JP2004080942A - Chargeable power supply apparatus - Google Patents

Chargeable power supply apparatus Download PDF

Info

Publication number
JP2004080942A
JP2004080942A JP2002239710A JP2002239710A JP2004080942A JP 2004080942 A JP2004080942 A JP 2004080942A JP 2002239710 A JP2002239710 A JP 2002239710A JP 2002239710 A JP2002239710 A JP 2002239710A JP 2004080942 A JP2004080942 A JP 2004080942A
Authority
JP
Japan
Prior art keywords
electric double
power supply
voltage
double layer
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002239710A
Other languages
Japanese (ja)
Inventor
Ken Takara
高良 憲
Naofumi Mushiaki
虫明 直文
Akira Matsubara
松原 朗
Toyota Ikeuchi
池内 豊太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANBURIJJI KK
Original Assignee
SANBURIJJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANBURIJJI KK filed Critical SANBURIJJI KK
Priority to JP2002239710A priority Critical patent/JP2004080942A/en
Publication of JP2004080942A publication Critical patent/JP2004080942A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chargeable power supply apparatus which is capable of charging and discharging, even if the input voltage from an external power supply apparatus is lower than the voltage required for charging a chargeable/dischargeable storage battery. <P>SOLUTION: This power supply apparatus is equipped with a boosting part 3 whose circuit is constituted, to enable the boosting of the voltage of the external power source 2, and it accumulates voltage higher than the input voltage of the external power source 2 into the chargeable/dischargeable storage battery 4 via the boosting part 3. The boosting part 3 includes electric double-layer capacitors 6 and 7, which can be connected in parallel with an external power source 2, and this power unit charges either of the electric double-layer capacitor 6 or 7 at all times, from the external power source 1. The electric double-layer capacitors 6 and 7 are arranged in series with the storage battery 4, and also the opposite side of the storage battery 4 is grounded. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、外部電源の入力電圧により蓄電池に対して蓄電する充放電可能な電源装置に関するものである。
【0002】
【従来の技術】
この種の電源装置において、たとえば電気二重層コンデンサと充放電可能な蓄電池とを組み合わせた蓄電システムにより構成されたものが知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の電源装置では、一般に、外部電源の入力電圧よりも電気二重層コンデンサの充電可能電圧は低くなる。そして、さらに後段の充放電可能な蓄電池の充電可能電圧は低くなってしまう。
【0004】
本発明はかかる実情に鑑み、外部電源からの入力電圧が充放電可能な蓄電池の充電に必要な電圧よりも低い場合でも充電可能な電源装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の充放電可能な電源装置は、外部電源の電圧を昇圧可能となるように回路構成された昇圧部を備え、この昇圧部を介して外部電源の入力電圧よりも高い電圧の充放電可能な蓄電池に対して蓄電できるようにしたことを特徴とする。
【0006】
本発明の充放電可能な電源装置において、前記昇圧部として、好ましくは、前記外部電源に対して並列に接続し得る第1の電気二重層コンデンサと第2の電気二重層コンデンサとを含み、前記外部電源から常にいずれか一方の電気二重層コンデンサに充電しているよう構成される。
【0007】
本発明の充放電可能な電源装置において、前記第1の電気二重層コンデンサと前記第2の電気二重層コンデンサは、好ましくは、前記蓄電池に対して直列に配置され、かつ前記蓄電池の反対側はアース接続されている。
