JP2004095360A - Fuel cell system and operating method therefor - Google Patents

Fuel cell system and operating method therefor Download PDF

Info

Publication number
JP2004095360A
JP2004095360A JP2002255372A JP2002255372A JP2004095360A JP 2004095360 A JP2004095360 A JP 2004095360A JP 2002255372 A JP2002255372 A JP 2002255372A JP 2002255372 A JP2002255372 A JP 2002255372A JP 2004095360 A JP2004095360 A JP 2004095360A
Authority
JP
Japan
Prior art keywords
fuel cell
heat
transfer medium
heat transfer
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002255372A
Other languages
Japanese (ja)
Other versions
JP4128054B2 (en
Inventor
Kazuhiro Hirai
平井 一裕
Takeshi Tabata
田畑 健
Kenichiro Yasuhara
安原 健一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002255372A priority Critical patent/JP4128054B2/en
Publication of JP2004095360A publication Critical patent/JP2004095360A/en
Application granted granted Critical
Publication of JP4128054B2 publication Critical patent/JP4128054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system whose reverse power flow can be prevented continuously and whose surplus power can be utilized continuously. <P>SOLUTION: The fuel cell system comprises : a fuel cell 1 ; a thermal storage unit 2 which stores heat using water as medium ; a heat exchanger 3 which mediates heat exchanging between the fuel cell 1 and the thermal storage unit 2 using heat transfer medium which circulates a prescribed circumferential path 4, wherein the heat exchanger 3 exchanges the heat with the fuel cell 1 via the heat transfer medium at the first heat exchanging section 5 in the circumferential path 4 and exchanges the heat via the heat transfer medium with the thermal storage unit 2 at the second heat exchanging section 6 in the circumferential path 4. A heating unit 7 to heat the heat transfer medium and a cooling unit 8 to cool the heat transfer medium, which are operated by power generated in the fuel cell 1, are disposed in the circumferential path 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池の余剰電力を活用する燃料電池システムおよびその作動方法に関し、詳細には、燃料電池と、水を媒体として熱を蓄える蓄熱装置と、上記燃料電池と上記蓄熱装置との間で行われる熱交換を、所定の周回経路を循環する熱伝達媒体を用いて仲介する熱交換器とを備えてなる燃料電池システムおよびその作動方法に関する。
【0002】
【従来の技術】
近年、大規模発電所を需要家から離れた位置の建設し、そこから電気のみを送電する方式を採用する現在のエネルギ供給方式では、発電所で発生された熱が有効に利用されておらず、その分だけエネルギを浪費しているとの課題が提言されている。このため、電力供給と熱供給とを共に行うことができるシステムとして、コジェネレーション装置が提案されており、この場合、送電、変電によるロスを抑制して、発電によって発生した熱も同時供給するため、総合的に見たエネルギ効率を高くすることができる。
【0003】
このようなコジェネレーション設備は、燃料電池や、ガスエンジン又はガスタービン等の原動機を駆動源とした発電機等を備えて、電力及び熱を発生するように構成され、発電した電力を、例えば電力供給業者から受電した電力と合わせて、家庭に供給することができると共に、発生した熱を家庭に供給することがするように構成される。
【0004】
そして、コジェネレーション設備を各家庭等の需要地に設けることで、需要地で消費される電力の少なくとも一部をコジェネレーション設備の発電電力で補うことができるので、電力供給業者との契約電力負荷を低く押えることができる上に、そのときに発生した熱エネルギを湯水等として利用することができるため、省エネルギ性及び経済性の点で有効である。
【0005】
但し、熱電供給システムとして燃料電池を採用した場合、その特性上、燃料電池は、運転を停止すると、再度の起動に伴うエネルギ損失や運転停止に伴う燃料改質装置およびセルの劣化が起こる。従って、電力需要が小さい場合であっても燃料電池を連続運転させることが好ましい。しかし、燃料電池の電力需要が低い場合には余剰電力が発生するため、その余剰電力を一般の電力供給系統に逆潮流させることも行われているが、逆潮流させないようなシステムも求められている。
【0006】
燃料電池において発生された余剰電力を活用するシステムとしては、例えば、特開2001−68125号公報に記載の「燃料電池システム」がある。このシステムでは、貯湯タンクに設置した電気ヒータを余剰電力で作動させることで、余剰電力の熱への変換を行っている。また、セルを冷却(貯湯タンクにとっては熱吸収)することも同時に行っている。
【0007】
【発明が解決しようとする課題】
しかし、長時間にわたって過剰な余剰電力が電気ヒータに供給された場合には、本来、セルを冷却するべき冷却水の温度が高くなり過ぎるため、セルの過昇温を防止するために燃料電池の運転を停止させる必要があった。つまり、従来の燃料電池システムは、連続運転を行いながら、逆潮流の防止と、余剰電力の活用とを長時間にわたって実施することは出来なかった。
【0008】
本発明は上記の問題点に鑑みてなされたものであり、その目的は、逆潮流の防止と、余剰電力の活用とを継続して行うことができる燃料電池システムおよびその作動方法を提供する点にある。
【0009】
【課題を解決するための手段】
上記課題を解決するための本発明に係る燃料電池システムの第一の特徴構成は、特許請求の範囲の欄の請求項1に記載の如く、燃料電池と、水を媒体として熱を蓄える蓄熱装置と、前記燃料電池と前記蓄熱装置との間で行われる熱交換を、所定の周回経路を循環する熱伝達媒体を用いて仲介する熱交換器とを備えてなる燃料電池システムであって、前記熱交換器は、前記周回経路中の第1熱交換部において、前記熱伝達媒体を介して前記燃料電池と熱交換を行い、前記周回経路中の第2熱交換部において、前記熱伝達媒体を介して前記蓄熱装置と熱交換を行い、前記燃料電池において発生された電力によって作動可能な、前記熱伝達媒体を加熱する加熱装置と、前記熱伝達媒体を冷却する冷却装置とが前記周回経路に設けられてなる点にある。
