JP2004111076A - Positive electrode active material and nonaqueous electrolyte secondary battery - Google Patents

Positive electrode active material and nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004111076A
JP2004111076A JP2002268357A JP2002268357A JP2004111076A JP 2004111076 A JP2004111076 A JP 2004111076A JP 2002268357 A JP2002268357 A JP 2002268357A JP 2002268357 A JP2002268357 A JP 2002268357A JP 2004111076 A JP2004111076 A JP 2004111076A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
electrode active
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002268357A
Other languages
Japanese (ja)
Inventor
Takashi Sato
佐藤 隆史
Yoshikatsu Yamamoto
山本 佳克
Yosuke Hosoya
細谷 洋介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002268357A priority Critical patent/JP2004111076A/en
Publication of JP2004111076A publication Critical patent/JP2004111076A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode activve material by which a nonaqueous electrolyte lithium ion secondary battery with high capacity and excellent cycle property can be manufactured, and to provide a nonaqueous electrolyte lithium ion secondary battery using the same. <P>SOLUTION: The positive electrode active material contains a lithium compound oxide having electron conductivity σ satisfying the relation; 10<SP>-4</SP>≤σ≤10<SP>-1</SP>S/cm, expressed by general formula; Li<SB>x</SB>Ni<SB>(1-Y-Z)</SB>Co<SB>Y</SB>Mn<SB>Z</SB>A<SB>a</SB>O<SB>2</SB>(1) (in the formula, A represents an element like Fe, V, Cr, Mn, Ti, Mg, Al, B, or Ca, and X, Y, Z satisfy the relations 0.05≤X≤1.10, 0.10≤Y+Z≤0.70, 0.05≤Z≤0.40, 0≤a≤0.1 respectively). The nonaqueous electrolyte lithium ion secondary battery comprises a positive electrode and a negative electrode containing positive electrode active material and negative electrode active material respectively which can dope and dedope lithium ions and a nonaqueous electrolyte with an electrolyte dispersed in a nouaqueous medium, of which, the positive electrode active material contains the lithium compound oxide. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池用の正極活物質に関する。詳しくは、特定組成を有するリチウム複合酸化物を含有し、高容量でサイクル特性に優れるリチウムイオン非水電解質二次電池を実現し得る正極活物質、及びこれを用いたリチウムイオン非水電解質二次電池に係るものである。
【0002】
【従来の技術】
近年、半導体集積技術の進歩に伴った電子機器の発展とその小型化への進展から、携帯電子機器の電源となる電池への要求が高まっている。このような電池に求められる特性は、小型、軽量で且つ長持ちし充放電可能なことである。これらの特性を持つ小型二次電池としては、ニッケル水素電池、ニッカド電池及びリチウムイオン二次電池などが挙げられるが、中でも4V級の高い電圧と高いエネルギー密度を有するリチウムイオン二次電池は、大きな消費電力を有しており、一次電池では対応しきれない携帯電子機器などへの需要も高まっている。
【0003】
上記のリチウムイオン二次電池の特徴は、他の電池と比較して酸化還元電位が高い正極と酸化還元電位の低い負極とを組み合わせていることで、容量が大きい、即ちエネルギー密度が大きい電池を作製できる点にある。
しかし、実際の電池は、常温環境下だけでなく、低温から高温までの広い環境下で使用される電子機器に用いられることが多く、その使用態様によって、このエネルギー密度は変化し、例えば大電流で放電を行った時には取り出せる電気量が少なくなり、内部抵抗のために電圧も低下する。また、常温時での使用に際しては優れたサイクル特性を示しているにも拘わらず、高温環境下での使用又は保存により電池容量やサイクル特性を損ない易いことも知られている。
【0004】
このような問題に対し、電池特性を更に改善することを目的として、LiCoOにAlを固溶し、LiCo(1−y)Al(但し、0.05≦x≦1.10、0.01≦y≦0.10)なる活物質を作製することで、高温環境下でのサイクル特性を向上させることが特開平11−7958号公報に提案されている。
また、特開平7−192721号公報には、高温保持特性を改善することを目的として、LiNi(1−y)(但し、0<x<1.3、0≦y≦1、1.8<z<2.2であり、且つMはコバルトまたはコバルトを含む2種類以上の遷移金属である)で表される正極活物質に、Na、Mg、Al、K、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Znからなる群から選ばれた金属の塩または水酸化物の一種、または二種以上が総量で0.1〜20モル%添加されることが開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、このような従来の正極活物質を用いても、得られるリチウムイオン二次電池の高容量性やサイクル特性が必ずしも十分とは言えず、更なる改良の余地があった。
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、高容量を有しサイクル特性に優れるリチウムイオン非水電解質二次電池を実現できる正極活物質、及びこの正極活物質を用いたリチウムイオン非水電解質二次電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、所定組成を有するリチウム複合酸化物を用いることにより、上記課題が解決されることを見出し、本発明を完成するに至った。
【0007】
即ち、本発明の正極活物質は、リチウムイオン非水電解質二次電池に用いられるもので、次の一般式
LiNi(1−y−z)CoMn…▲1▼
(式中のAはFe(鉄)、V(バナジウム)、Cr(クロム)、Mn(マンガン)、Ti(チタン)、Mg(マグネシウム)、Al(アルミニウム)、B(ホウ素)及びCa(カルシウム)から成る群より選ばれた少なくとも1種の元素を示し、x、y及びzは各々0.05≦x≦1.10、0.10≦y+z≦0.70、0.05≦z≦0.40、aは0≦a≦0.1を満足する)で表され、且つその電子伝導度σが10−4≦σ≦10−1S/cmであるリチウム複合酸化物から成るか又はこの複合酸化物を含有するものである。
【0008】
また、本発明のリチウムイオン非水電解質二次電池は、リチウムイオンをドープし且つ脱ドープできる材料を正極活物質とする正極と、リチウムイオンをドープし且つ脱ドープできる材料を負極活物質とする負極と、非水媒体に電解質を分散して成る非水電解質とを備える二次電池であって、
上記正極活物質が、上記▲1▼式で表され、且つその電子伝導度σが10−4≦σ≦10−1S/cmであるリチウム複合酸化物から成るか又はこの複合酸化物を含有するものである。
【0009】
【発明の実施の形態】
以下、本発明の正極活物質について詳細に説明する。なお、本明細書において、「%」は特記しない限り質量百分率を示すものとする。
上述の如く、本発明の正極活物質は、リチウムイオン非水電解質二次電池に用いられるものであり、次の一般式▲1▼
LiNi(1−y−z)CoMn…▲1▼
(式中のAはFe、V、Cr、Mn、Ti、Mg、Al、B又はCa及びこれらの任意の組合せに係る元素を示し、x、y及びzは各々0.05≦x≦1.10、0.10≦y+z≦0.70、0.05≦z≦0.40、aは0≦a≦0.1を満足する)で表されるリチウム複合酸化物から成るか又はこの複合酸化物を含有する。
【0010】
かかるリチウム複合酸化物は、六方晶系に属し層状構造をなす結晶構造を有し、Liの組成比xは0.05≦x≦1.10の範囲にあることを要する。
xが0.05未満では、結晶構造が不安定になることにより、高温保存時など熱的ストレスにさらされた場合、結晶構造が崩れ、リチウムの吸蔵・放出が正常に行われなくなる。一方、xが1.10を超えると、電池反応に関与しない残存リチウム量の増加により、充放電容量が減少する。
また、Coの組成比yについては、その比率が多ければ多いほど、得られる二次電池の充放電効率が向上するが、Niの組成比が減少する分、容量は低下してしまう。なお、実使用の際には、Coの添加量が多いものは放電電圧が上昇する傾向にあるため、0.00≦y≦0.50範囲内で、要求される電池特性に応じて適宜変更していくことが可能である。
【0011】
更に、▲1▼式において、Mnの組成比zは0.05≦z≦0.40の範囲にあることを要する。
zが0.05未満では、Liが脱ドープされた充電状態において結晶構造が不安定になる。そのため、その状態が繰り返される充放電サイクル時や高温保存時などにおける熱的なストレスが与えられると、結晶構造が崩れてリチウムの吸蔵・放出が正常に行われなくなり、正極活物質としての性能が著しく損なわれる。逆に0.40を超えると、高温特性やサイクル特性は改善されるものの充放電容量が激減してしまう。
【0012】
また、Fe、V及びCr等の元素Aの組成比aについては、0≦a≦0.1の範囲にあることを要する。
aが0.01未満では、充放電サイクル時や高温保存時において、結晶構造が崩れ易く、0.1を超えると、充放電容量が低下してしまう。
なお、かかる元素Aとしては、上述の元素のうちでもAl、B、Mg及びTiを好適に用いることができる。
【0013】
更に、本発明においては、上記▲1▼式で表されるリチウム複合酸化物につき、その電子伝導度σが10−4≦σ≦10−1S/cmの範囲にあることを要する。これは電池のサイクル特性という観点から要求されるものであり、電子伝導度σが10−4S/cm未満では、粒子間の導通が確保し難くサイクル特性が著しく低下する。逆に10−1S/cmを超えると、高温環境下での活物質と電解液との反応により高温サイクル特性が悪化するからである。
【0014】
また、上述のようなリチウム複合酸化物としては、その50%粒径、即ち当該リチウム複合酸化物の粒度分布曲線において、その頻度が50%をなすものの粒径が5〜20μmであるものが好ましい。
かかる粒径が5μm未満では、比表面積が大きくなって電解液との反応が起こり易くなり、正極活物質表面への分解生成物の形成などにより、リチウムの吸蔵・放出が妨げられることがあり、20μmを超えると、正極活物質と電解液との反応面積が小さくなって、リチウムイオンの吸蔵・放出が生じにくく、電池特性が悪化することがある。
なお、このような粒径の測定は、動的光散乱方式により行うことができる。
更にまた、かかるリチウム複合酸化物としては、その比表面積が0.1〜1.5m/gのものが好ましい。
比表面積が0.1m/g未満では、リチウムイオンを吸蔵・放出するのに必要な粉末と電解液との反応面積が小さいため、電池特性が悪化することがあり、1.5m/gを超えると、電解液との反応面積が大きくなることにより、電解液との反応が進行し易くなり電解液の分解及び粉末表面上への生成により、リチウムの吸蔵・放出が妨げられることがある。
【0015】
次に、上述したリチウム複合酸化物の製造方法について説明する。
