JP2004081119A - Method for carrying out removal and antisticking of aquatic organism - Google Patents

Method for carrying out removal and antisticking of aquatic organism Download PDF

Info

Publication number
JP2004081119A
JP2004081119A JP2002247540A JP2002247540A JP2004081119A JP 2004081119 A JP2004081119 A JP 2004081119A JP 2002247540 A JP2002247540 A JP 2002247540A JP 2002247540 A JP2002247540 A JP 2002247540A JP 2004081119 A JP2004081119 A JP 2004081119A
Authority
JP
Japan
Prior art keywords
discharge
aquatic organisms
electrode
pulse discharge
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002247540A
Other languages
Japanese (ja)
Inventor
Shinta Kunitomo
國友 新太
Tadashi Daiho
大保 忠司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002247540A priority Critical patent/JP2004081119A/en
Publication of JP2004081119A publication Critical patent/JP2004081119A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Catching Or Destruction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective method and apparatus for carrying out antisticking and removal of aquatic organisms at a low cost without using any chemical. <P>SOLUTION: The method for carrying out antisticking and removal of these aquatic organisms comprises arranging electrodes in the neighborhood in which an object from which adhesion of the aquatic organisms is prevented or the aquatic organisms attached to the object is irradiated with shock wave and ultraviolet light generated accompanying pulse discharge and directly irradiating the aquatic organisms with the shock wave and ultraviolet light generated accompanying the discharge by generating the pulse discharge on electrodes. When carrying out pulse discharge, it is preferable that bubbles exist in water near electrodes and a reflecting body having a structure reflecting either one or both of the shock wave and the ultraviolet light generated by the pulse discharge is used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水中でのパルス放電を用いて発電所取水路や水族館取水設備、船舶の船底、堤防や護岸壁、生簀網や定置網など魚網の他、フロートなどの漁具に付着する貝類・藻類・細菌などの水生生物の付着防止又は除去に関する。
【0002】
【従来の技術】
ムラサキイガイやフジツボなどは発電所や臨海工場の取水路などに付着し、取水流量の低下や復水器管の腐食や、伝熱性能の低下などの問題を引き起こしている。船の船底に付着すると、滑らかだった船底に凹凸ができ、摩擦が大きくなって船足が遅くなるばかりでなく、燃費も悪化し、それとともに排気ガス量が増加するので、結果として大気汚染を助長することにつながる。このため定期的にそれらの貝類を何らかの方法で除去しているが、除去された貝類の廃棄処理にかかる費用や、その死骸からの悪臭の発生などが大きな問題となっている。
【0003】
また、定置網や生簀網に付着したこれらの生物や海藻類も網目を閉塞させて、海流による流体抵抗が増すため係留施設への負担を増やし、アンカーの固定力が十分でない場合は網がずれることがあるだけでなく、網内の海水の流出入を妨げ、網内の海水の酸素欠乏による養殖魚等の致死が大きな損失を発生させることもある。
【0004】
このためフジツボ類、イガイ類、珪藻・海藻類、カキ類、ホヤ類、ヒドロ虫類など、これらの水生生物に対しては従来から付着防止・除去対策が行なわれてきた。塩素注入や有機スズ塗装の方法が最も多く用いられてきたが、環境保護の立場から注入量や使用が著しく規制されるようになり、現在ではこれに代わる様々な手法が試みられている。付着期幼生を麻痺させる方法としては薬品(ClO、臭素、臭素化合物、NaBr、オゾン、過酸化水素、界面活性剤、塩化第二銅、電解銅イオン)、基盤塗装(亜酸化銅、銅)、基盤材質(銅、キュプロニッケル、銅ベリリウム合金、特殊コンクリート)、その他の物理的手法(超音波、高周波、レーザー、紫外線、赤外線、マイクロウェーブ、昇温、酸欠)などの方法が、着生を防止する方法としては第一鉄イオン、半導体光触媒、音波、磁場、光、忌避剤などの方法がある。既に付着している生物に対する除去方法しては、ロボットやダイバーによる剥離作業、高速流、ブラシ、スポンジボールなどの物理的剥離がある。
【0005】
水力発電所の取水口や排水口に設置される水路を通って侵入する水中生物を阻止し、水路の壁面に貝類の付着を防止するために直流パルス発生装置を設置することが提案されているが、これは水中生物や貝類に電気的ショックを与えるもので、効果が低いものであった。また、同じ分野で、水中で200Hz以下の断続音を発生させ、水生生物に対して成長阻害及び/又は忌避行動を誘起させる方法が提案されているが、そこではその断続音を発生させるのに、アーク放電を用いているが、そのためのパルス電圧は音響発生部に供給されていて、水中で良く伝達する音波の作用を利用して水生生物に対して防除することを目的とするものであった。
しかしながら、前述した多くの方法は、その効果が曖昧であったり、その手法に巨額な費用がかかるもの、他の生物に害を与えるものなど未だ決定的な方法はない。このため環境へ影響を与えずに生物を付着させない方法、付着した生物を除去する方法が望まれてきた。
【0006】
【発明が解決しようとする課題】
本発明は、従来技術の問題点を克服し、化学薬品を使わずに低コストでありながら、効果的な水生生物の付着防止・除去方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
発明者らは、水中でパルス放電を行うことにより紫外線、衝撃波を発生させ、それらを直接対象物に照射することにより、取水路や漁具に付着する貝類や藻類の付着防止・除去ができることを見出し、本発明を完成するに至った。すなわち、上記課題は次の構成により達成させる。
【0008】
(1)水中において、水生生物の付着を防止すべき対象物又は対象物に付着した水生生物に対し、パルス放電に伴って発生する衝撃波及び紫外線が直接照射される近傍に電極を配置し、該電極でパルス放電を発生させ放電に伴って発生する衝撃波及び紫外線を直接水生生物に照射することを特徴とする水生生物の付着防止及び除去方法。
(2)前記パルス放電を行う際に、電極の近くに水中で気泡を存在させることを特徴とする前記(1)記載の水生生物の付着防止及び除去方法。
(3)電極の周囲に、前記パルス放電によって発生する衝撃波及び紫外線を反射する構造を有し、該衝撃波及び紫外線に方向性を持たせる反射体を設けたことを特徴とする前記(1)記載の水生生物の付着防止及び除去方法。
【0009】
(4)水中で水生生物の付着を防止すべき対象物又は対象物に付着した水生生物に対し、その近傍に配置するパルス放電用電極と、パルス放電を起すための電源と、衝撃波を発生させるパルス放電の放電電圧、放電エネルギー、放電間隔、電極間距離等を制御するための制御装置と、該電極と該電源を接続するための導線を有することを特徴とする水生生物の付着防止及び除去装置。
【0010】
すなわち、本発明の骨子は下記に示すとおりである。
1)水中でパルス放電を行うことを特徴とする付着防止・除去方法。
2)水生生物の近傍に電極を配置し、パルス放電により発生した衝撃波を直接作用させることを特徴とする付着防止・除去方法。
3)水生生物の近傍に電極を配置し、パルス放電により発生した紫外線を直接作用させることを特徴とする付着防止・除去方法。
4)気泡を用いて不要な衝撃波を吸収することを特徴とする前記2)記載の付着防止・除去方法。
5)衝撃波及び紫外線を反射する構造を持つ水中電極を持つことを特徴とする水中のパルス放電による付着防止・除去方法。
【0011】
【発明の実施の形態】
本発明で用いるパルス電源は、コンデンサを用いた静電エネルギー蓄積型、コイルを用いた誘導エネルギー蓄積型、蒸気タービンやフライホイールを用いた運動エネルギー蓄積型、爆薬を用いた化学エネルギー蓄積型など、特に限定されないが、小型でかつ制御性の良い誘導エネルギー蓄積型がより望ましい。
本発明で、パルス放電で、水生生物に対して衝撃波及び紫外線を同時に発生させるためには、放電電圧は例えば5kV、エネルギーが1.3kJの程度とする。また、発生させる衝撃波としては、被照射物が細胞の場合、数MPa〜10MPaで破壊し、貝の場合、数10MPa〜数100MPaで破壊するので、そのような範囲の衝撃波が発生するように放電の条件を設定することが好ましい。更に、水生生物に対して電極を近接させる近傍とする距離は、水生生物の種類と放電電圧及び放電エネルギーの大きさによって変わるが、水生生物がムラサキイガイの場合、例えば80mm以下で、40mm以下が好ましい。
【0012】
以下、図面に基づいて本発明を詳細に説明する。
なお、実施の形態および実施例を説明するための全図において、同一機能を有する構成要素は同一符号を用いて示す。
【0013】
付着防止に最も適したパルス放電装置は、例えば図1のような構造を持つ。この装置はコンピュータ1、パルス電源2、水中放電電極3及び各々を接続する高電圧ケーブル(電気ケーブル)4から構成されている。コンピュータ1は放電電圧、放電エネルギー、放電間隔、電極間距離などを制御する。
【0014】