【0010】
上記課題を解決するための本発明に係る燃料電池システムの第二の特徴構成は、特許請求の範囲の欄の請求項2に記載の如く、上記第一の特徴構成に加えて、前記加熱装置が、前記周回経路から前記熱伝達媒体が流入する流入口、前記流入した前記熱伝達媒体が一時的に蓄えられる空間部、および前記周回経路へ前記熱伝達媒体が流出する流出口と、前記空間部内の前記熱伝達媒体を加熱する電気ヒータとを備えてなる点にある。
【0011】
上記課題を解決するための本発明に係る燃料電池システムの作動方法の第一の特徴構成は、特許請求の範囲の欄の請求項3に記載の如く、燃料電池と、水を媒体として熱を蓄える蓄熱装置と、前記燃料電池と前記蓄熱装置との間で行われる熱交換を、所定の周回経路を循環する熱伝達媒体を用いて仲介する熱交換器とを備えてなり、前記熱交換器が、前記周回経路中の第1熱交換部において、前記熱伝達媒体を介して前記燃料電池と熱交換を行い、前記周回経路中の第2熱交換部において、前記熱伝達媒体を介して前記蓄熱装置と熱交換を行う燃料電池システムにおいて、前記燃料電池において発生された電力によって作動して、前記熱伝達媒体を加熱する加熱装置と、前記熱伝達媒体を冷却する冷却装置とを前記周回経路中に設け、前記燃料電池において発生される電力が所定電力以上である場合に、前記燃料電池において発生された電力によって前記加熱装置を作動させる加熱工程と、前記周回経路中を循環する前記熱伝達媒体の温度が、前記第1熱交換部への流入口において所定の温度を越える場合、前記燃料電池において発生された電力によって前記冷却装置を作動させる冷却工程とを含む点にある。
【0012】
上記課題を解決するための本発明に係る燃料電池システムの作動方法の第二の特徴構成は、特許請求の範囲の欄の請求項4に記載の如く、請求項1または請求項2に記載の燃料電池システムにおいて、前記燃料電池の始動前に、前記熱伝達媒体を介して前記加熱装置から受け取る熱を利用して前記燃料電池の所定部位を昇温する工程を含む点にある。
【0013】
以下に作用並びに効果を説明する。
本発明に係る燃料電池システムの第一の特徴構成によれば、燃料電池において発生された電力量が需要電力量を上回った場合に発生する余剰電力によって加熱装置を作動させることができるので、加熱装置において発生された熱を熱伝達媒体に与え、その熱伝達媒体が有する熱を蓄熱装置内の水に与えて、即ち温水にして蓄えるという、エネルギ変換によるエネルギの有効利用を行うことができる。また、上記燃料電池において発生された電力(例えば、上記余剰電力)を用いて冷却装置を作動させることもできるので、上記周回経路を循環する熱伝達媒体の温度が高い場合にはその熱伝達媒体を冷却し、第1熱交換部において燃料電池の冷却を行うこともできる。従って、余剰電力が発生したとしても、その電力を本発明に係る燃料電池システム内で有効に活用することができるので、余剰電力が一般の電力供給系統に逆潮流することを防止することができる。
【0014】
本発明に係る燃料電池システムの第二の特徴構成によれば、前記加熱装置においては、循環する熱伝達媒体が一時的に貯蔵される空間部において、電気ヒータによる加熱が行われるので、電気ヒータにより熱伝達媒体が局所的に加熱されるのではなく、空間部全体の熱伝達媒体を加熱するという効果を得ることができる。
【0015】
本発明に係る燃料電池システムの作動方法の第一の特徴構成によれば、加熱工程が実施された場合、燃料電池において発生された電力量が需要電力量を上回った場合に発生する余剰電力によって加熱装置を作動させることができるので、加熱装置において発生された熱を熱伝達媒体に与え、その熱伝達媒体が有する熱を蓄熱装置内の水に与えて、即ち温水にして蓄えるという、エネルギ変換によるエネルギの有効利用を行うことができる。また、上記燃料電池において発生された電力(例えば、上記余剰電力)を用いて冷却装置を作動させることもできるので、上記周回経路を循環する熱伝達媒体の温度が高い場合にはその熱伝達媒体を冷却し、第1熱交換部において燃料電池の冷却を行うこともできる。従って、余剰電力が発生したとしても、その電力を本発明に係る燃料電池システム内で有効に活用することができるので、余剰電力が一般の電力供給系統に逆潮流することを防止することができる。
【0016】
本発明に係る燃料電池システムの作動方法の第二の特徴構成によれば、燃料電池の始動前に、上記加熱装置を別電源にて作動させて上記熱伝達媒体を加熱し、その熱を上記燃料電池の所定部位の昇温(暖機)に利用することで、燃料電池が所定の電力を出力可能となるまでの起動時間を短縮させることができる。
【0017】
【発明の実施の形態】
以下に本発明に係る燃料電池システムについて図面を参照して説明する。
図1に例示するように、本発明に係る燃料電池システムは、水素と酸素とから電気を発生し、その電力を設置者に供給する燃料電池1と、水を媒体として熱を蓄えることができる蓄熱装置2と、燃料電池1と蓄熱装置2との間で行われる熱交換を周回経路4を流れる水などの熱伝達媒体を用いて仲介する熱交換器3とを備えてなる。燃料電池1としては、固体高分子型などの様々な形態のものを使用することができる。
【0018】
熱交換器3は、周回経路4中の第1熱交換部5において、熱伝導媒体を介して燃料電池1と熱交換を行い、更に周回経路4中の第2熱交換部6において、熱伝導媒体を介して蓄熱装置2と熱交換を行う。また、周回経路4には、燃料電池1によって発生された電力によって作動可能な、熱伝達媒体を加熱する加熱装置7と、熱伝達媒体を冷却する冷却装置8とが設けられている。例えば、周回経路4は燃料電池の冷却水が内部を流れるように構成された配管を周回させて形成され、その冷却水の流れは、第1ポンプ9によって作り出されている。そして、その冷却水用配管(周回経路4)と燃料電池1とが接する部位が第1熱交換部5である。同様に、冷却水用配管(周回経路4)と蓄熱装置2に蓄えられた水(湯)が流れる経路とが接する部位が第2熱交換部6である。以上のように、周回経路4中を流れる熱伝達媒体は、燃料電池1を第1熱交換部5において冷却する役割と、第1熱交換部5と加熱装置7において燃料電池1から受け取った熱エネルギを、第2熱交換部において蓄熱装置2に与える役割とを果たしている。
【0019】
ここで、加熱装置7としては、図2に例示するような構造の装置を採用することができる。この加熱装置7は、周回経路4から水(熱伝達媒体)が流入する流入口20、流入した水(熱伝達媒体)が一時的に蓄えられる空間部21、および周回経路4へ水(熱伝達媒体)が流出する流出口22と、空間部21内の水(熱伝達媒体)を加熱する電気ヒータ23とを備えてなる。電気ヒータ23に供給される電力は、上述したように燃料電池1において発生された電気である。
【0020】
また、冷却装置8は周回経路4を構成する導管などの表面に対して冷気を吹き付けることのできるファンなどで実現可能であり、ここでも、冷却装置8に供給される電力は、上述したように燃料電池1において発生された電気である。
【0021】
蓄熱装置2は、水(湯)を貯える貯水槽10と、貯水槽10から出て、再び貯水槽10に帰還する導管11と、上記導管11中の水の流れを作り出す第2ポンプ12とを備えてなり、導管11途中の第2熱交換部6において、冷却水用配管(周回経路4)と接して熱交換が行われる。
【0022】
以下に、本発明に係る燃料電池システムの動作について説明する。
上述のように、燃料電池の運転の停止および再開を繰り返した場合、運転再開時の大きなエネルギが必要となることや、燃料電池に水素を供給する改質装置および燃料電池のセルスタックが劣化するため、燃料電池の運転効率が悪化するという課題が従来から存在している。そのため、できるだけ燃料電池を継続的に運転することが要求されるのだが、消費電力(燃料電池の負荷)が小さい場合には燃料電池で発生した電力が余ってしまう。本発明に係る燃料電池システムは、この余剰電力を有効に活用する点に特徴がある。
【0023】