かかるリチウム遷移金属複合酸化物は、遷移金属源となるNi、Co及びMnなどの水酸化物を各組成に応じて調整、混合し、これにリチウム源となるLiOHを混合し、酸素雰囲気中600〜1100℃で焼成することにより得ることができる。
この場合、使用できる遷移金属源の出発原料は上記のものに限定されず、遷移金属の炭酸塩、硝酸塩及び硫酸塩なども使用できる。また、複数種の遷移金属を含む複合遷移金属の水酸化塩や炭酸塩なども使用できる。
一方、リチウム源の出発原料としては水酸化物以外にも、LiO、Li及びLiNiOなどが使用できる。
【0016】
次に、本発明のリチウムイオン非水電解質二次電池について説明する。
上述の如く、この非水電解質二次電池は、上記のリチウム複合酸化物を正極活物質とする正極と、リチウムを吸蔵・放出可能な材料を負極活物質とする負極と、非水電解質とを備える。
【0017】
ここで、負極活物質としては、リチウム金属又はリチウムより卑の電位で電気化学的にリチウムを吸蔵・放出(ドープ・脱ドープ)することができるもであればよく、その形状や種類には依存しないが、熱分解性炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス)、黒鉛類(天然黒鉛、人造黒鉛、グラファイト)、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成したもの)、炭素繊維及び活性炭などが使用可能である。
またこれ以外にも、リチウムとアルミニウム、鉛、銅及びインジウム等とのリチウム合金や酸化鉄、酸化チタン、酸化スズなどの金属酸化物や金属間化合物を形成する材料、更には、リチウムを吸蔵・放出できるポリアセチレン、ポリピロール等のポリマーも使用可能である。
【0018】
なお、上述した炭素質材料や合金材料などへのリチウムのドープは、電池作製後に電池内で電気化学的に行ってもよいし、電池作製後又は電池作製前に、正極又は正極以外のリチウム源から供給して電気化学的にドープしてもよい。また、材料合成の際にリチウム含有材料として合成し、電池作製時には負極活物質に含有されている状態としてもよい。
【0019】
本発明の非水電解質二次電池において、正極又は負極は、代表的には、帯状乃至は矩形をなす集電体の両面に、上記の各活物質と結着剤を含む正極合剤又は負極合剤を被覆した正極合剤層又は負極合剤層を形成することにより作製される。ここで、集電体としては、集電機能を有する限り特に限定されず、形状的には、上記以外にも箔状、メッシュ及びエキスパンドメタル等の網状のものも用いられる。また、材質としては、正極集電体にはアルミニウム、ステンレス及びニッケル等が用いられ、負極集電体にはリチウムと合金を形成しない銅箔、ステンレス及びニッケル箔が用いられる。
また、正極合剤又は負極合剤は、上記の活物質以外にポリビニルピロリドン等の公知の結着剤や、必要に応じてグラファイト等の導電剤など公知の添加剤を混合して得られる。
正極合剤層又は負極合剤層の形成は、代表的には、集電体の両面に正極合剤又は負極合剤を塗布し、乾燥させることによって行われる。
【0020】
更に、本発明においては、高容量化などの要請から、代表的には、上述の如き正極及び負極、セパレータを代表的には帯状乃至は矩形状に形成し、かかる正極シートと負極シートとの間にセパレータを挿入した積層体シートを形成し、この積層体シートを巻回することによって作製した巻回電極を用いて電池を構成する。
なお、巻回の態様は特に限定されるものではなく、渦巻き状でも螺旋状でもよく、通常は多数回巻回して巻回電極を作製する。
【0021】
上記セパレータとしては、正極と負極とを分離して両者の物理接触による短絡を防止し得る機能を有すれば十分であるが、織布、不織布及び合成樹脂微多孔膜等が挙げられる。具体的には、微多孔性のポリエチレンやポリプロピレン製フィルムを用いることが好ましく、かかる微多孔性フィルムは高温で軟化して微孔を閉塞し、リチウムイオンの流出を抑制するので、過電流対策としても好適に使用できる。
なお、リチウムイオン伝導度とエネルギー密度の関係から、セパレータの厚みはできる限り薄い方が好ましく、代表的には50μm以下とすることが望ましい。
【0022】
次に、「非水電解質」については、本明細書では、電解質を非水媒体に分散ないし溶解したもの、及び固体電解質をいい、電解質をプロピレンカーボネートなどの非水溶媒に溶解した非水電解液の外、電解質をゲル状をなす非水分散媒(ポリフッ化ビニリデンなどのポリマー)に溶解したもの、及びリチウムイオン伝導性を有する固体電解質をいうものとする。
なお、かかる非水電解質は、電解質を非水溶媒に溶解した非水電解液と、電解質をゲル状をなす非水分散媒に溶解したゲル状電解質と、固体電解質とに大別できる。
【0023】
ここで、非水溶媒に溶解させ又はゲル状非水分散媒に分散させる電解質としては、各種リチウム塩、例えば、LiCl、LiBr、LiClO、LiAsF、LiPF、LiBF、LiCHSO、LiCFSO、Li(CFSO又はLiB(C及びこれらの混合物を使用することができ、このうちでも特にLiPFやLiBFを使用することが好ましい。
【0024】
また、非水溶媒としては、従来の非水系リチウム電池と同様に非プロトン性溶媒、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、γ−ブチルラクトン、γ−ブチロラクタン、スルホラン、メチルスルホラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、プロピオン酸メチル、酪酸メチル、ジメチルカーボネート、ジエチルカーボネート、ジプロピルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート、プロピオニトリル、アセトニトリル、アニソール、ジエチルエーテル、酢酸エステル、酪酸エステル及びプロピオン酸エステル等を挙げることができる。
特に、電圧安定性の観点からは、プロピレンカーボネートやビニレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート及びジプロピルカーボネート等の鎖状カーボネート類を使用することが好ましい。また、このような非水溶媒は1種を単独で用いてもよいし、2種以上を混合して用いてもよい。
【0025】
一方、ゲル状をなす非水分散媒としては、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリメタクリル酸メチル、ポリエチレンオキシド及びポリシロキサン等のポリマーを挙げることができる。これらポリマーの分子量としては、30万〜80万程度が適当である。
なお、ポリマーへの電解質の分散は、代表的には、電解質を非水溶媒に溶解した非水電解液にポリフッ化ビニリデン等のポリマーを溶解させ、ゾル化させることにより行うことができる。
【0026】
更に、固体電解質としては、LiIなどの結晶質固体電解質や、LiI・LiS・P系ガラス及びLiI・LiS・B系ガラスなどリチウムイオン伝導性ガラスなどに代表される非晶質固体電解質であれば特に限定されるものではない。
【0027】
本発明の非水電解質二次電池は、代表的には、上述の巻回電極を非水電解質とともに金属製やプラスチックス製のケース等に収容して成るが、軽量性や薄さの観点からはフィルム状外装ケースに収容するのが好適であり、かかるフィルム状外装ケースを形成するラミネートフィルムの材料には、ポリエチレンテレフタレート(PET)、溶融ポロプロピレン(PP)、無延伸ポリプロピレン(CPP)、ポリエチレン(PE)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)及びポリアミド系合成高分子材料(商品名:ナイロン:Ny)等のプラスチック材料が用いられ、耐透湿性のバリア膜としてアルミニウム(Al)が用いられる。
【0028】
上記ラミネートフィルムの最も一般的な構成としては、外装層/金属膜(バリア膜)/シーラント層がPET/Al/PEのものを例示できす。また、この組み合わせに限らず、外装層/金属膜/シーラント層の構成において、Ny/Al/CPP、PET/Al/CPP、PET/Al/PET/CPP、PET/Ny/Al/CPP、PET/Ny/Al/Ny/CPP、PET/Ny/Al/Ny/PE、Ny/PE/Al/LLDPE、PET/PE/Al/PET/LDPE及びPET/Ny/Al/LDPE/CPP等の組み合わせを採用することもできる。なお、金属膜にAl以外の金属を採用し得ることはもちろんである。
【0029】
本発明のリチウムイオン非水電解質二次電池は、上述のように、本発明の正極活物質を含有する正極、負極及び非水電解質を必須の構成要件とするが、その電池形状については特に限定されるものではなく、例えば、円筒型、角型、コイン型及びボタン型等の種々の電池形状を採用することができる。
また、より安全性の高い密閉型非水電解液二次電池を得るべく、過充電等の異常時には電池内圧上昇により作動して電流を遮断させる安全弁等の手段を備えたものであることが望ましい。
本発明の非水電解質二次電池は、上述した各種材料、特に特定の正極活物質をを用いて構成されているので、高容量で充放電サイクルに伴う容量維持率が高いものとなっている。
【0030】
次に、上述のリチウムイオン非水電解質二次電池の若干の実施形態につき、図面を参照して具体的に説明する。
図1は、本発明のリチウムイオン非水電解質二次電池の一例を示す断面図である。同図に示すように、この非水電解質二次電池は、帯状をなす正極11と負極12とをセパレータ13を介して積層し、更に巻回して形成した巻回電極体10をその上下に絶縁板2を取り付けた状態で電池缶1に収容して成る。
また、電池缶1には、電池蓋4がガスケット7を介してかしめて取り付けられており、この電池蓋4は正極リード15を介して正極11と電気接続され、この電池の正極として機能する。一方、負極12は負極リード16を介して電池缶1の底部と電気接続されており、電池缶1がこの電池の負極として機能する構成となっている。
【0031】
なお、この電池においては、巻回電極体10の中央部にセンターピン14が設けられ、電流の遮断機能を果たし、ディスク板5aを有する安全弁5は、電池内部の圧力が上昇すると、正極リード15と電気的に接続されている部位が変形して、電気的接続を解除する安全装置である。
また、安全弁5と電池蓋4との間に配置された感熱抵抗素子6は、最大定格電流値を超えた充放電状態や電池が高温に曝された際に電流を遮断する電池内の素子として機能する。
【0032】
図2に上述した帯状正極11の構造を示す。同図に示すように、この帯状正極11は、帯状の正極集電体12aの両面(表面及び裏面)に、正極合剤層12b及び12cを被覆して成る。
本発明の非水電解質二次電池においては、図示したように、正極合剤層12b及び12cの端部同士を、この帯状正極11の両方又は一方の端部において長手方向に不揃いな配置とし、後述するように、電池反応に関与しない活物質量を低減して電池内部を有効に活用し、得られる非水電解質二次電池のエネルギー密度を向上させることが好ましい。
また、帯状負極12は帯状正極11と同様の構造を有し、正極の場合と同様に、集電体の表裏面に被覆された負極合剤層の端部同士を側面から見て面一とならないように配置することにより、上記同様の効果が得られるが、負極構造は図示しない。
なお、正極及び負極の少なくとも一方につき、上記の合剤層端部処理を行うことにより上記の効果が得られるが、正極と負極の双方に合剤層端部処理を行ってもよい。
【0033】
図3は、図1に示した非水電解質二次電池をA−A線で切断した断面図であり、巻回電極体10を示している。
同図において、巻回電極体10は、帯状負極12、セパレータ13(図示せず)、帯状正極11及びセパレータ13(図示せず)の順に4層積層した積層体を渦巻き状に巻回して構成されており、帯状負極12が電極体10の内側(中央部)になるように配設されている。そして、帯状正極11及び帯状負極については、各合剤層11c及び12cが巻回電極体10の内側(中央側)に、合剤層11b及び12bが外側に存在するように配置されている(図2参照)。
また一般に、このような巻回電極体においては、充電時にリチウムが析出して内部短絡するのを防止すべく、セパレータ13(図示せず)を介して正極11と並列して存在する負極12の幅(図1で高さ)と長さ(巻回長)、即ち反応面積は、正極11の幅と長さ(反応面積)よりも大きくなるように形成される。
なお、この図に示す巻回電極体は、一般的な巻回形式によるものであり、帯状正極11及び帯状負極12の合剤層端部には処理が施されておらず、正極合剤層11bと11cの端部同士、負極合剤層12bと12cの端部同士は、側面から見て面一になっている。
【0034】
図4に、他の巻回形式によって形成された巻回電極体を示す。
同図に示す巻回電極体では、帯状負極12の一端、即ち巻回電極体の最外周を構成する端部において、負極合剤層が片面だけ形成されている。換言すれば、この巻回電極体の最外周では、負極の内側合剤層12cのみが形成されており、外側合剤層12bは形成されていない。なお、帯状正極11の両端には処理が施されておらず、両端において内側合剤層11cと外側合剤層11bとは面一である。
このような巻回形式を採用することにより、電池反応に実際に関与する正極合剤層部分と負極合剤層部分だけを電池内部に存在させることができるようになるので、電池内部の有効活用が可能となり、得られる非水電解質二次電池のエネルギー密度を向上させることができる。
【0035】
