JP2004104682A - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
JP2004104682A
JP2004104682A JP2002266959A JP2002266959A JP2004104682A JP 2004104682 A JP2004104682 A JP 2004104682A JP 2002266959 A JP2002266959 A JP 2002266959A JP 2002266959 A JP2002266959 A JP 2002266959A JP 2004104682 A JP2004104682 A JP 2004104682A
Authority
JP
Japan
Prior art keywords
antenna device
power supply
vertical
horizontal
cylindrical reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002266959A
Other languages
Japanese (ja)
Other versions
JP3854211B2 (en
Inventor
Masayoshi Shintaku
新宅 正佳
Ichiro Oshima
大島 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
DKK Co Ltd
Original Assignee
Denki Kogyo Co Ltd
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd, NTT Docomo Inc filed Critical Denki Kogyo Co Ltd
Priority to JP2002266959A priority Critical patent/JP3854211B2/en
Publication of JP2004104682A publication Critical patent/JP2004104682A/en
Application granted granted Critical
Publication of JP3854211B2 publication Critical patent/JP3854211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nondirectional antenna device in a horizontal surface common for horizontal and vertical polarization which can control a tilt angle in a vertical surface without extending full length. <P>SOLUTION: This antenna device has four side surfaces long in a vertical direction and is provided with a cylindrical reflection board having feeding circuits on a substrate and a plurality of dielectric element substrates arranged on the cylindrical reflection board. In addition, the plurality of dielectric element substrates are attached to the cylindrical reflection board at right angles, and a plurality of branch circuits and horizontal polarization elements or vertical polarization elements are respectively formed so as to surround the cylindrical reflection board. The antenna device has a structure that obtains horizontal non-directionality by connecting the feeding circuits on the substrate of the cylindrical reflection board and feeding power with the same amplitude/same phase, and element substrates for horizontal polarization and element substrates for vertical polarization are alternately vertically arranged. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば移動通信システム等の基地局に使用されるアンテナ装置であって、水平偏波および垂直偏波を用い、かつその水平面指向性が無指向性である偏波共用アンテナ装置に関する。
