JP2004076659A - Supercharging device - Google Patents

Supercharging device Download PDF

Info

Publication number
JP2004076659A
JP2004076659A JP2002238894A JP2002238894A JP2004076659A JP 2004076659 A JP2004076659 A JP 2004076659A JP 2002238894 A JP2002238894 A JP 2002238894A JP 2002238894 A JP2002238894 A JP 2002238894A JP 2004076659 A JP2004076659 A JP 2004076659A
Authority
JP
Japan
Prior art keywords
electric supercharger
air
supercharger
bypass
bypass valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002238894A
Other languages
Japanese (ja)
Inventor
Katsuhiko Kawamura
川村 克彦
Kenichi Fujimura
藤村 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002238894A priority Critical patent/JP2004076659A/en
Priority to US10/623,564 priority patent/US6938420B2/en
Priority to DE60302118T priority patent/DE60302118T2/en
Priority to EP03017873A priority patent/EP1391595B1/en
Priority to CNB031549691A priority patent/CN1303312C/en
Publication of JP2004076659A publication Critical patent/JP2004076659A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control a supercharging device having an electric supercharger, particularly, a supercharging device having a bypass passage for bypassing the electric supercharger. <P>SOLUTION: This supercharging device for internal combustion engine has a turbo supercharger 1 driven by the exhaust gas of an engine 12 and an electric supercharger 2 set in an intake passage 20 on the downstream side of the compressor 1a of the turbo supercharger 1, and driven by a drive motor 2b. This device has the bypass passage 7 having an inlet provided in the intake passage 20 on the downstream side of the compressor 1a of the turbo supercharger 1 and the upstream side of the electric supercharger 2 and an outlet provided in the intake passage 21 on the downstream side of the electric supercharger 2 to avoid the supercharger 2, and a bypass valve 3 provided in the bypass passage 7. The bypass valve 3 is opened and closed when air is not carried in the bypass passage 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電動機により駆動する過給機を備えた内燃機関の過給装置に関する。
【0002】
【従来の技術】
電動機によって駆動する電動過給機と、この過給機をバイパスするバイパス通路とを有し、前記バイパス通路内に配置したバイパス弁の開閉を制御することで過給圧を制御する方法が特開2000−230427号に開示されている。
【0003】
【本発明が解決しようとする課題】
しかしながら上記従来例では、バイパス弁を開閉する最適なタイミングには触れられておらず、電動過給機が作動すると共にバイパス弁を閉じている。
【0004】
電動過給機は回転し始めてから必要な空気量を圧送することができる回転速度に達するまでには一定の時間がかかるため、前記一定の時間内にバイパス弁を閉じると電動過給機が抵抗となりエンジンの吸入空気量が急激に減少し、これに伴い、トルク段差や空燃比のずれが生じる。