図5は、他の巻回形式を採用した巻回電極体を示すもので、帯状負極12の他端(最内周側端部)では外側合剤層12bのみが形成されており、且つ帯状正極11については、一端(最外周側端部)に内側合剤層11cのみが形成されている。なお、帯状負極12の一端(最外周側端部)、帯状正極の他端(最内周側端部)では、合剤層は面一に形成されている。
このような巻回形式の採用によっても、上記同様に電池内部が有効活用され、得られる電池のエネルギー密度を向上させることができる。
【0036】
図6は、更に他の巻回形式を採用したものであり、帯状正極11の一端(最外周側端部)では内側合剤層11cのみが形成されており、他端(最内周側端部)で正極合剤層が面一になっているものである。なお、帯状負極12については、両端で負極合剤層が面一である。
更に、図7は、他の巻回形式を採用したものであり、帯状正極11の他端(最内周端部)では外側合剤層11b、一端(最外周端部)では内側合剤層11cのみが形成されている。帯状負極12については、両端で負極合剤層が面一である。
図6及び図7に示す巻回形式によっても、上記同様に電池内部が有効活用され、得られる電池のエネルギー密度を向上させることができる。
【0037】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0038】
(実施例1〜5、比較例1〜7)
後記する表1に示すように、市販の水酸化リチウム、水酸化ニッケル、水酸化コバルト及び水酸化マンガンを用い、実施例1〜5ではモル比が0.05≦x≦1.10、0.1≦y+z≦0.7、0.05≦z≦0.4の範囲内で、比較例1〜3ではこの範囲外にあるように調製、混合し、酸素気流中で焼成を行い、一般式LiNi(1−y−z)CoMn…▲1▼で表されるリチウム複合酸化物を作製した。
得られた各例の粉末サンプルをX線回折法により分析したところ、LiNiOとほぼ同等の構造を採る物質であると同定された。確認できたピークにはLiNiO由来のもの以外は存在せず、このサンプルが単層でニッケルのサイトにコバルトとアルミニウムが固溶した物質であることが示された。
【0039】
以上のようにして作製した各例の活物質90%に導電剤としてグラファイトを7%、結着剤としてポリフッ化ビニリデン(PVdF)3%を混合し、N−メチル−2−ピロリドン(NMP)に分散させて正極合剤スラリーとした。これを乾燥して再粉砕した後、油圧プレス機で面密度が一定になるように加圧したコイン型圧粉体を作製した。
得られた各圧粉体サンプルをステンレス製の電極で挟み、体積密度が3.3g/cmになるように両端から一定圧力で加圧した状態のまま、圧粉体に一定電圧(V)を印加した。電圧を印加した瞬間には、電子以外にLiイオンなども電荷移動を担うため、電流値は実際の値よりも大きくなるが、すぐに分極が生じるため電流値は低下して一定値に落ち着く。このときの電流値(I)とオームの法則(V=IR)から直流抵抗値(R)を見積もった。
この測定は23℃で行った。圧粉体の厚さをd、電極との接触面積をS(本測定では1.8cmに固定した)とすると、電子伝導度σはσ=d/(RS)により算出することができる。測定後、圧粉体の厚さdを測定し、電子伝導度を見積もった。得られた結果を表1に併記する。
【0040】
また同時に上記と同じ組成で作製した正極合剤スラリーを厚さ25μmの帯状のアルミニウム箔の両面に均一に塗布・乾燥後、ロータープレス機で圧縮して帯状正極を得た。
一方、負極活物質として粉末状の人造黒鉛90%にPVdFを10%混合し、更にNMPに分散させて負極合剤スラリーとした。この負極合剤スラリーを厚さ15μmの銅箔の両面に均一に塗布し、乾燥後にローラープレス機で圧縮することで帯状負極を得た。
【0041】
以上のように作製した帯状正極、帯状負極を多孔性ポリオレフィンを介して多数回巻回し、図4に示すような渦巻き型の電極体を作製した。
この電極体をニッケルめっきが施された鉄製電池缶に収納し、当該電極体の上下両面に絶縁板を配置した。次いで、アルミニウム製正極リードを集電体から導出して、電池蓋と電気的な導通が確保された安全弁の突起部に溶接し、ニッケル製負極リードを負極集電体から導出して電池缶の底部に溶接した。
一方、電解液としてエチレンカーボネートとメチルエチルカーボネートとの堆積混合比が1:1である混合溶液に、LiPFを1mol/dmの濃度になるように溶解して非水電解液を調製した。
しかる後、上述の電極体が組み込まれた電池缶内に電解液を注入し、更に絶縁封口ガスケットを介して電池缶をかしめることにより、安全弁、PTC素子及び電池蓋を固定し、外径が18mmで高さが65mmの各例の円筒型電池を作製した。
【0042】
[性能評価]
以上のようにして作製した各例の非水電解液二次電池ついて、環境温度25℃、充電圧4.20V、充電電流1000mA、充電時間2.5時間の条件で充電を行った後、放電電流750mA、終止電圧3.0Vで放電を行い、初期容量を求めた。更に、環境温度50℃で充放電を繰り返し、100サイクル目の放電容量を測定して、初期容量に対する維持率を求めた。
また、作製した各電池に4.2Vの定電圧を加えて環境温度60℃で1ヶ月間充電し続けた後、上記と同じ条件で放電を行い、この放電容量と初期容量から容量保持率を算出した。得られた結果を表1に併記する。
【0043】
【表1】

Figure 2004111076
【0044】
表1に示した実施例1〜5及び比較例1〜7の評価結果より、
一般式LiNi(1−y−z)CoMn…▲1▼で表されるリチウム複合酸化物のニッケル、コバルト、マンガン組成比を0.1≦y+z≦0.7、0.05≦z≦0.40の範囲で規定することで高容量を有し、高温サイクル特性に優れた非水電解液二次電池を作製することができることが分かった。
実施例5で示したように、添加元素としてAlを組成比で0.05添加すると、高温でのサイクル特性が著しく向上する。他にも添加元素としてFe、V、Cr、Mg、Ti、Al、B又はCa及びこれらの任意の混合物を加えることで同様の効果が期待できる。
【0045】
比較例1〜3の評価結果から分かるように、上記で示した組成の範囲外で活物質を作製すると、初期放電容量が著しく低下したり、高温サイクル特性が悪化してしまう。
なお、上記の条件だけでは、比較例6及び比較例7のように、初期放電容量と高温サイクル特性には優れるものの、電子伝導度が高いために高温での電解液との反応性が高くなってしまい、容量回復率は満足した結果を得ることが難しい。そこで、実施例1及び実施例5で示すように、導電剤量を減少することで、電子伝導度を低下させ、高温での電解液との反応を抑制して高温フロート充電での容量回復率を向上することができた。
【0046】
以上の結果から、上述の一般式▲1▼で表されるリチウム複合酸化物を正極活物質とする正極と、リチウムを吸蔵・放出可能な負極活物質と、非水電解液とを組み合わせることで、高容量を有しサイクル特性とフロート特性に優れた非水電解液二次電池を作製できることが明らかとなった。
【0047】
【発明の効果】
以上説明してきたように、本発明によれば、所定組成を有するリチウム複合酸化物を用いることとしたため、高容量を有しサイクル特性に優れるリチウムイオン非水電解質二次電池を実現できる正極活物質、及びこの正極活物質を用いたリチウムイオン非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明のリチウムイオン非水電解質二次電池の一例を示す断面図である。
【図2】帯状正極の構造を示す斜視図である。
【図3】図1のA−A線で切断した巻回電極体を示す断面図である。
【図4】巻回電極体の他の例を示す断面図である。
【図5】巻回電極体の他の例を示す断面図である。
【図6】巻回電極体の更に他の例を示す断面図である。
【図7】巻回電極体の他の例を示す断面図である。
【符号の説明】
1  電池缶
2  絶縁板
4  電池蓋
5  安全弁
5a ディスク板
6  感熱抵抗素子
7  ガスケット
10  巻回電極体
11  正極
11a 正極集電体
11b 正極合剤層(外側)
11c 正極合剤層(内側)
12  負極
12a 負極集電体
12b 負極合剤層(外側)
12c 負極合剤層(内側)
13  セパレータ
14  センターピン
15  正極リード
16  負極リード[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery. More specifically, a positive electrode active material containing a lithium composite oxide having a specific composition and capable of realizing a lithium ion nonaqueous electrolyte secondary battery having high capacity and excellent cycle characteristics, and a lithium ion nonaqueous electrolyte secondary using the same It relates to a battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the development of electronic devices and the miniaturization thereof accompanying the progress of semiconductor integrated technology, demands for batteries serving as power sources of portable electronic devices have been increasing. The characteristics required for such a battery are that it is compact, lightweight, durable, and capable of charging and discharging. Examples of the small secondary battery having these characteristics include a nickel hydride battery, a nickel cadmium battery, and a lithium ion secondary battery. Among them, a lithium ion secondary battery having a high voltage of 4V class and a high energy density has a large size. There is a growing demand for portable electronic devices and the like that have power consumption and cannot be fully accommodated by primary batteries.
[0003]
The feature of the above-mentioned lithium ion secondary battery is that, by combining a positive electrode having a high oxidation-reduction potential and a negative electrode having a low oxidation-reduction potential as compared with other batteries, a battery having a large capacity, that is, a battery having a large energy density is used. It can be manufactured.
However, an actual battery is often used not only in a normal temperature environment but also in an electronic device used in a wide environment from a low temperature to a high temperature. When the discharge is performed, the amount of electricity that can be taken out decreases, and the voltage decreases due to the internal resistance. It is also known that, even though the battery exhibits excellent cycle characteristics when used at room temperature, battery capacity and cycle characteristics are easily damaged by use or storage under a high temperature environment.
[0004]
In order to further improve the battery characteristics, LiCoO 2 2 To form a solid solution with Al x Co (1-y) Al y O 2 Japanese Patent Laid-Open No. 11-7958 discloses that an active material satisfying 0.05 ≦ x ≦ 1.10 and 0.01 ≦ y ≦ 0.10 is produced to improve cycle characteristics under a high-temperature environment. It is proposed in the gazette.
Further, Japanese Patent Application Laid-Open No. 7-192721 discloses a method for improving the high-temperature holding characteristics by using Li x Ni ( 1-y) M y O z (Where 0 <x <1.3, 0 ≦ y ≦ 1, 1.8 <z <2.2, and M is cobalt or two or more transition metals containing cobalt) One of a salt or a hydroxide of a metal selected from the group consisting of Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn for the positive electrode active material. Or two or more are added in a total amount of 0.1 to 20 mol%.
[0005]
[Problems to be solved by the invention]
However, even if such a conventional positive electrode active material is used, the resulting lithium ion secondary battery does not always have sufficient high capacity and cycle characteristics, and there is room for further improvement.
The present invention has been made in view of such problems of the related art, and an object of the present invention is to provide a positive electrode active material capable of realizing a lithium ion nonaqueous electrolyte secondary battery having high capacity and excellent cycle characteristics. An object of the present invention is to provide a material and a lithium ion nonaqueous electrolyte secondary battery using the positive electrode active material.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above problems can be solved by using a lithium composite oxide having a predetermined composition, and have completed the present invention. .
[0007]
That is, the positive electrode active material of the present invention is used for a lithium ion nonaqueous electrolyte secondary battery, and has the following general formula:
Li x Ni (1-yz) Co y Mn z A a O 2 … ▲ 1 ▼
(A in the formula is Fe (iron), V (vanadium), Cr (chromium), Mn (manganese), Ti (titanium), Mg (magnesium), Al (aluminum), B (boron) and Ca (calcium) Represents at least one element selected from the group consisting of: x, y and z are respectively 0.05 ≦ x ≦ 1.10, 0.10 ≦ y + z ≦ 0.70, 0.05 ≦ z ≦ 0. 40, a satisfies 0 ≦ a ≦ 0.1), and has an electron conductivity σ of 10 -4 ≦ σ ≦ 10 -1 It is composed of or contains a lithium composite oxide of S / cm.
[0008]
Further, the lithium ion nonaqueous electrolyte secondary battery of the present invention has a positive electrode using a material capable of doping and undoping lithium ions as a positive electrode active material and a negative electrode active material using a material capable of doping and undoping lithium ions. A secondary battery comprising a negative electrode and a non-aqueous electrolyte obtained by dispersing an electrolyte in a non-aqueous medium,
The positive electrode active material is represented by the above formula (1) and has an electron conductivity σ of 10 -4 ≦ σ ≦ 10 -1 It consists of or contains a lithium composite oxide of S / cm.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the positive electrode active material of the present invention will be described in detail. In addition, in this specification, "%" indicates a mass percentage unless otherwise specified.
As described above, the positive electrode active material of the present invention is used for a lithium ion nonaqueous electrolyte secondary battery, and has the following general formula (1)
Li x Ni (1-yz) Co y Mn z A a O 2 … ▲ 1 ▼
(A in the formula represents an element relating to Fe, V, Cr, Mn, Ti, Mg, Al, B or Ca and any combination thereof, and x, y and z are each 0.05 ≦ x ≦ 1. 10, 0.10 ≦ y + z ≦ 0.70, 0.05 ≦ z ≦ 0.40, a satisfies 0 ≦ a ≦ 0.1) or a composite oxide of the same. Containing material.
[0010]
Such a lithium composite oxide has a crystal structure belonging to a hexagonal system and forming a layered structure, and the composition ratio x of Li needs to be in the range of 0.05 ≦ x ≦ 1.10.
If x is less than 0.05, the crystal structure becomes unstable, so that when exposed to thermal stress, such as during high-temperature storage, the crystal structure is broken and lithium storage / release cannot be performed normally. On the other hand, when x exceeds 1.10, the charge / discharge capacity decreases due to an increase in the amount of residual lithium not involved in the battery reaction.
As for the composition ratio y of Co, the larger the ratio, the higher the charge / discharge efficiency of the obtained secondary battery, but the lower the composition ratio of Ni, the lower the capacity. In actual use, since the discharge voltage tends to increase when a large amount of Co is added, the value may be appropriately changed within the range of 0.00 ≦ y ≦ 0.50 according to the required battery characteristics. It is possible to continue.
[0011]
Further, in the formula (1), the composition ratio z of Mn needs to be in the range of 0.05 ≦ z ≦ 0.40.
If z is less than 0.05, the crystal structure becomes unstable in the charged state in which Li is undoped. Therefore, if thermal stress is applied during a charge / discharge cycle in which the state is repeated or during high-temperature storage, the crystal structure is broken and lithium is not normally absorbed and released, and the performance as a positive electrode active material is reduced. Significantly impaired. Conversely, if the ratio exceeds 0.40, the high temperature characteristics and the cycle characteristics are improved, but the charge / discharge capacity is drastically reduced.
[0012]
The composition ratio a of the element A such as Fe, V, and Cr needs to be in the range of 0 ≦ a ≦ 0.1.
If a is less than 0.01, the crystal structure is likely to collapse during charge / discharge cycles or high-temperature storage, and if it exceeds 0.1, the charge / discharge capacity is reduced.
As the element A, Al, B, Mg, and Ti among the above-mentioned elements can be suitably used.