【0002】
【従来の技術】
陸上移動通信システムでの基地局アンテナ装置の形態の一つとして、無指向性アンテナ装置が選択される場合がある。これは、一般に加入者容量が小さい場所にゾーンを形成する場合等がこれにあたる。
従来、この種のアンテナ装置においては、例えば、コリニアアンテナ等の水平面が無指向性で、垂直面がビーム幅の狭い、垂直偏波を用いたアンテナ装置を使用することが多かった。
近年の移動通信の普及による加入者の増加とともに、さらなる通信品質の向上が求められている。このため、電波の受信効率を上げるため、ダイバーシチ受信方式が採用されている。
スペースダイバーシチが、同じ2つのアンテナを距離をおいて設置する必要があるのに対して、偏波ダイバーシチの場合には、2つのアンテナを距離をおいて設置する必要がなく、図5のように、水平偏波用アンテナと垂直偏波用アンテナを上段と下段に重ね、一つのレドームに収納し、1つのアンテナ装置とすることが可能である。
【0003】
しかしながら、水平偏波用と垂直偏波用の別個のアンテナを上下段に一つにまとめる方法では、アンテナの長さが2倍となってしまうため、実際には個々のアンテナの長さを十分長くすることができず、したがって、利得も高くすることができなかった。
また、コリニアアンテナ等に代表される水平面無指向性アンテナ装置においては、垂直方向に配列された各アンテナ素子への給電は、いわゆる直列給電であり、VSWRや指向性の周波数特性をもつことが知られている。
また、直列給電ゆえに各アンテナ素子への電力分布を任意に与えることが困難であるため、ゾーン構成に関係する垂直面指向性のビーム成形を行うことが困難である。
さらに、垂直面指向性のチルト角度は固定であり、アンテナ設置後に垂直面指向性のチルト角を変えてゾーンを再構築することが不可能である。
チルト角制御を行うために、無理にコリニアアンテナをブロック化し、各ブロックを給電するケーブルを接続すれば、下方のブロックにおいてアンテナ素子の近くをケーブルが通ることによって、その影響により水平面無指向性が乱されることになる。
【0004】
【発明が解決しようとする課題】
前記のように水平偏波用アンテナと垂直偏波用アンテナを上段と下段に重ねる従来の方法では、アンテナ長を長くできないため、高利得を得るのが困難であった。
また、従来のコリニアアンテナ等の水平面無指向性アンテナ装置は直列給電方式であるため、VSWRや指向性の周波数特性をもつとともに、垂直面指向性のビーム成形を行うことが困難であった。
さらに、垂直面指向性のチルト角度が固定であり、設置後に垂直面チルト角度を変えてゾーンを再構築することが不可能であった。
本発明はかかる点に鑑みなされたもので、その目的は前記問題点を解消し、高利得かつ垂直面指向性のビーム成形およびチルト角度変更が可能であり、チルト可変のためのブロック給電ケーブルの存在による水平面の無指向性への影響を取り除いた水平および垂直偏波共用水平面無指向性アンテナ装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明のアンテナ装置は、鉛直方向を長手方向とし、4側面をもつ略四角柱形状の筒状反射板と、該筒状反射板上に配置した複数の誘電体素子基板を備え、前記筒状反射板上に給電回路を形成し、前記複数の誘電体素子基板は、前記筒状反射板の4側面に対して垂直に取り付けられ、それぞれに分岐回路および水平偏波用素子または垂直偏波用素子を前記筒状反射板に対し、囲むように複数配置し、前記筒状反射板上の前記給電回路に接続し、前記水平偏波用素子を備えた誘電体素子基板である水平偏波用素子基板と前記垂直偏波用素子を備えた誘電体素子基板である垂直偏波用素子基板とを鉛直方向に上下に交互に配置したことを特徴とする。
本発明のアンテナ装置は、更に、前記水平偏波用素子基板および前記垂直偏波用素子基板の1または複数の組を備えた箇所を1つのブロックとし、該ブロックを鉛直方向に上下に複数重ねた構造とする。
本発明のアンテナ装置は、更に、前記各ブロックの前記給電回路に接続され給電を行う給電ケーブルを前記筒状反射板の内側内に配置した構造とする。また、前記ブロックの上または下に配置された別の前記ブロックに給電するための前記給電ケーブルを前記筒状反射板の内側内に収容する。
本発明のアンテナ装置は、更に、前記各ブロックへの給電ケーブルを一箇所に集合し、該給電ケーブルに移相器を接続し、前記各ブロックへ給電する電力を制御することにより垂直面指向性のビームチルト制御を行う。
【0006】
本発明は、以上のように、水平および垂直偏波素子基板のうち、同じ偏波基板同士を単一偏波のアンテナの同等の素子間隔で、かつ異なる偏波素子基板を交互に配置することにより、単一偏波アンテナと同じ長さで同等の利得を得ることができる。
また、筒状反射板上に素子基板への給電回路をある一定の面積内に形成することができるため、直列給電方式ではなく、並列給電方式の給電回路が形成でき、よってVSWRおよび指向性の周波数特性を抑えることができる。
さらに、並列給電方式によって、給電回路の設計の容易さにより、各アンテナ素子への電力分布を自由に設定できるので、垂直面指向性の成形が可能となる。また、水平および垂直偏波用素子の数組を1ブロックとし、これを多段化することにより高利得を得ることができるとともに、各ブロックへの給電ケーブルを筒状反射板の空洞内を通すことにより、給電ケーブルが指向性に与える影響をなくすことができる。