【0005】
また、電動過給機による過給の必要がなくなった時点ですぐにバイパス弁を開くと、電動過給機の下流は上流に比べて圧力が高い状態にあるので、バイパス通路を空気が逆流し、計測された吸入空気量とエンジンに供給される空気量にずれが生じ、トルク段差や空燃比のずれが生じる。
【0006】
そこで本発明は、バイパス弁を開閉するタイミングを最適化することによって、バイパス弁開閉後のトルク段差や空燃費のずれの発生を防止することを目的とする。
【0007】
【課題を解決するための手段】
エンジンの排気ガスにより駆動されるターボ過給機と、前記ターボ過給機の下流の吸気通路に介装され、電動機により駆動される電動過給機と、前記電動過給機を迂回して吸気通路に設けたバイパス通路と、前記バイパス通路内に設けたバイパス弁とを備え、所定の運転状態では、前記バイパス弁を閉とするとともに前記電動過給機を稼動させ、前記所定の運転状態以外の運転状態では、前記バイパス弁を開とするとともに前記電動過給機を停止させる。
【0008】
【作用・効果】
本発明によれば、バイパス通路を空気が流れない状態のときにバイパス弁を開閉することにより、バイパス弁を開閉した時に電動過給機が抵抗となること、およびバイパス通路を空気が逆流すること等がなくなり、トルク段差や空燃比のずれを防止できる。
【0009】
【発明の実施の形態】
以下本発明の実施形態を図面に基づいて説明する。
【0010】
第一実施形態について図1を用いて説明する。
【0011】
1はエンジン12の排気ガスによって駆動するターボ過給機で、エンジン12の排気ガスが排気通路50を通ってタービン1bに供給されることでタービン1bが回転し、これによってシャフト1cによってタービン1bと連結されているコンプレッサー1aも回転する。これにより、コンプレッサー1aの上流に設けたエアクリーナ13から吸入して吸気通路6を通ってコンプレッサー1aに供給された空気を圧縮してコンプレッサー1a下流の吸気通路20に送り出す。
【0012】
ターボ過給機1の上流の吸気通路6にはエアクリーナ13とエアクリーナ13から吸入した吸気量を計測するエアフローメータ(AFM)5を設置する。
【0013】
ターボ過給機1の下流の吸気通路20に駆動モータ2bによってコンプレッサー2aを駆動して過給を行う電動過給機2を設置する。
【0014】
電動過給機2は駆動モータ2bにより稼動するため、稼動開始後から回転数が高くなるまでの時間がターボ過給機1よりも短い。
【0015】
そこでエンジン12の回転数が低い領域や、いわゆるターボラグが発生する領域のようにターボ過給機1が過給を十分に行えないときに電動過給機2を稼動させて、ターボ過給機1の欠点を補う。
【0016】
電動過給機2の上流かつターボ過給機1のコンプレッサー1a下流の吸気通路20に入口をもち、電動過給機2を迂回してエンジン12の上流かつ電動過給機2の下流の吸気通路21に出口をもつバイパス通路7を設け、このバイパス通路7にアクチュエータ3bとアクチュエータ3bによって駆動される開閉弁3aとで構成するバイパス弁3を設ける。
【0017】
電動過給機2による過給を行うときにターボ過給機1から供給された空気をすべて電動過給機2に導くようバイパス弁3は閉じ、ターボ過給機1による過給が高まり電動過給機2による過給の必要がなくなったときにバイパス弁3を開いて空気がバイパス通路7を通るようにすることで電動過給機2が吸気通路20中で吸気抵抗となるのを防ぐ。
【0018】
ターボ過給機1から吸気通路20に送り出された空気は、電動過給機2およびバイパス通路7の両方またはいずれか一方を通過し、吸気通路21からエンジン12に供給され燃焼する。エンジン12で燃焼した後は排気通路50を通ってタービン1bに供給されタービン1bを回転させた後、排気通路51から排出される。
【0019】
電動過給機2の上流の吸気通路20に圧力センサ8、下流の吸気通路21に圧力センサ9を配置してそれぞれの吸気通路内の圧力を検出し、この検出結果は圧力検出信号P、Pとしてエンジンコントロールユニット(ECM)4に読み込まれる。
【0020】
電動過給機2のシャフト2cの近傍に回転速度センサ11を配置してコンプレッサー2aの回転速度を検出する。測定結果は回転速度検出信号NcとしてECM4に読み込まれる。
【0021】
また、ECM4には加速状態検出手段31からの加速状態検出信号Thも読み込まれる。加速状態検出手段31はスロットルバルブ31aの開度(あるいはアクセル開度)の変化速度を検出するもので、スロットル開度の変化速度が所定値を超えた場合に、車両が加速状態であると判断するものである。
【0022】
上記の圧力検出信号P、P、回転数検出信号Ncおよび加速状態検出信号Thに基づいて、ECM4は電動過給機2のモータ2bおよびバイパス弁3のアクチュエータ3bを制御する。
【0023】
ECM4が実行するモータ2bおよびアクチュエータ3bの制御について図2のフローチャートを用いて説明する。
【0024】
電動過給機2が停止、かつバイパス弁3が開いており、加速状態が検出された場合には電動過給機2による過給を行える状態の状態フラグFを0、電動過給機2による過給を行いながらの加速が終了して、電動過給機2が停止かつバイパス弁3が開いており、加速状態が検出されても電動過給機2による過給を行えない状態の状態フラグFを1とする。
【0025】