【0008】
また、本発明の充放電可能な電源装置において、前記第1の電気二重層コンデンサの電圧と前記第2の電気二重層コンデンサの電圧を比較することにより、前記第1の電気二重層コンデンサおよび前記第2の電気二重層コンデンサの充電切替えが行なわれるようにすれば好ましい。
【0009】
本発明によれば、個別に充電される2つの電気二重層コンデンサを蓄電池に対して直列に配置することで、外部電源の入力電圧よりも高い電圧の充放電可能な蓄電池に対して蓄電することができる。
【0010】
【発明の実施の形態】
以下、図面に基づき、本発明による充放電可能な電源装置の好適な実施の形態を説明する。
図1は、本発明の実施の形態におけるシステム構成例を示している。図において、本発明による充放電可能な電源装置1(図中の点線で囲んだ領域)は、外部電源2の電圧を昇圧可能となるように回路構成された昇圧部3(図中の一点鎖線で囲んだ領域)とを備え、この昇圧部3を介して外部電源2の入力電圧よりも高い電圧を充放電可能な蓄電池4(蓄電部)に対して蓄電できるようにしたものである。この蓄電池4には、負荷5が接続されている。
【0011】
昇圧部3は、外部電源2に対して並列に接続し得る第1の電気二重層コンデンサ6と第2の電気二重層コンデンサ7とを含み、これらの電気二重層コンデンサ6及び7は、昇圧部の切替えスイッチ8,9によって外部電源2と切替え接続されるようになっている。
第1の電気二重層コンデンサ6の電圧Vc1と第2の電気二重層コンデンサ7の電圧Vc2につき、Vc1+Vc2は電圧検出器10によって検出され、また、電気二重層コンデンサ6の電圧は電圧検出器11によって検出される。検出された電圧は、それぞれ10A,11Aとして演算回路12に入力されて演算処理され、その出力12Aが、スイッチ回路13に出力される。さらにスイッチ回路13からの命令が、切替えスイッチ8,9が切替え制御されるように、信号13A,13Bにより駆動制御されるようになっている。
【0012】
ここで、第1の電気二重層コンデンサ6と第2の電気二重層コンデンサ7は、蓄電池4に対して直列に配置されており、かつ蓄電池4の反対側はアース接続されている。
【0013】
後述のように、第1の電気二重層コンデンサ6の電圧Vc1と第2の電気二重層コンデンサ7の電圧Vc2とを比較することにより、第1の電気二重層コンデンサ6および第2の電気二重層コンデンサ7の充電切替えが行なわれる。
【0014】
次に、昇圧部の回路について説明する。
図1において、スイッチ8を接点8A側、スイッチ9を接点9Aにすると、外部電源2からの電流は電気二重層コンデンサ6を充電する。また、スイッチ8を接点8B側、スイッチ9を接点9B側にすると、外部電源2からの電流は電気二重層コンデンサ7を充電する。
ここで、第1の電気二重層コンデンサ6と第2の電気二重層コンデンサ7との切替えは、第1の電気二重層コンデンサ6の電圧Vc1と第2の電気二重層コンデンサ7の電圧Vc2の電圧を比較することにより行われる。図1では、電圧検出器10によりVc1+Vc2の電圧を、また電圧検出器11によりVc2の電圧を検出することができる。よって、Vc1の電圧も知ることができる。
蓄電池4の電圧は、電圧検出器14によって検出され、その出力14Aを、演算回路12に加え、スイッチ回路13を制御できる。
【0015】
外部電源2の必要電圧は、2つの電気二重層コンデンサ6,7を切り替えながら1つずつの電気二重層コンデンサを充電するため、電気二重層コンデンサ1つ分を充電できる電圧(Vc)があれば良い。2つの電気二重層コンデンサ6,7の容量と、電圧の定格が同じであれば、満充電すると、これらの電気二重層コンデンサを直列接続した電圧の2Vcを、蓄電池4に印加することができる。
本発明の充放電可能な電源装置は、上記のように構成され、外部電源2から充電できる電気二重層コンデンサ6,7を備え、この充電電圧を直列接続して、外部電源2の電圧よりも高い電圧を、充放電可能な蓄電池4に対して充電することができる。
【0016】
【実施例】
ここで、本発明における具体的な実施例を説明する。
図2は本発明の実施例である。図において、外部電源1は、太陽電池20を使用した本発明による充放電可能な電源装置1である。図2に示すように、電気二重層コンデンサ6及び7を充電するときは、スイッチ8,9により個別に太陽電池20に接続し、それぞれの電気二重層コンデンサ6,7を交互に充電する。また、電気二重層コンデンサ6,7から放電するときは、2直列として放電して、後段のニッケル水素電池4A(充放電可能な蓄電池)に電気を移動する。
【0017】
太陽電池20としては、3.5V−100mAを用いた。また、電気二重層コンデンサ6,7として2.3V−5Fを2個、ニッケル水素電池4Aとして定格電圧1.2V−700mAhのものを2直列してなる2.4V―700mAhを用いた。
【0018】
太陽電池20の規格としては、曇天時あるいは雨天時でも電気二重層コンデンサ6,7を充電可能な3.5V以上の電圧が好ましい。現行の有機電解液系の電気二重層コンデンサの定格電圧は、単セルあたり2.3V〜2.7Vが主流である。コストを考えると太陽電池20の規格は、3.5〜4Vあれば十分である。また、水溶液系の電気二重層コンデンサの定格電圧は、単セルあたり0.8V〜1.1Vが主流であり、単体あるいは直列接続により電圧調整して用いるため、これに合わせた太陽電池の規格設定を行う。また、電流値は、例えば1日に蓄電する容量に応じて適宜決定される。
【0019】
電気二重層コンデンサ6,7の規格としては、2直列にしたときに、後段に配置される蓄電池であるニッケル水素電池4Aの充電ができるように蓄電池の充電終止電圧以上であることが必要である。ニッケル水素電池4Aとして、定格2.4V―700mAh(2直列)を用いる場合、その終止電圧は常温で3.0Vあたりとなる。実際の充電完了のための検出は、従来より用いられている方法をいくつか併用することが好ましい。
電気二重層コンデンサ6,7に定格2.3Vを用いれば、2個直列時に満充電すると4.6Vとなり、後段のニッケル水素電池を十分充電できる電圧となる。太陽電池20で電気二重層コンデンサ6,7を充電するときの電圧は、1つの電気二重層コンデンサに対して、満充電である2.3Vまでする必要はない。本発明では、電気二重層コンデンサ6,7の2直列で、後段のニッケル水素電池4Aの充電終止電圧(常温で3.0V付近)より高い電圧であればよい。
【0020】