また、この給電ケーブルを最下段に集合させ、移相器を接続することにより、垂直面指向性のチルト角度を制御することが可能となる。
【0007】
【発明の実施の形態】
以下、図面に基づいて本発明の好適な実施の形態を詳しく説明する。
図1および図2は本発明の水平および垂直偏波共用アンテナ装置の一実施の形態を示す図である。
図1は、水平偏波素子基板および垂直偏波素子基板がそれぞれ2枚ずつ交互に配置された1ブロックの構成例を示し、図2はその断面であり、水平偏波素子部を示す図である。
4側面をもつ筒状反射板に配置された給電回路は2枚1組となっており、それぞれの組は水平偏波用と垂直偏波用に対応しており、その2組が互いに向かい合わせで配置されている。筒状反射板上の給電回路はマイクロストリップ線路で形成され、2分配回路により、上下それぞれの素子基板への給電の役目をしている。
素子基板への給電は、筒状反射板の端と素子基板との交点から行われ、ここで、素子基板上に形成された平衡ストリップ線路に接続される。
このストリップ線路はこの接続点において2分岐しており、2つのダイポール素子に接続している。
ダイポール素子は素子基板上に4つ形成されており、そのうちの2つは前述の一方の筒状反射板上のマイクロストリップ給電回路から給電されたものであり、残りの2つのダイポール素子はもう一方の筒状反射板上のマイクロストリップ給電回路から給電されたものである。
この筒状給電反射板上のマイクロストリップ給電回路および、素子基板の形状は筒状反射板の中心軸に対して点対称である。
ダイポール素子の配置方向は水平偏波の場合は水平方向に配置し、垂直偏波の場合は垂直方向に配置する。
なお、素子基板上のダイポール素子は筒状反射板の周りを囲むように配置しており、さらに、それらのダイポール素子は同振幅同位相で給電されているので、ダイポール素子の合成指向性は水平面で無指向性となる。
【0008】
図3は、水平および垂直偏波の水平面指向性の実測値を示している。
どちらの偏波においても、偏差の少ない無指向性が得られている。
それぞれの筒状反射板上のマイクロストリップ給電回路には、筒状反射板の空洞内を通して給電ケーブルが接続されており、それぞれ対となる給電ケーブル同士を分配器でまとめている。
これを1ブロックとし、これを多段化することができる。
多段化した場合は図4に示すようにそれぞれのブロックの給電ケーブルは下方のブロックの筒状反射板の空洞内を通して、最下段まで延ばすことができ、そこで、移相器を接続することができる。
【0009】
また、上記の例では、1ブロック内の素子基板組数は2組としたが、垂直面指向性の設計に応じて、1ブロック内の素子基板組数は任意に設定することができる。
また、上記の例では、素子基板上に4つのダイポール素子を配置したが、筒状反射板の大きさが波長に比して小さい場合には2つのダイポール素子で水平面無指向性を得ることができる。
また、本発明の技術は前記実施の形態における技術に限定されるものではなく、同様な機能を果たす他の態様の技術によってもよく、また、本発明の技術は前記構成の範囲内において種々の変更、付加が可能である。
【0010】
【発明の効果】
以上の説明から明らかなように本発明の水平および垂直偏波共用水平面無指向性アンテナ装置によれば、水平および垂直偏波素子基板のうち、同じ偏波基板同士を単一偏波のアンテナの同等の素子間隔で、かつ異なる偏波素子基板を上下方向に交互に配置することにより、単一偏波のアンテナと同じ長さで同等の利得を得ることができる。
また、筒状反射板上に素子基板への給電回路をある一定の面積内に形成することができるため、直列給電方式ではなく、並列給電方式の給電回路が形成でき、よってVSWRおよび指向性の周波数特性を抑えることができる。
さらに、並列給電方式によって、給電回路の設計の容易さにより、各アンテナ素子への電力分布を自由に設定できるので、垂直面指向性の成形が可能となる。また、水平および垂直偏波用素子の数組を1ブロックとし、これを多段化することにより高利得化がねらえるとともに、各ブロックへの給電ケーブルを筒状反射板の空洞内を通すことにより、給電ケーブルが指向性に与える影響をなくすことができる。
また、この給電ケーブルを最下段に集合させ、移相器を接続することにより、垂直面指向性のチルト角度を制御することが可能となるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明のアンテナ装置の1ブロックの構成を示す図。
【図2】本発明のアンテナ装置の断面図。
【図3】本発明のアンテナ装置の水平面指向性を示す図。
【図4】本発明のアンテナ装置を多段化し、移相器を接続したアンテナ装置の構成を示す図。
【図5】従来の偏波共用水平面無指向性アンテナの構成を示す図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an antenna device used for a base station of a mobile communication system or the like, for example, which uses a horizontally polarized wave and a vertically polarized wave and has a non-directional horizontal plane directivity.
