JP2004077658A - Optical connector - Google Patents

Optical connector Download PDF

Info

Publication number
JP2004077658A
JP2004077658A JP2002235859A JP2002235859A JP2004077658A JP 2004077658 A JP2004077658 A JP 2004077658A JP 2002235859 A JP2002235859 A JP 2002235859A JP 2002235859 A JP2002235859 A JP 2002235859A JP 2004077658 A JP2004077658 A JP 2004077658A
Authority
JP
Japan
Prior art keywords
optical
optical fiber
single mode
optical connector
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002235859A
Other languages
Japanese (ja)
Other versions
JP3831315B2 (en
Inventor
Masaaki Takatani
高谷 雅昭
Koji Shibata
柴田 幸司
Kenji Kurokawa
黒河 賢二
Kazuo Hokari
保苅 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002235859A priority Critical patent/JP3831315B2/en
Publication of JP2004077658A publication Critical patent/JP2004077658A/en
Application granted granted Critical
Publication of JP3831315B2 publication Critical patent/JP3831315B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize an optical connector which can be used for splicing of single mode optical fibers for high power transmission. <P>SOLUTION: A connection part 10 wherein a plurality of grated index optical fibers 12 and 13 having different core diameters are arranged in the ascending order of core diameter from the front end of the single mode optical fiber 11 toward the connection end face 15 is provided between the front end of a single mode optical fiber 11 and a connection end face 15, and thus a spot size on the connection end face 15 is enlarged, and optical power per unit area is reduced, and a high power optical signal (or exciting light) can be propagated. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、WDMやラマン増幅などを用いた伝送方式において、ハイパワー(例えば1W以上)の光信号(もしくは励起光)が光ファイバ内を伝播する際においても、その接続部位で使用可能な光コネクタに関するものである。
【0002】
【従来の技術】
近年、光ファイバを用いた通信方式はますます需要が大きくなっている。マルチモード光ファイバ、シングルモード光ファイバなど、様々な光ファイバが用いられており、その接続部位には様々な光コネクタが用いられている。
【0003】
光コネクタは、その光損失を低減するために、接続した際の光ファイバ同士の軸ずれ、傾き、間隙が小さくなるように設計されてきた。これらのパラメータを制御することにより、様々な低損失な光コネクタを実現してきた。
【0004】
図1は従来の光コネクタの要部、ここでは接続しようとする光ファイバの先端を含む接続部の一例を示すもので、光ファイバ1(外径約125μm)はフェルール2(SCコネクタの場合は外径約2.5mm、内径約125μm)と呼ばれる管状の部材の中に収納され、その先端は該フェルール2とともに面一の接続端面3を形成する如くなっている。
【0005】
光ファイバ1はコア4及びクラッド5から構成されており、光信号(もしくは励起光)はコア4の中に閉じ込められながら伝搬していく。
【0006】
【発明が解決しようとする課題】
ところで、現在、光通信に用いられている光ファイバは、その大容量通信の可能性から、シングルモード光ファイバが中心である。シングルモード光ファイバはそのコアの直径が約10μmと大変小さいため、大容量の光信号(もしくは励起光)を伝搬させるとパワー密度が大変大きくなり、光コネクタの接続部において端面の損傷を生じたり、その部分を起点とした光ファイバの致命的な欠損(ファイバフューズ現象など)を生じる可能性があるという問題があった。
【0007】
本発明の目的は、ハイパワー伝送用のシングルモード光ファイバの接続に用いることが可能な光コネクタを実現することにある。
【0008】
【課題を解決するための手段】
光コネクタとは別に、光ファイバ関連の技術として、コア径の異なるファイバ同士を結んだり、コリメータを実現するための技術として、シングルモード光ファイバのコア径を拡大して、光ファイバ内を伝搬する光信号の強度分布を光ファイバの軸方向と垂直な平面内で広めたり、元に戻したりする技術(TEC光ファイバ技術)や、シングルモード光ファイバとグレーテッドインデックス型光ファイバを適切な条件でつなげることにより、光ファイバ内を伝搬する光信号の強度分布を光ファイバの軸方向と垂直な平面内で広めたり、元に戻したりする技術(信学技報2002−7、pp.33)が存在する。
【0009】
本発明では、前記課題を解決するため、前述したグレーテッドインデックス型光ファイバを組み合わせる技術を採用して接続部でのスポットサイズを拡大し、単位面積当たりの光パワーを低減させ、ハイパワーの光信号(もしくは励起光)を問題なく伝播可能な光コネクタを実現する。
【0010】
【発明の実施の形態】
図2は本発明の光コネクタの第1の実施の形態、ここでは請求項1に対応する実施の形態における接続部の概要を示すもので、図中、11はハイパワーの光信号(もしくは励起光)伝送用のシングルモード光ファイバ、12はスポットサイズ拡大用のグレーテッドインデックス型(GI型)光ファイバ、13はスポットサイズ拡大伝送用のグレーテッドインデックス型(GI型)光ファイバ、14は管状の部材からなる光コネクタフェルール(SCコネクタの場合は外径約2.5mm、内径約125μm、なお、他の大きさのフェルールも適用可能)である。
【0011】
前記3つの光ファイバはフェルール14の中に、互いの中心軸が一致しかつ端面同士が接触する如く、シングルモード光ファイバ11、GI型光ファイバ12、GI型光ファイバ13の順に収納され、GI型光ファイバ13の先端は該フェルール14とともに面一の接続端面15を形成し、これらによって光コネクタの接続部10を構成する如くなっている。
【0012】
ここで、シングルモード光ファイバ11、GI型光ファイバ12及びGI型光ファイバ13の外径は全てフェルール14の内径とほぼ等しい約125μmであり、それぞれのコア111,121,131のコア径a1,a2,a3は、a1<a2<a3の関係にあって、シングルモード光ファイバ11の先端から接続端面15に向かってコア径が小さなものから大きなものへ並ぶように配置されることになり、これによって、光ファイバ11の方向から伝送されてきた光信号のスポットサイズ径を拡大する。
【0013】