つまり電気二重層コンデンサ6,7の1個あたり1.5V以上の充電が行われれば、2直列で3.0Vを越えるため、後段のニッケル水素電池4Aに対しての充電は可能である。電気二重層コンデンサ6,7の充電電圧については、電圧が高ければ高いほど後段の蓄電池4Aへの充電がし易くなる。
【0021】
ここでさらに、本発明に対する比較例を説明する。
(比較例1)
図3は、太陽電池を外部電源とした従来例1の充放電可能な電源の比較例である。従来例1の充放電可能な電源30は、外部電源としての太陽電池31から充電される電気二重層コンデンサ32が、電圧を調整するDC/DCコンバータ33を介して、充放電可能な蓄電池34に接続されている。
電気二重層コンデンサ32と蓄電池34の充放電電圧は、それぞれ、電圧検出器35,36に監視されている。図示しないが、これらの電圧検出器35,36の出力は制御回路に入力され、電気二重層コンデンサが32が満充電になったときに、スイッチ37をオンにするように駆動する。また、蓄電池34には、図示しない負荷が接続されている。
【0022】
ここで、太陽電池31として、3.5V−100mA、電気二重層コンデンサ32として2.3V−5F、充放電可能な蓄電池34として、2.4V(1.2Vを2直列)−700mAhのニッケル水素電池を配置した場合を例にとる。この例では、電気二重層コンデンサ32とニッケル水素電池34との間には、DC/DCコンバータ33が必要であり、この場合には、DC/DCコンバータ33には、太陽電池の入力電圧の約30%のロスが発生した。
【0023】
(比較例2)
図4は、太陽電池を外部電源とした従来例2の充放電可能な電源の比較例である。従来例2の充放電可能な電源40は、図3の比較例の構成において、DC/DCコンバータ33を使用しないで、太陽電池31と、電気二重層コンデンサ32を、それぞれ2個直列接続している。他の構成要素は、図3と同一であるので説明は省略する。
【0024】
太陽電池31として、3.5V−100mAを2個直列接続し、7V−100mAhの容量であった。電気二重層コンデンサ32として、2.3V−5Fの2本直列接続して、4.6V−2.5Fの容量とした。ニッケル水素電池34は、2.4V(1.2Vを2直列)−700mAhの容量であった。
【0025】
この例のようにDC/DCコンバータを使用しない場合、システムとして電気二重層コンデンサ32は、後段の蓄電池34の充電電圧よりも高い電圧設定が必要となるため、2本直列にする必要がある。また、太陽電池31に関しても、電気二重層コンデンサの電圧の直列電圧に合わせて7V系を採用する必要がある。その結果、本発明の実施例の場合の2倍の電圧の太陽電池が必要になり、太陽電池コストが2倍となった。
【0026】
本発明は上記実施形態にのみ限定されることなく、本発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。たとえば、上記実施の形態で説明した電圧あるいは電流等の具体的数値等は、それらの好適なものを示すものであり、必要に応じて適宜変更等が可能である。
【0027】
【発明の効果】
以上説明したように本発明によれば、この種の電源装置において外部電源からの入力電圧が充放電可能な蓄電池の充電に必要な電圧よりも低い場合でも充電可能とすることにより、充放電可能な外部電源の小型化および低コスト化を有効に実現することができる。
【図面の簡単な説明】
【図1】本発明の実施形態におけるシステム構成例を示す図である。
【図2】本発明の実施例におけるシステム構成例を示す図である。
【図3】太陽電池を外部電源とした従来例1の充放電可能な電源の比較例である。
【図4】太陽電池を外部電源とした従来例2の充放電可能な電源の比較例である。
【符号の説明】
1   発明による充放電可能な電源装置
2   外部電源
3   昇圧部
4   充放電可能な蓄電池
4A  ニッケル水素電池
5   負荷
6   第1の電気二重層コンデンサ
7   第2の電気二重層コンデンサ
8,9  スイッチ
10,11,14   電圧検出器
12   演算回路
13   スイッチ回路
20   太陽電池
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a chargeable / dischargeable power supply device that stores power in a storage battery by an input voltage of an external power supply.
[0002]
[Prior art]
As this type of power supply device, there is known a power supply device configured by, for example, a power storage system combining an electric double layer capacitor and a chargeable / dischargeable storage battery.
[0003]
[Problems to be solved by the invention]
However, in the conventional power supply device, the chargeable voltage of the electric double layer capacitor is generally lower than the input voltage of the external power supply. Further, the chargeable voltage of the chargeable / dischargeable storage battery at the subsequent stage becomes low.
[0004]
In view of such circumstances, an object of the present invention is to provide a power supply device capable of charging even when an input voltage from an external power supply is lower than a voltage required for charging a rechargeable storage battery.