[0002]
[Prior art]
An omnidirectional antenna device may be selected as one of the forms of the base station antenna device in the land mobile communication system. This generally corresponds to a case where a zone is formed in a place where the subscriber capacity is small.
Conventionally, in this type of antenna device, for example, an antenna device using a vertically polarized wave, such as a collinear antenna, having a non-directional horizontal plane and a narrow vertical beam width has been often used.
As the number of subscribers increases due to the spread of mobile communication in recent years, further improvement in communication quality is required. For this reason, in order to increase the reception efficiency of radio waves, a diversity reception system has been adopted.
Space diversity requires that the same two antennas be installed at a distance, whereas polarization diversity does not require two antennas to be installed at a distance, as shown in FIG. The antenna for horizontal polarization and the antenna for vertical polarization can be superposed on the upper and lower stages and housed in one radome to form one antenna device.
[0003]
However, in a method in which separate antennas for horizontal polarization and vertical polarization are combined into one at the top and bottom, the length of the antenna is doubled. It could not be made longer, and therefore the gain could not be made higher.
Further, in a horizontal omnidirectional antenna device represented by a collinear antenna or the like, power supply to each antenna element arranged in a vertical direction is so-called series power supply, and it is known that the antenna elements have frequency characteristics of VSWR and directivity. Have been.
In addition, since it is difficult to arbitrarily provide power distribution to each antenna element due to series feeding, it is difficult to perform beam shaping with vertical plane directivity related to the zone configuration.
Further, the tilt angle of the vertical plane directivity is fixed, and it is impossible to reconstruct the zone by changing the tilt angle of the vertical plane directivity after installing the antenna.
In order to control the tilt angle, if the collinear antenna is forcibly divided into blocks and a cable that feeds each block is connected, the cable passes near the antenna element in the lower block, and the horizontal omnidirectionality is affected by that effect. Will be disturbed.
[0004]
[Problems to be solved by the invention]
In the conventional method in which the antenna for horizontal polarization and the antenna for vertical polarization are superposed on the upper and lower stages as described above, it is difficult to obtain a high gain because the antenna length cannot be increased.
In addition, since a conventional horizontal plane omnidirectional antenna device such as a collinear antenna is a series feed system, it has a VSWR and a directivity frequency characteristic, and it is difficult to perform a vertical plane directivity beam shaping.
Furthermore, the tilt angle of the vertical plane directivity is fixed, and it is impossible to reconstruct the zone by changing the vertical plane tilt angle after installation.
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to solve the above-mentioned problems, to provide a high-gain and vertical-plane directivity beam shaping and tilt angle change, and to provide a block power supply cable for tilt variation. An object of the present invention is to provide a horizontal and vertical polarization omnidirectional omnidirectional antenna device that eliminates the influence of the presence on the omnidirectionality of a horizontal plane.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an antenna device according to the present invention is characterized in that a vertical direction is a longitudinal direction, a substantially quadrangular prism-shaped tubular reflector having four side surfaces, and a plurality of dielectrics arranged on the tubular reflector. An element substrate is provided, and a power supply circuit is formed on the cylindrical reflector. The plurality of dielectric element substrates are vertically attached to four side surfaces of the cylindrical reflector, and each has a branch circuit and a horizontal bias. A plurality of wave elements or elements for vertical polarization are arranged so as to surround the cylindrical reflector, and are connected to the power supply circuit on the cylindrical reflector, and the dielectric body includes the element for horizontal polarization. An element substrate for horizontal polarization, which is an element substrate, and an element substrate for vertical polarization, which is a dielectric element substrate provided with the element for vertical polarization, are alternately arranged vertically in the vertical direction.