光ファイバ11を伝搬してきた光は、光コネクタの接続部10内において、GI型光ファイバ12に伝搬された後、GI型光ファイバ13に伝搬される。この際、GI型光ファイバ12の長さを光信号(または励起光)の波長の1/4ピッチに設計する(なお、GI型光ファイバ13の長さについては、特に制限はなく、実装作業のし易さ、フェルール14の長さ等によって決まる)ことによって、ガウス分布で光ファイバ11を伝搬してきた光信号はガウス分布の形状を保ったまま、光ファイバの軸方向に垂直な平面内で広がった状態でGI型光ファイバ13を伝搬することが可能となる。
【0014】
GI型光ファイバ13内を伝搬する光信号(または励起光)のスポットサイズ半径wは、
w={(λ/πn)・Ag}1/2
但し、Ag=r/(2Δ)1/2
で示されることが報告されている。ここで、rはGI型光ファイバ13のコア131の半径、ΔはGI型光ファイバ13のコア及びクラッドの比屈折率差、λは光信号(または励起光)の波長、nはGI型光ファイバ13のコア131の屈折率である。
【0015】
これらコアの半径r、比屈折率差Δ、信号光波長λ、屈折率nから、GI型光ファイバ13内を伝搬する光信号のスポットサイズ半径wが決定されるため、これらを適切に設定することにより、GI型光ファイバ13において光信号(または励起光)のスポットサイズを、シングルモード光ファイバ11の中を伝搬した場合に比べて数倍の大きさにすることが可能となる。GI型光ファイバ13の先端がフェルール14とともに接続端面15を形成することにより、本発明の光コネクタでは、接続部10での光パワーのピークパワーの減少が実現される。
【0016】
本発明の光コネクタを製造する際は、伝送用光ファイバ11とスポットサイズ拡大用GI型光ファイバ12との接続面16及びスポットサイズ拡大用GI型光ファイバ12とスポットサイズ拡大伝送用GI型光ファイバ13との接続面17は隙間無く接触させ、フェルール14に対して固定された状態を保つように組み立てることにより、これら接続面16及び17で問題が起こらないようにすることが可能となる。
【0017】
ここで、代表的な光コネクタフェルール14の軸方向の長さは8mm以上であるため、伝送用光ファイバ11の一部とスポットサイズ拡大用GI型光ファイバ12及びその接続面16、スポットサイズ拡大用GI型光ファイバ12とスポットサイズ拡大伝送用GI型光ファイバ13及びその接続面17は光コネクタフェルール14内に組み込むことが可能となり、外見上は普通の光コネクタと全く変わらない光コネクタを実現することが可能である。
【0018】
一方、図3に示すように、前述した接続部10同士を、図示しない光コネクタプラグ、アダプタ等を介して接続した場合、頻繁に着脱が行われることにより、その接続部分21は大変不安定である。しかし、本発明の光コネクタの場合、それぞれの接続端面15で信号光のモードフィールド径が広がっていることにより、接続部分21での信号光のピークパワーが減少しており、このような場合にも、問題がおきないような設計になっている。
【0019】
また、図4に示すように、光コネクタでは、接続部分21にその間隙の影響を低減させるために屈折率整合剤22を塗布しているタイプのものが存在する。通常の光ファイバを用いた場合は、ピークパワーが大きいため、接続部分21に塗布された屈折率整合剤22が損傷する可能性が高かったが、本発明の光コネクタでは、そのピークパワーが小さいことから、接続部分21に屈折率整合剤22を塗布しても問題が発生することはない。
【0020】
図5は本発明の光コネクタの第2の実施の形態、ここでは請求項2に対応する実施の形態における接続部の概要を示すもので、GI型光ファイバ13の先端及びフェルール14により形成される接続部10の接続端面を球面15’に研磨することにより、接続部分21が隙間無く接続される状態を保てるように設計することが可能である。
【0021】
図6は本発明を適用した光コネクタ全体の一例を示すもので、光信号(もしくは励起光)伝送用の光ファイバ11(なお、図2では光ファイバ素線の状態を光ファイバ11としたが、ここではこの光ファイバ素線に被覆を施した状態を光ファイバ11とした。)の端部を構成要素として含み、本発明の接続部10を備えた光コネクタプラグ31と、一対の光コネクタプラグ31(但し、図面では1つのみ示している。)を着脱自在に接続するアダプタ32とからなっている。この光コネクタは、接続部10を除いて、ほとんどの部品は従来の光コネクタと同じであり、本発明を適用することによって、従来の光コネクタと全く同じ構造でハイパワー用光コネクタを実現することが可能である。
【0022】
【発明の効果】
以上説明したように、本発明によれば、高い光パワーを有する光信号を伝送する光伝送路の接続部位において、本発明の技術を組み込んだ高いピークパワーをもった光信号(もしくは励起光)にも耐えられる光コネクタを用いることによって、本来接続が危険視されていた箇所にも、光コネクタ技術が用いられることとなる。
【図面の簡単な説明】
【図1】従来の光コネクタの一例を示す接続部の概要図
【図2】本発明の光コネクタの第1の実施の形態を示す接続部の概要図
【図3】本発明の光コネクタの第1の実施の形態における接続の概要図
【図4】本発明の光コネクタの第1の実施の形態における接続の概要図
【図5】本発明の光コネクタの第2の実施の形態を示す接続の概要図
【図6】本発明を適用した光コネクタ全体の一例を示す説明図
【符号の説明】
10:接続部、11:シングルモード光ファイバ、12:スポットサイズ拡大用GI型光ファイバ、13:スポットサイズ拡大伝送用GI型光ファイバ、14:フェルール、15,15’:接続端面、16,17:接続面、21:接続部分、22:屈折率整合剤、31:光コネクタプラグ、32:アダプタ、111,121,131:コア。
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, in a transmission method using WDM, Raman amplification, or the like, even when a high-power (for example, 1 W or more) optical signal (or pumping light) propagates in an optical fiber, light that can be used at a connection portion thereof is used. It is about connectors.
[0002]
[Prior art]
In recent years, communication systems using optical fibers have been increasingly demanded. Various optical fibers such as a multi-mode optical fiber and a single-mode optical fiber are used, and various optical connectors are used in connection portions thereof.
[0003]
Optical connectors have been designed so as to reduce the axial loss, inclination, and gap between optical fibers when connected, in order to reduce the optical loss. By controlling these parameters, various low-loss optical connectors have been realized.
[0004]
FIG. 1 shows an example of a main portion of a conventional optical connector, here an example of a connecting portion including an end of an optical fiber to be connected. An optical fiber 1 (outer diameter of about 125 μm) is a ferrule 2 (in the case of an SC connector, It is housed in a tubular member called an outer diameter of about 2.5 mm and an inner diameter of about 125 μm), and its tip forms a flush connection end face 3 with the ferrule 2.