余剰電力が発生した場合、その電力は図2に例示したような加熱装置7に供給され、周回経路4を流れる水が電気ヒータ23によって加熱される。尚、電気ヒータ23によって加熱される水は、第1熱交換部5において燃料電池1から熱の供給を受けた後の水である。加熱装置7において加熱された周回経路4中の水は第2熱交換部6の方へ流れ、第2熱交換部6において蓄熱装置2の導管11を流れる水との間で熱交換を行う(導管11を流れる水を加熱する)。その後、周回経路4を流れる水は、バルブVと周回経路4bと第1ポンプ9を通過して、再度、第1熱交換部5へ至る。ここでは冷却装置8は作動していない。
【0024】
上述のように、第1熱交換部5においては、燃料電池1から熱を受け取る(燃料電池1を冷却する)ことが行われているのだが、第1ポンプ9を経て第1熱交換部5に流入する熱伝達媒体の温度が高い場合(蓄熱装置2に十分な熱量が蓄積された場合)には燃料電池1を十分に冷却することができないという問題が発生する。従って、第1熱交換部5の流入口付近において、周回経路4中の熱伝達媒体の温度が所定値以上である場合には、これまで加熱装置7へ供給されていた余剰電力を冷却装置8に供給し(同時に、周回経路4aへ熱伝達媒体が流れるようにバルブVを切り換え)、周回経路4中の熱伝達媒体を冷却することに余剰電力が使用される。尚、蓄熱装置2においては、第2ポンプ12の運転を停止して、蓄熱装置2に蓄積された熱が周回経路4に流れる熱伝達媒体に提供されないような対策を行うことができる。
【0025】
以上のように本発明に係る燃料電池システム1を運転することで、燃料電池において発生された電力量が需要電力量を上回った場合に発生する余剰電力量によって加熱装置を作動させることができるので、加熱装置において発生された熱を熱伝達媒体に持たせ、その熱伝達媒体が有する熱を蓄熱装置内の水に渡して、即ち温水にして蓄えるという、燃料電池における排熱回収という効果が得られる。また、上記燃料電池において発生された電力(例えば、上記余剰電力)を用いて冷却装置を作動させることもできるので、上記周回経路を循環する熱伝達媒体の温度が高い場合には、その熱伝達媒体を冷却することもできる。従って、余剰電力が発生したとしても、その電力を本発明に係る燃料電池システム内で有効に活用することができるので、余剰電力が一般の電力供給系統に逆潮流することを防止することができる。
【0026】
上述のように、燃料電池1の運転を停止せず、継続して運転することのできる燃料電池システムについて説明したが、本システムの構成を他の用途に使用することもできる。例えば、燃料電池1をスムーズに始動する場合にはそのセルスタックが所定の温度に昇温されていることが好ましいが、その際に、まず、別電源によって加熱装置7を作動させて周回経路4中の熱伝達媒体を加熱する。そして、その熱伝達媒体(熱エネルギ)が、バルブV、周回経路4b、および第1ポンプ9を経て第1熱交換部5へ流入することで、燃料電池1のセルスタックを昇温することができる。その結果、所定の出力電力を燃料電池1が発生するまでの起動時間を短縮させることができる。
【0027】
尚、以上の実施形態において、第1ポンプ9および第2ポンプ12の流量(周回経路4および導管11における水の流速)は適宜調整することができる。また、それらの動作タイミングについても適宜調整することができる。
【0028】
(実施例)
以下に、燃料電池1として固体高分子型燃料電池を採用した本燃料電池システムを運転した場合の例を説明する。
燃料電池1の出力電力が500Wとなるような運転を行っている場合に電力需要が300Wに低下することで200Wの余剰電力が生じた際、約0.3秒後にその余剰電力を電気ヒータ23に供給し、逆潮流の発生を防止することができた。
【0029】
更に、燃料電池1から排出される熱によって、第1熱交換部5から流出する周回経路4中の水の温度は約68℃であったが、上述したように余剰電力の供給先を加熱装置7と冷却装置8とで切り換え可能であることで、第1熱交換部5へ流入する周回経路4中の水の温度を約63℃以下に調整すること、即ち、燃料電池1の冷却を実施することができた。また、固体高分子型燃料電池は約80℃以下の比較的低温で作動することから、本燃料電池システムの構成を用いることで良好な運転状態を保つことができた。
【図面の簡単な説明】
【図1】燃料電池システムの構成図である。
【図2】加熱装置の構成図である。
【符号の説明】
1 燃料電池
2 蓄熱装置
3 熱交換器
4 周回経路
5 第1熱交換部
6 第2熱交換部
7 加熱装置
8 冷却装置
9 第1ポンプ
10 貯水槽
11 導管
12 第2ポンプ
20 流入口
21 空間部
22 流出口
23 電気ヒータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel cell system that utilizes surplus power of a fuel cell and a method of operating the fuel cell system. Specifically, the present invention relates to a fuel cell, a heat storage device that stores heat using water as a medium, and between the fuel cell and the heat storage device. The present invention relates to a fuel cell system including a heat exchanger that mediates heat exchange performed using a heat transfer medium circulating in a predetermined circuit path, and a method of operating the fuel cell system.
[0002]
[Prior art]
In recent years, the current energy supply system, in which a large-scale power plant is constructed at a position distant from the customer and only electricity is transmitted from there, does not effectively use the heat generated by the power plant. However, it has been proposed that energy is wasted as much. For this reason, a cogeneration system has been proposed as a system that can perform both power supply and heat supply. In this case, power loss due to power transmission and substation suppression is suppressed, and heat generated by power generation is also supplied simultaneously. Thus, the overall energy efficiency can be increased.
[0003]
Such a cogeneration facility includes a fuel cell, a generator driven by a prime mover such as a gas engine or a gas turbine, and the like, and is configured to generate electric power and heat. In addition to the power received from the supplier, the power can be supplied to the home and the generated heat can be supplied to the home.
[0004]
