JP2004083378A - Chemically strengthened glass - Google Patents

Chemically strengthened glass Download PDF

Info

Publication number
JP2004083378A
JP2004083378A JP2002250183A JP2002250183A JP2004083378A JP 2004083378 A JP2004083378 A JP 2004083378A JP 2002250183 A JP2002250183 A JP 2002250183A JP 2002250183 A JP2002250183 A JP 2002250183A JP 2004083378 A JP2004083378 A JP 2004083378A
Authority
JP
Japan
Prior art keywords
glass
chemically strengthened
kgf
compressive stress
strengthened glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002250183A
Other languages
Japanese (ja)
Inventor
Masakazu Maruyama
丸山 正和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002250183A priority Critical patent/JP2004083378A/en
Publication of JP2004083378A publication Critical patent/JP2004083378A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of stably manufacturing a chemically strengthened glass which is capable of being cut. <P>SOLUTION: The chemically strengthened glass conventionally difficult to be cut can be cut by using a chemically strengthened glass having a compressive stress layer formed on the surface of the glass and having ≥10 μm to ≤30 μm thickness and ≥30 kgf/mm<SP>2</SP>to ≤60 kgf/mm<SP>2</SP>compressive stress. The hardness of the surface of the glass after being chemically strengthened is ≥560 kgf/mm<SP>2</SP>to ≤620 kgf/mm<SP>2</SP>and the glass is a sheet-like soda lime glass. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、切断性を向上させた化学強化ガラスに関しており、タッチパネル等に使用される電子材料分野、自動車用および建築用など、化学強化ガラスが用いられている多くの分野に有用である。
【0002】
【従来の技術】
省資源・省エネルギーの観点あるいは社会的なニーズの変化から、強化ガラスの薄板化や強化度アップが進んでいる。一般的に用いられている風冷強化法では、3mm以下、特に2mm以下の板厚をもったガラスの生産が難しいことから、2mm以下のガラスでは、化学強化法が多く用いられている。また、化学強化ガラスは一般的に風冷法による強化ガラスよりも高い強度を得ることができるという特徴も、市場に受け入れられている大きな理由である。
【0003】
化学強化ガラスの製造方法としては、種々の方法が考えられている。小さなイオン半径の原子を大きなイオン半径の原子に置き換える方法が数多く用いられており、代表的である。しかし、ガラスの粘性流動を利用して逆に大きなイオン半径の原子を小さなイオン半径の原子に置き換える方法、熱膨張率の差を利用する方法、結晶を晶出させる方法、上述の方法を組み合わせる方法など、多くの方法が提案されている。
【0004】
化学強化ガラスが市場に多く受け入れられている理由として、前述したような薄板ガラスでも強化ができることや高強度が得られることに加え、強化ガラスでも切断可能であることがあげられる。風冷強化ガラスでは、切断しようとしてクラックを導入すると、粉々割れてしまうので、切断はできない。
【0005】
公知技術をみれば、例えば、化学強化処理を行うガラス基板、ガラス基板の製造方法およびガラス基板を有する電子機器が特開2002−160932号公報に、化学強化ガラスの表面応力を測定する方法が特公昭59−37451号公報に開示されている。
【0006】
【発明が解決しようとする課題】
化学強化ガラスは切断可能とされている。しかし、切断可能といっても、この切断は非常に難しい技術であり、生産時の歩留低下の主因となっているし、製品となった後も切断不良による破壊の問題などが発生している。
【0007】
例えば、タッチパネル等に使用される化学強化した薄板ガラスにおいて、大板の化学強化ガラスから複数枚採りを行うことにより生産性アップを試みている。しかし、ホイールチップ方式の切断機でスクライブするとき、分断時にスクライブ線に沿って分割されず、スクライブ線から外れて分割されるという問題が数多く生じている。このため、複数採りのメリットが当初の予定とは異なった結果となっている場合が多い。また、スクライブされた化学強化ガラスを使ったパネルが、市場に出した後に想定荷重よりも小さな値でも破壊するという問題も発生している。
【0008】
このように、現実的には、化学強化ガラスの切断については、技術的に確立されているとは言えない状況にある。
【0009】
すなわち、特開2002−160932号公報の中で切断したガラスを化学強化として使用することが述べられているが、化学強化ガラスの切断方法を述べているわけではない。また、特公昭59−37451号公報の手法は表面応力の測定技術については知ることはできても、ガラスの切断につながる技術については示されていない。
【0010】
【課題を解決するための手段】
本発明は、上述の問題点を鑑み、簡単に切断できる化学強化ガラスを提供するものである。
【0011】
本発明は、イオン交換法により製作された化学強化ガラスにおいて、ガラス表面に形成される圧縮応力層の厚さが10μm以上30μm以下、および圧縮応力の値が30kgf/mm以上60kgf/mm以下である化学強化ガラスを用いることによって対応が可能となる。
【0012】
また、化学強化後のガラス表面の硬度が560kgf/mm以上620kgf/mm以下であるという特徴も有する。
【0013】