[0005]
The optical fiber 1 includes a core 4 and a clad 5, and an optical signal (or pump light) propagates while being confined in the core 4.
[0006]
[Problems to be solved by the invention]
By the way, single mode optical fibers are mainly used for optical fibers currently used for optical communication because of the possibility of large capacity communication. Since the single mode optical fiber has a very small core diameter of about 10 μm, the power density becomes very large when a large-capacity optical signal (or pumping light) is propagated, and the end face may be damaged at the connection part of the optical connector. However, there is a problem that a fatal defect (such as a fiber fuse phenomenon) of the optical fiber starting from that portion may occur.
[0007]
An object of the present invention is to realize an optical connector that can be used for connecting a single mode optical fiber for high power transmission.
[0008]
[Means for Solving the Problems]
Apart from the optical connector, as a technology related to optical fibers, as a technology for connecting fibers with different core diameters, or as a technology for realizing a collimator, the core diameter of a single mode optical fiber is expanded and propagated in the optical fiber. Under the appropriate conditions, a technology to spread or restore the intensity distribution of the optical signal in a plane perpendicular to the axial direction of the optical fiber or to restore the original (TEC optical fiber technology), and a single mode optical fiber and a graded index type optical fiber A technique of spreading or returning the intensity distribution of an optical signal propagating in an optical fiber in a plane perpendicular to the axial direction of the optical fiber by connecting the optical signals (IEICE Technical Report 2002-7, pp. 33) has been developed. Exists.
[0009]
In the present invention, in order to solve the above-mentioned problems, the technology for combining the above-mentioned graded index type optical fibers is employed to increase the spot size at the connection portion, reduce the optical power per unit area, and provide a high-power light. An optical connector capable of transmitting a signal (or excitation light) without any problem is realized.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 2 shows an outline of a connecting portion in a first embodiment of the optical connector of the present invention, here, an embodiment corresponding to claim 1. In the drawing, reference numeral 11 denotes a high-power optical signal (or pump). A single mode optical fiber for transmitting light, 12 is a graded index (GI) optical fiber for spot size expansion, 13 is a graded index (GI type) optical fiber for spot size expansion transmission, and 14 is a tube (In the case of an SC connector, an outer diameter of about 2.5 mm, an inner diameter of about 125 μm, and ferrules of other sizes are also applicable).
[0011]
The three optical fibers are housed in a ferrule 14 in the order of a single mode optical fiber 11, a GI type optical fiber 12, and a GI type optical fiber 13 such that their central axes are coincident and their end faces are in contact with each other. The distal end of the mold optical fiber 13 forms a flush connection end face 15 together with the ferrule 14, and these constitute a connection portion 10 of the optical connector.
[0012]
