JP2004079645A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004079645A
JP2004079645A JP2002235388A JP2002235388A JP2004079645A JP 2004079645 A JP2004079645 A JP 2004079645A JP 2002235388 A JP2002235388 A JP 2002235388A JP 2002235388 A JP2002235388 A JP 2002235388A JP 2004079645 A JP2004079645 A JP 2004079645A
Authority
JP
Japan
Prior art keywords
substrate
gate
insulating film
interlayer insulating
soi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002235388A
Other languages
Japanese (ja)
Inventor
Koichi Matsumoto
松本 光市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002235388A priority Critical patent/JP2004079645A/en
Publication of JP2004079645A publication Critical patent/JP2004079645A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve operation speed and reduce consumption power by reducing a gate parasitic capacitance. <P>SOLUTION: By an ordinary process using an SOI substrate, an element isolation region 4, a gate G, a source/drain (S/D) and silicide of a MOS type SOI semiconductor device manufacture are formed, and an interlayer insulating film 7 is deposited (a). In order to exfoliate a Si substrate Al, H ions are implanted (b). After the upper and lower sides are reversed and the interlayer insulating film 7 side is stuck on the other Si substrate B, the Si substrate Al of the SOI substrate is exfoliated and removed (c). An interlayer insulating film 8 is added. A hole is made in the film 8, and S/D contacts 11, 12 are connected with a gate G side of an active region layer 3a and the opposite side. The gate G and the S/D contacts 11, 12 are arranged interposing the active region layer 3a between them, so that capacitance between the gate/contact becomes almost zero. As the result, the gate parasitic capacitance decreases about 10%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ゲート・コンタクト間の容量が略0となる半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
SOIFET等の半導体装置は、SOI基板のトップSi層にソース/ドレインおよびボディ等が形成され、ボディ上部に絶縁膜を介してゲートが設けられている。このゲート・ソース/ドレイン間およびゲート・コンタクト間などに、その構造上ゲート寄生容量が存在する。この容量により半導体装置の動作スピードが低下すると共に、消費電力(CV)が増大する。そのため最近の半導体装置においては、従来からの半導体装置が持つ寄生容量を減少させて能力を向上させることのできる、SOI基板上に形成されたSOI型の半導体装置がますます重要になってきている。
【0003】
【発明が解決しようとする課題】
一方、半導体装置の微細化に伴い、LSI回路内のローカル配線において、ゲート・コンタクト間容量に占める割合がますます大きくなってきた。また、ゲート高さなどが緩くダウンスケーリングしているため、ゲート・コンタクト間容量が全体の寄生容量に占める割合が増加している。そのため、寄生容量の小さいSOIを使うメリットが色褪せてしまうという問題がある。
【0004】
本発明は、上記課題を解決すべくなされたものであり、ゲート・コンタクト間容量を略0に低減させることができる半導体装置およびその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係る半導体装置は、半導体層の上部にコンタクトが配置されているMOS型SOI半導体装置において、ゲートを半導体層の下部のみに配置したことを特徴とする。ゲートとコンタクトは半導体層(アクティブ領域)の反対側に設けられているので、ゲート・コンタクト間の容量が略0となる。
【0006】