By providing cogeneration facilities in demand areas such as homes, at least a part of the power consumed in the demand areas can be supplemented by the power generated by the cogeneration facilities. Can be kept low, and the heat energy generated at that time can be used as hot water or the like, which is effective in terms of energy saving and economy.
[0005]
However, when a fuel cell is employed as the thermoelectric supply system, due to its characteristics, when the operation of the fuel cell is stopped, energy loss is caused by restarting the fuel cell, and the fuel reformer and the cells are deteriorated by stopping the operation. Therefore, it is preferable to operate the fuel cell continuously even when the power demand is small. However, when the power demand of the fuel cell is low, surplus power is generated.Therefore, the surplus power is reverse-flowed to a general power supply system.However, a system that does not cause reverse flow is also required. I have.
[0006]
As a system that utilizes surplus power generated in a fuel cell, for example, there is a “fuel cell system” described in JP-A-2001-68125. In this system, the surplus electric power is converted into heat by operating an electric heater installed in the hot water storage tank with the surplus electric power. At the same time, the cell is cooled (heat absorption for the hot water storage tank).
[0007]
[Problems to be solved by the invention]
However, when excessive surplus electric power is supplied to the electric heater for a long time, the temperature of the cooling water for cooling the cells is originally too high. Operation had to be stopped. That is, in the conventional fuel cell system, it was not possible to prevent the reverse power flow and utilize the surplus power for a long time while performing the continuous operation.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a fuel cell system and a method of operating the same that can continuously prevent reverse power flow and utilize surplus power. It is in.
[0009]
[Means for Solving the Problems]
A first characteristic configuration of a fuel cell system according to the present invention for solving the above-described problems is a fuel cell and a heat storage device that stores heat using water as a medium as described in claim 1 of the claims. And a heat exchanger that mediates heat exchange between the fuel cell and the heat storage device using a heat transfer medium that circulates through a predetermined circulation path, The heat exchanger performs heat exchange with the fuel cell via the heat transfer medium in the first heat exchange section in the circuit path, and transfers the heat transfer medium in the second heat exchange section in the circuit path. The heat exchange device performs heat exchange with the heat storage device, and is operable by electric power generated in the fuel cell. The heating device that heats the heat transfer medium, and the cooling device that cools the heat transfer medium are provided in the circuit path. In the point of being provided
[0010]
According to a second feature of the fuel cell system according to the present invention for solving the above-mentioned problem, in addition to the first feature, as described in claim 2 of the claims, the heating device But an inflow port through which the heat transfer medium flows in from the circulation path, a space portion in which the inflowed heat transfer medium is temporarily stored, and an outflow port through which the heat transfer medium flows out into the circulation path, and the space And an electric heater for heating the heat transfer medium in the unit.