The antenna device of the present invention further includes a block provided with one or a plurality of sets of the horizontal polarization element substrate and the vertical polarization element substrate as one block, and the blocks are vertically stacked in plural vertically. Structure.
The antenna device according to the present invention has a structure in which a power supply cable connected to the power supply circuit of each of the blocks and supplying power is arranged inside the cylindrical reflector. Further, the power supply cable for supplying power to another block disposed above or below the block is accommodated inside the cylindrical reflector.
The antenna apparatus according to the present invention further includes a feeder cable for each of the blocks gathered at one location, a phase shifter connected to the feeder cable, and a control of the power fed to each of the blocks, thereby providing a vertical plane directivity. Is performed.
[0006]
As described above, according to the present invention, among the horizontal and vertical polarization element substrates, the same polarization substrates are arranged at the same element spacing of a single polarization antenna, and different polarization element substrates are alternately arranged. Thereby, the same gain can be obtained with the same length as the single polarization antenna.
In addition, since a power supply circuit to the element substrate can be formed within a certain area on the cylindrical reflector, a power supply circuit of a parallel power supply system can be formed instead of a serial power supply system, and thus the VSWR and the directivity can be improved. Frequency characteristics can be suppressed.
Further, by the parallel power feeding method, the power distribution to each antenna element can be freely set due to the easiness of designing the power feeding circuit, so that it is possible to shape the directivity of the vertical plane. Also, several sets of horizontal and vertical polarization elements are formed as one block, and high gain can be obtained by increasing the number of stages, and a power supply cable to each block is passed through the cavity of the cylindrical reflector. Thus, the influence of the power supply cable on the directivity can be eliminated.
In addition, by assembling the power supply cables at the lowermost stage and connecting the phase shifters, it is possible to control the tilt angle of the vertical plane directivity.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 are views showing an embodiment of a horizontal and vertical polarization shared antenna device according to the present invention.
FIG. 1 shows a configuration example of one block in which two horizontal polarization element substrates and two vertical polarization element substrates are alternately arranged, and FIG. 2 is a cross-sectional view showing a horizontal polarization element portion. is there.
The feeder circuit arranged on the cylindrical reflector having four side surfaces is a pair of two, and each pair corresponds to a horizontal polarization and a vertical polarization, and the two pairs face each other. It is arranged in. The power supply circuit on the cylindrical reflection plate is formed by a microstrip line, and serves to supply power to the upper and lower element substrates by a two distribution circuit.
Power is supplied to the element substrate from the intersection of the end of the cylindrical reflector and the element substrate, and is connected here to a balanced strip line formed on the element substrate.
The strip line branches into two at this connection point and is connected to two dipole elements.
Four dipole elements are formed on the element substrate, two of which are fed from the microstrip feeder circuit on one of the cylindrical reflectors described above, and the other two dipole elements are the other. Is supplied from the microstrip power supply circuit on the cylindrical reflector.
The shapes of the microstrip power supply circuit and the element substrate on the cylindrical power supply reflector are point-symmetric with respect to the central axis of the cylindrical reflector.
The dipole elements are arranged in the horizontal direction in the case of horizontal polarization, and in the vertical direction in the case of vertical polarization.
Note that the dipole elements on the element substrate are arranged so as to surround the cylindrical reflector, and the dipole elements are fed with the same amplitude and the same phase. Becomes omnidirectional.
[0008]
FIG. 3 shows actually measured values of the horizontal and vertical polarizations in the horizontal plane.
In both polarizations, omnidirectionality with small deviation is obtained.
A power supply cable is connected to the microstrip power supply circuit on each cylindrical reflector through a cavity of the cylindrical reflector, and a pair of power supply cables are grouped together by a distributor.
This is taken as one block, which can be multi-staged.
In the case of multi-stage, as shown in FIG. 4, the power supply cable of each block can be extended to the lowest stage through the cavity of the cylindrical reflecting plate of the lower block, where the phase shifter can be connected. .
[0009]
In the above example, the number of element substrate sets in one block is two. However, the number of element substrate sets in one block can be set arbitrarily according to the design of the vertical plane directivity.