この半導体装置の製造方法としては、半導体基板に絶縁層、半導体層が積層されたSOI基板を用い、通常のSOIトランジスタ製造プロセスで素子分離領域形成から層間絶縁膜堆積工程まで行い、その後SOI基板の半導体基板をイオン注入分離法で剥離するためのイオン注入を行い、素子の層間絶縁膜側を他の半導体基板に張り合わせた後、SOI基板の半導体基板を剥離して除去し、現れた絶縁層上に層間絶縁膜を追加し、コンタクトをSOIトランジスタの裏面から接続して製造する。
【0007】
または、半導体基板を用い、通常のバルクトランジスタ製造プロセスで素子分離領域形成から層間絶縁膜堆積工程まで行い、その後素子分離領域下面位置より下側の半導体基板を剥離するためのイオン注入を行い、素子の層間絶縁膜側を他の半導体基板に張り合わせた後、素子分離領域下面位置より下側の半導体基板を剥離して除去し、層間絶縁膜を形成し、コンタクトをSOIトランジスタの裏面から接続して製造する。この場合は、半導体基板に形成する素子分離領域の膜厚を制御することで、アクティブ領域となる半導体層の膜厚を制御が可能なる。
【0008】
ボディコンタクトを設ける場合は、ボディ領域を平面的に広げ、ボディコンタクトを半導体層の反ゲート側に接続する。この場合、ボディに電圧を印加することで半導体装置の動作を安定させることができる。
【0009】
【発明の実施の形態】
(実施例1)
本発明の実施例1に係るインバータおよびその製造方法を、図1を用いて説明する。まず、従来SOIFETを製造する場合と同様に、基板A1の上に厚さ100nmの埋め込み酸化膜(BOX)2と厚さ50nmのSi層(SOI層)3が積層されたSOI基板を用い、トップSi層3にトレンチ法などにより素子分離領域(SiO)4を形成し、次いで、素子分離領域4で囲まれた素子領域3aにボディ5を形成するためのp型(又はn型)活性不純物のイオン注入を行い、ボディ5の上部に厚さ3nmのゲート酸化膜6を介してSi膜からなる厚さ150nmのゲートGを形成する。このゲートGには長さ方向(紙面垂直方向)に引き出し端部を設けておく。ゲートコンタクト、次にソース/ドレイン拡散層(S/D)などを形成するためのn型(p型)活性不純物のイオン注入を行う共に、ゲートGにも活性不純物のイオン注入をする。そしてソース/ドレイン拡散層(S/D)およびゲートGの上面部分にシリサイド形成を行ない、その後厚さ500nmの層間絶縁膜(SiO)7を形成し、上面を平らにCMP(化学的機械的研磨)する(図1(a))。
【0010】
次に、基板A1をイオン注入分離法により剥離するため、ウェハの上側からHなどをイオン注入する。このイオン注入は基板A1の例えば0.2μmの深さの位置にイオン飛程距離Rpが来るようにする(図1(b))。このイオン注入は、H80keV(Rp=840nm) 5×1016/cmの条件で行った。
【0011】
このイオン注入後、ウェハを裏返して層間絶縁膜7の下面(ウェハ裏返す前の上面)を別のSi基板Bの上面に基板貼付け技術を用いて貼り付ける。その後600〜800℃の熱処理をしてイオン飛程距離Rpの位置で基板A1を剥離除去する(図1(c))。次にBOX2の面上に残った基板A1aを除去するため、BOX2をストッパーとしてトリミングを行なう。これでフィールド部に基板A1のSiは無くなくなり、BOX2が上面に現れる。
【0012】
次に、このBOX2上にBOX2の厚みを含めて層間絶縁膜8(SiO)の厚みが800nmとなるように堆積し、層間絶縁膜8に孔を開けてソース/ドレイン(S/D)にコンタクト11、12を接続する(図1(d))。同様に層間絶縁膜8に孔を開けてゲートGの引き出し端部にもコンタクトを接続する(図示省略)。
【0013】
以上のようにして作成されたインバータは、ゲートGがアクティブ領域3a上面側のコンタクト11、12とは反対のアクティブ領域3aの下面側に配置されているので、ゲート・コンタクト間の容量が略0となる。そのため、ゲート寄生容量が従来同等のインバータに比し略10%減少した。
(実施例2)
本発明の実施例2に係る出発基板としたSOI型インバータおよびその製造方法を、図2を用いて説明する。図2(a)について、まず、従来バルク(Bulk)形半導体装置を製造する場合と同様に、出発基板であるSi基板A2の上部にトレンチ法などにより素子分離領域(SiO)4を形成する。このとき素子分離領域4で囲まれる素子領域3aの厚さをトレンチの深さT(図2(b))により制御する。この実施例では素子領域3aの厚さを50nmとした。
【0014】
次いで、素子領域3aにボディ5を形成するためのp型(又はn型)活性不純物のイオン注入を行い、ボディ5の上部に厚さ3nmのゲート酸化膜6を介してSi膜からなる厚さ150nmのゲートGを形成する。このゲートGには長さ方向(紙面垂直方向)に引き出し端部を設けておく。ゲートコンタクト、次にソース/ドレイン拡散層(S/D)などを形成するためのn型(p型)活性不純物のイオン注入を行う共に、ゲートGにも活性不純物のイオン注入をする。そしてソース/ドレイン拡散層(S/D)およびゲートGの上面部分にシリサイド形成を行ない、その後厚さ500nmの層間絶縁膜(SiO)7を形成し、上面を平らにCMP(化学的機械的研磨)する。
【0015】
次に、素子領域3aと素子分離領域4下側の基板A2をイオン注入分離法により剥離するため、ウェハの上側からHなどをイオン注入する。このイオン注入は基板A2に形成したトレンチ深さTより少し下側の例えば、0.2μmの位置にイオン飛程距離Rpが来るようにする(図2(b))。
【0016】
このHイオン注入後、ウェハを裏返して層間絶縁膜7の下面(ウェハ裏返す前の上面)を別のSi基板Bの上面に基板貼付け技術を用いて貼り付ける。その後600〜800℃の熱処理をしてイオン飛程距離Rpの位置で基板A2を剥離し除去する(図2(c))。そして素子領域3および素子分離領域4の上面に残っている基板A2aを除去するため、素子分離領域4をストッパーにトリミングを行ない上面を平らにする。これでフィールド部に基板A2のSiは無くなる。
【0017】