[0011]
A first characteristic configuration of a method of operating a fuel cell system according to the present invention for solving the above-mentioned problem is as described in claim 3 of the claims, wherein heat is generated by using a fuel cell and water as a medium. A heat storage device for storing, and a heat exchanger that mediates heat exchange between the fuel cell and the heat storage device by using a heat transfer medium that circulates in a predetermined circuit path. Performs heat exchange with the fuel cell through the heat transfer medium in the first heat exchange section in the circuit path, and performs heat exchange in the second heat exchange section in the circuit path through the heat transfer medium. In a fuel cell system that performs heat exchange with a heat storage device, a heating device that is operated by electric power generated in the fuel cell to heat the heat transfer medium, and a cooling device that cools the heat transfer medium includes a circulation path. Provided in the fuel When the electric power generated in the battery is equal to or higher than a predetermined electric power, the heating step of operating the heating device by the electric power generated in the fuel cell, and the temperature of the heat transfer medium circulating in the circulation path, And a cooling step of operating the cooling device by the electric power generated in the fuel cell when the temperature exceeds a predetermined temperature at the inlet to the first heat exchange unit.
[0012]
A second characteristic configuration of an operation method of a fuel cell system according to the present invention for solving the above-mentioned problems is described in claim 1 or claim 2 as described in claim 4 of the claims. The fuel cell system is characterized in that the method includes a step of using a heat received from the heating device via the heat transfer medium to heat a predetermined portion of the fuel cell before starting the fuel cell.
[0013]
The operation and effect will be described below.
According to the first characteristic configuration of the fuel cell system according to the present invention, the heating device can be operated by surplus power generated when the amount of power generated in the fuel cell exceeds the required amount of power, so that heating can be performed. The heat generated by the device is given to the heat transfer medium, and the heat of the heat transfer medium is given to the water in the heat storage device, that is, stored as hot water. Further, since the cooling device can be operated by using the electric power (for example, the surplus electric power) generated in the fuel cell, when the temperature of the heat transfer medium circulating in the circulation path is high, the heat transfer medium can be operated. And the fuel cell can be cooled in the first heat exchange section. Therefore, even if surplus electric power is generated, the electric power can be effectively used in the fuel cell system according to the present invention, so that the surplus electric power can be prevented from flowing backward to a general power supply system. .
[0014]
According to the second characteristic configuration of the fuel cell system according to the present invention, in the heating device, heating is performed by the electric heater in the space where the circulating heat transfer medium is temporarily stored. Accordingly, the effect that the heat transfer medium is not locally heated but the heat transfer medium in the entire space portion is heated can be obtained.
[0015]
According to the first characteristic configuration of the operation method of the fuel cell system according to the present invention, when the heating process is performed, the surplus power generated when the amount of power generated in the fuel cell exceeds the required power amount is used. Since the heating device can be operated, heat generated in the heating device is given to the heat transfer medium, and the heat of the heat transfer medium is given to water in the heat storage device, that is, energy conversion is performed by storing as hot water. Energy can be effectively used. Further, since the cooling device can be operated by using the electric power (for example, the surplus electric power) generated in the fuel cell, when the temperature of the heat transfer medium circulating in the circulation path is high, the heat transfer medium can be operated. And the fuel cell can be cooled in the first heat exchange section. Therefore, even if surplus electric power is generated, the electric power can be effectively used in the fuel cell system according to the present invention, so that the surplus electric power can be prevented from flowing backward to a general power supply system. .
[0016]
According to the second characteristic configuration of the operating method of the fuel cell system according to the present invention, before starting the fuel cell, the heating device is operated by another power source to heat the heat transfer medium, and the heat is transferred to the heat transfer medium. By utilizing the temperature rise (warm-up) of a predetermined portion of the fuel cell, the startup time until the fuel cell can output the predetermined power can be reduced.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a fuel cell system according to the present invention will be described with reference to the drawings.
As illustrated in FIG. 1, the fuel cell system according to the present invention can generate heat from hydrogen and oxygen and supply heat to the installer, and can store heat using water as a medium. It comprises a heat storage device 2 and a heat exchanger 3 for mediating heat exchange between the fuel cell 1 and the heat storage device 2 by using a heat transfer medium such as water flowing through the circulation path 4. As the fuel cell 1, various types such as a solid polymer type can be used.
[0018]
The heat exchanger 3 performs heat exchange with the fuel cell 1 via the heat conduction medium in the first heat exchange section 5 in the circulation path 4, and further performs heat conduction in the second heat exchange section 6 in the circulation path 4. Heat exchange is performed with the heat storage device 2 via the medium. Further, the circulation path 4 is provided with a heating device 7 for heating the heat transfer medium and a cooling device 8 for cooling the heat transfer medium, which are operable by the electric power generated by the fuel cell 1. For example, the circulation path 4 is formed by circulating a pipe configured to allow the cooling water of the fuel cell to flow inside, and the flow of the cooling water is created by the first pump 9. The portion where the cooling water pipe (circulation path 4) and the fuel cell 1 are in contact is the first heat exchange section 5. Similarly, a portion where the cooling water pipe (circulating path 4) and the path through which the water (hot water) stored in the heat storage device 2 flows is in contact with the second heat exchange unit 6. As described above, the heat transfer medium flowing in the circulation path 4 serves to cool the fuel cell 1 in the first heat exchange section 5, and to receive heat from the fuel cell 1 in the first heat exchange section 5 and the heating device 7. The second heat exchange section plays a role of giving energy to the heat storage device 2.