Further, in the above example, four dipole elements are arranged on the element substrate. However, when the size of the cylindrical reflector is smaller than the wavelength, it is possible to obtain non-directivity on a horizontal plane with two dipole elements. it can.
In addition, the technology of the present invention is not limited to the technology in the above-described embodiment, and may be a technology of another mode that performs a similar function. Changes and additions are possible.
[0010]
【The invention's effect】
As is apparent from the above description, according to the horizontal and vertical polarization shared horizontal omnidirectional antenna device of the present invention, among the horizontal and vertical polarization element substrates, the same polarization substrate is used for a single polarization antenna. By arranging different polarization element substrates alternately in the vertical direction at the same element interval, it is possible to obtain the same gain with the same length as the antenna of the single polarization.
In addition, since a power supply circuit to the element substrate can be formed within a certain area on the cylindrical reflector, a power supply circuit of a parallel power supply system can be formed instead of a serial power supply system, and thus the VSWR and the directivity can be improved. Frequency characteristics can be suppressed.
Further, by the parallel power feeding method, the power distribution to each antenna element can be freely set due to the easiness of designing the power feeding circuit, so that it is possible to shape the directivity of the vertical plane. Also, several sets of horizontal and vertical polarization elements are made into one block, and by increasing the number of stages, high gain is aimed at, and a power supply cable to each block is passed through the cavity of the cylindrical reflector. The influence of the power supply cable on the directivity can be eliminated.
In addition, by assembling the power supply cables at the lowermost stage and connecting the phase shifters, there is an excellent effect that the tilt angle of the vertical plane directivity can be controlled.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of one block of an antenna device according to the present invention.
FIG. 2 is a cross-sectional view of the antenna device of the present invention.
FIG. 3 is a view showing the horizontal directivity of the antenna device of the present invention.
FIG. 4 is a diagram showing a configuration of an antenna device in which the antenna device of the present invention is multi-staged and a phase shifter is connected.
FIG. 5 is a diagram showing a configuration of a conventional dual-polarization horizontal omnidirectional antenna.

Claims (5)

鉛直方向を長手方向とし、4側面をもつ略四角柱形状の筒状反射板と、該筒状反射板上に配置した複数の誘電体素子基板を備え、
前記筒状反射板上に給電回路を形成し、
前記複数の誘電体素子基板は、前記筒状反射板の4側面に対して垂直に取り付けられ、それぞれに分岐回路および水平偏波用素子または垂直偏波用素子を前記筒状反射板に対し、囲むように複数配置し、前記筒状反射板上の前記給電回路に接続し、前記水平偏波用素子を備えた誘電体素子基板である水平偏波用素子基板と前記垂直偏波用素子を備えた誘電体素子基板である垂直偏波用素子基板とを鉛直方向に上下に交互に配置したことを特徴とするアンテナ装置。
The vertical direction is a longitudinal direction, and a substantially rectangular prism-shaped cylindrical reflector having four side surfaces, and a plurality of dielectric element substrates arranged on the cylindrical reflector are provided.
Forming a power supply circuit on the cylindrical reflector,
The plurality of dielectric element substrates are vertically attached to four side surfaces of the cylindrical reflector, and a branch circuit and an element for horizontal polarization or an element for vertical polarization are respectively provided with respect to the cylindrical reflector. A plurality of elements are arranged so as to surround and are connected to the power supply circuit on the cylindrical reflection plate, and a horizontal polarization element substrate and a vertical polarization element which are dielectric element substrates having the horizontal polarization element are provided. An antenna device comprising: a vertically polarized element substrate, which is a dielectric element substrate provided in the vertical direction.
請求項1に記載のアンテナ装置において、
前記水平偏波用素子基板および前記垂直偏波用素子基板の1または複数の組を備えた箇所を1つのブロックとし、該ブロックを鉛直方向に上下に複数重ねたことを特徴とするアンテナ装置。
The antenna device according to claim 1,
An antenna device, wherein a portion provided with one or a plurality of sets of the horizontal polarization element substrate and the vertical polarization element substrate is defined as one block, and the blocks are vertically stacked in plural vertically.