次に、このトリミングをした面の上に層間絶縁膜8を800nm堆積し、層間絶縁膜8に孔を開けてソース/ドレイン(S/D)にコンタクト11、12を接続する(図2(d))。同様に層間絶縁膜8に穴を開けてゲートGの引き出し端部にもコンタクトを接続する(図示省略)。
【0018】
このインバータは、実施例1のインバータ同様に構成されおり、ゲートGはアクティブ領域3aを挟んでコンタクト11、12と反対側に配置されているので、ゲート・コンタクト間の容量が略0となる。
【0019】
実施例1、2では、ボディ5をフローティング状態としてあるが、ボディ5にコンタクトを付けてボディ5に電圧を与えることによりインバータの動作を安定化させることができる。ボディ5に電圧を与えるためボディ5にコンタクトを付ける場合は、例えば、ボディ5パッドを出すか、ボディ5領域を大きいゲート長により広げ、コンタクト11、12と同方向にボディコンタクトを付ける。なお、コンタクトを付ける場合、オーミックコンタクトを得るためのプロセスが必要となる。
【0020】
実施例1、2で作成されたインバータは、配線容量として、ゲート・コンタクト間の容量が0.55fFと計算された。実施例1、2と同等の従来型のSIO形とBulk形のインバータの全寄生容量は、それぞれ4.7fF、5.8fFである。よって、実施例での寄生容量削減効果は、以下のようになる。
【0021】
SOI:11.2%、     Bulk:9.5% 。
(実施例3)
図3に、ボディコンタクトを設けた大幅大長トランジスタのボディコンタクト等の配置を示す。この大幅大長トランジスタは、実施例1(又は実施例2)の方法で作成する。この場合、大幅大長のアクティブ領域3aに形成されたボディにボディコンタクト14を接続するための平面的に広げたボディ拡張部を設ける。このボデイ拡張部を有するボデイに対応する形状に、ゲート拡張部Gaを有するゲートGをアクティブ領域3aの下面側に形成する。ゲートGにはゲートコンタクト接続可能な形状の引き出し端部Gbをゲート長さ方向に設ける。アクティブ領域3aおよび素子分離領域4の上に形成された層間絶縁膜8(図1、図2参照)にソース/ドレイン、ゲートおよびボディに通じる穴を開けてソース/ドレインコンタクト11/12およびゲートコンタクト13、ボディコンタクト14を上方から接続する。
【0022】
実施例3によれば、実施例1、2と同様にゲートGがアクティブ領域3aを挟んでS/Dコンタクト11、12と反対側に配置されているので、大幅大長トランジスタであるが、ゲート・コンタクト間の容量が略0なる。また、ボディコンタクト14に電圧を与えることでトランジスタの動作を安定化させることができる。
【0023】
【発明の効果】
本発明による半導体装置は、ゲートとソース/ドレインコンタクトがアクティブ領域を挟んで反対側にあるので、ゲートとソース/ドレインコンタクト間の容量が略0となる。そのためゲート寄生容量が減少するので、半導体装置の動作スピードが向上すると共に、消費電力が大幅に減少する。
【図面の簡単な説明】
【図1】本発明の実施例1に係る半導体装置の製造工程説明図。
【図2】本発明の実施例2に係る半導体装置の製造工程説明図
【図3】本発明の実施例3に係る半導体装置の要部を示す平面図。
【符号の説明】
A1…SOI基板のSi基板、 A2…単結晶Si基板、
B…Si基板、 G…ゲート、 S…ソース(拡散層)、
D…ドレイン(拡散層)、 2…埋め込み酸化膜(BOX)
3…SOI層、Si層、 3a…素子領域、アクティブ領域
4…素子分離領域、 5…ゲート酸化膜、 6…ボディ、
7、8…層間絶縁膜、 11…ソースコンタクト、
12…ドレインコンタクト、13…ゲートコンタクト、
14…ボディコンタクト、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device in which a capacitance between a gate and a contact is substantially zero and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art In a semiconductor device such as an SOIFET, a source / drain, a body, and the like are formed in a top Si layer of an SOI substrate, and a gate is provided above the body via an insulating film. A gate parasitic capacitance exists between the gate and the source / drain and between the gate and the contact due to its structure. This capacity reduces the operating speed of the semiconductor device and increases power consumption (CV 2 ). Therefore, in recent semiconductor devices, an SOI semiconductor device formed on an SOI substrate, which can reduce the parasitic capacitance of a conventional semiconductor device and improve the capability, has become increasingly important. .
[0003]
[Problems to be solved by the invention]