[0019]
Here, as the heating device 7, a device having a structure as illustrated in FIG. 2 can be employed. The heating device 7 includes an inflow port 20 into which water (heat transfer medium) flows from the circulation path 4, a space 21 in which the inflowing water (heat transfer medium) is temporarily stored, and water (heat transfer) to the circulation path 4. An outlet 22 from which the medium (medium) flows out, and an electric heater 23 for heating water (heat transfer medium) in the space 21. The electric power supplied to the electric heater 23 is the electric power generated in the fuel cell 1 as described above.
[0020]
In addition, the cooling device 8 can be realized by a fan or the like that can blow cool air onto the surface of a conduit or the like that constitutes the orbiting path 4. In this case, the electric power supplied to the cooling device 8 is as described above. This is electricity generated in the fuel cell 1.
[0021]
The heat storage device 2 includes a water storage tank 10 for storing water (hot water), a conduit 11 that exits from the water storage tank 10 and returns to the water storage tank 10 again, and a second pump 12 that creates a flow of water in the conduit 11. In the second heat exchange section 6 in the middle of the conduit 11, heat exchange is performed in contact with the cooling water pipe (circulation path 4).
[0022]
Hereinafter, the operation of the fuel cell system according to the present invention will be described.
As described above, when the operation of the fuel cell is repeatedly stopped and restarted, a large amount of energy is required at the time of restarting the operation, and the reformer for supplying hydrogen to the fuel cell and the cell stack of the fuel cell deteriorate. Therefore, there is a problem that the operation efficiency of the fuel cell is deteriorated. Therefore, it is required to operate the fuel cell continuously as much as possible. However, when the power consumption (load of the fuel cell) is small, the power generated by the fuel cell is excessive. The fuel cell system according to the present invention is characterized in that the surplus power is effectively used.
[0023]
When surplus electric power is generated, the electric power is supplied to the heating device 7 illustrated in FIG. 2, and the water flowing through the circulation path 4 is heated by the electric heater 23. The water heated by the electric heater 23 is water that has been supplied with heat from the fuel cell 1 in the first heat exchange unit 5. The water in the circulation path 4 heated by the heating device 7 flows toward the second heat exchange unit 6, and exchanges heat with the water flowing through the conduit 11 of the heat storage device 2 in the second heat exchange unit 6 ( The water flowing through the conduit 11 is heated). Thereafter, the water flowing through the circulation path 4 passes through the valve V, the circulation path 4b, and the first pump 9, and reaches the first heat exchange section 5 again. Here, the cooling device 8 is not operating.
[0024]
As described above, in the first heat exchange unit 5, heat is received from the fuel cell 1 (cooling of the fuel cell 1). However, the first heat exchange unit 5 receives the heat through the first pump 9. When the temperature of the heat transfer medium flowing into the fuel cell is high (when a sufficient amount of heat is accumulated in the heat storage device 2), there is a problem that the fuel cell 1 cannot be sufficiently cooled. Therefore, when the temperature of the heat transfer medium in the circulation path 4 is equal to or higher than the predetermined value near the inlet of the first heat exchange unit 5, the surplus power that has been supplied to the heating device 7 is reduced to the cooling device 8. (At the same time, the valve V is switched so that the heat transfer medium flows to the circulation path 4a), and the excess power is used to cool the heat transfer medium in the circulation path 4. In the heat storage device 2, the operation of the second pump 12 can be stopped to take measures to prevent the heat accumulated in the heat storage device 2 from being provided to the heat transfer medium flowing through the circulation path 4.
[0025]
By operating the fuel cell system 1 according to the present invention as described above, the heating device can be operated by the surplus power generated when the power generated in the fuel cell exceeds the required power. Therefore, the heat generated in the heating device is given to the heat transfer medium, and the heat of the heat transfer medium is transferred to the water in the heat storage device, that is, stored as hot water. Can be Further, since the cooling device can be operated by using the electric power (for example, the surplus electric power) generated in the fuel cell, when the temperature of the heat transfer medium circulating in the circulation path is high, the heat transfer The medium can also be cooled. Therefore, even if surplus electric power is generated, the electric power can be effectively used in the fuel cell system according to the present invention, so that the surplus electric power can be prevented from flowing backward to a general power supply system. .
[0026]
As described above, the fuel cell system capable of continuously operating without stopping the operation of the fuel cell 1 has been described. However, the configuration of the present system can be used for other applications. For example, when the fuel cell 1 is started smoothly, it is preferable that the temperature of the cell stack be raised to a predetermined temperature. Heat the heat transfer medium inside. Then, the heat transfer medium (heat energy) flows into the first heat exchange unit 5 through the valve V, the circulation path 4b, and the first pump 9, thereby raising the temperature of the cell stack of the fuel cell 1. it can. As a result, it is possible to reduce the startup time until the fuel cell 1 generates a predetermined output power.
[0027]
In the above embodiment, the flow rates of the first pump 9 and the second pump 12 (the flow rates of the water in the circulation path 4 and the conduit 11) can be appropriately adjusted. In addition, their operation timings can be appropriately adjusted.
[0028]
(Example)
Hereinafter, an example in which the present fuel cell system employing a polymer electrolyte fuel cell as the fuel cell 1 is operated will be described.