さらには、イオン交換法により製作されたガラスが、シート状のソーダ石灰ガラスであるという特徴も有する。
【0014】
【発明の実施の形態】
イオン交換法により製作された化学強化ガラスにおいて、ガラス表面に形成される圧縮応力層の厚さが10μm以上30μm以下の化学強化ガラス、または圧縮応力の値が30kgf/mm以上60kgf/mm以下の化学強化ガラスは数多く存在する。
【0015】
しかし、化学強化ガラスとしての市場ニーズを満たし、かつ切断を容易とするためにはガラス表面に形成される圧縮応力層の厚さが10μm以上30μm以下、および圧縮応力の値が30kgf/mm以上60kgf/mm以下の条件を同時に満たすことが重要である。
【0016】
ガラス表面に形成される圧縮応力層の厚さが10μm以下では、加傷性に劣り、市場での使用に耐えない。しかし、圧縮応力層の厚さが30μmを越えると、切断性に問題が発生する。加傷性と切断性を同時に考慮すると、好ましくは13μm以上20μm以下である。
【0017】
圧縮応力の値が30kgf/mmよりも小さいと、強度的に問題があり、市場での使用に耐えない。しかし、圧縮応力の値が60kgf/mmを越えると、切断性が悪化する。好ましくは、40kgf/mm以上50kgf/mm以下である。
【0018】
化学強化後のガラス表面の硬度が560kgf/mmよりも小さいと、加傷性に劣り、市場での使用に耐えない。しかし、620kgf/mmを越えると、切断性が悪化する。好ましくは、580kgf/mm以上600kgf/mm以下である。
【0019】
化学強化ガラスの圧縮応力層の厚さおよび圧縮応力の値は、化学強化時の処理温度と処理時間、さらには処理液の選択およびその活性特性に影響される。また、ガラス内のイオン交換状況や結晶化状況によっても異なる。一般的には、処理温度が高いほど、処理時間が長いほど、圧縮応力層は厚くなる。しかし、この操作は、場合によっては圧縮応力の値を小さくする方向に働く。また、硬度についても、処理時間を長くしたから、高い硬度が得られる訳ではない。上述の条件を満足する化学強化処理は複雑に絡み合っているために簡単ではないが、化学強化処理温度、処理時間、処理液およびガラス組成を適宜選択することにより、標記の化学強化ガラスを得ることができる。
【0020】
【実施例】
以下、実施例に基づき、述べる。
【0021】
(実施例1)
厚さ0.7mmのソーダ石灰系フロートガラスを490℃の硝酸カリウム溶融塩で1.5時間化学強化処理を行い、ガラス表面に形成される圧縮応力層の厚さが約15μm、圧縮応力の値が50kgf/mm、硬度が590kgf/mmの化学強化ガラスを得た。
【0022】
この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断するテストを行ったところ、問題なく切断することができた。
【0023】
このように、応力層の厚さが10μm〜20μmまでは特に問題なくスクライブ線が形成され、スクライブ線に沿って分断できた。応力層の厚さが20μm〜30μmになるとホイールチップがガラス表面上でスリップする様な感触となったが、少し切断圧を強くするとスクライブ線に沿って分断ができた。
【0024】
(実施例2)
厚さ0.55mmのソーダ石灰系フロートガラスを硝酸カリウム溶融塩中で化学強化し、ガラス表面に形成される圧縮応力層の厚さが約20μm、圧縮応力の値が40kgf/mm、硬度が600kgf/mmの化学強化ガラスを得た。この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断するテストを行ったところ、問題なく切断することができた。
【0025】
(実施例3)
厚さ1.1mmのソーダ石灰系フロートガラスを硝酸カリウム溶融塩中で化学強化し、ガラス表面に形成される圧縮応力層の厚さが約25μm、圧縮応力の値が55kgf/mm、硬度が600kgf/mmの化学強化ガラスを得た。
この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断するテストを行ったところ、少しガラス上ですべるような感触があったが、最終的には問題なく切断することができた。
【0026】
(比較例1)
厚さ0.7mmのソーダ石灰系フロートガラスを硝酸カリウム溶融塩中で化学強化し、ガラス表面に形成される圧縮応力層の厚さが約40μm、圧縮応力の値が30kgf/mm、硬度が560kgf/mmの化学強化ガラスを得た。
【0027】
この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断するテストを行ったところ、スリップが顕著であった。そこで、切断圧を強くして検討したところ、スクライブ線は形成されたが、スクライブ線から線状のガラス粉が発生した。また、スクライブ線に沿って分断できない場合が生じるようになった。
【0028】
(比較例2)
厚さ0.55mmのソーダ石灰系フロートガラスを硝酸カリウム溶融塩中で化学強化し、ガラス表面に形成される圧縮応力層の厚さが約35μm、圧縮応力の値が10kgf/mm、硬度が560kgf/mmの化学強化ガラスを得た。
【0029】
この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断するテストを行ったところ、スリップが顕著であった。そこで、切断圧を強くして検討したところ、この化学強化ガラスは破壊してしまった。
【0030】
(比較例3)
厚さ1.1mmのアルミノホウ酸系ガラスを硝酸カリウム溶融塩中で化学強化し、ガラス表面に形成される圧縮応力層の厚さが約40μm、圧縮応力の値が65kgf/mm、硬度が630kgf/mmの化学強化ガラスを得た。
【0031】
この化学強化ガラスを市販の超硬製ホイールチップを用いてスクライブし、分断するテストを行ったところ、スリップが顕著であった。そこで、切断圧を強くして検討したが、この化学強化ガラスをスクライブ線に沿って切断することはできなかった。
【0032】
以上の結果から示されるように、ガラス表面に形成される圧縮応力層の厚さが10μm以上30μm以下、および圧縮応力の値が30kgf/mm以上60kgf/mm以下である化学強化ガラスを用いることによって、これまで困難であった化学強化ガラスの切断が可能となった。なお、化学強化後のガラス表面の硬度が560kgf/mm以上620kgf/mm以下であるという特徴、およびイオン交換法により製作されたガラスが、シート状のソーダ石灰ガラスであるという特徴も有する。
【0033】
なお、硬度は市販のビッカース微小硬度計を使うことにより、測定した。このとき、ビッカース圧子の荷重は25g、負荷時間は15secとした。また、表面圧縮応力の値および層厚は、特公昭59−37451号公報で開示された東芝製の表面応力計を用いて測定した。
【0034】
【発明の効果】