船上や岸壁から直接又は浮き具をつけて、水中電極3を生物が付着している場所付近に浸漬させて放電を行う。放電により衝撃波が発生して付着した生物は破砕されたり、生物付着の基盤となる生物皮膜ごと引き剥がされて脱落する。このため処理後は生物が付着しにくくなり、付着防止効果が現れる。また衝撃波と同時に発生する紫外線により、付着面の微生物が死滅するため生物皮膜の成長が抑制される。この作用からも付着防止の効果が高まる。本発明では、実施の形態としては、水中に直接電極3を配置する形態を取ることに限定されない。本発明は制御性に優れているため、放電電圧や放電エネルギーなどを変えることで部分的な洗浄や水生生物種の違いによる適切な運転が可能となる。
【0015】
図2に、本発明を生簀網の洗浄に適用した例を示す。図1に示したコンピュータ1およびパルス電源2と散気装置用コンプレッサ5を生簀上部の桟橋に設置し、桟橋から生物が付着している網側面に水中電極3を浸漬させ、網6を挟んで魚側に散気装置7を取り付け、空気ホース8を用いて散気を行いながらパルス放電を行うものである。散気装置7は固定式のものでもよい。この方式では水中電極3を水中に浸漬するだけで処理ができるため、新たな特別な設備が不要である。電源装置一式を台車や船に載せるなどすれば、移動も容易であり、遠隔操作もできる。また低電力で動作するため、漁船などから供給される電源で十分であり、定置網などに用いる場合は太陽電池や風力発電でも給電が可能である。
【0016】
図2においては、散気装置を用いて気泡を存在させているが、気泡9存在下では、水中の衝撃波や紫外線に対して、気泡9がそのエネルギーを吸収することが知られている。生簀網のような内部に魚などの有用生物が飼育されている場合には、付着生物の除去時に水中電極3の反対側に散気を行い、気泡9を保護バリヤーとして利用することは非常に有効である。また、図3に示すように、水中電極3の背後に放物面や楕円面を持つ反射板10を配置することで、発生した衝撃波及び紫外線に方向性をもたせることができ、必要な個所に効率良く衝撃することができる。また反射板10の表面を研磨するなど鏡面状に加工することで、衝撃波と同様に紫外線も効率よく照射することができる。
【0017】
【実施例】
以下、実施例により本発明を説明する。ただし、本発明はこれらの実施例のみに限定されない。
【0018】
(実施例1)
図4に示すように、海岸よりフジツボが付着した岩石11を採取し、本発明によるムラサキイガイ除去試験を行った。内容積30リットルの水槽12に、人工海水13と体長30mm程度のムラサキイガイ14が多数付着した岩石片11(10cm×10cm×3cm程度)を入れ、その岩石11の真上からの距離を40mm、80mmまたは160mmと変化させて、ステンレス製φ6mmの棒状電極3を対向させて配置させ、放電電圧5kV、出力1.3kJで放電を行い、放電回数を変化させることでムラサキイガイ14の除去効果試験を行った。そのときの電極間距離は2mmである。今回、水中電極3にはステンレスSUS304を用いたが、実際の海水の腐食環境では耐塩性のある金属、たとえばチタンやSUS329J1などが好ましい。
【0019】
ムラサキイガイ14と電極3との距離が40mmの場合には、放電1回で電極3周辺のムラサキイガイ14は完全に岩石11より脱落した。脱落したもののほとんどは外殻が大きく割れていた。脱落した周辺部のムラサキイガイ14は外殻の一部を破損しているのもが多く存在した。放電2回以降、回数が増えるに従い周辺部ムラサキイガイ14まで破壊され、4回で岩石11の端にムラサキイガイ14の一部が付着しているだけとなった。電極3からの距離が80mmの場合には、上記の40mmの場合より効果が少なく、ほぼ完全に破壊されるのは10回、80mmの場合には24回であった。衝撃波は放電点から距離が遠くなるに従い減衰するため、効果が距離に応じて減少したと思われる。
【0020】
【発明の効果】
本発明では、水中において水生生物の付着を防止する対象物又は対象物に付着した水生生物の近傍でパルス放電を行わせ、水中のパルス放電により強力な紫外線、衝撃波が発生させるときには、この衝撃波は数千気圧に及ぶため固い外殻をもつ水生生物も破砕することができる。また、紫外線は通常殺菌に用いられている紫外線ランプの強度に比べ非常に高いため、不純物を多く含む海水においても付着した微生物を殺菌することができる。本発明は、従来の付着防止・除去方法に比べ、薬品を用いないため、自然界に生息している魚や貝などの生物を化学汚染する心配がない。生簀網や定置網などの食用魚介類の施設へ用いる場合には、特に魚介類への化学汚染がないためその鮮度を落とすことがない。
紫外線や衝撃波などの物理的作用を利用しているため、化学的手段のように耐性菌ができず、定期的な作業でも付着防止・除去効果に差がない。
【0021】
漁具などに適用する場合には、陸上での作業が必要ない。従来行われていた陸上での除去作業では、漁具を引き上げる作業、除去作業、除去作業後の防汚処理などの問題があるが、水中で付着物を除去できればこのような必要がなくなり、時間やコストの面で有利になる。また、生物が多量に付着した漁具を引き上げる際には、通常よりも重量が増えているために網が破れるなどの破損に対する配慮の必要がなくなる。
【0022】
生簀網・定置網に付着した生物の除去においては、水中での魚を飼育したままの除去が可能であり、魚を殺傷したり、魚に逃げられる心配がない。また、漁具が地面に固定されておらず、フロートで吊るされているだけでも衝撃波は瞬間的に作用するため、ダイバーやロボットなどの機械的剥離作業で生じる“フケ(網が押されて逃げること)”に関係ない。
【0023】
放電により発生する紫外線は、水生微生物を殺菌するだけでなく、水中電極周囲の微生物も殺菌するため、養殖などにおいては魚類の病気予防にも効果がある。また、海洋牧場などで用いられている水中スピーカーに代わるものとして、魚の馴致音源にもなるとともに、水生生物の除去・防止を兼ねることも可能である。
【図面の簡単な説明】
【図1】本発明の生物の付着除去・付着防止原理の一実施形態を説明する概略説明図である。
【図2】本発明による魚具に付着した生物の付着除去・付着防止方法の一実施形態を説明する概略説明図である。
【図3】本発明による水中電極に反射板を設置した形態の説明図である。
【図4】本発明によるムラサキイガイ除去実験の概略説明図である。
【符号の説明】
1 コンピュータ
2 パルス電源
3 水中電極
4 高電圧ケーブル
5 コンプレッサ
6 水生生物が付着している漁網
7 散気装置
8 空気ホース
10 反射板
11 岩石
12 水槽
13 人工海水
14 ムラサキイガイ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses a pulse discharge in the water, a power plant intake channel or an aquarium intake facility, a ship bottom, a dike or seawall, a fish net such as a fish cage or a stationary net, and shellfish and algae attached to fishing gear such as a float. It relates to the prevention or removal of aquatic organisms such as bacteria.
[0002]
[Prior art]
Purple mussels and barnacles adhere to the intakes of power plants and waterfront plants, causing problems such as reduced intake flow rates, corrosion of condenser pipes, and reduced heat transfer performance. If it adheres to the bottom of the ship, the smooth bottom of the ship will have unevenness, which will not only increase friction and slow down the stern, but also reduce fuel consumption and increase the amount of exhaust gas. It leads to encouragement. For this reason, the shellfish are regularly removed by some method, but the cost of disposal of the removed shellfish and the generation of offensive odors from the dead bodies are serious problems.
[0003]
In addition, these organisms and seaweed attached to fixed nets and fish nets also block the mesh, increasing the fluid resistance due to the ocean current and increasing the load on the mooring facility.If the anchoring force of the anchor is not sufficient, the net will shift. Not only that, there is also a case where the inflow and outflow of seawater in the net is prevented, and the death of cultured fish or the like due to the lack of oxygen in the seawater in the net may cause a large loss.
[0004]
For this reason, these aquatic organisms such as barnacles, mussels, diatoms / seaweeds, oysters, ascidians, and hydroids have been conventionally subjected to anti-adhesion and removal measures. The methods of chlorine injection and organotin coating have been used most frequently, but the amount and use of the injection have been significantly regulated from the viewpoint of environmental protection, and various alternative methods have been attempted at present. As a method for numbing the larva during the attachment stage, chemicals (ClO 2 , bromine, bromine compound, NaBr, ozone, hydrogen peroxide, surfactant, cupric chloride, electrolytic copper ions), base coating (copper oxide, copper) , Base materials (copper, cupronickel, copper beryllium alloy, special concrete), and other physical methods (ultrasonic, high frequency, laser, ultraviolet, infrared, microwave, heating, lack of oxygen) There are methods for preventing ferrous ions, such as ferrous ions, semiconductor photocatalysts, sound waves, magnetic fields, light, and repellents. As a method of removing living matter that has already adhered, there are a peeling operation by a robot or a diver, a high-speed flow, a physical peeling of a brush, a sponge ball, and the like.