[0005]
[Means for Solving the Problems]
The chargeable / dischargeable power supply device of the present invention includes a booster circuit configured to be able to boost the voltage of the external power supply, and is capable of charging / discharging a voltage higher than the input voltage of the external power supply via the booster. It is characterized in that power can be stored in a simple storage battery.
[0006]
In the chargeable / dischargeable power supply device of the present invention, the boosting unit preferably includes a first electric double layer capacitor and a second electric double layer capacitor that can be connected in parallel to the external power supply, It is configured such that one of the electric double layer capacitors is always charged from an external power supply.
[0007]
In the chargeable / dischargeable power supply device of the present invention, the first electric double layer capacitor and the second electric double layer capacitor are preferably arranged in series with the storage battery, and the opposite side of the storage battery is Grounded.
[0008]
Further, in the chargeable / dischargeable power supply device of the present invention, by comparing the voltage of the first electric double layer capacitor with the voltage of the second electric double layer capacitor, It is preferable that the charge switching of the second electric double layer capacitor is performed.
[0009]
According to the present invention, by arranging two separately charged electric double layer capacitors in series with respect to a storage battery, power can be stored in a chargeable / dischargeable storage battery having a voltage higher than an input voltage of an external power supply. Can be.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of a chargeable / dischargeable power supply device according to the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a system configuration according to an embodiment of the present invention. In the drawing, a chargeable / dischargeable power supply device 1 according to the present invention (a region surrounded by a dotted line in the drawing) includes a boosting unit 3 (a dashed-dotted line in the drawing) which is configured to be capable of boosting the voltage of an external power supply 2. ), So that a voltage higher than the input voltage of the external power supply 2 can be stored in the storage battery 4 (power storage unit) capable of charging and discharging via the booster 3. A load 5 is connected to the storage battery 4.
[0011]
The boosting unit 3 includes a first electric double layer capacitor 6 and a second electric double layer capacitor 7 which can be connected in parallel to the external power supply 2. Are connected to the external power supply 2 by the changeover switches 8 and 9.