これまで、困難とされてきた化学強化ガラスの切断が安定してできるようになった。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to chemically strengthened glass having improved cuttability, and is useful in many fields where chemically strengthened glass is used, such as in the field of electronic materials used for touch panels and the like, and for automobiles and buildings.
[0002]
[Prior art]
From the viewpoint of resource saving and energy saving or changes in social needs, the tempered glass is becoming thinner and the degree of strengthening is increasing. Since it is difficult to produce a glass having a plate thickness of 3 mm or less, particularly 2 mm or less by a commonly used air-cooling tempering method, a chemical strengthening method is often used for glass of 2 mm or less. Another characteristic of chemically strengthened glass that it can generally obtain higher strength than tempered glass produced by the air-cooling method is the market acceptance.
[0003]
Various methods have been considered as a method for producing chemically strengthened glass. Many methods have been used to replace atoms having a small ionic radius with atoms having a large ionic radius, and are typical. However, conversely, using a viscous flow of glass to replace atoms with a large ionic radius with atoms with a small ionic radius, a method using a difference in thermal expansion coefficient, a method of crystallizing a crystal, and a method of combining the above methods Many methods have been proposed.
[0004]
The reason why chemically strengthened glass is widely accepted in the market is that, in addition to the fact that thin glass as described above can be strengthened, high strength can be obtained, and that tempered glass can be cut. In the case of tempered glass, if a crack is introduced to cut the glass, the glass breaks into pieces, so that the glass cannot be cut.
[0005]
In view of the known art, for example, Japanese Patent Application Laid-Open No. 2002-160932 discloses a glass substrate for performing a chemical strengthening process, a method for manufacturing the glass substrate, and a method for measuring the surface stress of the chemically strengthened glass. It is disclosed in Japanese Patent Publication No. 59-37451.
[0006]
[Problems to be solved by the invention]
Chemically tempered glass is severable. However, even if it can be cut, this cutting is a very difficult technology, which is the main cause of the decrease in yield during production, and even after it becomes a product, the problem of destruction due to poor cutting has occurred. I have.
[0007]
For example, in a chemically strengthened thin glass used for a touch panel or the like, an attempt is made to increase productivity by taking a plurality of large chemically strengthened glass sheets. However, when scribing with a wheel tip type cutting machine, there are many problems that the cutting is not performed along the scribe line at the time of cutting, but is separated from the scribe line. For this reason, the merit of multiple sampling is often different from the initial plan. In addition, there is also a problem that a panel using scribed chemically strengthened glass breaks even if it is smaller than an assumed load after being put on the market.