Here, the outer diameters of the single mode optical fiber 11, the GI type optical fiber 12, and the GI type optical fiber 13 are all about 125 μm, which is almost equal to the inner diameter of the ferrule 14, and the core diameters a1, a1 of the respective cores 111, 121, 131. a2 and a3 are in a relationship of a1 <a2 <a3, and are arranged so that the core diameters are arranged from small to large from the tip of the single mode optical fiber 11 toward the connection end face 15. Thereby, the spot size diameter of the optical signal transmitted from the direction of the optical fiber 11 is enlarged.
[0013]
The light that has propagated through the optical fiber 11 is propagated to the GI optical fiber 13 and then to the GI optical fiber 13 in the connection portion 10 of the optical connector. At this time, the length of the GI optical fiber 12 is designed to be 1/4 pitch of the wavelength of the optical signal (or the excitation light) (the length of the GI optical fiber 13 is not particularly limited, and the mounting operation is not limited. The optical signal that has propagated through the optical fiber 11 in a Gaussian distribution in a plane perpendicular to the axial direction of the optical fiber while maintaining the shape of the Gaussian distribution. It is possible to propagate the GI optical fiber 13 in the spread state.
[0014]
The spot size radius w of an optical signal (or pump light) propagating in the GI optical fiber 13 is:
w = {(λ / πn) · Ag} 1/2
However, Ag = r / (2Δ) 1/2
Is reported. Here, r is the radius of the core 131 of the GI optical fiber 13, Δ is the relative refractive index difference between the core and the clad of the GI optical fiber 13, λ is the wavelength of the optical signal (or pump light), and n is the GI light. This is the refractive index of the core 131 of the fiber 13.
[0015]
The spot size radius w of the optical signal propagating in the GI optical fiber 13 is determined from the radius r of the core, the relative refractive index difference Δ, the signal light wavelength λ, and the refractive index n. This makes it possible to make the spot size of the optical signal (or the excitation light) in the GI optical fiber 13 several times larger than that in the case where the light signal propagates through the single mode optical fiber 11. Since the end of the GI optical fiber 13 forms the connection end face 15 together with the ferrule 14, the optical connector according to the present invention can reduce the peak power of the optical power at the connection portion 10.
[0016]
When manufacturing the optical connector of the present invention, the connection surface 16 between the transmission optical fiber 11 and the spot-size expanding GI optical fiber 12 and the spot-size expanding GI optical fiber 12 and the spot-size expanding GI light By assembling the connection surface 17 with the fiber 13 without any gap and maintaining the state fixed to the ferrule 14, it is possible to prevent problems from occurring at the connection surfaces 16 and 17.
[0017]
Here, since the length of the representative optical connector ferrule 14 in the axial direction is 8 mm or more, a part of the transmission optical fiber 11, the GI optical fiber 12 for increasing the spot size, the connection surface 16 thereof, and the spot size are increased. GI optical fiber 12 for transmission and GI optical fiber 13 for spot size expansion transmission and its connection surface 17 can be incorporated in optical connector ferrule 14, realizing an optical connector that is not different from ordinary optical connector in appearance. It is possible to
[0018]
On the other hand, as shown in FIG. 3, when the above-mentioned connecting portions 10 are connected to each other via an optical connector plug, an adapter or the like (not shown), the connecting portion 21 is very unstable due to frequent attachment and detachment. is there. However, in the case of the optical connector of the present invention, the peak power of the signal light at the connection portion 21 is reduced due to the expansion of the mode field diameter of the signal light at each connection end face 15. Is designed to have no problems.
[0019]
As shown in FIG. 4, there is a type of optical connector in which a refractive index matching agent 22 is applied to the connection portion 21 in order to reduce the influence of the gap. When an ordinary optical fiber is used, the peak power is large, so that there is a high possibility that the refractive index matching agent 22 applied to the connection portion 21 is damaged. However, in the optical connector of the present invention, the peak power is small. Therefore, no problem occurs even if the refractive index matching agent 22 is applied to the connection portion 21.
[0020]
FIG. 5 shows an outline of a connecting portion in an optical connector according to a second embodiment of the present invention, here, an embodiment corresponding to claim 2, which is formed by a tip of a GI optical fiber 13 and a ferrule 14. By polishing the connection end face of the connection portion 10 to a spherical surface 15 ′, it is possible to design so that the connection portion 21 can be connected without any gap.
[0021]
FIG. 6 shows an example of an entire optical connector to which the present invention is applied, and an optical fiber 11 for transmitting an optical signal (or pumping light) (in FIG. In this case, the coated state of the optical fiber is referred to as an optical fiber 11), and an optical connector plug 31 having the connecting portion 10 of the present invention and a pair of optical connectors An adapter 32 for detachably connecting a plug 31 (however, only one is shown in the drawing). This optical connector has almost the same components as the conventional optical connector except for the connection portion 10. By applying the present invention, a high-power optical connector having the same structure as the conventional optical connector is realized. It is possible.
[0022]
【The invention's effect】
As described above, according to the present invention, an optical signal (or pump light) having a high peak power incorporating the technology of the present invention is provided at a connection portion of an optical transmission line for transmitting an optical signal having a high optical power. By using an optical connector that can withstand the above, the optical connector technology will be used even in places where connection was originally regarded as dangerous.
[Brief description of the drawings]
FIG. 1 is a schematic view of a connection part showing an example of a conventional optical connector. FIG. 2 is a schematic view of a connection part showing a first embodiment of the optical connector of the present invention. FIG. FIG. 4 is a schematic view of a connection in the first embodiment. FIG. 4 is a schematic view of a connection in the first embodiment of the optical connector of the present invention. FIG. 5 shows a second embodiment of the optical connector of the present invention. FIG. 6 is an explanatory diagram showing an example of the entire optical connector to which the present invention is applied.
10: connection part, 11: single mode optical fiber, 12: GI optical fiber for spot size expansion, 13: GI optical fiber for spot size expansion transmission, 14: ferrule, 15, 15 ': connection end face, 16, 17 : Connection surface, 21: connection portion, 22: refractive index matching agent, 31: optical connector plug, 32: adapter, 111, 121, 131: core.

Claims (2)

ハイパワー伝送用のシングルモード光ファイバを接続する光コネクタであって、
シングルモード光ファイバの先端と接続端面との間にコア径の異なる複数のグレーテッドインデックス光ファイバを、シングルモード光ファイバの先端から接続端面に向かってコア径が小さなものから大きなものへ並ぶよう配置してなる接続部を設けた
ことを特徴とする光コネクタ。
An optical connector for connecting a single mode optical fiber for high power transmission,
A plurality of graded index optical fibers with different core diameters are arranged between the tip of the single mode optical fiber and the connection end face so that the core diameters are arranged from smaller to larger diameter from the tip of the single mode optical fiber toward the connection end face. An optical connector characterized by having a connection portion formed as described above.
接続端面を球面に研磨したことを特徴とする請求項1記載の光コネクタ。The optical connector according to claim 1, wherein the connection end surface is polished to a spherical surface.
JP2002235859A 2002-08-13 2002-08-13 Optical connector Expired - Fee Related JP3831315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235859A JP3831315B2 (en) 2002-08-13 2002-08-13 Optical connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235859A JP3831315B2 (en) 2002-08-13 2002-08-13 Optical connector

Publications (2)

Publication Number Publication Date
JP2004077658A true JP2004077658A (en) 2004-03-11
JP3831315B2 JP3831315B2 (en) 2006-10-11

Family

ID=32020232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235859A Expired - Fee Related JP3831315B2 (en) 2002-08-13 2002-08-13 Optical connector

Country Status (1)

Country Link
JP (1) JP3831315B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022217A1 (en) * 2003-08-29 2005-03-10 Showa Electric Wire & Cable Co., Ltd. Fiber optics transmission line
JP2009175545A (en) * 2008-01-25 2009-08-06 Seikoh Giken Co Ltd Optical connector for incoming and outgoing
US8206041B2 (en) 2008-03-18 2012-06-26 Fujikura Ltd. High power optical connector and optical fiber system using the same
CN102520490A (en) * 2012-01-16 2012-06-27 天津工业大学 Large-mode-area single-mode fiber connector and manufacture method
WO2013073913A1 (en) * 2011-11-18 2013-05-23 한국생산기술연구원 Medical mask device which uses optical fibers
US20220404558A1 (en) * 2019-08-28 2022-12-22 Kyocera Corporation Optical module and optical unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005022217A1 (en) * 2003-08-29 2005-03-10 Showa Electric Wire & Cable Co., Ltd. Fiber optics transmission line
US7333702B2 (en) 2003-08-29 2008-02-19 Swcc Showa Device Technology Co., Ltd. Fiber optics transmission line
JP2009175545A (en) * 2008-01-25 2009-08-06 Seikoh Giken Co Ltd Optical connector for incoming and outgoing
US8206041B2 (en) 2008-03-18 2012-06-26 Fujikura Ltd. High power optical connector and optical fiber system using the same
WO2013073913A1 (en) * 2011-11-18 2013-05-23 한국생산기술연구원 Medical mask device which uses optical fibers
US9352169B2 (en) 2011-11-18 2016-05-31 Korea Institute Of Industrial Technology Medical mask device which uses optical fibers
CN102520490A (en) * 2012-01-16 2012-06-27 天津工业大学 Large-mode-area single-mode fiber connector and manufacture method
US20220404558A1 (en) * 2019-08-28 2022-12-22 Kyocera Corporation Optical module and optical unit

Also Published As

Publication number Publication date
JP3831315B2 (en) 2006-10-11

Similar Documents

Publication Publication Date Title
EP2267509B1 (en) Optical fiber connection structure and endoscope system
JPH09113729A (en) Optical fiber filter
JP5814314B2 (en) Optical combiner, laser device using the same, and optical combiner manufacturing method
JP2009031459A (en) Single mode optical fiber for visible light transmission
US20120262938A1 (en) Cladding mode spatial filter
JP4129903B2 (en) Method for manufacturing fused mode division directional coupler
US20070165982A1 (en) Expanding single-mode fiber mode field for high power applications by fusion with multi-mode fiber
JP3831315B2 (en) Optical connector
JP4690249B2 (en) Highly flexible optical fiber
EP3338124A1 (en) Ferrule assembly with sacrificial optical fiber
JP2006350308A (en) Connector for photonic crystal fiber, its manufacturing method, optical fiber splicing method, and manufacturing method of connector for optical fiber
JP2004061830A (en) Optical fiber parts
US7280734B2 (en) Expanding single mode fiber mode field for high power applications by fusion with multimode fiber
JP2001228353A (en) Connecting structure of optical fiber and optical fiber communication system
JP2005017702A (en) Optical connector and its connecting structure
JP2005043442A (en) Optical fiber connecting structure, optical connecting member and optical connector
JP2005300596A (en) Composite optical fiber, optical connector, and optical fiber with optical connector
JP2004029450A (en) Optical connector
JP3680565B2 (en) Mode conditioner
JP2000147334A (en) Optical transmitter provided with mode conditioner
JP4070111B2 (en) Fiber fuse prevention part of optical fiber
JP2005308880A (en) Optical connector and its manufacturing method
JP3820802B2 (en) Optical transmitter
JP2006208755A (en) Optical transmitter
KR20050092286A (en) Single mode optical fiber structure having high-order mode extinction filtering function

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040713

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20051017

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

A131 Notification of reasons for refusal

Effective date: 20060221

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060713

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120721

LAPS Cancellation because of no payment of annual fees