When the power demand is reduced to 300 W during the operation such that the output power of the fuel cell 1 becomes 500 W, and a surplus power of 200 W is generated, the surplus power is supplied to the electric heater 23 after about 0.3 seconds. To prevent the occurrence of reverse power flow.
[0029]
Further, the temperature of water in the circulation path 4 flowing out of the first heat exchange section 5 due to the heat discharged from the fuel cell 1 was about 68 ° C. 7 and the cooling device 8, the temperature of water in the circulation path 4 flowing into the first heat exchange section 5 is adjusted to about 63 ° C. or less, that is, the fuel cell 1 is cooled. We were able to. In addition, since the polymer electrolyte fuel cell operates at a relatively low temperature of about 80 ° C. or less, a good operation state can be maintained by using the configuration of the fuel cell system.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a fuel cell system.
FIG. 2 is a configuration diagram of a heating device.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 fuel cell 2 heat storage device 3 heat exchanger 4 circuit path 5 first heat exchange unit 6 second heat exchange unit 7 heating device 8 cooling device 9 first pump 10 water storage tank 11 conduit 12 second pump 20 inflow port 21 space 22 Outlet 23 Electric heater

Claims (4)

燃料電池と、水を媒体として熱を蓄える蓄熱装置と、前記燃料電池と前記蓄熱装置との間で行われる熱交換を、所定の周回経路を循環する熱伝達媒体を用いて仲介する熱交換器とを備えてなる燃料電池システムであって、前記熱交換器は、前記周回経路中の第1熱交換部において、前記熱伝達媒体を介して前記燃料電池と熱交換を行い、前記周回経路中の第2熱交換部において、前記熱伝達媒体を介して前記蓄熱装置と熱交換を行い、
前記燃料電池において発生された電力によって作動可能な、前記熱伝達媒体を加熱する加熱装置と、前記熱伝達媒体を冷却する冷却装置とが前記周回経路に設けられてなる燃料電池システム。
A fuel cell, a heat storage device that stores heat using water as a medium, and a heat exchanger that mediates heat exchange performed between the fuel cell and the heat storage device using a heat transfer medium that circulates through a predetermined circuit path. Wherein the heat exchanger performs heat exchange with the fuel cell via the heat transfer medium in the first heat exchange section in the circulation path, and In the second heat exchange unit, performs heat exchange with the heat storage device via the heat transfer medium,
A fuel cell system comprising a heating device operable by electric power generated in the fuel cell, the heating device heating the heat transfer medium, and a cooling device cooling the heat transfer medium, provided in the circuit path.
前記加熱装置が、前記周回経路から前記熱伝達媒体が流入する流入口、前記流入した前記熱伝達媒体が一時的に蓄えられる空間部、および前記周回経路へ前記熱伝達媒体が流出する流出口と、前記空間部内の前記熱伝達媒体を加熱する電気ヒータとを備えてなる請求項1に記載の燃料電池システム。The heating device has an inflow port into which the heat transfer medium flows in from the circulation path, a space portion in which the inflowed heat transfer medium is temporarily stored, and an outflow port in which the heat transfer medium flows out into the circulation path. The fuel cell system according to claim 1, further comprising: an electric heater for heating the heat transfer medium in the space. 燃料電池と、水を媒体として熱を蓄える蓄熱装置と、前記燃料電池と前記蓄熱装置との間で行われる熱交換を、所定の周回経路を循環する熱伝達媒体を用いて仲介する熱交換器とを備えてなり、前記熱交換器が、前記周回経路中の第1熱交換部において、前記熱伝達媒体を介して前記燃料電池と熱交換を行い、前記周回経路中の第2熱交換部において、前記熱伝達媒体を介して前記蓄熱装置と熱交換を行う燃料電池システムにおいて、
前記燃料電池において発生された電力によって作動して、前記熱伝達媒体を加熱する加熱装置と、前記熱伝達媒体を冷却する冷却装置とを前記周回経路中に設け、
前記燃料電池において発生される電力が所定電力以上である場合に、前記燃料電池において発生された電力によって前記加熱装置を作動させる加熱工程と、
前記周回経路中を循環する前記熱伝達媒体の温度が、前記第1熱交換部への流入口において所定の温度を越える場合、前記燃料電池において発生された電力によって前記冷却装置を作動させる冷却工程とを含む燃料電池システムの作動方法。
A fuel cell, a heat storage device that stores heat using water as a medium, and a heat exchanger that mediates heat exchange performed between the fuel cell and the heat storage device using a heat transfer medium that circulates through a predetermined circuit path. Wherein the heat exchanger performs heat exchange with the fuel cell via the heat transfer medium in a first heat exchange section in the circulation path, and a second heat exchange section in the circulation path. In the fuel cell system performing heat exchange with the heat storage device via the heat transfer medium,
Operated by electric power generated in the fuel cell, a heating device for heating the heat transfer medium, and a cooling device for cooling the heat transfer medium are provided in the circuit path,
A heating step of operating the heating device with the power generated in the fuel cell, when the power generated in the fuel cell is equal to or higher than a predetermined power;
A cooling step of operating the cooling device by electric power generated in the fuel cell, when a temperature of the heat transfer medium circulating in the circulation path exceeds a predetermined temperature at an inlet to the first heat exchange unit. And a method of operating a fuel cell system comprising:
請求項1または請求項2に記載の燃料電池システムにおいて、
前記燃料電池の始動前に、前記熱伝達媒体を介して前記加熱装置から受け取る熱を利用して前記燃料電池の所定部位を昇温する工程を含む燃料電池システムの作動方法。
The fuel cell system according to claim 1 or 2,
A method of operating a fuel cell system, comprising a step of raising a temperature of a predetermined portion of the fuel cell using heat received from the heating device via the heat transfer medium before starting the fuel cell.