ステップS11で車両が加速状態であるか判定を行い、加速中でなければステップS13で状態フラグF=0とする。加速中であればステップS12に進む。
【0026】
ステップS12では状態フラグFが0かどうかの判断を行い、F=0であればステップS14で電動過給機2の状態について判定を行い、電動過給機2が停止している場合はステップS16で電動過給機2を稼動させる。
【0027】
これにより、加速状態を検知して電動過給機2を稼動させる瞬間は常にバイパス弁3は開いていることになり、吸入空気は電動過給機2とバイパス通路7の両方を流れることになる。
【0028】
電動過給機2を稼動させる瞬間および稼動させた直後はコンプレッサー2aの回転数が低いためにコンプレッサー2aが吸気管20内で吸気抵抗となるので、バイパス弁3を閉じているとエンジン12に供給される空気量が急激に減少することによって急激なトルク変動や空燃費のずれが発生する。
【0029】
しかし本実施形態ではバイパス弁3を開いているので、バイパス通路7を通してエンジン12に空気を供給でき、前記トルク変動および空燃費のずれの発生を防止できる
ステップS14で電動過給機2が稼動している場合は、ステップS15でバイパス弁3の状態について判定を行う。
【0030】
ステップS15でバイパス弁3が開いている場合にはステップS17で電動過給機2を通過する空気量QsとAFM5で検出される吸気通路6の空気量Qaの比較を行う。
【0031】
電動過給機2を通過する空気量Qs(質量流量)は、電動過給機2のシャフト2c近傍に配置した回転速度センサ11によって検出したコンプレッサー2aの回転速度、吸気通路20内に配置した圧力センサ8、吸気温度センサ32によって検出された吸気通路20内の圧力、温度に基づいて以下の式から求める。
【0032】
Qs=(変換係数)×(コンプレッサー2aの回転速度)×(吸気管20内
圧力)÷(吸気管20内温度)・・・(*)
ステップS17で電動過給機2を通過する空気量Qsが吸気通路6の空気量Qa以上であればステップS19でバイパス弁3を閉じ、そうでないときには開いたままにする。
【0033】
電動過給機2を通過する空気量Qsが吸気通路6の空気量Qaと同じであれば、ターボ過給機1から供給された空気がすべて電動過給機2を通過していることになり、バイパス通路7に空気は流れない。つまり電動過給機2の回転数が十分に高くなっている状態である。
【0034】
この状態でバイパス弁3を開いたままにしておくと、バイパス通路7を空気が逆流しエンジン12に十分な空気が供給されなくなるのでバイパス弁3を閉じる。
【0035】
そこで、電動過給機2による過給を開始してから電動過給機2を通過する空気量Qsが増加して吸気通路6の空気量Qaと同じになったとき、すなわちQs−Qa=0でバイパス通路7を通る空気がなくなったときにバイパス弁3を閉じれば吸気通路21からエンジン12に供給される空気量に影響はないので、エンジン12に供給される空気量の急激な変化によるトルクの変動や空燃費のずれを発生させずにバイパス弁3を閉じることができる。
【0036】
電動過給機2を通過する空気量Qsが吸気通路6の空気量Qaよりも少なければ、バイパス通路7を通る空気があるということなので、この状態でバイパス弁3を閉じるとバイパス通路7を通っていた空気も電動過給機2を通ることになる。  しかし電動過給機2は回転数が十分に速くなっていないため、電動過給機2の上流で空気が詰まったような状態となり、エンジン12に供給される空気量が少なくなりトルクの変動や空燃費のずれが発生する。
【0037】
したがってこの状態ではバイパス弁3を開いたままにする。
ステップS15でバイパス弁3が閉じている場合にはステップS18で電動過給機2の上流の吸気通路20の圧力P1と下流の吸気通路21の圧力P2の比較を行う。
【0038】
ステップS18で吸気通路20の圧力P1が吸気通路21の圧力P2以上であればステップS20でバイパス弁3を開き、ステップS21で電動過給機2を停止し、ステップS22で状態フラグFを1とする。
【0039】
吸気通路20の圧力P1が吸気通路21の圧力P2以上である状態とは、ターボ過給機1が吸気通路20に供給する空気量が電動過給機2が吸気通路21に供給する空気量よりも多い状態である。
【0040】
つまりターボ過給機1による過給が十分に高まって電動過給機2で過給を行う必要がなくなっている状態である。
【0041】
この状態では、電動過給機2は吸気通路20中で吸気抵抗となるだけなのでバイパス弁3を開いて空気がバイパス通路7を流れるようにして、電動過給機2を停止する。
【0042】
バイパス弁3を開いても、吸気通路20の圧力P1が吸気通路21の圧力P2以上であるので、空気がバイパス通路7を吸気通路21から吸気通路20方向に逆流することはない。したがってエンジン12に供給される空気量が変化しないので、トルクの変動や空燃費のずれが発生することはない。
【0043】
以上のように、バイパス弁3は原則として電動過給機2の作動に関連して動作し、すなわち電動過給機2が作動中は閉じ、作動停止中は開いているが、開いているバイパス弁3を閉じ側に切り換えるのはバイパス通路7を空気が流れないとき、閉じているバイパス弁3を開き側に切り換えるのはバイパス弁3を開いても空気がバイパス通路7を逆流しないときとしているので、バイパス弁3の開閉を切換えた瞬間にトルクの変動や空燃費のずれを発生することはない。
【0044】
上記において、加速状態検出方法は、スロットルまたはアクセルの開度が所定の値よりも大きければ車両が加速状態であると判断することもできる。
【0045】