[0013]
Further, in the present invention, the lithium composite oxide represented by the above formula (1) has an electron conductivity σ of 10 -4 ≦ σ ≦ 10 -1 It needs to be in the range of S / cm. This is required from the viewpoint of the cycle characteristics of the battery. -4 If it is less than S / cm, it is difficult to secure conduction between particles, and the cycle characteristics are significantly reduced. Conversely 10 -1 If it exceeds S / cm, the reaction between the active material and the electrolyte in a high temperature environment deteriorates the high temperature cycle characteristics.
[0014]
In addition, as the lithium composite oxide as described above, it is preferable that the 50% particle size, that is, the lithium composite oxide having a frequency of 50% in the particle size distribution curve, have a particle size of 5 to 20 μm. .
When the particle size is less than 5 μm, the specific surface area becomes large and the reaction with the electrolytic solution easily occurs, and the formation and the formation of decomposition products on the surface of the positive electrode active material may hinder the absorption and release of lithium, If it exceeds 20 μm, the reaction area between the positive electrode active material and the electrolytic solution becomes small, so that occlusion and release of lithium ions hardly occur, and battery characteristics may deteriorate.
In addition, such a measurement of the particle size can be performed by a dynamic light scattering method.
Furthermore, the specific surface area of such a lithium composite oxide is 0.1 to 1.5 m. 2 / G is preferred.
0.1m specific surface area 2 / G, the reaction area between the powder and the electrolyte required for inserting and extracting lithium ions is small, so that the battery characteristics may be deteriorated. 2 If it exceeds / g, the reaction area with the electrolyte increases due to an increase in the reaction area with the electrolyte, and the absorption and release of lithium are hindered by the decomposition of the electrolyte and generation on the powder surface. There is.
[0015]
Next, a method for producing the above-described lithium composite oxide will be described.
Such a lithium transition metal composite oxide is prepared by mixing and mixing hydroxides such as Ni, Co, and Mn as transition metal sources according to the respective compositions, and mixing LiOH as a lithium source with the mixture. It can be obtained by firing at 11100 ° C.
In this case, the starting materials of the transition metal source that can be used are not limited to those described above, and transition metal carbonates, nitrates, sulfates, and the like can also be used. Further, a complex transition metal hydroxide or carbonate containing a plurality of types of transition metals can also be used.
On the other hand, as a starting material of the lithium source, in addition to hydroxide, Li 2 O, Li 2 O 3 And LiNiO 3 Can be used.
[0016]
Next, the lithium ion nonaqueous electrolyte secondary battery of the present invention will be described.
As described above, this non-aqueous electrolyte secondary battery includes a positive electrode using the lithium composite oxide as a positive electrode active material, a negative electrode using a material capable of absorbing and releasing lithium as a negative electrode active material, and a non-aqueous electrolyte. Prepare.
[0017]
Here, as the negative electrode active material, any material capable of electrochemically inserting and extracting (doping and undoping) lithium at a potential lower than that of lithium metal or lithium may be used. No, but pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke), graphites (natural graphite, artificial graphite, graphite), glassy carbons, organic polymer compound fired bodies (phenolic resin, furan) Resin or the like fired at an appropriate temperature), carbon fiber, activated carbon, and the like can be used.
In addition, other materials that form lithium alloys of lithium and aluminum, lead, copper, indium, and the like, metal oxides such as iron oxide, titanium oxide, and tin oxide, and intermetallic compounds; Releasable polymers such as polyacetylene and polypyrrole can also be used.
[0018]
The above-described doping of lithium into the carbonaceous material or alloy material may be performed electrochemically in the battery after the battery is manufactured, or may be a positive electrode or a lithium source other than the positive electrode after or before the battery is manufactured. And may be electrochemically doped. Further, it may be synthesized as a lithium-containing material at the time of material synthesis, and may be contained in the negative electrode active material at the time of manufacturing a battery.
[0019]
In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode or the negative electrode is typically a positive electrode mixture or a negative electrode containing the above-mentioned active material and a binder on both surfaces of a band-shaped or rectangular current collector. It is produced by forming a positive electrode mixture layer or a negative electrode mixture layer coated with the mixture. Here, the current collector is not particularly limited as long as it has a current collecting function, and in terms of shape, a net-like material such as a foil, a mesh, and an expanded metal may be used. As the material, aluminum, stainless steel, nickel, or the like is used for the positive electrode current collector, and a copper foil, stainless steel, and nickel foil that do not form an alloy with lithium is used for the negative electrode current collector.
Further, the positive electrode mixture or the negative electrode mixture is obtained by mixing a known binder such as polyvinylpyrrolidone and a known additive such as a conductive agent such as graphite, if necessary, in addition to the above active material.
The formation of the positive electrode mixture layer or the negative electrode mixture layer is typically performed by applying the positive electrode mixture or the negative electrode mixture on both surfaces of the current collector and drying the mixture.
[0020]
Further, in the present invention, from the demand for higher capacity and the like, typically, the positive electrode and the negative electrode as described above, the separator is typically formed in a band shape or a rectangular shape, and such a positive electrode sheet and a negative electrode sheet are formed. A laminate sheet is formed with a separator inserted between the laminate sheets, and a battery is formed using a wound electrode produced by winding the laminate sheet.
The mode of winding is not particularly limited, and may be spiral or spiral. Usually, winding is performed many times to produce a wound electrode.
[0021]
It is sufficient for the separator to have a function of separating the positive electrode and the negative electrode and preventing a short circuit due to physical contact between the two, and examples thereof include a woven fabric, a nonwoven fabric, and a microporous synthetic resin membrane. Specifically, it is preferable to use a microporous polyethylene or polypropylene film.Since such a microporous film softens at a high temperature, closes the micropores and suppresses the outflow of lithium ions, it is used as a measure against overcurrent. Can also be suitably used.
Note that, from the relationship between lithium ion conductivity and energy density, it is preferable that the thickness of the separator be as small as possible, and typically, it is desirable that the thickness be 50 μm or less.
[0022]
Next, as for "non-aqueous electrolyte", in the present specification, a non-aqueous electrolyte in which an electrolyte is dispersed or dissolved in a non-aqueous medium, and a solid electrolyte, in which the electrolyte is dissolved in a non-aqueous solvent such as propylene carbonate, In addition, a solid electrolyte having lithium ion conductivity and a solution obtained by dissolving an electrolyte in a non-aqueous dispersion medium (a polymer such as polyvinylidene fluoride) in a gel state are used.
Such non-aqueous electrolytes can be broadly classified into non-aqueous electrolyte solutions in which the electrolyte is dissolved in a non-aqueous solvent, gel electrolytes in which the electrolyte is dissolved in a gel-like non-aqueous dispersion medium, and solid electrolytes.
[0023]
Here, examples of the electrolyte dissolved in a non-aqueous solvent or dispersed in a gel non-aqueous dispersion medium include various lithium salts such as LiCl, LiBr, and LiClO. 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 Or LiB (C 6 H 5 ) 4 And mixtures thereof, among which LiPF 6 And LiBF 4 It is preferred to use
[0024]
Further, as the non-aqueous solvent, aprotic solvents like the conventional non-aqueous lithium battery, for example, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, γ-butyl lactone, γ-butyrolactan, sulfolane, methyl sulfolane, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, methyl propionate, methyl butyrate, dimethyl carbonate, diethyl carbonate , Dipropyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, propionitrile, acetonitrile, anisole, diethyl ether, acetate, butyrate and propionate And the like.
In particular, from the viewpoint of voltage stability, it is preferable to use cyclic carbonates such as propylene carbonate and vinylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate and dipropyl carbonate. In addition, such a non-aqueous solvent may be used alone or as a mixture of two or more.
[0025]
On the other hand, examples of the gel-like non-aqueous dispersion medium include polymers such as polyvinylidene fluoride, polyacrylonitrile, polymethyl methacrylate, polyethylene oxide, and polysiloxane. The molecular weight of these polymers is suitably about 300,000 to 800,000.
The dispersion of the electrolyte in the polymer can be typically carried out by dissolving a polymer such as polyvinylidene fluoride in a non-aqueous electrolyte in which the electrolyte is dissolved in a non-aqueous solvent, and forming a sol.
[0026]
Further, as the solid electrolyte, a crystalline solid electrolyte such as LiI or LiI.Li 2 SP 2 S 6 Glass and LiI.Li 2 SB 2 S 6 The material is not particularly limited as long as it is an amorphous solid electrolyte represented by a lithium ion conductive glass such as a system glass.
[0027]
The non-aqueous electrolyte secondary battery of the present invention is typically formed by housing the above-mentioned wound electrode together with the non-aqueous electrolyte in a metal or plastic case, etc., from the viewpoint of lightness and thinness. Is preferably housed in a film-shaped outer case, and the material of the laminate film forming the film-shaped outer case is polyethylene terephthalate (PET), molten polypropylene (PP), unstretched polypropylene (CPP), polyethylene Plastic materials such as (PE), low-density polyethylene (LDPE), high-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and polyamide-based synthetic polymer materials (trade name: nylon: Ny); Aluminum (Al) is used as a moisture-permeable barrier film.
[0028]
The most common configuration of the above-mentioned laminated film can be exemplified by the case where the exterior layer / metal film (barrier film) / sealant layer is PET / Al / PE. Further, not limited to this combination, in the configuration of the outer layer / metal film / sealant layer, Ny / Al / CPP, PET / Al / CPP, PET / Al / PET / CPP, PET / Ny / Al / CPP, PET / Adopts combinations of Ny / Al / Ny / CPP, PET / Ny / Al / Ny / PE, Ny / PE / Al / LLDPE, PET / PE / Al / PET / LDPE, PET / Ny / Al / LDPE / CPP, etc. You can also. Of course, a metal other than Al can be used for the metal film.