JP2002255372A 2002-08-30 2002-08-30 Fuel cell system and operating method thereof Expired - Fee Related JP4128054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255372A JP4128054B2 (en) 2002-08-30 2002-08-30 Fuel cell system and operating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255372A JP4128054B2 (en) 2002-08-30 2002-08-30 Fuel cell system and operating method thereof

Publications (2)

Publication Number Publication Date
JP2004095360A true JP2004095360A (en) 2004-03-25
JP4128054B2 JP4128054B2 (en) 2008-07-30

Family

ID=32060905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255372A Expired - Fee Related JP4128054B2 (en) 2002-08-30 2002-08-30 Fuel cell system and operating method thereof

Country Status (1)

Country Link
JP (1) JP4128054B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012656A (en) * 2004-06-28 2006-01-12 Aisin Seiki Co Ltd Fuel cell system
JP2006012564A (en) * 2004-06-24 2006-01-12 Ebara Ballard Corp Fuel cell system
KR100780200B1 (en) 2006-11-16 2007-11-28 주식회사 효성 A system for fuel cell stack cooling and hot water supply
JP2010257737A (en) * 2009-04-24 2010-11-11 Aisin Seiki Co Ltd Fuel cell system
JP2011233490A (en) * 2010-04-28 2011-11-17 Chung Hsin Electric & Machinery Corp Thermoelectric symbiotic system for fuel cell with heat recycle control module
KR20160122288A (en) * 2015-04-13 2016-10-24 현대제철 주식회사 Fuel cell system with excellent cooling efficiency and method of operating the same
JP2017037819A (en) * 2015-08-13 2017-02-16 本田技研工業株式会社 Fuel battery cogeneration system, and starting method and operation method for the same
CN111446467A (en) * 2020-03-27 2020-07-24 上海电气集团股份有限公司 Fuel cell cogeneration system and control method thereof
CN111446469A (en) * 2020-03-31 2020-07-24 上海电气集团股份有限公司 Liquid cooling fuel cell cogeneration system and control method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006012564A (en) * 2004-06-24 2006-01-12 Ebara Ballard Corp Fuel cell system
JP2006012656A (en) * 2004-06-28 2006-01-12 Aisin Seiki Co Ltd Fuel cell system
JP4516362B2 (en) * 2004-06-28 2010-08-04 アイシン精機株式会社 Fuel cell system
KR100780200B1 (en) 2006-11-16 2007-11-28 주식회사 효성 A system for fuel cell stack cooling and hot water supply
JP2010257737A (en) * 2009-04-24 2010-11-11 Aisin Seiki Co Ltd Fuel cell system
JP2011233490A (en) * 2010-04-28 2011-11-17 Chung Hsin Electric & Machinery Corp Thermoelectric symbiotic system for fuel cell with heat recycle control module
KR20160122288A (en) * 2015-04-13 2016-10-24 현대제철 주식회사 Fuel cell system with excellent cooling efficiency and method of operating the same
KR101675675B1 (en) * 2015-04-13 2016-11-14 현대제철 주식회사 Fuel cell system with excellent cooling efficiency and method of operating the same
JP2017037819A (en) * 2015-08-13 2017-02-16 本田技研工業株式会社 Fuel battery cogeneration system, and starting method and operation method for the same
CN111446467A (en) * 2020-03-27 2020-07-24 上海电气集团股份有限公司 Fuel cell cogeneration system and control method thereof
CN111446467B (en) * 2020-03-27 2023-09-15 上海电气集团股份有限公司 Fuel cell cogeneration system and control method thereof
CN111446469A (en) * 2020-03-31 2020-07-24 上海电气集团股份有限公司 Liquid cooling fuel cell cogeneration system and control method thereof
CN111446469B (en) * 2020-03-31 2023-04-07 上海电气集团股份有限公司 Liquid cooling fuel cell cogeneration system and control method thereof

Also Published As

Publication number Publication date
JP4128054B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US20150053491A1 (en) Thermal management system for fuel cell, fuel cell system and vehicle equipped with fuel cell system
CN108550877B (en) Distributed cold start device, system and method for fuel cell stack
JP2004095360A (en) Fuel cell system and operating method therefor
CN113793947B (en) Fuel cell waste heat utilization system and energy system
JP5515059B2 (en) Hot water supply system using a solar combined power generation system
JPH084586A (en) Cogeneration system
CN114068985A (en) Proton exchange membrane fuel cell combined cooling, heating and power system
JP4649090B2 (en) Fuel cell power generation system
JP7260352B2 (en) energy supply system
JP2007052981A (en) Fuel cell power generation system and its operation method
JP2004150646A (en) Cogeneration system
JP4746165B2 (en) Energy supply equipment
JP2004111209A (en) Fuel cell power generation system
JP3563681B2 (en) Fuel cell cogeneration system and method of operating fuel cell cogeneration system
JP2004012025A (en) Hybrid energy system
JP2004139914A (en) Fuel cell power generation/water heating system
JP2009287423A (en) Cogeneration system
JP2001248905A (en) Home cogeneration system
JP2006105452A (en) Cogeneration system and its control method
JP2007263388A (en) Exhaust heat recovering device
JP2011257130A (en) Apparatus for recovering exhaust heat
JP2012221723A (en) Fuel cell system
JP2004247084A (en) Fuel cell power generation system
JP2017116192A (en) Cogeneration system, control device, control method
JP2004020081A (en) Power generation heat using system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4128054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees