9  外部電極
10a、10b  内部電極
11  穴
12  絶縁層
13  電気泳動槽
14  電極平板
15  リファレンス電極
16  積層体
17a、17b  側面
18  グリーンシート積層体
20a、20b  溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a laminated piezoelectric actuator, and more particularly to a method for forming an insulating film (insulating layer) for electrically protecting an arbitrary selected laminated electrode portion with respect to electrical connection of external electrodes. is there.
[0002]
[Prior art]
Many laminated electronic components such as laminated piezoelectric actuators have a laminated structure in which a material such as ceramics is sandwiched between thin electrodes. In such a laminated element, it is difficult to take out the electrical connection terminals for each layer, in combination with the miniaturization. In such a device, an insulating portion is formed on an internal electrode layer that is not desired to be connected, for example, a surface where only a positive electrode or only a negative electrode is exposed is formed on an end surface of the device, and an external surface is formed on the surface. It is common to form an electrode to obtain an electrical connection.
[0003]
There are mainly two types of methods for forming the insulating portion having the above structure. The first is a method of forming an insulating layer 8 as an insulating portion in an element structure called a full-surface electrode structure shown in FIG. In this method, a plurality of piezoelectric ceramic green sheets on which silver (Ag) or silver-palladium (Ag-Pd) internal electrodes 7a and 7b are formed by printing are alternately laminated with the internal electrodes 7a and 7b to produce a piezoelectric ceramic laminate. After sintering the piezoelectric ceramic laminate, an insulating layer 8 is formed on the side surface of the laminate such that the internal electrodes 7a and 7b are provided as opposed electrodes, and silver is formed on the insulating layer 8 as a main component. The external electrode 9 is formed by applying a conductive paste.
[0004]
The second is an element structure called a partial electrode structure as shown in FIG. 6B, in which an unexposed portion of the electrode is formed outside the element by omitting one side or a part of the internal electrode 10b, and the ceramic between the electrodes is formed. This is a method of using itself as an insulator.
[0005]
[Problems to be solved by the invention]
The element structure shown in FIG. 6A has the advantage that there is no loss in the internal electrodes 7a and 7b, so that the characteristics do not deteriorate. However, at the exposed end portions of the internal electrodes 7a and 7b, since the insulating layer 8 made of a glass material is formed for each layer by electrophoresis, the wettability changes depending on the material and surface condition of the ceramic, and the width of the glass material is reduced. It spreads and it is difficult to secure the thickness required for insulation. As described above, if the insulating layer 8 is not formed uniformly and sufficiently thick, there is a risk of inducing a discharge phenomenon between the internal electrode 7b and the external electrode 9 which are supposed to be insulated and leading to a short circuit state. When the electrode 8 covers the end of the adjacent internal electrode 7a, electrical conduction with the external electrode 9 cannot be ensured. Therefore, in order to improve the yield, strict process control is required, and there is a problem that manufacturing is difficult.
[0006]
On the other hand, the element structure shown in FIG. 6B has an advantage in suppressing the discharge phenomenon because the internal electrode 10b is not exposed to the outside. However, since the internal electrodes are missing, there is a disadvantage that the overlap between the plus and minus portions of the electrodes is reduced and the piezoelectric characteristics are reduced. In addition, the formation of the internal electrodes requires high precision, which complicates the manufacturing process. In addition, there is a drawback in that a slight deviation in electrode formation tends to cause variations in characteristics.
[0007]
The present invention can sufficiently secure the connection between the internal electrode and the external electrode, suppresses insulation deterioration and destruction due to the discharge phenomenon of the external electrode and the internal electrode, and furthermore, has stable piezoelectric characteristics, high reliability, and It is another object of the present invention to provide a method of manufacturing a laminated piezoelectric actuator without complicating the manufacturing process.
[0008]
[Means for Solving the Problems]
The present invention provides a method of manufacturing a laminated piezoelectric actuator in which a piezoelectric body and internal electrodes are alternately laminated to form a laminate, and the internal electrodes exposed on the surface of the laminate are connected to external electrodes every other layer. After forming a cutout groove for each layer of the exposed internal electrode, an insulating layer is formed on the side surface where the internal electrode is exposed, and only the end of the internal electrode having the same polarity as the external electrode is formed on the surface. A method for manufacturing a laminated piezoelectric actuator, comprising exposing the substrate and exposing an external electrode on the side surface.
[0009]
Further, the present invention is the above-described method for manufacturing a laminated piezoelectric actuator, wherein the notch groove is formed by forming a hole penetrating the laminate and then cutting the center of the hole. .
[0010]
Further, the present invention is the above-described method for manufacturing a laminated piezoelectric actuator, wherein the through-hole is formed by using any one of a punching press working, a laser working, and an electric discharge machining.
[0011]
Further, according to the present invention, after forming the insulating layer, the side surface is ground until only an end of the internal electrode having the same polarity as the external electrode is exposed on the surface, and the laminated piezoelectric actuator is characterized in that Is a manufacturing method.
[0012]
Further, the present invention is characterized in that the insulating layer is formed in the notch groove by applying a heat treatment after applying a glass powder to the notch groove by an electrophoresis method and melting and integrating the glass powder. A method of manufacturing the above-described laminated piezoelectric actuator.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The laminated piezoelectric actuator of the present invention is manufactured as follows. First, as shown in FIGS. 1 and 2, a green sheet laminate 18 in which a plurality of piezoelectric bodies 2 and a plurality of internal electrodes 3a and 3b are alternately laminated is produced, and a laser light is applied to the produced green sheet laminate 18. The hole 11 penetrating the laminate is formed at a predetermined coordinate so as to be located at the end of the internal electrode by using a punching press method, electric discharge machining, or the like.
[0014]
Next, a groove 20a is formed by cutting with a cutting blade at regular intervals in the vertical direction so as to cut the center of the hole 11 and then by a cutting blade at regular intervals in the horizontal direction. The individual pieces are separated along the formed grooves 20a and 20b to obtain a laminate.
[0015]
Then, binder removal and sintering are performed to obtain a sintered laminate. On opposite sides of the surface of the sintered laminate, a cutout groove 5 is formed for each layer, with the end of the internal electrode exposed at the bottom. Next, the outer peripheral surface of the laminated body is coated with an exterior resin 6, and the opposite side surfaces on which the external electrodes 4 are formed are subjected to surface grinding, so that the internal electrodes 3 a having the same polarity as the external electrodes 4 to be formed are formed on the surface. Grind until exposed. As a result, a state in which the resin 6 is filled only in the cutout groove 5 on the side surface on which the external electrode 4 is formed is realized. The external electrodes 4 are formed on the side surfaces of the laminated body processed as described above, and the laminated piezoelectric ceramic actuator of the present invention is obtained.
[0016]
Next, FIG. 3 shows a first method for forming an insulating layer. As shown in FIG. 3B, the electrical connection between the internal electrode 3b and the external electrode having the same polarity can be reliably conducted by coating the outer peripheral surface of the laminate with the resin 6 and then polishing the surface of the laminate. Since the notch groove 5 is filled with a sufficient resin 6, the insulation between the internal electrodes 3a having different polarities and the external electrodes is sufficiently maintained.
[0017]
Further, as shown in FIG. 3A, the depth of the notch groove 5 can be controlled by making the shape of the circular hole 11 formed in the green sheet laminate into an elliptical shape or the like. As a result, it is possible to secure a sufficient distance between the external electrode and the internal electrode 3a, and to maintain higher reliability. Further, the thickness of the resin 6 filling the notch grooves 5 can be easily and precisely controlled by surface grinding, and the positioning of the grooves can be controlled with high precision. Unlike the conventional partial electrode structure shown in FIG. 6B, the accuracy in the printing process of the internal electrodes is not required, and the cost can be reduced.