On the other hand, with the miniaturization of semiconductor devices, the ratio of the local wiring in the LSI circuit to the gate-contact capacitance has been increasing. Further, since the gate height and the like are gently downscaled, the ratio of the gate-contact capacitance to the entire parasitic capacitance is increasing. Therefore, there is a problem that the merit of using SOI having a small parasitic capacitance is faded.
[0004]
The present invention has been made to solve the above problems, and has as its object to provide a semiconductor device capable of reducing the gate-contact capacitance to substantially zero and a method of manufacturing the same.
[0005]
[Means for Solving the Problems]
A semiconductor device according to the present invention is characterized in that, in a MOS SOI semiconductor device in which a contact is arranged above a semiconductor layer, a gate is arranged only below the semiconductor layer. Since the gate and the contact are provided on the opposite side of the semiconductor layer (active region), the capacitance between the gate and the contact becomes substantially zero.
[0006]
As a method for manufacturing this semiconductor device, an SOI substrate in which an insulating layer and a semiconductor layer are stacked on a semiconductor substrate is used, and an ordinary SOI transistor manufacturing process is performed from element isolation region formation to an interlayer insulating film deposition step. After performing ion implantation for separating the semiconductor substrate by an ion implantation separation method, and bonding the interlayer insulating film side of the element to another semiconductor substrate, the semiconductor substrate of the SOI substrate is separated and removed, and on the insulating layer which appears. , An interlayer insulating film is added, and the contact is connected from the back surface of the SOI transistor.
[0007]
Alternatively, using a semiconductor substrate, a normal bulk transistor manufacturing process is performed from the element isolation region formation to the interlayer insulating film deposition step, and then ion implantation is performed to peel off the semiconductor substrate below the element isolation region lower surface position. After bonding the interlayer insulating film side to another semiconductor substrate, the semiconductor substrate below the element isolation region lower surface position is peeled off and removed, an interlayer insulating film is formed, and the contact is connected from the back surface of the SOI transistor. To manufacture. In this case, by controlling the thickness of the element isolation region formed in the semiconductor substrate, the thickness of the semiconductor layer serving as the active region can be controlled.
[0008]
When the body contact is provided, the body region is expanded in a plane, and the body contact is connected to the side opposite to the gate of the semiconductor layer. In this case, the operation of the semiconductor device can be stabilized by applying a voltage to the body.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
(Example 1)
First Embodiment An inverter according to a first embodiment of the present invention and a method for manufacturing the inverter will be described with reference to FIG. First, as in the case of manufacturing a conventional SOIFET, an SOI substrate in which a buried oxide film (BOX) 2 having a thickness of 100 nm and a Si layer (SOI layer) 3 having a thickness of 50 nm are laminated on a substrate A1 is used. An element isolation region (SiO 2 ) 4 is formed in the Si layer 3 by a trench method or the like, and then a p-type (or n-type) active impurity for forming a body 5 in the element region 3 a surrounded by the element isolation region 4. To form a gate G having a thickness of 150 nm made of a Si film on the body 5 with a gate oxide film 6 having a thickness of 3 nm interposed therebetween. The gate G is provided with a drawn-out end in the length direction (perpendicular to the paper surface). An n-type (p-type) active impurity is ion-implanted to form a gate contact and then a source / drain diffusion layer (S / D), and an active impurity is also ion-implanted into the gate G. Then, silicide is formed on the upper surface of the source / drain diffusion layer (S / D) and the gate G. Thereafter, an interlayer insulating film (SiO 2 ) 7 having a thickness of 500 nm is formed, and the upper surface is flattened by CMP (chemical mechanical). (Polishing) (FIG. 1A).
[0010]
Next, H + or the like is ion-implanted from the upper side of the wafer in order to separate the substrate A1 by an ion-implantation separation method. This ion implantation is performed so that the ion range Rp is located at a depth of, for example, 0.2 μm on the substrate A1 (FIG. 1B). This ion implantation was performed under the condition of H + 80 keV (Rp = 840 nm) 5 × 10 16 / cm 2 .
[0011]
After this ion implantation, the wafer is turned upside down and the lower surface of the interlayer insulating film 7 (the upper surface before turning over the wafer) is bonded to the upper surface of another Si substrate B using a substrate bonding technique. Thereafter, a heat treatment at 600 to 800 ° C. is performed to peel off and remove the substrate A1 at the position of the ion range Rp (FIG. 1C). Next, in order to remove the substrate A1a remaining on the surface of the BOX2, trimming is performed using the BOX2 as a stopper. As a result, Si of the substrate A1 is not present in the field portion, and BOX2 appears on the upper surface.
[0012]
Next, an interlayer insulating film 8 (SiO 2 ) including the thickness of the BOX 2 is deposited on the BOX 2 so as to have a thickness of 800 nm, and a hole is formed in the interlayer insulating film 8 to form a source / drain (S / D). The contacts 11 and 12 are connected (FIG. 1D). Similarly, a hole is made in the interlayer insulating film 8 and a contact is also connected to the leading end of the gate G (not shown).
[0013]
In the inverter formed as described above, since the gate G is disposed on the lower surface side of the active region 3a opposite to the contacts 11 and 12 on the upper surface side of the active region 3a, the capacitance between the gate and the contact is substantially zero. It becomes. Therefore, the gate parasitic capacitance was reduced by about 10% as compared with the conventional inverter.
(Example 2)
Second Embodiment A SOI inverter used as a starting substrate and a method of manufacturing the same according to a second embodiment of the present invention will be described with reference to FIG. Referring to FIG. 2A, first, similarly to the case of manufacturing a conventional bulk type semiconductor device, an element isolation region (SiO 2 ) 4 is formed on a Si substrate A2 as a starting substrate by a trench method or the like. . At this time, the thickness of the element region 3a surrounded by the element isolation region 4 is controlled by the trench depth T (FIG. 2B). In this embodiment, the thickness of the element region 3a is set to 50 nm.
[0014]
Next, ions of p-type (or n-type) active impurities for forming the body 5 are formed in the element region 3a, and a thickness of a Si film is formed on the body 5 via the gate oxide film 6 having a thickness of 3 nm. A 150 nm gate G is formed. The gate G is provided with a drawn-out end in the length direction (perpendicular to the paper surface). An n-type (p-type) active impurity is ion-implanted to form a gate contact and then a source / drain diffusion layer (S / D), and an active impurity is also ion-implanted into the gate G. Then, silicide is formed on the upper surface of the source / drain diffusion layer (S / D) and the gate G. Thereafter, an interlayer insulating film (SiO 2 ) 7 having a thickness of 500 nm is formed, and the upper surface is flattened by CMP (chemical mechanical). Grind.
[0015]
Next, H + and the like are ion-implanted from the upper side of the wafer in order to separate the substrate A2 below the element region 3a and the element isolation region 4 by an ion implantation separation method. This ion implantation is performed so that the ion range Rp is located at a position slightly below the trench depth T formed in the substrate A2, for example, at 0.2 μm (FIG. 2B).
[0016]
After the H ion implantation, the wafer is turned upside down and the lower surface of the interlayer insulating film 7 (the upper surface before the wafer is turned upside down) is bonded to the upper surface of another Si substrate B using a substrate bonding technique. Thereafter, a heat treatment at 600 to 800 ° C. is performed to peel off and remove the substrate A2 at the position of the ion range Rp (FIG. 2C). Then, in order to remove the substrate A2a remaining on the upper surfaces of the element region 3 and the element isolation region 4, the upper surface is flattened by trimming using the element isolation region 4 as a stopper. This eliminates the Si of the substrate A2 in the field portion.
[0017]
Next, an interlayer insulating film 8 is deposited to a thickness of 800 nm on the trimmed surface, and a hole is made in the interlayer insulating film 8 to connect contacts 11 and 12 to the source / drain (S / D) (FIG. 2 (d)). )). Similarly, a hole is made in the interlayer insulating film 8 and a contact is also connected to the leading end of the gate G (not shown).
[0018]
This inverter has the same configuration as that of the inverter of the first embodiment. Since the gate G is disposed on the opposite side of the contacts 11 and 12 across the active region 3a, the capacitance between the gate and the contact becomes substantially zero.
[0019]
In the first and second embodiments, the body 5 is in the floating state. However, the operation of the inverter can be stabilized by applying a voltage to the body 5 by attaching a contact to the body 5. When a contact is made to the body 5 to apply a voltage to the body 5, for example, a body 5 pad is exposed, or the body 5 region is widened by a large gate length, and a body contact is made in the same direction as the contacts 11 and 12. When a contact is provided, a process for obtaining an ohmic contact is required.
[0020]
In the inverters produced in Examples 1 and 2, the capacitance between the gate and the contact was calculated to be 0.55 fF as the wiring capacitance. The total parasitic capacitance of the conventional SIO type and Bulk type inverters equivalent to the first and second embodiments is 4.7 fF and 5.8 fF, respectively. Therefore, the effect of reducing the parasitic capacitance in the embodiment is as follows.
[0021]
SOI: 11.2%, Bulk: 9.5%.
(Example 3)
FIG. 3 shows an arrangement of a body contact and the like of a large-sized transistor provided with a body contact. This large-sized transistor is manufactured by the method of the first embodiment (or the second embodiment). In this case, a body extending portion for connecting the body contact 14 to the body formed in the active region 3a having a considerably large length is provided. A gate G having a gate extension Ga is formed on the lower surface side of the active region 3a in a shape corresponding to the body having this body extension. The gate G is provided with a lead-out end Gb having a shape connectable with a gate contact in the gate length direction. Holes are opened in the interlayer insulating film 8 (see FIGS. 1 and 2) formed on the active region 3a and the element isolation region 4 to connect to the source / drain, the gate and the body, thereby forming the source / drain contact 11/12 and the gate contact. 13, body contact 14 is connected from above.
[0022]
According to the third embodiment, as in the first and second embodiments, the gate G is disposed on the opposite side to the S / D contacts 11 and 12 with the active region 3a interposed therebetween. -The capacitance between the contacts is substantially zero. Further, by applying a voltage to the body contact 14, the operation of the transistor can be stabilized.
[0023]
【The invention's effect】
In the semiconductor device according to the present invention, since the gate and the source / drain contact are on opposite sides of the active region, the capacitance between the gate and the source / drain contact is substantially zero. Therefore, the gate parasitic capacitance is reduced, so that the operation speed of the semiconductor device is improved and the power consumption is significantly reduced.
[Brief description of the drawings]
FIG. 1 is a view illustrating a manufacturing process of a semiconductor device according to a first embodiment of the present invention.
FIG. 2 is an explanatory view of a manufacturing process of a semiconductor device according to a second embodiment of the present invention. FIG. 3 is a plan view showing a main part of a semiconductor device according to a third embodiment of the present invention.
[Explanation of symbols]
A1: Si substrate of SOI substrate, A2: single crystal Si substrate,
B: Si substrate, G: Gate, S: Source (diffusion layer),
D: drain (diffusion layer) 2: buried oxide film (BOX)
3 SOI layer, Si layer 3a Element region, active region 4 Element isolation region 5 Gate oxide film 6 Body
7, 8 ... interlayer insulating film, 11 ... source contact,
12 ... drain contact, 13 ... gate contact,
14 ... body contact,

Claims (5)

半導体層の上部にコンタクトが配置されているMOS型SOI半導体装置において、ゲートを半導体層の下部のみに配置したことを特徴とする半導体装置。In a MOS type SOI semiconductor device in which a contact is arranged above a semiconductor layer, a gate is arranged only below the semiconductor layer. 出発基板を半導体基板とし、出発半導体基板に形成する素子分離領域の膜厚を制御することで、半導体層の膜厚を制御可能としたことを特徴とする請求項1に記載の半導体装置。2. The semiconductor device according to claim 1, wherein the starting substrate is a semiconductor substrate, and the thickness of the semiconductor layer is controllable by controlling the thickness of the element isolation region formed on the starting semiconductor substrate. ボディコンタクトを半導体層の上側から接続すると共に、ボディ領域を平面的に広げたことを特徴とする請求項1または2に記載の半導体装置。The semiconductor device according to claim 1, wherein the body contact is connected from above the semiconductor layer, and the body region is expanded in a plane. 半導体基板に絶縁層、半導体層が積層されたSOI基板を用い通常のSOIトランジスタ製造プロセスで素子分離領域形成から層間絶縁膜堆積工程まで行い、
その後SOI基板の半導体基板をイオン注入分離法で剥離するためのイオン注入を行い、
素子の層間絶縁膜側を他の半導体基板に張り合わせた後、SOI基板の半導体基板を剥離して除去し、
現れた絶縁層上に層間絶縁膜を追加し、コンタクトをSOIトランジスタの裏面から接続することを特徴とする請求項1記載の半導体装置の製造方法。
Using an SOI substrate in which an insulating layer and a semiconductor layer are stacked on a semiconductor substrate, performing from an element isolation region formation to an interlayer insulating film deposition step in a normal SOI transistor manufacturing process,
After that, ion implantation for separating the semiconductor substrate of the SOI substrate by an ion implantation separation method is performed,
After bonding the element's interlayer insulating film side to another semiconductor substrate, the semiconductor substrate of the SOI substrate is peeled and removed,
2. The method according to claim 1, wherein an interlayer insulating film is added on the exposed insulating layer, and a contact is connected from a back surface of the SOI transistor.
半導体基板を用い通常のバルクトランジスタ製造プロセスで素子分離領域形成から層間絶縁膜堆積工程まで行い、
その後素子分離領域下面位置より下側の半導体基板を剥離するためのイオン注入を行い、
素子の層間絶縁膜側を他の半導体基板に張り合わせた後、素子分離領域下面位置より下側の半導体基板を剥離して除去し、層間絶縁膜を形成し、コンタクトをSOIトランジスタの裏面から接続することを特徴とする請求項2記載の半導体装置の製造方法。
Performing from the element isolation region formation to the interlayer insulating film deposition step in the normal bulk transistor manufacturing process using a semiconductor substrate,
After that, ion implantation is performed to peel the semiconductor substrate below the element isolation region lower surface position,
After bonding the element's interlayer insulating film side to another semiconductor substrate, the semiconductor substrate below the element isolation region lower surface position is peeled off and removed, an interlayer insulating film is formed, and contacts are connected from the back surface of the SOI transistor. 3. The method for manufacturing a semiconductor device according to claim 2, wherein:
JP2002235388A 2002-08-13 2002-08-13 Semiconductor device and its manufacturing method Abandoned JP2004079645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235388A JP2004079645A (en) 2002-08-13 2002-08-13 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235388A JP2004079645A (en) 2002-08-13 2002-08-13 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004079645A true JP2004079645A (en) 2004-03-11

Family

ID=32019886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235388A Abandoned JP2004079645A (en) 2002-08-13 2002-08-13 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004079645A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005245A (en) * 2004-06-18 2006-01-05 Sharp Corp Semiconductor substrate and method of manufacturing the same
JP2006100831A (en) * 2004-09-28 2006-04-13 Sharp Corp Hydrogen ion implantation peeling method and active silicon equipment
WO2010087087A1 (en) * 2009-01-29 2010-08-05 シャープ株式会社 Semiconductor device and method for manufacturing same
US8203175B2 (en) 2009-01-22 2012-06-19 Sony Corporation Semiconductor device and method of manufacturing the same
US8354329B2 (en) 2008-02-13 2013-01-15 Sharp Kabushiki Kaisha Semiconductor device manufacturing method, semiconductor device and display apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005245A (en) * 2004-06-18 2006-01-05 Sharp Corp Semiconductor substrate and method of manufacturing the same
US7563693B2 (en) 2004-06-18 2009-07-21 Sharp Kabushiki Kaisha Method for manufacturing semiconductor substrate and semiconductor substrate
JP2006100831A (en) * 2004-09-28 2006-04-13 Sharp Corp Hydrogen ion implantation peeling method and active silicon equipment
US8354329B2 (en) 2008-02-13 2013-01-15 Sharp Kabushiki Kaisha Semiconductor device manufacturing method, semiconductor device and display apparatus
US8203175B2 (en) 2009-01-22 2012-06-19 Sony Corporation Semiconductor device and method of manufacturing the same
US9093316B2 (en) 2009-01-22 2015-07-28 Sony Corporation Semiconductor device and method of manufacturing the same
WO2010087087A1 (en) * 2009-01-29 2010-08-05 シャープ株式会社 Semiconductor device and method for manufacturing same

Similar Documents

Publication Publication Date Title
TWI395295B (en) Integrated circuit and method for its manufacture
US7023057B2 (en) CMOS on hybrid substrate with different crystal orientations using silicon-to-silicon direct wafer bonding
US9355887B2 (en) Dual trench isolation for CMOS with hybrid orientations
US7393732B2 (en) Double silicon-on-insulator (SOI) metal oxide semiconductor field effect transistor (MOSFET) structures
US7682941B2 (en) Integrated circuit with bulk and SOI devices connected with an epitaxial region
JP4202563B2 (en) Semiconductor device
JP2005514771A (en) Body-coupled silicon semiconductor device on insulating film and method thereof
US6320228B1 (en) Multiple active layer integrated circuit and a method of making such a circuit
JP2008536335A (en) Hybrid crystal-oriented CMOS structure for adaptive well biasing and power and performance enhancement
US9607986B2 (en) Mixed orientation semiconductor device and method
US9997607B2 (en) Mirrored contact CMOS with self-aligned source, drain, and back-gate
TW200418093A (en) Silicon-on-insulator ulsi devices with multiple silicon film thickness
JPH077144A (en) Soi transistor and forming method therefor
US5844294A (en) Semiconductor substrate with SOI structure
JP2011216897A (en) Semiconductor device
US20070138512A1 (en) Semiconductor substrate manufacturing method and semiconductor device
JP2004079645A (en) Semiconductor device and its manufacturing method
JP2005136410A (en) Cmos on hybrid substrate with different crystal orientations formed by employing silicon-to-silicon direct wafer bonding
JP2008244229A (en) Semiconductor device manufacturing method and semiconductor device
JP4360413B2 (en) Manufacturing method of semiconductor device
KR100688546B1 (en) Semiconductor device with decoupling capacitor and method of fabricating the same
KR20140096107A (en) A semiconductor-on-insulator structure and a process for producing same
WO2009113427A1 (en) Semiconductor device, semiconductor device manufacturing method and display device
JP5719381B2 (en) Low parasitic capacitance body contact transistor
KR100828029B1 (en) Method of manufacturing a stack type semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050517

A762 Written abandonment of application

Effective date: 20080227

Free format text: JAPANESE INTERMEDIATE CODE: A762