[0008]
Thus, in reality, the cutting of chemically strengthened glass is not in a technically established state.
[0009]
That is, Japanese Patent Application Laid-Open No. 2002-160932 describes using cut glass as chemical strengthening, but does not describe a method of cutting chemically strengthened glass. Further, although the technique disclosed in Japanese Patent Publication No. 59-37451 can know the technique for measuring the surface stress, it does not disclose the technique that leads to the cutting of glass.
[0010]
[Means for Solving the Problems]
The present invention has been made in view of the above-described problems, and provides a chemically strengthened glass that can be easily cut.
[0011]
The present invention relates to a chemically strengthened glass manufactured by an ion exchange method, wherein a thickness of a compressive stress layer formed on a glass surface is 10 μm or more and 30 μm or less, and a value of a compressive stress is 30 kgf / mm 2 or more and 60 kgf / mm 2 or less. The use of chemically strengthened glass is possible.
[0012]
Further, it has a feature that the hardness of the glass surface after the chemical strengthening is 560 kgf / mm 2 or more and 620 kgf / mm 2 or less.
[0013]
Furthermore, the glass produced by the ion exchange method is characterized in that it is a sheet-like soda-lime glass.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the chemically strengthened glass manufactured by the ion exchange method, the thickness of the compressive stress layer formed on the glass surface is 10 μm or more and 30 μm or less, or the value of the compressive stress is 30 kgf / mm 2 or more and 60 kgf / mm 2 or less. There are many chemically strengthened glasses.
[0015]
However, in order to satisfy the market needs as chemically strengthened glass and facilitate cutting, the thickness of the compressive stress layer formed on the glass surface is 10 μm or more and 30 μm or less, and the value of the compressive stress is 30 kgf / mm 2 or more. It is important to simultaneously satisfy the condition of 60 kgf / mm 2 or less.
[0016]
If the thickness of the compressive stress layer formed on the glass surface is 10 μm or less, it is inferior in damageability and cannot be used in a market. However, when the thickness of the compressive stress layer exceeds 30 μm, a problem occurs in the cutting property. Taking into account both the damage and the cuttability, the thickness is preferably 13 μm or more and 20 μm or less.
[0017]
If the value of the compressive stress is smaller than 30 kgf / mm 2 , there is a problem in strength, and it cannot be used in a market. However, when the value of the compressive stress exceeds 60 kgf / mm 2 , the cutting property deteriorates. Preferably, it is 40 kgf / mm 2 or more 50 kgf / mm 2 or less.
[0018]
If the hardness of the glass surface after the chemical strengthening is smaller than 560 kgf / mm 2 , the glass is inferior in damageability and cannot be used in the market. However, if it exceeds 620 kgf / mm 2 , the cutting properties will deteriorate. Preferably, it is 580 kgf / mm 2 or more and 600 kgf / mm 2 or less.
[0019]
The thickness of the compressive stress layer and the value of the compressive stress of the chemically strengthened glass are affected by the processing temperature and the processing time during the chemical strengthening, as well as the selection of the processing solution and its activation characteristics. Further, it differs depending on the ion exchange state and the crystallization state in the glass. Generally, the higher the processing temperature and the longer the processing time, the thicker the compressive stress layer. However, this operation sometimes works in the direction of reducing the value of the compressive stress. Also, regarding the hardness, a high hardness is not always obtained because the processing time is lengthened. The chemical strengthening treatment that satisfies the above conditions is not easy because it is complicatedly entangled.However, by appropriately selecting the chemical strengthening treatment temperature, treatment time, treatment liquid and glass composition, it is possible to obtain the chemically strengthened glass of the title. Can be.
[0020]
【Example】
Hereinafter, description will be given based on examples.
[0021]
(Example 1)
A 0.7 mm thick soda-lime float glass is chemically strengthened with potassium nitrate molten salt at 490 ° C. for 1.5 hours. The thickness of the compressive stress layer formed on the glass surface is about 15 μm, and the value of compressive stress is 50 kgf / mm 2, hardness was obtained chemically tempered glass 590kgf / mm 2.
[0022]
This chemically strengthened glass was scribed using a commercially available carbide wheel tip, and a test for cutting was performed. As a result, the glass could be cut without any problem.