[0005]
It has been proposed to install a DC pulse generator to prevent underwater organisms from invading through waterways installed at intakes and drains of hydropower plants and to prevent shellfish from adhering to the walls of the waterways. However, this caused an electric shock to aquatic organisms and shellfish, and was less effective. Also, in the same field, a method has been proposed in which an intermittent sound of 200 Hz or less is generated in water to induce growth inhibition and / or repellent behavior in aquatic organisms. Although arc discharge is used, the pulse voltage for this purpose is supplied to the sound generator, and is intended to control aquatic organisms using the action of sound waves that are well transmitted in water. Was.
However, there are still no definitive methods for many of the above-mentioned methods, such as those whose effects are ambiguous, the methods are very expensive, and those which harm other organisms. For this reason, a method of not attaching organisms without affecting the environment and a method of removing attached organisms have been desired.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for preventing and removing aquatic organisms which is effective at overcoming the problems of the prior art and using a low cost without using chemicals.
[0007]
[Means for Solving the Problems]
The inventors have found that by performing pulse discharge in water to generate ultraviolet rays and shock waves and directly irradiating them to the target object, it is possible to prevent and remove the adhesion of shellfish and algae attached to the intake channel and fishing gear. Thus, the present invention has been completed. That is, the above object is achieved by the following configuration.
[0008]
(1) In water, an electrode is arranged in the vicinity of an object to be prevented from adhering to aquatic organisms or an aquatic organism attached to the object, which is directly irradiated with shock waves and ultraviolet rays generated by pulse discharge. A method for preventing and removing aquatic organisms, wherein a pulse discharge is generated at an electrode, and shock waves and ultraviolet rays generated by the discharge are directly applied to the aquatic organism.
(2) The method for preventing and removing aquatic organisms according to (1), wherein bubbles are present in water near the electrodes when the pulse discharge is performed.
(3) The method according to (1), wherein a structure is provided around the electrode to reflect shock waves and ultraviolet rays generated by the pulse discharge, and a reflector is provided to give directionality to the shock waves and ultraviolet rays. Prevention and removal of aquatic organisms.
[0009]
(4) For a target to which aquatic organisms should be prevented from adhering in water or an aquatic organism adhering to the target, a pulse discharge electrode arranged near the target, a power supply for generating pulse discharge, and a shock wave are generated. A control device for controlling a discharge voltage, a discharge energy, a discharge interval, a distance between electrodes, and the like of a pulse discharge, and a lead wire for connecting the electrode to the power source. Prevention and removal of aquatic organisms. apparatus.
[0010]
That is, the gist of the present invention is as shown below.
1) An adhesion prevention / removal method characterized by performing pulse discharge in water.
2) An adhesion prevention / removal method characterized by disposing an electrode near an aquatic organism and directly applying a shock wave generated by pulse discharge.
3) An adhesion prevention / removal method characterized by disposing an electrode in the vicinity of aquatic organisms and directly applying ultraviolet light generated by pulse discharge.
4) The method for preventing and removing adhesion according to 2), wherein unnecessary shock waves are absorbed by using bubbles.
5) A method for preventing and removing adhesion by underwater pulse discharge, comprising an underwater electrode having a structure that reflects shock waves and ultraviolet rays.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The pulse power source used in the present invention is an electrostatic energy storage type using a capacitor, an induction energy storage type using a coil, a kinetic energy storage type using a steam turbine or a flywheel, a chemical energy storage type using an explosive, and the like. Although not particularly limited, it is more desirable to use an inductive energy storage type that is small and has good controllability.
In the present invention, in order to simultaneously generate shock waves and ultraviolet rays for aquatic organisms by pulse discharge, the discharge voltage is, for example, about 5 kV and the energy is about 1.3 kJ. Further, as the shock wave to be generated, when the irradiation target is a cell, it is destroyed at several MPa to 10 MPa, and when it is a shell, it is destroyed at several tens MPa to several 100 MPa. It is preferable to set the following conditions. Furthermore, the distance to make the electrode close to the aquatic organism varies depending on the type of the aquatic organism and the magnitude of the discharge voltage and the discharge energy. When the aquatic organism is a mussel, for example, 80 mm or less, preferably 40 mm or less. .
[0012]
Hereinafter, the present invention will be described in detail with reference to the drawings.
In all the drawings for describing the embodiments and the examples, components having the same functions are denoted by the same reference numerals.
[0013]
The pulse discharge device most suitable for preventing adhesion has, for example, a structure as shown in FIG. This apparatus comprises a computer 1, a pulse power supply 2, an underwater discharge electrode 3, and a high-voltage cable (electric cable) 4 for connecting each of them. The computer 1 controls a discharge voltage, a discharge energy, a discharge interval, a distance between electrodes, and the like.
[0014]
The underwater electrode 3 is immersed in the vicinity of a place where organisms are attached, and discharge is performed directly from the ship or from the quay or by attaching a float. Shock waves are generated by the discharge, and the attached organisms are crushed or peeled off together with the biological film that forms the basis of the organism attachment. For this reason, it becomes difficult for the organisms to adhere after the treatment, and an effect of preventing the adhesion appears. In addition, the ultraviolet rays generated simultaneously with the shock wave kill the microorganisms on the attached surface, so that the growth of the biological film is suppressed. This effect also increases the effect of preventing adhesion. In the present invention, the embodiment is not limited to a configuration in which the electrode 3 is directly arranged in water. Since the present invention is excellent in controllability, it is possible to perform a partial cleaning and an appropriate operation depending on a difference in aquatic organisms by changing a discharge voltage, a discharge energy, and the like.
[0015]
FIG. 2 shows an example in which the present invention is applied to the cleaning of a fish net. The computer 1 and the pulse power source 2 and the air diffuser compressor 5 shown in FIG. 1 are installed on the pier above the fish cage, and the underwater electrode 3 is immersed from the pier to the side of the net where the organisms are attached. The air diffuser 7 is attached to the fish side, and pulse discharge is performed while air is diffused using the air hose 8. The diffuser 7 may be of a fixed type. In this method, since the treatment can be performed only by immersing the underwater electrode 3 in water, new special equipment is not required. If the entire power supply unit is mounted on a trolley or ship, it can be easily moved and operated remotely. In addition, since it operates with low power, a power supply supplied from a fishing boat or the like is sufficient, and when it is used for a fixed net or the like, power can be supplied by a solar cell or wind power generation.
[0016]
In FIG. 2, bubbles are made to exist using a diffuser, but it is known that in the presence of bubbles 9, bubbles 9 absorb the energy of shock waves and ultraviolet rays in water. When useful organisms such as fish are bred inside a fish net, it is very difficult to diffuse air on the opposite side of the underwater electrode 3 when removing attached organisms and use the bubbles 9 as a protective barrier. It is valid. In addition, as shown in FIG. 3, by arranging the reflector 10 having a paraboloid or an ellipsoid behind the underwater electrode 3, it is possible to give directionality to the generated shock waves and ultraviolet rays, and to a necessary portion. The impact can be made efficiently. By processing the surface of the reflection plate 10 into a mirror surface such as by polishing, it is possible to efficiently irradiate ultraviolet rays as well as shock waves.
[0017]
【Example】
Hereinafter, the present invention will be described with reference to examples. However, the present invention is not limited to only these examples.
[0018]
(Example 1)
As shown in FIG. 4, a rock 11 to which barnacles were attached was collected from the shore, and a mussel mussel removal test according to the present invention was performed. A rock piece 11 (about 10 cm × 10 cm × 3 cm) to which artificial seawater 13 and a large number of mussels 14 having a body length of about 30 mm adhere are placed in a water tank 12 having an inner volume of 30 liters, and the distance from directly above the rock 11 is 40 mm and 80 mm. Alternatively, the electrode was changed to 160 mm, the stainless steel rod electrodes 3 of 6 mm were arranged to face each other, a discharge was performed at a discharge voltage of 5 kV and an output of 1.3 kJ, and a removal effect test of the mussel 14 was performed by changing the number of discharges. . The distance between the electrodes at that time is 2 mm. In this case, stainless steel SUS304 was used for the underwater electrode 3, but in an actual corrosive environment of seawater, a salt-resistant metal such as titanium or SUS329J1 is preferable.
[0019]
When the distance between the mussel 14 and the electrode 3 was 40 mm, the mussel 14 around the electrode 3 was completely dropped from the rock 11 by one discharge. Most of those that had fallen had severely broken outer shells. In many cases, the mussels of the fallen peripheral portion were partially damaged in the outer shell. After the second discharge, the peripheral mussel 14 was destroyed as the number of discharges increased, and only a part of the mussel 14 adhered to the edge of the rock 11 four times. When the distance from the electrode 3 was 80 mm, the effect was less than when the distance was 40 mm, and the number of times of complete destruction was 10 times, and when the distance was 80 mm, the number of times was 24 times. Since the shock wave attenuates as the distance from the discharge point increases, the effect seems to decrease with distance.
[0020]
【The invention's effect】
In the present invention, when a pulse discharge is performed in the vicinity of an object that prevents the attachment of aquatic organisms in water or aquatic organisms attached to the object, and strong ultraviolet rays and shock waves are generated by the pulse discharge in water, the shock wave is Aquatic organisms with a hard shell can be crushed because they reach several thousand atmospheres. In addition, since the intensity of ultraviolet light is much higher than the intensity of an ultraviolet lamp usually used for sterilization, it is possible to sterilize microorganisms attached to seawater containing many impurities. Since the present invention does not use chemicals as compared with the conventional methods for preventing and removing adhesion, there is no risk of chemically contaminating living organisms such as fish and shellfish which live in nature. When used in facilities for edible fish and shellfish such as fish nets and fixed nets, the freshness of the fish and shellfish is not reduced since there is no chemical contamination.
Since physical action such as ultraviolet rays and shock waves are used, resistant bacteria cannot be formed unlike chemical means, and there is no difference in the effect of preventing and removing adhesion even in regular work.
[0021]
When applied to fishing gear, work on land is not required. In the conventional onshore removal work, there are problems such as lifting fishing gear, removal work, and antifouling treatment after the removal work. This is advantageous in terms of cost. In addition, when lifting a fishing gear to which a large amount of organisms have adhered, it is not necessary to pay attention to breakage such as breakage of the net because the weight is larger than usual.
[0022]
In the removal of the organisms attached to the fish net and the fixed net, it is possible to remove the fish in the water while keeping it raised, and there is no fear that the fish will be killed or escaped by the fish. In addition, since the shock wave acts instantaneously even if the fishing gear is not fixed to the ground and is only suspended by the float, the dandruff generated by mechanical separation work such as divers and robots Does not matter).
[0023]
Ultraviolet rays generated by the discharge not only kills aquatic microorganisms but also kills microorganisms around the underwater electrodes, and is thus effective in preventing fish diseases in aquaculture. In addition, as an alternative to the underwater speaker used in a marine ranch or the like, it can be used as a sound source for fish and also serves to remove and prevent aquatic organisms.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view for explaining an embodiment of the principle of removing and preventing an organism from attaching according to the present invention.
FIG. 2 is a schematic explanatory view illustrating an embodiment of a method for removing and preventing an organism from attaching to a fish tool according to the present invention.
FIG. 3 is an explanatory view of an embodiment in which a reflector is provided on an underwater electrode according to the present invention.
FIG. 4 is a schematic explanatory view of a mussel mussel removal experiment according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Computer 2 Pulse power supply 3 Underwater electrode 4 High voltage cable 5 Compressor 6 Fishing net with aquatic organisms 7 Air diffuser 8 Air hose 10 Reflector 11 Rock 12 Water tank 13 Artificial seawater 14

Claims (4)

水中において、水生生物の付着を防止すべき対象物又は対象物に付着した水生生物に対し、パルス放電に伴って発生する衝撃波及び紫外線が直接照射される近傍に電極を配置し、該電極でパルス放電を発生させ放電に伴って発生する衝撃波及び紫外線を直接水生生物に照射することを特徴とする水生生物の付着防止及び除去方法。In the water, an electrode is arranged in the vicinity of the object to be prevented from attaching aquatic organisms or the aquatic organism attached to the object, where the shock waves and ultraviolet rays generated by the pulse discharge are directly irradiated, and the pulse is applied by the electrode. A method for preventing adhesion and removal of aquatic organisms, comprising generating a discharge and directly irradiating aquatic organisms with shock waves and ultraviolet rays generated by the discharge. 前記パルス放電を行う際に、電極の近くに水中で気泡を存在させることを特徴とする請求項1記載の水生生物の付着防止及び除去方法。The method for preventing and removing aquatic organisms according to claim 1, wherein bubbles are present in water near the electrodes when the pulse discharge is performed. 電極の周囲に、前記パルス放電によって発生する衝撃波及び紫外線を反射する構造を有し、該衝撃波及び紫外線に方向性を持たせる反射体を設けたことを特徴とする請求項1記載の水生生物の付着防止及び除去方法。The aquatic organism according to claim 1, wherein the electrode has a structure for reflecting a shock wave and an ultraviolet ray generated by the pulse discharge, and a reflector for giving a direction to the shock wave and the ultraviolet ray is provided around the electrode. Adhesion prevention and removal methods. 水中で水生生物の付着を防止すべき対象物又は対象物に付着した水生生物に対し、その近傍に配置するパルス放電用電極と、パルス放電を起すための電源と、衝撃波を発生させるパルス放電の放電電圧、放電エネルギー、放電間隔、電極間距離等を制御するための制御装置と、該電極と該電源を接続するための導線を有することを特徴とする水生生物の付着防止及び除去装置。A pulse discharge electrode, a power supply to generate pulse discharge, and a pulse discharge An apparatus for preventing and removing aquatic organisms, comprising: a control device for controlling a discharge voltage, a discharge energy, a discharge interval, a distance between electrodes, and the like, and a lead wire for connecting the electrode to the power supply.
JP2002247540A 2002-08-27 2002-08-27 Method for carrying out removal and antisticking of aquatic organism Pending JP2004081119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002247540A JP2004081119A (en) 2002-08-27 2002-08-27 Method for carrying out removal and antisticking of aquatic organism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002247540A JP2004081119A (en) 2002-08-27 2002-08-27 Method for carrying out removal and antisticking of aquatic organism

Publications (1)

Publication Number Publication Date
JP2004081119A true JP2004081119A (en) 2004-03-18

Family

ID=32055158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002247540A Pending JP2004081119A (en) 2002-08-27 2002-08-27 Method for carrying out removal and antisticking of aquatic organism

Country Status (1)

Country Link
JP (1) JP2004081119A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308031A (en) * 2007-06-14 2008-12-25 Sumitomo Heavy Industries Marine & Engineering Co Ltd Antifouling facility of hull and antifouling method
JP2009213375A (en) * 2008-03-07 2009-09-24 Chugoku Electric Power Co Inc:The Bioassay apparatus
EP2127518A1 (en) * 2008-05-29 2009-12-02 Jose Alberto Ochoa Disselkoen Floating Device to Clean Nets
JP2010051874A (en) * 2008-08-27 2010-03-11 Kanden Plant Kk Treatment system of large-sized jellyfish on the ocean
ITNA20090014A1 (en) * 2009-03-31 2010-10-01 Westend S R L CLEANING EQUIPMENT TRANSPARENT UNDERWATER CASES BY ULTRAVIOLET RAYS.
KR101039372B1 (en) * 2010-09-14 2011-06-08 주식회사 지주 Apparatus for preventing the inflow of aquatic life
KR101435493B1 (en) 2011-12-23 2014-09-22 김철영 Method for cleaning undergrund water intake pipe using pulse discharge
CN104430103A (en) * 2014-12-23 2015-03-25 东南大学 Cage netting attachment preventing device
KR20150048138A (en) * 2012-08-30 2015-05-06 셈바왕 쉽야드 피티이 엘티디 System and method of ballast water treatment with continuous biofouling control
KR20170048928A (en) * 2015-10-27 2017-05-10 박은희 Ballast water management system and the method by heating and high frequency electric power
CN106962321A (en) * 2017-04-26 2017-07-21 卜雪琦 A kind of intelligent aquatic organism baffle system and method
KR20170101974A (en) * 2014-12-30 2017-09-06 코닌클리케 필립스 엔.브이. Anti-biofouling system
JP2017193954A (en) * 2016-04-19 2017-10-26 国立大学法人 熊本大学 Aquatic deposition organism removal method and aquatic deposition organism removal device
PL422318A1 (en) * 2017-07-23 2019-01-28 Politechnika Warszawska Device for mechanical excitation of a generator of the rodent and four-legged mammal patterns, simulating the effect of hind legs stepping
CN111296341A (en) * 2020-03-18 2020-06-19 山东省海洋生物研究院 Novel electric self-cleaning net cage
CN112771309A (en) * 2018-09-20 2021-05-07 皇家飞利浦有限公司 Light emitting unit configured to be applied to a surface area of a marine object
KR20220051643A (en) * 2020-10-19 2022-04-26 주식회사 테크로스 Apparatus for antifouling
KR102647838B1 (en) * 2023-08-04 2024-03-13 박기부 Seaweed Transplantation Structure

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308031A (en) * 2007-06-14 2008-12-25 Sumitomo Heavy Industries Marine & Engineering Co Ltd Antifouling facility of hull and antifouling method
JP2009213375A (en) * 2008-03-07 2009-09-24 Chugoku Electric Power Co Inc:The Bioassay apparatus
EP2127518A1 (en) * 2008-05-29 2009-12-02 Jose Alberto Ochoa Disselkoen Floating Device to Clean Nets
JP2010051874A (en) * 2008-08-27 2010-03-11 Kanden Plant Kk Treatment system of large-sized jellyfish on the ocean
ITNA20090014A1 (en) * 2009-03-31 2010-10-01 Westend S R L CLEANING EQUIPMENT TRANSPARENT UNDERWATER CASES BY ULTRAVIOLET RAYS.
KR101039372B1 (en) * 2010-09-14 2011-06-08 주식회사 지주 Apparatus for preventing the inflow of aquatic life
KR101435493B1 (en) 2011-12-23 2014-09-22 김철영 Method for cleaning undergrund water intake pipe using pulse discharge
KR20150048138A (en) * 2012-08-30 2015-05-06 셈바왕 쉽야드 피티이 엘티디 System and method of ballast water treatment with continuous biofouling control
KR101955750B1 (en) * 2012-08-30 2019-03-07 셈코프 머린 리패어즈 앤드 업그래이즈 피티이. 엘티디. System and method of ballast water treatment with continuous biofouling control
CN104430103A (en) * 2014-12-23 2015-03-25 东南大学 Cage netting attachment preventing device
KR102469997B1 (en) * 2014-12-30 2022-11-23 코닌클리케 필립스 엔.브이. Anti-biofouling system
KR20170101974A (en) * 2014-12-30 2017-09-06 코닌클리케 필립스 엔.브이. Anti-biofouling system
JP2018503552A (en) * 2014-12-30 2018-02-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Biofouling prevention system
US11135625B2 (en) 2014-12-30 2021-10-05 Koninklijke Philips N.V. System for anti-biofouling
KR20170048928A (en) * 2015-10-27 2017-05-10 박은희 Ballast water management system and the method by heating and high frequency electric power
KR101926444B1 (en) * 2015-10-27 2019-03-07 박은희 Ballast water management system and the method by heating and high frequency electric power
JP2017193954A (en) * 2016-04-19 2017-10-26 国立大学法人 熊本大学 Aquatic deposition organism removal method and aquatic deposition organism removal device
CN106962321A (en) * 2017-04-26 2017-07-21 卜雪琦 A kind of intelligent aquatic organism baffle system and method
PL422318A1 (en) * 2017-07-23 2019-01-28 Politechnika Warszawska Device for mechanical excitation of a generator of the rodent and four-legged mammal patterns, simulating the effect of hind legs stepping
CN112771309A (en) * 2018-09-20 2021-05-07 皇家飞利浦有限公司 Light emitting unit configured to be applied to a surface area of a marine object
CN112771309B (en) * 2018-09-20 2023-01-10 皇家飞利浦有限公司 Light emitting unit configured to be applied to a surface area of a marine object
CN111296341A (en) * 2020-03-18 2020-06-19 山东省海洋生物研究院 Novel electric self-cleaning net cage
CN111296341B (en) * 2020-03-18 2021-10-12 山东省海洋生物研究院 Electrified self-cleaning net cage
KR20220051643A (en) * 2020-10-19 2022-04-26 주식회사 테크로스 Apparatus for antifouling
KR102387154B1 (en) * 2020-10-19 2022-05-17 주식회사 테크로스 Apparatus for antifouling
KR102647838B1 (en) * 2023-08-04 2024-03-13 박기부 Seaweed Transplantation Structure

Similar Documents

Publication Publication Date Title
JP2004081119A (en) Method for carrying out removal and antisticking of aquatic organism
US10793236B2 (en) Safety improvements for UV radiation in aquatic applications
RU2767229C2 (en) Biological fouling prevention system (versions)
CN108430654B (en) Safety improvement of UV radiation in water-related applications
CN110548745B (en) Anti-fouling system using energy derived from brine
KR100538009B1 (en) Anti-fouling and eliminating system for aquatic organisms
EP3680164A1 (en) System and method for irradiating a surface with anti-biofouling light
JP3591692B2 (en) Method and apparatus for controlling aquatic organisms and judging aquatic organism adhesion state
BR112017013906B1 (en) OBJECT FOR USE IN WATER, METHOD FOR AVOIDING FALLING FORMATION ON AN ELEMENT SUSCEPTIBLE TO FLOATING AND METHOD FOR PROVIDING AN ANTI-BIOFOLDING LIGHTING SYSTEM TO AN OBJECT
JP2004081936A (en) Method of preventing adhesion of obelias

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104