[0018]
Next, FIG. 4 shows a second method for forming an insulating layer. As shown in FIG. 4, the insulating layer 12 covering the end of the internal electrode 3b is formed by applying a glass powder by an electrophoresis method generally used as an insulation protection technique for a semiconductor surface such as an IC, and then applying a heat treatment. It is formed by a step of melting and integrating glass powder.
[0019]
The insulating layer can be formed using an electrophoresis apparatus as shown in FIG. The reference electrode 15 of the electrophoresis tank 13 and the electrode plate 14 serving as a counter electrode are brought into close contact with the side surface 17b of the stacked body 16 in which the notch groove 5a is formed, and the internal electrode 3b having no notch groove is electrically connected to the electrode plate 14. As a result, a film-like insulating layer 12 made of a glass material is formed at the end of the conductive internal electrode 3b. At this time, the insulating layer is not formed on the side surface 17b in close contact with the electrode plate 14, and the insulating layer 12 is formed on the end of the internal electrode 3b in the cutout groove 5a on the opposing side surface 17a.
[0020]
Next, when the side surface 17a on which the insulating layer 12 is formed and the electrode plate 14 are closely attached to the notch groove 5a and electrophoresis is performed, the insulating layer is formed at the end of the internal electrode 3a in the notch groove 5b on the opposite side surface 17b. Is formed by application.
[0021]
According to the present invention, it has been necessary to form an electrically conductive portion with a needle or the like at a specific electrode, or to form an element once with a partial electrode structure, which has been required when forming an insulating portion on a laminate by electrophoresis. And the step of cutting off unnecessary electrode portions after the formation of the insulating layer is no longer required, so that the manufacturing cost can be kept low.
[0022]
Further, as shown in FIG. 4, the insulating layer 12 formed in the notch groove 5 is formed in a dome shape by wettability between glass / ceramic and surface tension, so that deterioration of characteristics and the like are suppressed. Even if the diameter of the notch groove 5 is reduced, the insulating layer 12 is formed with high accuracy. Therefore, higher element characteristics can be obtained with less variation as compared with the conventional partial electrode structure of FIG.
[0023]
In addition, the notch groove can be formed by using any one of a punching press, a laser beam, and electric discharge machining. According to this manufacturing method, the notch groove can be accurately formed in a short time, so that it can be realized with high productivity. . It is also possible to form the notch grooves after cutting the green sheet, but forming before cutting the green sheet laminate has higher productivity, and the block body before firing can be processed in a flexible state. Therefore, a highly reliable notch groove free from cracks can be formed.
[0024]
In addition, the multilayer piezoelectric actuator obtained by the manufacturing method of the present invention can be used in a high-temperature, high-humidity environment, by applying a high voltage and operating continuously for a long time at a high speed. The insulation is not deteriorated due to the above, and the reliability is high.
[0025]
【Example】
(Example 1)
A slurry is prepared by mixing a calcined powder of a piezoelectric ceramic such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder composed of an organic polymer, and a plasticizer, and forming a film by a doctor blade method or the like. Using a machine, a ceramic green sheet having a thickness of 150 μm was produced.
[0026]
On one surface of this green sheet, a conductive paste mainly composed of silver-palladium serving as an internal electrode was printed to a thickness of 5 μm by a screen printing method, and after the conductive paste was dried, the conductive paste was applied. A plurality of 150 green sheets were laminated, and 10 green sheets to which no conductive paste to be an inactive layer was applied were laminated at both ends in the laminating direction. Next, this was pressurized while being heated at 100 ° C. to obtain a green sheet laminate.
[0027]
Next, a plurality of circular holes were formed in the green sheet laminate using laser light. The coordinates of the hole are determined in advance so that the hole is located at the end of the internal electrode, and the hole is formed. Next, a groove is formed by cutting with a cutting blade in the horizontal direction at regular intervals so as to cut the center of the hole, and then a groove is formed in the vertical direction by the cutting blade at regular intervals. Each piece is separated along the formed groove to obtain a laminate. The obtained laminate was subjected to binder removal at 800 ° C. for 20 hours, and was finally baked in air at 1000 to 1150 ° C. for 2 hours to obtain a sintered laminate.
[0028]
The outer peripheral surface of the sintered laminate is coated with a silicone resin by dipping or the like. The resin to be coated may be, for example, an epoxy resin, a polyimide resin, a polyamideimide resin, a silicone rubber, or the like. Of the outer peripheral surface of the resin-coated laminate, the side surface on which the inner and outer electrodes are formed is subjected to surface grinding so that the ceramic layer is exposed so that the inner and outer electrodes of the same polarity can be electrically connected. I do.
[0029]
Thereafter, a thermosetting conductive paste containing Ag as a main component was applied to the ground surface, and the paste was cured in air at room temperature to 400 ° C. to form external electrodes. After connecting the lead wires of the positive electrode external electrode and the negative electrode external electrode to the formed external electrode, the outer peripheral surface of the main body is coated with, for example, an epoxy resin by a dipping method, and a polarization voltage of 2 kV is applied to the actuator. A polarization treatment was performed on the main body to produce a laminated piezoelectric actuator of the present invention.
[0030]
(Example 2)
A slurry is prepared by mixing a calcined powder of a piezoelectric ceramic such as lead zirconate titanate Pb (Zr, Ti) O 3 , a binder composed of an organic polymer, and a plasticizer, and forming a film by a doctor blade method or the like. Using a machine, a ceramic green sheet having a thickness of 150 μm was produced.
[0031]
On one surface of this green sheet, a conductive paste mainly composed of silver-palladium serving as an internal electrode was printed to a thickness of 5 μm by a screen printing method, and after the conductive paste was dried, the conductive paste was applied. A plurality of 150 green sheets were laminated, and 10 green sheets to which no conductive paste to be an inactive layer was applied were laminated at both ends in the laminating direction. Next, this was pressurized while being heated at 100 ° C. to obtain a green sheet laminate.
[0032]
Next, a plurality of circular holes are formed in the green sheet laminate using laser light. The coordinates of the hole are determined in advance so that the hole is located at the end of the internal electrode, and the hole is formed. Next, a groove is formed by cutting with a cutting blade at regular intervals in the horizontal direction so as to cut the center of the hole, and then a groove is formed by cutting with a cutting blade at regular intervals also in the vertical direction. Each piece is separated along the formed groove to obtain a laminate. The obtained laminate was subjected to binder removal at 800 ° C. for 20 hours, and was finally baked in air at 1000 to 1150 ° C. for 2 hours to obtain a sintered laminate.
[0033]
In the sintered laminate, glass powder was attached to the end of the internal electrode exposed on the surface of the laminate by electrophoresis. In this example, a glass powder was dispersed in ethyl alcohol, and hydrogen ions generated by adding ammonia were immersed in a dispersion in which hydrogen ions were adsorbed on the surface of the glass powder. A positive voltage is applied to the electrode. At the same time, a reference electrode and an electrode plate, which is a counter electrode, are brought into close contact with one side of the opposing surface of the laminated body where the notch groove is formed, held for a certain period of time, and glass powder adheres to the end of the internal electrode in the notch groove Thus, an insulating layer was formed. Next, an electrode plate is brought into close contact with the side surface on which the insulating layer is formed in the notch groove, and after applying a voltage, the electrode plate is held for a certain period of time, and an insulating layer is also formed on the end of the internal electrode in the notch groove on the opposite side surface. did.
[0034]
Thereafter, it was washed with water and heat-treated at 600 ° C. in an electric furnace to melt and integrate the glass powder to form an insulating layer. An external electrode was formed by applying and forming a conductive paste containing Ag or Ag-Pd as a main component on the side surface on which the insulating layer was formed inside the cutout groove, and baking it in air at 550 to 650 ° C. After connecting the lead wires of the positive electrode external electrode and the negative electrode external electrode to the formed external electrode, the outer peripheral surface of the main body is coated with, for example, an epoxy resin by a dipping method, and a polarization voltage of 2 kV is applied. Was subjected to a polarization treatment to produce a laminated piezoelectric actuator of the present invention.
[0035]
【The invention's effect】
As described above, according to the present invention, the connection between the internal electrode and the external electrode can be sufficiently ensured, insulation deterioration and breakdown due to the discharge phenomenon of the external electrode and the internal electrode are suppressed, and the piezoelectric characteristics are stable. Thus, a method for manufacturing a laminated piezoelectric actuator having high reliability and without complicating the manufacturing process could be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a laminated piezoelectric actuator of the present invention.
FIG. 2 is a view schematically showing a hole processing and cutting step of the ceramic green sheet laminate according to the present invention.
FIG. 3 is an explanatory view of a first method for forming an insulating layer in the present invention. FIG. 3A is a diagram schematically illustrating a state in which a hole is formed in the laminate. FIG. 3B is a diagram schematically illustrating a state in which an exterior resin is applied to the outer peripheral surface of the laminate.
FIG. 4 is an explanatory diagram of a method for forming a second insulating layer in the present invention.
FIG. 5 is a diagram schematically illustrating an electrophoresis apparatus used for a method for forming a second insulating layer according to the present invention.
FIG. 6 is an explanatory view of a conventional laminated piezoelectric actuator. FIG. 6A is a diagram schematically illustrating an example of insulating formation in a conventional multilayer piezoelectric actuator having a full-surface electrode structure. FIG. 6B is a diagram schematically showing an example of insulating formation in a conventional laminated piezoelectric actuator having a partial electrode structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laminated body 2 Piezoelectric body 3a, 3b Internal electrode 4 External electrode 5, 5a, 5b Notch groove 6 (exterior) Resin 7a, 7b Internal electrode 8 Insulating layer 9 External electrode 10a, 10b Internal electrode 11 Hole 12 Insulating layer 13 Electricity Electrophoresis tank 14 Electrode plate 15 Reference electrode 16 Laminates 17a, 17b Side surface 18 Green sheet laminates 20a, 20b Groove

Claims (5)

圧電体と内部電極とを交互に積層して積層体を形成し、該積層体の表面に露出した内部電極を一層おきに外部電極に接続した積層型圧電アクチュエータの製造方法において、前記露出した内部電極に一層ごとに切り欠き溝を形成した後、前記内部電極が露出した側面に絶縁層を形成し、さらに、前記外部電極と同じ極性となる内部電極の端部のみを表面に露出させ、その後、前記側面に外部電極を形成することを特徴とする積層型圧電アクチュエータの製造方法。In a method of manufacturing a laminated piezoelectric actuator in which a piezoelectric body and internal electrodes are alternately laminated to form a laminate, and the internal electrodes exposed on the surface of the laminate are connected to external electrodes every other layer, After forming a cutout groove for each layer on the electrode, an insulating layer is formed on the side surface where the internal electrode is exposed, and further, only the end of the internal electrode having the same polarity as the external electrode is exposed on the surface. And forming an external electrode on the side surface. 前記切り欠き溝を、前記積層体を貫通する穴を設けた後、該穴の中心を切断して形成することを特徴とする請求項1記載の積層型圧電アクチュエータの製造方法。2. The method for manufacturing a multilayer piezoelectric actuator according to claim 1, wherein the notch groove is formed by providing a hole penetrating through the laminate and then cutting the center of the hole. 前記貫通する穴を、打ち抜きプレス加工、レーザー加工、放電加工のいずれかの方法を用いて形成することを特徴とする請求項2記載の積層型圧電アクチュエータの製造方法。3. The method according to claim 2, wherein the through hole is formed by using any one of a punching press working, a laser working, and an electric discharge working. 前記絶縁層を形成した後、前記外部電極と同じ極性となる内部電極の端部のみが表面に露出するまで前記側面を研削することを特徴とする請求項1〜3のいずれかに記載の積層型圧電アクチュエータの製造方法。The lamination according to any one of claims 1 to 3, wherein after forming the insulating layer, the side surface is ground until only an end of the internal electrode having the same polarity as the external electrode is exposed on the surface. Of manufacturing a piezoelectric actuator. 前記切り欠き溝に電気泳動法によりガラス粉末を塗布した後に熱処理し、前記ガラス粉末を溶融一体化することにより、前記切り欠き溝に前記絶縁層を形成することを特徴とする請求項1〜4のいずれかに記載の積層型圧電アクチュエータの製造方法。The insulating layer is formed in the notch groove by applying a heat treatment after applying a glass powder to the notch groove by electrophoresis, and melting and integrating the glass powder. The method for manufacturing a multilayer piezoelectric actuator according to any one of the above.