[0023]
As described above, the scribe line was formed without any problem when the thickness of the stress layer was 10 μm to 20 μm, and the scribe line could be divided along the scribe line. When the thickness of the stress layer was 20 μm to 30 μm, the wheel chip felt like slipping on the glass surface. However, when the cutting pressure was slightly increased, the chip could be separated along the scribe line.
[0024]
(Example 2)
A soda-lime-based float glass having a thickness of 0.55 mm is chemically strengthened in a molten salt of potassium nitrate. A compressive stress layer formed on the glass surface has a thickness of about 20 μm, a compressive stress value of 40 kgf / mm 2 , and a hardness of 600 kgf. / Mm 2 was obtained. This chemically strengthened glass was scribed using a commercially available carbide wheel tip, and a test for cutting was performed. As a result, the glass could be cut without any problem.
[0025]
(Example 3)
A soda-lime float glass having a thickness of 1.1 mm is chemically strengthened in a molten salt of potassium nitrate so that a compressive stress layer formed on the glass surface has a thickness of about 25 μm, a compressive stress value of 55 kgf / mm 2 and a hardness of 600 kgf. / Mm 2 was obtained.
This chemically strengthened glass was scribed using a commercially available carbide wheel tip and subjected to a cutting test.It felt a little like slipping on the glass, but finally it could be cut without any problems. Was.
[0026]
(Comparative Example 1)
The thickness of 0.7mm soda-lime float glass chemically strengthened in potassium nitrate molten salt, about 40μm thickness of the compressive stress layer formed on the glass surface, the value of the compressive stress is 30 kgf / mm 2, hardness 560kgf / Mm 2 was obtained.
[0027]
When this chemically strengthened glass was scribed using a commercially available carbide wheel tip and subjected to a cutting test, slip was remarkable. Then, when the cutting pressure was increased, the scribe line was formed, but linear glass powder was generated from the scribe line. In addition, there has been a case where division cannot be performed along the scribe line.
[0028]
(Comparative Example 2)
The thickness of soda-lime float glass of 0.55mm was chemically strengthened in a potassium nitrate molten salt, about 35μm thickness of the compressive stress layer formed on the glass surface, the value of the compressive stress is 10 kgf / mm 2, hardness 560kgf / Mm 2 was obtained.
[0029]
When this chemically strengthened glass was scribed using a commercially available carbide wheel tip and subjected to a cutting test, slip was remarkable. Therefore, when the cutting pressure was increased, the chemically strengthened glass was broken.
[0030]
(Comparative Example 3)
Alumino borate glass having a thickness of 1.1 mm is chemically strengthened in a molten salt of potassium nitrate, the thickness of a compressive stress layer formed on the glass surface is about 40 μm, the value of the compressive stress is 65 kgf / mm 2 , and the hardness is 630 kgf / mm 2 of chemically strengthened glass was obtained.
[0031]
When this chemically strengthened glass was scribed using a commercially available carbide wheel tip and subjected to a cutting test, slip was remarkable. Therefore, although the cutting pressure was increased, the chemically strengthened glass could not be cut along the scribe line.
[0032]
As shown from the above results, chemically strengthened glass is used in which the thickness of the compressive stress layer formed on the glass surface is 10 μm or more and 30 μm or less, and the value of the compressive stress is 30 kgf / mm 2 or more and 60 kgf / mm 2 or less. This has made it possible to cut chemically strengthened glass, which has been difficult so far. In addition, the glass surface hardness after chemical strengthening is 560 kgf / mm 2 or more and 620 kgf / mm 2 or less, and the glass manufactured by the ion exchange method is a sheet-like soda-lime glass.
[0033]
The hardness was measured by using a commercially available Vickers microhardness tester. At this time, the load of the Vickers indenter was 25 g, and the load time was 15 seconds. Further, the value of the surface compressive stress and the layer thickness were measured using a surface stress meter manufactured by Toshiba disclosed in Japanese Patent Publication No. 59-37451.
[0034]
【The invention's effect】
It has become possible to stably cut chemically strengthened glass, which has been considered difficult so far.

Claims (3)

イオン交換法により製作された化学強化ガラスにおいて、ガラス表面に形成される圧縮応力層の厚さが10μm以上30μm以下、および圧縮応力の値が30kgf/mm以上60kgf/mm以下であることを特徴とする化学強化ガラス。In the chemically strengthened glass manufactured by the ion exchange method, the thickness of the compressive stress layer formed on the glass surface is 10 μm or more and 30 μm or less, and the value of the compressive stress is 30 kgf / mm 2 or more and 60 kgf / mm 2 or less. Characterized by chemically strengthened glass. イオン交換法により製作された化学強化ガラスにおいて、ガラス表面の硬度が560kgf/mm以上620kgf/mm以下であることを特徴とする請求項1に記載の化学強化ガラス。2. The chemically strengthened glass according to claim 1, wherein in the chemically strengthened glass manufactured by the ion exchange method, the hardness of the glass surface is 560 kgf / mm 2 or more and 620 kgf / mm 2 or less. イオン交換法により製作されたガラスが、シート状のソーダ石灰ガラスであることを特徴とする請求項1および2に記載の化学強化ガラス。3. The chemically strengthened glass according to claim 1, wherein the glass produced by the ion exchange method is a sheet-like soda-lime glass.
JP2002250183A 2002-08-29 2002-08-29 Chemically strengthened glass Pending JP2004083378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250183A JP2004083378A (en) 2002-08-29 2002-08-29 Chemically strengthened glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250183A JP2004083378A (en) 2002-08-29 2002-08-29 Chemically strengthened glass

Publications (1)

Publication Number Publication Date
JP2004083378A true JP2004083378A (en) 2004-03-18

Family

ID=32057074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250183A Pending JP2004083378A (en) 2002-08-29 2002-08-29 Chemically strengthened glass

Country Status (1)

Country Link
JP (1) JP2004083378A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007384A (en) * 2006-06-30 2008-01-17 Optrex Corp Method for manufacturing glass substrate
WO2008108332A1 (en) * 2007-03-02 2008-09-12 Nippon Electric Glass Co., Ltd. Reinforced plate glass and method for manufacturing the same
JP2011136855A (en) * 2009-12-28 2011-07-14 Optrex Corp Method for producing glass substrate
US20110226832A1 (en) * 2010-03-19 2011-09-22 John Frederick Bayne Mechanical scoring and separation of strengthened glass
KR20120074229A (en) 2010-12-27 2012-07-05 호야 가부시키가이샤 Glass substrate of cover glass for mobile electronics device, image display apparatus for mobile electronics device, mobile electronics device, manufacturing method of glass substrate of cover glass for mobile electronics device
WO2012118655A1 (en) 2011-02-28 2012-09-07 Corning Incorporated Local strengthening of glass by ion exchange
JP2012250861A (en) * 2011-05-31 2012-12-20 Asahi Glass Co Ltd Chemically strengthened glass plate
WO2013002368A1 (en) * 2011-06-30 2013-01-03 株式会社Nsc Method for manufacturing glass substrates
WO2013047675A1 (en) 2011-09-29 2013-04-04 セントラル硝子株式会社 Chemically strengthened glass and method for producing same
WO2013047676A1 (en) 2011-09-29 2013-04-04 セントラル硝子株式会社 Cover glass for display device, and manufacturing method for same
US8539794B2 (en) 2011-02-01 2013-09-24 Corning Incorporated Strengthened glass substrate sheets and methods for fabricating glass panels from glass substrate sheets
US8616024B2 (en) 2010-11-30 2013-12-31 Corning Incorporated Methods for forming grooves and separating strengthened glass substrate sheets
WO2014034366A1 (en) 2012-08-31 2014-03-06 Minami Hironori Tempered glass processing tool, tempered glass processing device and method for using tempered glass processing tool
US8720228B2 (en) 2010-08-31 2014-05-13 Corning Incorporated Methods of separating strengthened glass substrates
US8787980B2 (en) 2010-12-27 2014-07-22 Hoya Corporation Glass substrate of cover glass for portable electronic device, image display unit for portable electronic device, portable electronic device and method of manufacturing glass substrate of cover glass for portable electronic device
US8946590B2 (en) 2009-11-30 2015-02-03 Corning Incorporated Methods for laser scribing and separating glass substrates
WO2016056460A1 (en) * 2014-10-07 2016-04-14 旭硝子株式会社 Laminated plate and method for manufacturing laminated plate
US9533910B2 (en) 2009-08-28 2017-01-03 Corning Incorporated Methods for laser cutting glass substrates
US9610653B2 (en) 2012-09-21 2017-04-04 Electro Scientific Industries, Inc. Method and apparatus for separation of workpieces and articles produced thereby
US9611167B2 (en) 2010-07-16 2017-04-04 Corning Incorporated Methods for scribing and separating strengthened glass substrates
US9938180B2 (en) 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
US10351460B2 (en) 2012-05-22 2019-07-16 Corning Incorporated Methods of separating strengthened glass sheets by mechanical scribing
KR20200045708A (en) 2018-10-23 2020-05-06 배영규 Tempered glass cutting tools

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007384A (en) * 2006-06-30 2008-01-17 Optrex Corp Method for manufacturing glass substrate
JP2012197222A (en) * 2007-03-02 2012-10-18 Nippon Electric Glass Co Ltd Method for manufacturing reinforced plate glass