[0029]
As described above, the lithium ion nonaqueous electrolyte secondary battery of the present invention has a positive electrode, a negative electrode, and a nonaqueous electrolyte containing the positive electrode active material of the present invention as essential components, but the battery shape is not particularly limited. However, various battery shapes such as a cylindrical type, a square type, a coin type, and a button type can be adopted.
Further, in order to obtain a sealed non-aqueous electrolyte secondary battery with higher safety, it is desirable to provide a means such as a safety valve which operates due to an increase in battery internal pressure and shuts off current in the event of an abnormality such as overcharging. .
Since the non-aqueous electrolyte secondary battery of the present invention is configured using the above-described various materials, particularly the specific positive electrode active material, the capacity retention rate accompanying the charge / discharge cycle at a high capacity is high. .
[0030]
Next, some embodiments of the above-described lithium ion nonaqueous electrolyte secondary battery will be specifically described with reference to the drawings.
FIG. 1 is a sectional view showing an example of the lithium ion nonaqueous electrolyte secondary battery of the present invention. As shown in the figure, this non-aqueous electrolyte secondary battery is obtained by laminating a strip-shaped positive electrode 11 and a negative electrode 12 with a separator 13 interposed therebetween, and further winding a wound electrode body 10 above and below the wound electrode body 10. It is housed in the battery can 1 with the plate 2 attached.
Further, a battery cover 4 is caulked to the battery can 1 via a gasket 7, and the battery cover 4 is electrically connected to the positive electrode 11 via a positive electrode lead 15, and functions as a positive electrode of the battery. On the other hand, the negative electrode 12 is electrically connected to the bottom of the battery can 1 via the negative electrode lead 16, and the battery can 1 is configured to function as a negative electrode of the battery.
[0031]
In this battery, a center pin 14 is provided at the center of the wound electrode body 10 to perform a function of interrupting current, and the safety valve 5 having the disk plate 5a is provided with a positive electrode lead 15 when the pressure inside the battery increases. This is a safety device that deforms a portion electrically connected to the device and releases the electrical connection.
The thermal resistance element 6 disposed between the safety valve 5 and the battery lid 4 serves as an element in the battery that cuts off current when the battery is charged or discharged in excess of the maximum rated current value or when the battery is exposed to high temperatures. Function.
[0032]
FIG. 2 shows the structure of the above-described belt-shaped positive electrode 11. As shown in the figure, the strip-shaped positive electrode 11 is formed by coating both sides (front and back) of a strip-shaped positive electrode current collector 12a with positive electrode mixture layers 12b and 12c.
In the nonaqueous electrolyte secondary battery of the present invention, as shown, the ends of the positive electrode mixture layers 12b and 12c are arranged irregularly in the longitudinal direction at both or one end of the band-shaped positive electrode 11, As described below, it is preferable to reduce the amount of active material not involved in the battery reaction to effectively utilize the inside of the battery and to improve the energy density of the obtained nonaqueous electrolyte secondary battery.
Further, the strip-shaped negative electrode 12 has the same structure as the strip-shaped positive electrode 11, and similarly to the case of the positive electrode, the ends of the negative electrode mixture layer coated on the front and back surfaces of the current collector are flush with each other when viewed from the side. The same effect as described above can be obtained by arranging them so as not to be disturbed, but the negative electrode structure is not shown.
The above-described effect can be obtained by performing the above-described mixture layer edge treatment on at least one of the positive electrode and the negative electrode. However, the mixture layer edge treatment may be performed on both the positive electrode and the negative electrode.
[0033]
FIG. 3 is a cross-sectional view of the non-aqueous electrolyte secondary battery shown in FIG. 1 taken along line AA, and shows a wound electrode body 10.
In FIG. 1, a spirally wound electrode body 10 is formed by spirally winding a laminated body in which four layers of a band-shaped negative electrode 12, a separator 13 (not shown), a band-shaped positive electrode 11, and a separator 13 (not shown) are laminated in this order. The strip-shaped negative electrode 12 is disposed so as to be inside (at the center) of the electrode body 10. And about the strip | belt-shaped positive electrode 11 and the strip | belt-shaped negative electrode, each mixture layer 11c and 12c are arrange | positioned so that the mixture layer 11b and 12b may exist outside (center side) of the spirally wound electrode body 10 (outside). (See FIG. 2).
In general, in such a wound electrode body, in order to prevent deposition of lithium during charging and an internal short circuit, a negative electrode 12 existing in parallel with the positive electrode 11 via a separator 13 (not shown) is provided. The width (height in FIG. 1) and length (winding length), that is, the reaction area, are formed to be larger than the width and length (reaction area) of the positive electrode 11.
The spirally wound electrode body shown in this figure is of a general spiral wound type, in which the ends of the mixture layers of the strip-shaped positive electrode 11 and the strip-shaped negative electrode 12 are not treated, and the cathode mixture layer is not treated. The ends of 11b and 11c and the ends of negative electrode mixture layers 12b and 12c are flush with each other when viewed from the side.
[0034]
FIG. 4 shows a wound electrode body formed by another winding method.
In the spirally wound electrode body shown in the figure, a negative electrode mixture layer is formed on one side only at one end of the strip-shaped negative electrode 12, that is, at the end that constitutes the outermost periphery of the wound electrode body. In other words, on the outermost periphery of the wound electrode body, only the inner mixture layer 12c of the negative electrode is formed, and the outer mixture layer 12b is not formed. Note that no treatment is applied to both ends of the strip-shaped positive electrode 11, and the inner mixture layer 11c and the outer mixture layer 11b are flush with each other at both ends.
By adopting such a winding type, only the positive electrode mixture layer portion and the negative electrode mixture layer portion that actually participate in the battery reaction can be present inside the battery, so that the inside of the battery can be effectively utilized. And the energy density of the obtained non-aqueous electrolyte secondary battery can be improved.
[0035]
FIG. 5 shows a spirally wound electrode body employing another spirally wound type. In the other end (the innermost end) of the strip-shaped negative electrode 12, only the outer mixture layer 12b is formed. As for the positive electrode 11, only the inner mixture layer 11c is formed at one end (the outermost end). At one end (the outermost end) of the strip-shaped negative electrode 12 and the other end (the innermost end) of the strip-shaped positive electrode, the mixture layer is formed flush.
Even by adopting such a winding type, the inside of the battery is effectively used as described above, and the energy density of the obtained battery can be improved.
[0036]
FIG. 6 shows another winding type in which only the inner mixture layer 11c is formed at one end (outermost end) of the strip-shaped positive electrode 11, and the other end (innermost end). Part), the positive electrode mixture layers are flush with each other. In addition, about the strip | belt-shaped negative electrode 12, the negative electrode mixture layer is flush at both ends.
FIG. 7 shows another winding type, in which the other end (innermost end) of the strip-shaped positive electrode 11 has an outer mixture layer 11b and the other end (outermost end) has an inner mixture layer. Only 11c is formed. As for the strip-shaped negative electrode 12, the negative electrode mixture layers are flush at both ends.
6 and 7, the inside of the battery can be effectively used as described above, and the energy density of the obtained battery can be improved.
[0037]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0038]
(Examples 1 to 5, Comparative Examples 1 to 7)
As shown in Table 1 below, commercially available lithium hydroxide, nickel hydroxide, cobalt hydroxide and manganese hydroxide were used, and in Examples 1 to 5, the molar ratio was 0.05 ≦ x ≦ 1.10. In the range of 1 ≦ y + z ≦ 0.7, 0.05 ≦ z ≦ 0.4, Comparative Examples 1 to 3 are prepared and mixed so as to be out of this range, fired in an oxygen stream, Li x Ni (1-yz) Co y Mn z A a O 2 ... A lithium composite oxide represented by (1) was produced.
When the obtained powder samples of each example were analyzed by X-ray diffraction, LiNiO 2 The substance was identified as having a structure similar to that of. The confirmed peak is LiNiO 2 Nothing other than the origin was present, indicating that this sample was a single-layer material with cobalt and aluminum forming a solid solution at nickel sites.
[0039]
90% of the active material of each example prepared as above was mixed with 7% of graphite as a conductive agent and 3% of polyvinylidene fluoride (PVdF) as a binder, and mixed with N-methyl-2-pyrrolidone (NMP). This was dispersed to obtain a positive electrode mixture slurry. After drying and re-grinding, a coin-type compact was pressed by a hydraulic press so that the surface density was constant.
Each of the obtained green compact samples was sandwiched between stainless steel electrodes, and the volume density was 3.3 g / cm. 3 A constant voltage (V) was applied to the green compact while maintaining a constant pressure from both ends such that At the moment when a voltage is applied, Li ions and the like in addition to electrons also carry charge transfer, so that the current value becomes larger than the actual value. However, polarization occurs immediately, so that the current value decreases and settles to a constant value. The DC resistance value (R) was estimated from the current value (I) and Ohm's law (V = IR) at this time.
This measurement was performed at 23 ° C. The thickness of the green compact is d, and the contact area with the electrode is S (1.8 cm in this measurement). 2 ) Can be calculated by σ = d / (RS). After the measurement, the thickness d of the green compact was measured, and the electron conductivity was estimated. The results obtained are also shown in Table 1.
[0040]
At the same time, a positive electrode mixture slurry prepared with the same composition as above was uniformly applied to both sides of a 25 μm-thick strip-shaped aluminum foil, dried, and then compressed by a rotor press to obtain a strip-shaped positive electrode.
On the other hand, 90% of powdered artificial graphite as a negative electrode active material was mixed with 10% of PVdF, and further dispersed in NMP to obtain a negative electrode mixture slurry. This negative electrode mixture slurry was uniformly applied to both surfaces of a copper foil having a thickness of 15 μm, dried, and then compressed by a roller press to obtain a strip-shaped negative electrode.
[0041]
The strip-shaped positive electrode and the strip-shaped negative electrode manufactured as described above were wound many times via the porous polyolefin, thereby manufacturing a spiral electrode body as shown in FIG.
The electrode body was housed in a nickel-plated iron battery can, and insulating plates were arranged on both upper and lower surfaces of the electrode body. Next, the aluminum positive electrode lead was led out from the current collector, and was welded to the projection of the safety valve, which was electrically connected to the battery lid, and the nickel negative electrode lead was led out from the negative electrode current collector to form a battery can. Welded to the bottom.
On the other hand, LiPF was added to a mixed solution having a deposition mixing ratio of ethylene carbonate and methyl ethyl carbonate of 1: 1 as an electrolytic solution. 6 To 1 mol / dm 3 To obtain a non-aqueous electrolyte solution.
Thereafter, the electrolyte solution is injected into the battery can into which the above-described electrode body is incorporated, and the battery can is caulked through an insulating sealing gasket to fix the safety valve, the PTC element, and the battery lid. Each cylindrical battery of 18 mm in height and 65 mm in height was produced.
[0042]
[Performance evaluation]
The non-aqueous electrolyte secondary batteries of the respective examples prepared as described above were charged under the conditions of an environmental temperature of 25 ° C., a charging pressure of 4.20 V, a charging current of 1000 mA, a charging time of 2.5 hours, and then discharging. Discharge was performed at a current of 750 mA and a final voltage of 3.0 V, and the initial capacity was determined. Further, charge and discharge were repeated at an environmental temperature of 50 ° C., and the discharge capacity at the 100th cycle was measured to determine the maintenance ratio with respect to the initial capacity.
After applying a constant voltage of 4.2 V to each of the produced batteries and continuing to charge them at an environmental temperature of 60 ° C. for one month, the batteries were discharged under the same conditions as above, and the capacity retention was calculated from the discharge capacity and the initial capacity. Calculated. The results obtained are also shown in Table 1.
[0043]
[Table 1]
Figure 2004111076
[0044]
From the evaluation results of Examples 1 to 5 and Comparative Examples 1 to 7 shown in Table 1,
General formula Li x Ni (1-yz) Co y Mn z A a O 2 ... The nickel, cobalt, and manganese composition ratios of the lithium composite oxide represented by (1) are defined in the range of 0.1 ≦ y + z ≦ 0.7 and 0.05 ≦ z ≦ 0.40 to achieve high capacity. It has been found that a non-aqueous electrolyte secondary battery having excellent high-temperature cycle characteristics can be manufactured.
As shown in Example 5, when Al is added as an additive element at a composition ratio of 0.05, the cycle characteristics at high temperatures are significantly improved. Similar effects can be expected by adding Fe, V, Cr, Mg, Ti, Al, B or Ca as an additional element and any mixture thereof.
[0045]
As can be seen from the evaluation results of Comparative Examples 1 to 3, when an active material is produced outside the above composition range, the initial discharge capacity is significantly reduced and the high-temperature cycle characteristics are deteriorated.
Under the above conditions alone, as in Comparative Examples 6 and 7, although the initial discharge capacity and the high-temperature cycle characteristics are excellent, the reactivity with the electrolytic solution at a high temperature is increased due to the high electron conductivity. As a result, it is difficult to obtain a satisfactory result in the capacity recovery rate. Therefore, as shown in Example 1 and Example 5, by reducing the amount of the conductive agent, the electron conductivity is reduced, the reaction with the electrolytic solution at high temperature is suppressed, and the capacity recovery rate at high temperature float charging is reduced. Could be improved.
[0046]
From the above results, the combination of a positive electrode using the lithium composite oxide represented by the above general formula (1) as a positive electrode active material, a negative electrode active material capable of inserting and extracting lithium, and a nonaqueous electrolyte solution It was clarified that a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics and float characteristics could be manufactured.
[0047]
【The invention's effect】
As described above, according to the present invention, since a lithium composite oxide having a predetermined composition is used, a positive electrode active material capable of realizing a lithium ion nonaqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics And a lithium ion nonaqueous electrolyte secondary battery using the positive electrode active material.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of a lithium ion nonaqueous electrolyte secondary battery of the present invention.
FIG. 2 is a perspective view showing a structure of a belt-shaped positive electrode.
FIG. 3 is a cross-sectional view showing the wound electrode body taken along line AA in FIG.
FIG. 4 is a cross-sectional view showing another example of a wound electrode body.
FIG. 5 is a cross-sectional view showing another example of a wound electrode body.
FIG. 6 is a sectional view showing still another example of a wound electrode body.
FIG. 7 is a cross-sectional view showing another example of a wound electrode body.
[Explanation of symbols]
1 Battery can
2 Insulating plate
4 Battery cover
5 Safety valve
5a disk board
6 Thermal resistance element
7 Gasket
10-wound electrode body
11 Positive electrode
11a positive electrode current collector
11b Positive electrode mixture layer (outside)
11c Positive electrode mixture layer (inside)
12 Negative electrode
12a negative electrode current collector
12b Negative electrode mixture layer (outside)
12c Negative electrode mixture layer (inside)
13 Separator
14 Center pin
15 Positive electrode lead
16 Negative electrode lead

Claims (6)

次の一般式
LiNi(1−y−z)CoMn…▲1▼
(式中のAはFe、V、Cr、Mn、Ti、Mg、Al、B及びCaから成る群より選ばれた少なくとも1種の元素を示し、x、y及びzは各々0.05≦x≦1.10、0.10≦y+z≦0.70、0.05≦z≦0.40、aは0≦a≦0.1を満足する)で表され、その電子伝導度σが10−4≦σ≦10−1S/cmであるリチウム複合酸化物を含有することを特徴とするリチウムイオン非水電解質二次電池用の正極活物質。
Following general formula Li x Ni (1-y- z) Co y Mn z A a O 2 ... ▲ 1 ▼
(A in the formula represents at least one element selected from the group consisting of Fe, V, Cr, Mn, Ti, Mg, Al, B and Ca, and x, y and z each represent 0.05 ≦ x ≤ 1.10, 0.10 ≤ y + z ≤ 0.70, 0.05 ≤ z ≤ 0.40, a satisfies 0 ≤ a ≤ 0.1), and has an electron conductivity σ of 10 A positive electrode active material for a lithium ion nonaqueous electrolyte secondary battery, comprising a lithium composite oxide satisfying 4 ≦ σ ≦ 10 −1 S / cm.
上記リチウム複合酸化物の粒度分布曲線において、その頻度が50%における粒径が5〜20μmであることを特徴とする請求項1に記載の正極活物質。The positive electrode active material according to claim 1, wherein the particle diameter distribution curve of the lithium composite oxide has a particle diameter of 5 to 20 m at a frequency of 50%. 上記リチウム複合酸化物の比表面積が0.1〜1.5m/gであることを特徴とする請求項1に記載の正極活物質。The cathode active material according to claim 1, specific surface area of the lithium composite oxide is characterized by a 0.1~1.5m 2 / g. リチウムイオンをドープし且つ脱ドープできる材料を正極活物質又は負極活物質とする正極及び負極と、
非水媒体に電解質を分散して成る非水電解質
を備えるリチウムイオン非水電解質二次電池において、
上記正極活物質が、次の一般式
LiNi(1−y−z)CoMn…▲1▼
(式中のAはFe、V、Cr、Mn、Ti、Mg、Al、B及びCaから成る群より選ばれた少なくとも1種の元素を示し、x、y及びzは各々0.05≦x≦1.10、0.10≦y+z≦0.70、0.05≦z≦0.40、aは0≦a≦0.1を満足する)で表され、その電子伝導度σが10−4≦σ≦10−1S/cmであるリチウム複合酸化物を含有することを特徴とするリチウムイオン非水電解質二次電池。
Positive and negative electrodes using a material capable of doping and undoping lithium ions as a positive electrode active material or a negative electrode active material,
In a lithium ion non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte obtained by dispersing the electrolyte in a non-aqueous medium,
The positive electrode active material has the following general formula: Li x Ni (1-yz) Co y M n M z A a O 2 .
(A in the formula represents at least one element selected from the group consisting of Fe, V, Cr, Mn, Ti, Mg, Al, B and Ca, and x, y and z each represent 0.05 ≦ x ≤ 1.10, 0.10 ≤ y + z ≤ 0.70, 0.05 ≤ z ≤ 0.40, a satisfies 0 ≤ a ≤ 0.1), and has an electron conductivity σ of 10 A lithium ion nonaqueous electrolyte secondary battery comprising a lithium composite oxide satisfying 4 ≦ σ ≦ 10 −1 S / cm.
上記リチウム複合酸化物の50%粒径が5〜20μmであることを特徴とする請求項4に記載のリチウムイオン非水電解質二次電池。The lithium ion nonaqueous electrolyte secondary battery according to claim 4, wherein a 50% particle size of the lithium composite oxide is 5 to 20 m. 上記リチウム複合酸化物の比表面積が0.1〜1.5m/gであることを特徴とする請求項5に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 5 in which the specific surface area of the lithium composite oxide is characterized by a 0.1~1.5m 2 / g.
JP2002268357A 2002-09-13 2002-09-13 Positive electrode active material and nonaqueous electrolyte secondary battery Pending JP2004111076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002268357A JP2004111076A (en) 2002-09-13 2002-09-13 Positive electrode active material and nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002268357A JP2004111076A (en) 2002-09-13 2002-09-13 Positive electrode active material and nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2004111076A true JP2004111076A (en) 2004-04-08

Family

ID=32266591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002268357A Pending JP2004111076A (en) 2002-09-13 2002-09-13 Positive electrode active material and nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2004111076A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082046A1 (en) * 2003-03-14 2004-09-23 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
WO2005104274A1 (en) * 2004-04-27 2005-11-03 Mitsubishi Chemical Corporation Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
JP2005339970A (en) * 2004-05-26 2005-12-08 Sony Corp Cathode activator and nonaqueous electrolyte secondary battery
JP2005340186A (en) * 2004-04-27 2005-12-08 Mitsubishi Chemicals Corp Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive electrode using it, and lithium secondary battery
JP2006216395A (en) * 2005-02-04 2006-08-17 Tdk Corp Lithium ion battery pack
WO2006118013A1 (en) * 2005-04-28 2006-11-09 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
KR100660759B1 (en) 2005-03-11 2006-12-22 제일모직주식회사 A Cathode Material for Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
JP2007095495A (en) * 2005-09-29 2007-04-12 Hitachi Metals Ltd Positive electrode active substance for lithium secondary battery, and non-aqueous lithium secondary battery
KR100734225B1 (en) * 2005-12-09 2007-07-02 제일모직주식회사 A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
JP2008060076A (en) * 2006-08-01 2008-03-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
KR100815583B1 (en) 2006-10-13 2008-03-20 한양대학교 산학협력단 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2008147068A (en) * 2006-12-12 2008-06-26 Ise Chemicals Corp Lithium composite oxide for nonaqueous electrolyte secondary battery
JP2008153017A (en) * 2006-12-15 2008-07-03 Ise Chemicals Corp Positive active material for nonaqueous electrolyte secondary battery
WO2009014158A1 (en) * 2007-07-25 2009-01-29 Nippon Chemical Industrial Co., Ltd Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US7976983B2 (en) 2006-03-06 2011-07-12 Panasonic Corporation Lithium ion secondary battery
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8673499B2 (en) 2005-06-16 2014-03-18 Panasonic Corporation Lithium ion secondary battery
JP2014517453A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
EP2445039A4 (en) * 2009-06-17 2015-04-29 Lg Chemical Ltd Positive electrode active material for lithium secondary battery
EP2330664A4 (en) * 2008-09-10 2015-04-29 Lg Chemical Ltd Positive electrode active substance for lithium secondary battery
JP2015144135A (en) * 2015-03-30 2015-08-06 株式会社Gsユアサ battery
US9236608B2 (en) 2008-09-10 2016-01-12 Lg Chem, Ltd. Cathode active material for lithium secondary battery
JPWO2014010448A1 (en) * 2012-07-12 2016-06-23 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
US9899677B2 (en) 2010-06-13 2018-02-20 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2020111545A1 (en) * 2018-11-30 2020-06-04 주식회사 엘지화학 Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
CN115004413A (en) * 2021-09-15 2022-09-02 宁德新能源科技有限公司 Electrochemical device and electronic device

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082046A1 (en) * 2003-03-14 2004-09-23 Seimi Chemical Co., Ltd. Positive electrode active material powder for lithium secondary battery
WO2005104274A1 (en) * 2004-04-27 2005-11-03 Mitsubishi Chemical Corporation Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
JP2005340186A (en) * 2004-04-27 2005-12-08 Mitsubishi Chemicals Corp Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive electrode using it, and lithium secondary battery
US8354191B2 (en) 2004-04-27 2013-01-15 Mitsubishi Chemical Corporation Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
JP4529784B2 (en) * 2004-04-27 2010-08-25 三菱化学株式会社 Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, positive electrode for lithium secondary battery using the same, and lithium secondary battery
CN100440594C (en) * 2004-04-27 2008-12-03 三菱化学株式会社 Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery and manufacturing method thereof, lithium secondary battery positive e
JP2005339970A (en) * 2004-05-26 2005-12-08 Sony Corp Cathode activator and nonaqueous electrolyte secondary battery
JP2006216395A (en) * 2005-02-04 2006-08-17 Tdk Corp Lithium ion battery pack
KR100660759B1 (en) 2005-03-11 2006-12-22 제일모직주식회사 A Cathode Material for Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7943111B2 (en) 2005-04-13 2011-05-17 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US8815204B2 (en) 2005-04-13 2014-08-26 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8795897B2 (en) 2005-04-13 2014-08-05 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8784770B2 (en) 2005-04-13 2014-07-22 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US7939049B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Cathode material containing Ni-based lithium transition metal oxide
US7939203B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Battery containing Ni-based lithium transition metal oxide
US8574541B2 (en) 2005-04-13 2013-11-05 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
WO2006118013A1 (en) * 2005-04-28 2006-11-09 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US7981546B2 (en) 2005-04-28 2011-07-19 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8673499B2 (en) 2005-06-16 2014-03-18 Panasonic Corporation Lithium ion secondary battery
JP2007095495A (en) * 2005-09-29 2007-04-12 Hitachi Metals Ltd Positive electrode active substance for lithium secondary battery, and non-aqueous lithium secondary battery
KR100734225B1 (en) * 2005-12-09 2007-07-02 제일모직주식회사 A Cathode Material for Lithium Secondary Batteries with Non-Aqueous Electrolyte, a Process for preparing the Cathode Material and Lithium secondary Battery containing the same
US7976983B2 (en) 2006-03-06 2011-07-12 Panasonic Corporation Lithium ion secondary battery
JP2008060076A (en) * 2006-08-01 2008-03-13 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
KR100815583B1 (en) 2006-10-13 2008-03-20 한양대학교 산학협력단 Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2008147068A (en) * 2006-12-12 2008-06-26 Ise Chemicals Corp Lithium composite oxide for nonaqueous electrolyte secondary battery
JP2008153017A (en) * 2006-12-15 2008-07-03 Ise Chemicals Corp Positive active material for nonaqueous electrolyte secondary battery
JP2009032467A (en) * 2007-07-25 2009-02-12 Nippon Chem Ind Co Ltd Positive active material for lithium secondary battery, its manufacturing method, and lithium secondary battery
WO2009014158A1 (en) * 2007-07-25 2009-01-29 Nippon Chemical Industrial Co., Ltd Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery
KR101478861B1 (en) 2007-07-25 2015-01-02 니폰 가가쿠 고교 가부시키가이샤 Positive electrode active material for lithium secondary battery, method for production thereof, and lithium secondary battery
EP2330664A4 (en) * 2008-09-10 2015-04-29 Lg Chemical Ltd Positive electrode active substance for lithium secondary battery
US9236608B2 (en) 2008-09-10 2016-01-12 Lg Chem, Ltd. Cathode active material for lithium secondary battery
EP2445039A4 (en) * 2009-06-17 2015-04-29 Lg Chemical Ltd Positive electrode active material for lithium secondary battery
US9899677B2 (en) 2010-06-13 2018-02-20 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
JP2014517453A (en) * 2011-05-23 2014-07-17 エルジー ケム. エルティーディ. High power lithium secondary battery with improved power density characteristics
JPWO2014010448A1 (en) * 2012-07-12 2016-06-23 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
US10084188B2 (en) 2012-07-12 2018-09-25 Sumitomo Metal Mining Co., Ltd. Positive electrode active substance for nonaqueous electrolyte secondary cell, method for producing same, and nonaqueous electrolyte secondary cell using positive electrode active substance
JP2015144135A (en) * 2015-03-30 2015-08-06 株式会社Gsユアサ battery
WO2020111545A1 (en) * 2018-11-30 2020-06-04 주식회사 엘지화학 Positive electrode active material, and positive electrode and lithium secondary battery comprising positive electrode active material
CN113692659A (en) * 2018-11-30 2021-11-23 株式会社Lg新能源 Positive electrode active material, and positive electrode and lithium secondary battery comprising same
CN115004413A (en) * 2021-09-15 2022-09-02 宁德新能源科技有限公司 Electrochemical device and electronic device

Similar Documents

Publication Publication Date Title
JP2004111076A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
US8003255B2 (en) Nonaqueous electrolyte battery, lithium titanium composite oxide and battery pack
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP4172423B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP4626568B2 (en) Lithium ion secondary battery
US10096833B2 (en) Electrode, nonaqueous electrolyte battery, and battery pack
WO2015111710A1 (en) Non-aqueous secondary battery
JP2006134770A (en) Cathode and battery
JP2011243558A (en) Lithium secondary battery positive electrode and lithium secondary battery
JP2011233245A (en) Lithium secondary battery
JP2010262826A (en) Active material, battery, and method for manufacturing electrode
JP2007317534A (en) Non-aqueous electrolyte secondary battery
JP2002042889A (en) Nonaqueous electrolyte secondary battery
JP2009117159A (en) Positive electrode and lithium ion secondary battery
US10411250B2 (en) Nonaqueous electrolyte battery, battery pack, and vehicle
JP2009043477A (en) Positive electrode active material, positive electrode as well as nonaqueous electrolyte battery using the same
KR20070081775A (en) Cathode active material and non-aqueous electrolyte secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2014154317A (en) Electrode, nonaqueous electrolyte battery and battery pack
JP2013105703A (en) Battery electrode, nonaqueous electrolyte battery, and battery pack
JP6656370B2 (en) Lithium ion secondary battery and battery pack
JP4284232B2 (en) Nonaqueous electrolyte secondary battery
JP2008103311A (en) Battery
JP2007035419A (en) Battery
JP5566825B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090915