JP2002273360A 2002-09-19 2002-09-19 Method for manufacturing stacked piezoelectric actuator Withdrawn JP2004111718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002273360A JP2004111718A (en) 2002-09-19 2002-09-19 Method for manufacturing stacked piezoelectric actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002273360A JP2004111718A (en) 2002-09-19 2002-09-19 Method for manufacturing stacked piezoelectric actuator

Publications (1)

Publication Number Publication Date
JP2004111718A true JP2004111718A (en) 2004-04-08

Family

ID=32270137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002273360A Withdrawn JP2004111718A (en) 2002-09-19 2002-09-19 Method for manufacturing stacked piezoelectric actuator

Country Status (1)

Country Link
JP (1) JP2004111718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310410A (en) * 2005-04-26 2006-11-09 Denso Corp Laminated piezoelectric element and injector using it
US8169123B2 (en) 2008-03-28 2012-05-01 Fujifilm Corporation Multilayered piezoelectric element and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310410A (en) * 2005-04-26 2006-11-09 Denso Corp Laminated piezoelectric element and injector using it
US8169123B2 (en) 2008-03-28 2012-05-01 Fujifilm Corporation Multilayered piezoelectric element and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JPH03248483A (en) Laminated displacing element
JP2002203999A (en) Laminated type piezoelectric-substance element and the manufacturing method thereof
KR101620296B1 (en) Stack type piezoelectric ceramic element
JPS6317354B2 (en)
JPS6127688A (en) Electrostrictive effect element and production thereof
JP2013211419A (en) Lamination type piezoelectric element and piezoelectric actuator
GB2250861A (en) Laminated piezoelectric device
JP2008098655A (en) Laminated piezoelectric element
JP4670260B2 (en) Multilayer electronic components
JPS63153870A (en) Electrostrictive effect element
JP2004111718A (en) Method for manufacturing stacked piezoelectric actuator
JP2004172207A (en) Chip type surge absorber and manufacturing method therefor
JP6809822B2 (en) Piezoelectric actuator
JPS59115579A (en) Electrostrictive effect element and manufacture thereof
JP2014072357A (en) Laminated piezoelectric element
JP4468510B2 (en) Piezoelectric element and multilayer piezoelectric actuator
JP2000340849A (en) Stacked piezoelectric actuator
JP2003243740A (en) Stacked piezoelectric element and positioning device
JPS61174681A (en) Manufacture of laminated piezoelectric device
JP6082002B2 (en) Multilayer piezoelectric element
JP4373904B2 (en) Multilayer piezoelectric element
JP6898167B2 (en) Laminated piezoelectric element
JPS62133777A (en) Lamination-type piezoelectric element and manufacture thereof
JP5879272B2 (en) Multilayer piezoelectric device and method for manufacturing multilayer piezoelectric device
JPS60154581A (en) Laminated piezoelectric body and manufacture thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070206