With respect to the voltage Vc1 of the first electric double layer capacitor 6 and the voltage Vc2 of the second electric double layer capacitor 7, Vc1 + Vc2 is detected by the voltage detector 10, and the voltage of the electric double layer capacitor 6 is detected by the voltage detector 11. Is detected. The detected voltages are input to the arithmetic circuit 12 as 10A and 11A, respectively, are subjected to arithmetic processing, and the output 12A is output to the switch circuit 13. Further, a command from the switch circuit 13 is driven and controlled by signals 13A and 13B so that the changeover switches 8 and 9 are controlled to be switched.
[0012]
Here, the first electric double layer capacitor 6 and the second electric double layer capacitor 7 are arranged in series with the storage battery 4, and the opposite side of the storage battery 4 is grounded.
[0013]
As described later, by comparing the voltage Vc1 of the first electric double layer capacitor 6 with the voltage Vc2 of the second electric double layer capacitor 7, the first electric double layer capacitor 6 and the second electric double layer capacitor 6 are compared. Switching of charging of the capacitor 7 is performed.
[0014]
Next, the circuit of the booster will be described.
In FIG. 1, when the switch 8 is on the contact 8A side and the switch 9 is on the contact 9A, the current from the external power supply 2 charges the electric double layer capacitor 6. When the switch 8 is on the contact 8B side and the switch 9 is on the contact 9B side, the current from the external power supply 2 charges the electric double layer capacitor 7.
Here, switching between the first electric double layer capacitor 6 and the second electric double layer capacitor 7 is performed by changing the voltage Vc1 of the first electric double layer capacitor 6 and the voltage Vc2 of the second electric double layer capacitor 7. This is done by comparing 1, the voltage detector 10 can detect the voltage of Vc1 + Vc2, and the voltage detector 11 can detect the voltage of Vc2. Therefore, the voltage of Vc1 can also be known.
The voltage of the storage battery 4 is detected by a voltage detector 14, and its output 14 </ b> A is applied to an arithmetic circuit 12 to control a switch circuit 13.
[0015]
The required voltage of the external power supply 2 is such that the electric double layer capacitors are charged one by one while switching the two electric double layer capacitors 6 and 7, so that there is a voltage (Vc) that can charge one electric double layer capacitor. good. If the capacity of the two electric double-layer capacitors 6 and 7 and the voltage rating are the same, when fully charged, 2 Vc of the voltage obtained by connecting these electric double-layer capacitors in series can be applied to the storage battery 4.
The chargeable / dischargeable power supply device of the present invention includes the electric double layer capacitors 6 and 7 configured as described above and can be charged from the external power supply 2. A high voltage can be charged to the chargeable / dischargeable storage battery 4.
[0016]
【Example】
Here, a specific embodiment of the present invention will be described.
FIG. 2 shows an embodiment of the present invention. In the figure, an external power supply 1 is a chargeable / dischargeable power supply apparatus 1 according to the present invention using a solar cell 20. As shown in FIG. 2, when the electric double layer capacitors 6 and 7 are charged, the electric double layer capacitors 6 and 7 are individually connected to the solar cell 20 by the switches 8 and 9, and the electric double layer capacitors 6 and 7 are charged alternately. When discharging from the electric double layer capacitors 6 and 7, discharging is performed in two series, and electricity is transferred to the subsequent nickel-metal hydride battery 4A (chargeable and dischargeable storage battery).
[0017]
As the solar cell 20, 3.5V-100mA was used. As the electric double layer capacitors 6 and 7, two 2.3V-5F batteries and a nickel hydrogen battery 4A having a rated voltage of 1.2V-700mAh in a series connection of 2.4V-700mAh were used.
[0018]
As a standard of the solar cell 20, a voltage of 3.5 V or more that can charge the electric double layer capacitors 6 and 7 even in cloudy or rainy weather is preferable. The rated voltage of the current organic electrolytic solution type electric double layer capacitor is 2.3 V to 2.7 V per unit cell. Considering the cost, it is sufficient that the standard of the solar cell 20 is 3.5 to 4 V. In addition, the rated voltage of an aqueous double-layer capacitor is 0.8 V to 1.1 V per unit cell, and the voltage is adjusted by using a single unit or connected in series. I do. Further, the current value is appropriately determined, for example, according to the capacity stored in one day.
[0019]
The specifications of the electric double layer capacitors 6 and 7 need to be equal to or higher than the charge end voltage of the storage battery so that the nickel hydride battery 4A, which is a storage battery disposed at the subsequent stage, can be charged when two series are connected. . When a rating of 2.4 V to 700 mAh (two series) is used as the nickel-metal hydride battery 4A, the final voltage is around 3.0 V at room temperature. It is preferable that the detection for the actual completion of charging is performed in combination with some conventionally used methods.
If a rated voltage of 2.3 V is used for the electric double layer capacitors 6 and 7, when two batteries are fully charged in series, the voltage becomes 4.6 V, which is a voltage that can sufficiently charge the subsequent nickel-metal hydride battery. The voltage at which the electric double layer capacitors 6 and 7 are charged by the solar cell 20 does not need to be 2.3 V which is a full charge for one electric double layer capacitor. In the present invention, it is sufficient that the voltage is higher than the charge end voltage (near 3.0 V at room temperature) of the subsequent nickel hydride battery 4A in two series of the electric double layer capacitors 6 and 7.
[0020]
In other words, if 1.5 V or more is charged per one of the electric double layer capacitors 6 and 7, the voltage exceeds 3.0 V in two series, so that the nickel hydride battery 4A at the subsequent stage can be charged. Regarding the charging voltage of the electric double layer capacitors 6 and 7, the higher the voltage, the easier it is to charge the storage battery 4A at the subsequent stage.
[0021]
Here, a comparative example for the present invention will be further described.
(Comparative Example 1)
FIG. 3 is a comparative example of a chargeable / dischargeable power supply of Conventional Example 1 using a solar cell as an external power supply. The chargeable / dischargeable power supply 30 of the conventional example 1 is configured such that an electric double layer capacitor 32 charged from a solar cell 31 as an external power supply is connected to a chargeable / dischargeable storage battery 34 via a DC / DC converter 33 for adjusting a voltage. It is connected.
The charge and discharge voltages of the electric double layer capacitor 32 and the storage battery 34 are monitored by voltage detectors 35 and 36, respectively. Although not shown, the outputs of these voltage detectors 35 and 36 are input to a control circuit and drive the switch 37 to turn on when the electric double layer capacitor 32 is fully charged. The storage battery 34 is connected to a load (not shown).
[0022]
Here, the solar cell 31 is 3.5V-100mA, the electric double layer capacitor 32 is 2.3V-5F, and the chargeable / dischargeable storage battery 34 is 2.4V (1.2V in two series) -700mAh nickel-metal hydride. Take the case where batteries are arranged as an example. In this example, a DC / DC converter 33 is required between the electric double-layer capacitor 32 and the nickel-metal hydride battery 34. In this case, the DC / DC converter 33 has a voltage of about A 30% loss has occurred.
[0023]
(Comparative Example 2)
FIG. 4 is a comparative example of a chargeable / dischargeable power supply of Conventional Example 2 using a solar cell as an external power supply. The chargeable / dischargeable power supply 40 of the second conventional example is configured by connecting two solar cells 31 and two electric double-layer capacitors 32 in series without using the DC / DC converter 33 in the configuration of the comparative example of FIG. I have. Other components are the same as those in FIG. 3 and will not be described.
[0024]
As the solar cell 31, two 3.5V-100mA batteries were connected in series, and had a capacity of 7V-100mAh. Two electric double layer capacitors 32 of 2.3V-5F were connected in series to have a capacity of 4.6V-2.5F. The nickel-metal hydride battery 34 had a capacity of 2.4 V (1.2 V in two series) -700 mAh.
[0025]
When a DC / DC converter is not used as in this example, the electric double-layer capacitor 32 needs to be set in series as the system requires a voltage setting higher than the charging voltage of the storage battery 34 in the subsequent stage. Further, as for the solar cell 31, it is necessary to adopt a 7V system in accordance with the series voltage of the voltage of the electric double layer capacitor. As a result, a solar cell having a voltage twice as high as that of the embodiment of the present invention was required, and the cost of the solar cell was doubled.
[0026]
The present invention is not limited to the above embodiment, and various modifications are possible within the scope of the present invention, and it goes without saying that they are also included in the scope of the present invention. For example, specific numerical values such as voltage or current described in the above-described embodiment indicate preferable ones, and can be appropriately changed as necessary.
[0027]
【The invention's effect】
As described above, according to the present invention, charging and discharging can be performed by enabling charging even when an input voltage from an external power supply is lower than a voltage required for charging a rechargeable storage battery in this type of power supply device. It is possible to effectively reduce the size and cost of the external power supply.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an example of a system configuration according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of a system configuration according to an embodiment of the present invention.
FIG. 3 is a comparative example of a chargeable / dischargeable power supply of Conventional Example 1 using a solar cell as an external power supply.
FIG. 4 is a comparative example of a chargeable / dischargeable power supply of Conventional Example 2 using a solar cell as an external power supply.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 chargeable / dischargeable power supply device 2 external power supply 3 booster 4 chargeable / dischargeable storage battery 4A nickel-metal hydride battery 5 load 6 first electric double layer capacitor 7 second electric double layer capacitor 8, 9 Switches 10, 11 , 14 Voltage detector 12 Operation circuit 13 Switch circuit 20 Solar cell

Claims (4)

外部電源の電圧を昇圧可能となるように回路構成された昇圧部を備え、該昇圧部を介して前記外部電源の入力電圧よりも高い電圧の充放電可能な蓄電池に対して蓄電できるようにしたことを特徴とする、充放電可能な電源装置。A booster circuit configured so as to be able to boost the voltage of the external power supply, and charging / discharging of a chargeable / dischargeable storage battery having a higher voltage than the input voltage of the external power supply is provided via the booster; A chargeable / dischargeable power supply device. 前記昇圧部として、前記外部電源に対して並列に接続し得る第1の電気二重層コンデンサと第2の電気二重層コンデンサとを含み、前記外部電源から常にいずれか一方の電気二重層コンデンサに充電していることを特徴とする、請求項1に記載の充放電可能な電源装置。The booster includes a first electric double layer capacitor and a second electric double layer capacitor that can be connected in parallel to the external power supply, and always charges one of the electric double layer capacitors from the external power supply. The chargeable / dischargeable power supply device according to claim 1, wherein: 前記第1の電気二重層コンデンサと第2の電気二重層コンデンサは、前記蓄電池に対して直列に配置され、かつ前記蓄電池の反対側はアース接続されていることを特徴とする、請求項2に記載の充放電可能な電源装置。The method according to claim 2, wherein the first electric double layer capacitor and the second electric double layer capacitor are arranged in series with the storage battery, and the other side of the storage battery is grounded. A chargeable / dischargeable power supply device as described in the above. 前記第1の電気二重層コンデンサの電圧と前記第2の電気二重層コンデンサの電圧を比較することにより、前記第1の電気二重層コンデンサおよび前記第2の電気二重層コンデンサの充電切替えが行なわれることを特徴とする、請求項2又は3に記載の充放電可能な電源装置。By comparing the voltage of the first electric double-layer capacitor with the voltage of the second electric double-layer capacitor, the charge switching of the first electric double-layer capacitor and the second electric double-layer capacitor is performed. The chargeable / dischargeable power supply device according to claim 2 or 3, wherein:
JP2002239710A 2002-08-20 2002-08-20 Chargeable power supply apparatus Pending JP2004080942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239710A JP2004080942A (en) 2002-08-20 2002-08-20 Chargeable power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239710A JP2004080942A (en) 2002-08-20 2002-08-20 Chargeable power supply apparatus

Publications (1)

Publication Number Publication Date
JP2004080942A true JP2004080942A (en) 2004-03-11

Family

ID=32022735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239710A Pending JP2004080942A (en) 2002-08-20 2002-08-20 Chargeable power supply apparatus

Country Status (1)

Country Link
JP (1) JP2004080942A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104801A (en) * 2005-10-04 2007-04-19 Toshiba Tec Corp Charging set and vacuum cleaner
JP2007104802A (en) * 2005-10-04 2007-04-19 Toshiba Tec Corp Charging set and vacuum cleaner
EP2090140A2 (en) * 2006-10-21 2009-08-19 Advanced Analogic Technologies, Inc. Charging scheme
WO2013080616A1 (en) * 2011-11-28 2013-06-06 オムロン株式会社 Voltage conversion circuit and electronic apparatus
US8841891B2 (en) 2007-08-08 2014-09-23 Advanced Analogic Technologies Incorporated Time-multiplexed-capacitor DC/DC converter with multiple outputs
JP2021052450A (en) * 2019-09-20 2021-04-01 トヨタ自動車株式会社 Charger

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007104802A (en) * 2005-10-04 2007-04-19 Toshiba Tec Corp Charging set and vacuum cleaner
JP2007104801A (en) * 2005-10-04 2007-04-19 Toshiba Tec Corp Charging set and vacuum cleaner
EP2090140B1 (en) * 2006-10-21 2014-08-13 Advanced Analogic Technologies, Inc. Charging scheme
EP2090140A2 (en) * 2006-10-21 2009-08-19 Advanced Analogic Technologies, Inc. Charging scheme
JP2010508004A (en) * 2006-10-21 2010-03-11 アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド Charging method
US9071055B2 (en) 2006-10-21 2015-06-30 Advanced Analogic Technologies Incorporated Charging scheme
US8493036B2 (en) 2006-10-21 2013-07-23 Advanced Analogic Technologies, Inc. Controllable charge paths, and related methods
JP2014007955A (en) * 2006-10-21 2014-01-16 Advanced Analogic Technologies Inc Charging scheme
KR101395948B1 (en) 2006-10-21 2014-05-16 어드밴스드 아날로직 테크놀로지스 인코퍼레이티드 Charging scheme
TWI499185B (en) * 2007-08-08 2015-09-01 Advanced Analogic Tech Inc Multiple output charge pump and method for operating the same
US8841891B2 (en) 2007-08-08 2014-09-23 Advanced Analogic Technologies Incorporated Time-multiplexed-capacitor DC/DC converter with multiple outputs
US9225239B2 (en) 2007-08-08 2015-12-29 Advanced Analogic Technologies, Incorporated Multiple output charge pump with multiple flying capacitors
JP2013115913A (en) * 2011-11-28 2013-06-10 Omron Corp Voltage conversion circuit and electronic apparatus
WO2013080616A1 (en) * 2011-11-28 2013-06-06 オムロン株式会社 Voltage conversion circuit and electronic apparatus
US9507370B2 (en) 2011-11-28 2016-11-29 Omron Corporation Voltage conversion circuit with improved conversion efficiency
JP2021052450A (en) * 2019-09-20 2021-04-01 トヨタ自動車株式会社 Charger
JP7136056B2 (en) 2019-09-20 2022-09-13 トヨタ自動車株式会社 charging device

Similar Documents

Publication Publication Date Title
EP3503282B1 (en) Quick charging method for parallel battery pack, and related device
KR102050993B1 (en) Hybrid solar energy storage apparatus with charging and discharging
US20120025614A1 (en) Uninterruptible Power Supply Apparatus and Methods Using Reconfigurable Energy Storage Networks
US20040145926A1 (en) Backup power supply
CN112165156B (en) Charging/discharging device, battery system, charging/discharging control method, and storage medium
EP2629387A1 (en) Power management system
US20110128009A1 (en) Apparatus and method for sensing battery cell voltage using isolation capacitor
CN104539042A (en) Uninterrupted power system
CN109510319B (en) Energy storage battery system composed of super capacitor, lithium battery and lead-acid battery
CN101438479A (en) Power supply system
TW201330453A (en) Charging and discharging control circuit for super capacitor and energy storing unit and method thereof
KR101567557B1 (en) Voltage balancing apparatus and method of secondary battery cells
CN216659649U (en) Formation and capacitance circuit, equipment and system
CN108599329B (en) Auxiliary device of storage battery pack and working method thereof
CN101944754A (en) Direct current step-up/step-down circuit
JP2001178010A (en) Charging control system for battery of electric storage cells, particularly for battery of lithium cells
JP2004080942A (en) Chargeable power supply apparatus
JP3796918B2 (en) Battery device
CN116707051B (en) Dual-battery charge-discharge circuit, dual-battery charge-discharge method, electronic device and medium
CN109428384A (en) A kind of backup power supply system of AC power supply device, circuit board and standby method for electrically
US20170301963A1 (en) Method and apparatus for performing string-level dynamic reconfiguration in an energy system
US10916946B2 (en) Energy storage apparatus
CN115811116A (en) Self-adaptive power supply management system and method and energy storage power supply
JPH0965582A (en) Power supply system utilizing solar cell
WO2019073652A1 (en) Electricity storage module and power supply system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124