WO2008108332A1 (en) * 2007-03-02 2008-09-12 Nippon Electric Glass Co., Ltd. Reinforced plate glass and method for manufacturing the same
JP2013014512A (en) * 2007-03-02 2013-01-24 Nippon Electric Glass Co Ltd Reinforced plate glass
JP2013121910A (en) * 2007-03-02 2013-06-20 Nippon Electric Glass Co Ltd Reinforced plate glass and its manufacturing method
JP2012025661A (en) * 2007-03-02 2012-02-09 Nippon Electric Glass Co Ltd Reinforced plate glass and method for producing the same
JP2012072058A (en) * 2007-03-02 2012-04-12 Nippon Electric Glass Co Ltd Reinforced plate glass and method for manufacturing the same
US9102566B2 (en) 2007-03-02 2015-08-11 Nippon Electric Glass Co., Ltd. Reinforced plate glass and method for manufacturing the same
US20130199241A1 (en) * 2007-03-02 2013-08-08 Nippon Electric Glass Co., Ltd. Reinforced plate glass and method for manufacturing the same
TWI394731B (en) * 2007-03-02 2013-05-01 Nippon Electric Glass Co Reinforced plate glass and manufacturing method thereof
JP2008247732A (en) * 2007-03-02 2008-10-16 Nippon Electric Glass Co Ltd Reinforced plate glass and method for manufacturing the same
US9533910B2 (en) 2009-08-28 2017-01-03 Corning Incorporated Methods for laser cutting glass substrates
US10358374B2 (en) 2009-11-30 2019-07-23 Corning Incorporated Methods for laser scribing and separating glass substrates
US8946590B2 (en) 2009-11-30 2015-02-03 Corning Incorporated Methods for laser scribing and separating glass substrates
JP2011136855A (en) * 2009-12-28 2011-07-14 Optrex Corp Method for producing glass substrate
US8875967B2 (en) * 2010-03-19 2014-11-04 Corning Incorporated Mechanical scoring and separation of strengthened glass
US20130292442A1 (en) * 2010-03-19 2013-11-07 Corning Incorporated Mechanical scoring and separation of strengthened glass
US9802854B2 (en) 2010-03-19 2017-10-31 Corning Incorporated Mechanical scoring and separation of strengthened glass
JP2013522163A (en) * 2010-03-19 2013-06-13 コーニング インコーポレイテッド Mechanical scoring and division of tempered glass
CN105198198B (en) * 2010-03-19 2018-06-08 康宁股份有限公司 The machinery scribing line and separation of strengthened glass
CN102869626A (en) * 2010-03-19 2013-01-09 康宁股份有限公司 Mechanical scoring and separation of strengthened glass
KR101863023B1 (en) 2010-03-19 2018-05-31 코닝 인코포레이티드 Mechanical scoring and separation of strengthened glass
CN105198198A (en) * 2010-03-19 2015-12-30 康宁股份有限公司 Mechanical scoring and separation of strengthened glass
US20110226832A1 (en) * 2010-03-19 2011-09-22 John Frederick Bayne Mechanical scoring and separation of strengthened glass
KR101778822B1 (en) * 2010-03-19 2017-09-14 코닝 인코포레이티드 Mechanical scoring and separation of strengthened glass
US9611167B2 (en) 2010-07-16 2017-04-04 Corning Incorporated Methods for scribing and separating strengthened glass substrates
US8720228B2 (en) 2010-08-31 2014-05-13 Corning Incorporated Methods of separating strengthened glass substrates
US8616024B2 (en) 2010-11-30 2013-12-31 Corning Incorporated Methods for forming grooves and separating strengthened glass substrate sheets
KR20120074229A (en) 2010-12-27 2012-07-05 호야 가부시키가이샤 Glass substrate of cover glass for mobile electronics device, image display apparatus for mobile electronics device, mobile electronics device, manufacturing method of glass substrate of cover glass for mobile electronics device
US8787980B2 (en) 2010-12-27 2014-07-22 Hoya Corporation Glass substrate of cover glass for portable electronic device, image display unit for portable electronic device, portable electronic device and method of manufacturing glass substrate of cover glass for portable electronic device
US8539794B2 (en) 2011-02-01 2013-09-24 Corning Incorporated Strengthened glass substrate sheets and methods for fabricating glass panels from glass substrate sheets
US8776547B2 (en) 2011-02-28 2014-07-15 Corning Incorporated Local strengthening of glass by ion exchange
WO2012118655A1 (en) 2011-02-28 2012-09-07 Corning Incorporated Local strengthening of glass by ion exchange
JP2012250861A (en) * 2011-05-31 2012-12-20 Asahi Glass Co Ltd Chemically strengthened glass plate