請求項2に記載のアンテナ装置において、
前記各ブロックの前記給電回路に接続され給電を行う給電ケーブルを前記筒状反射板の内側内に配置したことを特徴とするアンテナ装置。
The antenna device according to claim 2,
An antenna device, wherein a power supply cable connected to the power supply circuit of each of the blocks and supplying power is disposed inside the cylindrical reflector.
請求項3に記載のアンテナ装置において、
前記ブロックの上または下に配置された別の前記ブロックに給電するための前記給電ケーブルを前記筒状反射板の内側内に収容したことを特徴とするアンテナ装置。
The antenna device according to claim 3,
An antenna device, wherein the power supply cable for supplying power to another block disposed above or below the block is housed inside the cylindrical reflector.
請求項3または4に記載のアンテナ装置において、
前記各ブロックへの給電ケーブルを一箇所に集合し、該給電ケーブルに移相器を接続し、前記各ブロックへ給電する電力を制御することにより垂直面指向性ビームのビームチルト制御を行うことを特徴とするアンテナ装置。
The antenna device according to claim 3 or 4,
A power feeding cable to each block is assembled at one place, a phase shifter is connected to the power feeding cable, and a beam tilt control of a vertical directional beam is performed by controlling power to feed each block. Characteristic antenna device.
JP2002266959A 2002-09-12 2002-09-12 Antenna device Expired - Lifetime JP3854211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266959A JP3854211B2 (en) 2002-09-12 2002-09-12 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266959A JP3854211B2 (en) 2002-09-12 2002-09-12 Antenna device

Publications (2)

Publication Number Publication Date
JP2004104682A true JP2004104682A (en) 2004-04-02
JP3854211B2 JP3854211B2 (en) 2006-12-06

Family

ID=32265626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266959A Expired - Lifetime JP3854211B2 (en) 2002-09-12 2002-09-12 Antenna device

Country Status (1)

Country Link
JP (1) JP3854211B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086658A (en) * 2003-09-10 2005-03-31 Nippon Dengyo Kosaku Co Ltd Polarization common use antenna
JP2006074537A (en) * 2004-09-03 2006-03-16 Denki Kogyo Co Ltd Antenna system
JP2007005924A (en) * 2005-06-21 2007-01-11 Maspro Denkoh Corp Antenna
JP2010041347A (en) * 2008-08-05 2010-02-18 Denki Kogyo Co Ltd Nondirectional antenna device
JP2012005146A (en) * 2011-08-30 2012-01-05 Nippon Dengyo Kosaku Co Ltd Polarization shared antenna
JP2016522613A (en) * 2013-04-28 2016-07-28 グッテル カンパニーリミテッドGoodtell. Co.,Ltd. Multiband antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8368609B2 (en) * 2008-10-21 2013-02-05 Laird Technologies, Inc. Omnidirectional multiple input multiple output (MIMO) antennas with polarization diversity

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498553A (en) * 1978-01-20 1979-08-03 Hitachi Cable Ltd Antenna
JPS6134682B2 (en) * 1979-03-01 1986-08-08 Uchu Kaihatsu Jigyodan
JPH11251832A (en) * 1998-02-27 1999-09-17 Sumitomo Electric Ind Ltd Horizontal polarization nondirectional antenna
JPH11284433A (en) * 1998-03-30 1999-10-15 Apricot:Kk Antenna device
JP2000091843A (en) * 1998-09-14 2000-03-31 Denki Kogyo Co Ltd Antenna system for polarization
JP2000196352A (en) * 1998-12-28 2000-07-14 Sumitomo Electric Ind Ltd Omni-directional polarization diversity antenna
JP2000196351A (en) * 1998-12-28 2000-07-14 Sumitomo Electric Ind Ltd Omni-directional polarization diversity antenna
JP2001196847A (en) * 2000-01-07 2001-07-19 Dx Antenna Co Ltd Nondirectional antenna
JP2001284946A (en) * 2000-03-30 2001-10-12 Ntt Docomo Inc Wide band antenna and array antenna device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498553A (en) * 1978-01-20 1979-08-03 Hitachi Cable Ltd Antenna
JPS6134682B2 (en) * 1979-03-01 1986-08-08 Uchu Kaihatsu Jigyodan
JPH11251832A (en) * 1998-02-27 1999-09-17 Sumitomo Electric Ind Ltd Horizontal polarization nondirectional antenna
JPH11284433A (en) * 1998-03-30 1999-10-15 Apricot:Kk Antenna device
JP2000091843A (en) * 1998-09-14 2000-03-31 Denki Kogyo Co Ltd Antenna system for polarization
JP2000196352A (en) * 1998-12-28 2000-07-14 Sumitomo Electric Ind Ltd Omni-directional polarization diversity antenna
JP2000196351A (en) * 1998-12-28 2000-07-14 Sumitomo Electric Ind Ltd Omni-directional polarization diversity antenna
JP2001196847A (en) * 2000-01-07 2001-07-19 Dx Antenna Co Ltd Nondirectional antenna
JP2001284946A (en) * 2000-03-30 2001-10-12 Ntt Docomo Inc Wide band antenna and array antenna device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005086658A (en) * 2003-09-10 2005-03-31 Nippon Dengyo Kosaku Co Ltd Polarization common use antenna
JP2006074537A (en) * 2004-09-03 2006-03-16 Denki Kogyo Co Ltd Antenna system
JP2007005924A (en) * 2005-06-21 2007-01-11 Maspro Denkoh Corp Antenna
JP4589821B2 (en) * 2005-06-21 2010-12-01 マスプロ電工株式会社 Antenna device
JP2010041347A (en) * 2008-08-05 2010-02-18 Denki Kogyo Co Ltd Nondirectional antenna device
JP4642884B2 (en) * 2008-08-05 2011-03-02 電気興業株式会社 Omnidirectional antenna device
JP2012005146A (en) * 2011-08-30 2012-01-05 Nippon Dengyo Kosaku Co Ltd Polarization shared antenna
JP2016522613A (en) * 2013-04-28 2016-07-28 グッテル カンパニーリミテッドGoodtell. Co.,Ltd. Multiband antenna

Also Published As

Publication number Publication date
JP3854211B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US10910700B2 (en) Omnidirectional antenna for mobile communication service
KR100269584B1 (en) Low sidelobe double polarization directional antenna with chalk reflector
US20210249789A1 (en) Dual-polarized antenna, antenna array, and communications device
US10186778B2 (en) Wideband dual-polarized patch antenna array and methods useful in conjunction therewith
US11108137B2 (en) Compact omnidirectional antennas having stacked reflector structures
US20100328173A1 (en) Single feed planar dual-polarization multi-loop element antenna
US20180145400A1 (en) Antenna
CN102800954A (en) Antenna unit, antenna module and multi-antenna module
CN113454922A (en) Base station antenna with 4 ports having an array of radiating elements without using a duplexer
JP2004120733A (en) Stripline parallel-series-fed proximity coupled cavity backed patch antenna array
JP4139837B2 (en) Dual frequency dipole antenna device
JP3924267B2 (en) Dual frequency dipole antenna device
JP3854211B2 (en) Antenna device
JP4112456B2 (en) Polarized antenna device
JP3983237B2 (en) Antenna device
JP2000091843A (en) Antenna system for polarization
JPH11266118A (en) Patch array antenna
KR100454103B1 (en) The asymmetrical flat type dipole antenna with broadband characteristics and dipole antenna array structure using the same elements
JP2009111661A (en) Array antenna
US11646502B2 (en) Multi-band base station antenna
JP2007006062A (en) Omnidirectional antenna
CN107611597B (en) Low-profile strong-coupling subarray with shaped beams and capable of being used as array elements and design method
KR102293354B1 (en) Omni-directional antenna for mobile communication service
TWM444617U (en) Dual polarization dipole antenna array
JP2003078339A (en) Antenna shared by horizontal and vertical polarizations

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060907

R150 Certificate of patent or registration of utility model

Ref document number: 3854211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term