WO2013002368A1 (en) * 2011-06-30 2013-01-03 株式会社Nsc Method for manufacturing glass substrates
CN103608309A (en) * 2011-06-30 2014-02-26 株式会社Nsc Method for manufacturing glass substrates
CN103608309B (en) * 2011-06-30 2015-11-25 株式会社Nsc The manufacture method of glass substrate
JP2013010673A (en) * 2011-06-30 2013-01-17 Nsc:Kk Method for manufacturing glass substrates
KR20140074900A (en) 2011-09-29 2014-06-18 샌트랄 글래스 컴퍼니 리미티드 Cover glass for display device, and manufacturing method for same
US9206079B2 (en) 2011-09-29 2015-12-08 Central Glass Company, Limited Chemically strengthened glass plate and method for manufacturing same
WO2013047676A1 (en) 2011-09-29 2013-04-04 セントラル硝子株式会社 Cover glass for display device, and manufacturing method for same
KR20140074924A (en) 2011-09-29 2014-06-18 샌트랄 글래스 컴퍼니 리미티드 Chemically strengthened glass and method for producing same
KR102018396B1 (en) * 2011-09-29 2019-09-04 샌트랄 글래스 컴퍼니 리미티드 Cover glass for display device, and manufacturing method for same
WO2013047675A1 (en) 2011-09-29 2013-04-04 セントラル硝子株式会社 Chemically strengthened glass and method for producing same
US10351460B2 (en) 2012-05-22 2019-07-16 Corning Incorporated Methods of separating strengthened glass sheets by mechanical scribing
US9938180B2 (en) 2012-06-05 2018-04-10 Corning Incorporated Methods of cutting glass using a laser
WO2014033905A1 (en) 2012-08-31 2014-03-06 Minami Hironori Method for processing toughened glass and processing device for toughened glass
US9700983B2 (en) 2012-08-31 2017-07-11 CERON Technologies Inc. Method of processing tempered glass
US9393661B2 (en) 2012-08-31 2016-07-19 CERON Technologies Inc. Method of using device of processing tempered glass
US9290412B2 (en) 2012-08-31 2016-03-22 CERON Technologies Inc. Method of processing tempered glass and device of processing tempered glass
WO2014034907A1 (en) 2012-08-31 2014-03-06 Minami Hironori Strengthened glass processing method
WO2014034366A1 (en) 2012-08-31 2014-03-06 Minami Hironori Tempered glass processing tool, tempered glass processing device and method for using tempered glass processing tool
US9610653B2 (en) 2012-09-21 2017-04-04 Electro Scientific Industries, Inc. Method and apparatus for separation of workpieces and articles produced thereby
WO2016056460A1 (en) * 2014-10-07 2016-04-14 旭硝子株式会社 Laminated plate and method for manufacturing laminated plate
KR20200045708A (en) 2018-10-23 2020-05-06 배영규 Tempered glass cutting tools

Similar Documents

Publication Publication Date Title
JP2004083378A (en) Chemically strengthened glass
JP4535692B2 (en) Chemically tempered glass
US11643355B2 (en) Thin thermally and chemically strengthened glass-based articles
US20230147808A1 (en) Glass-based articles including a metal oxide concentration gradient
WO2004106253A1 (en) Chemically reinforced glass and method for production thereof
TWI814830B (en) Glass with improved drop performance
TWI547453B (en) A cover glass for display device and a method for manufacturing the same
TWI394731B (en) Reinforced plate glass and manufacturing method thereof
EP3577086B1 (en) Coated glass-based articles with engineered stress profiles
KR20220113539A (en) Glass-based articles including a metal oxide concentration gradient
JP2006509701A (en) Glass cutting method that does not need to break
JP2008007384A (en) Method for manufacturing glass substrate
US9789665B2 (en) Alkali-aluminosilicate glass
JP2018506501A (en) Machinable chemically temperable glass ceramic
JP4289931B2 (en) Method for producing chemically strengthened glass
JP2019043844A (en) Flexible and/or foldable articles and method of providing flexible and/or foldable articles
KR20210154825A (en) Glass laminate with definite stress profile and method for manufacturing the same
JP4289927B2 (en) Method for producing chemically strengthened glass
JP2004149364A (en) Chemically reinforced glass product and fixing method therefor
JP2004107131A (en) Chemically strengthened glass product
JP2004189562A (en) Method for manufacturing chemically reinforced glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724