ステップS17において求める電動過給機2を通過する空気量Qsは次のように算出することもできる。
【0046】
すなわち、電動過給機2を通過する空気量Qsは、駆動モータ2bの電圧と電流とを検出する手段(図示せず)を設け、これによって検出した電圧と電流から図3に示す駆動モータ2bの特性図を用いて駆動モータ2bの回転速度を求め、駆動モータ2bの回転数から求まるコンプレッサー2aの回転速度と、あらかじめ測定しておいたコンプレッサー2aが単位回転数あたりに圧送する空気量とから以下の式によって求める。
【0047】
Qs=(駆動モータ2bの回転数)×(コンプレッサー2aが単位回転数あ
たりに圧送する空気量)
したがってこの場合には電動機2bの電圧と電流を検出して簡単に電動過給機2を通過する空気量Qsを求めることが可能となる。
【0048】
第二実施形態について図4、5を用いて説明する。
【0049】
図4は本実施形態の構成を示しており、基本的には第一実施例と同じであるが、バイパス通路7のバイパス弁3の上流にエアフローメータ(AFM)40を設けてバイパス通路7を流れる空気量Qbを測定する。AFM40によって測定された空気量はECM4に読み込まれる。
【0050】
図5は本実施形態の制御フローを示しており、基本的に第一実施例と同じであるが、バイパス弁3を開から閉にするときの判断基準が異なる。
本実施形態ではステップS47でバイパス通路7を流れる空気量Qbが0もしくはほぼ0になったときにバイパス弁3を閉じる。
【0051】
その他については図2と同一であり、それぞれステップS41〜S46はステップS11〜S16に、ステップS48〜S52はステップS18〜S22に相当する。
【0052】
これにより、バイパス通路7を空気が流れないときにバイパス弁3を閉じることになるので、バイパス弁3を閉じた瞬間にエンジン12に供給される空気量が変化することがなく、急激なトルク変動や空燃費のずれの発生を防止できる。
【0053】
以上のことから、上記各実施形態においては、以下のような効果が得られる。
▲1▼ エンジン回転数が低い領域のように、ターボ過給機1が十分な過給を行えない状態では、過給圧がエンジンの回転数に依存しない電動過給機2を稼動させ
、ターボ過給機1の過給不足を補うことができる。
【0054】
またターボ過給機1が十分に過給を行える状態になったらバイパス弁3aを開くので、空気はバイパス通路を通るようになり、電動過給機2を通過するこ
とによる圧力損失を生じることが無い。
▲2▼ 電動過給機2の稼動開始時には常にバイパス弁3を開いた状態にして吸入空気が電動過給機2とバイパス通路7の両方を流れるようにしているので、電動過給機2を稼動した直後に電動過給機2が吸気抵抗となることがない。したがってエンジン12に供給される空気量が急激に減少することがなく、急激なト
ルクの変動や空燃費のずれの発生を防止できる。
▲3▼ 吸気通路6を通過する空気量と電動過給機2を通過する空気量とが等しくなった瞬間にバイパス弁3を閉じることによって、エンジン12に供給される空気量がバイパス弁3を閉じた瞬間に急激に減少しない。したがってバイパス弁
3を閉じたときの急激なトルクの変動や空燃費のずれの発生を防止できる。
▲4▼ バイパス通路7を空気が流れないときにバイパス弁3を閉じることによってバイパス弁3を閉じた瞬間にエンジン12に供給される空気量が変化しない。
【0055】
したがってバイパス弁3を閉じたときの急激なトルク変動や空燃費のずれの発
生を防止できる。
▲5▼ 吸気通路20、21内の圧力が等しくなった瞬間にバイパス弁3を開くことによってバイパス弁3を開いた瞬間にバイパス通路7を空気が逆流することを防止できる。これによりバイパス弁3を開いた瞬間にエンジン12に供給される空気量が急激に減少することがなく、急激なトルクの変動や空燃費のずれの
発生を防止できる。
【0056】
なお、本発明は上記の実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術的思想の範囲内で様々な変更を成し得ることは言うまでもない。
【図面の簡単な説明】
【図1】本発明の第一実施形態の構成を示す図である。
【図2】第一実施形態の制御ルーチンを表すフローチャートである。
【図3】本発明で使用する駆動モータの特性図である。
【図4】第二実施形態の構成を示す図である。
【図5】第二実施形態の制御ルーチンを表すフローチャートである。
【符号の説明】
1 ターボ過給機
2 電動過給機
2a コンプレッサー
2b 駆動モータ
2c シャフト
3 バイパス弁
4 エンジンコントロールユニット(ECM)
5 エアフローメータ(AFM)
6 吸気通路
7 バイパス通路
圧力センサ
11 回転速度センサ
12 エンジン
13 エアクリーナ
20、21吸気通路
31 加速状態検出手段
31a スロットルバルブ
32 吸気温センサ
40 エアフローメータ
S47 バイパス通路を流れる空気量があるか否かを判定
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a supercharger for an internal combustion engine having a supercharger driven by an electric motor.
[0002]
[Prior art]
A method of controlling a supercharging pressure by controlling the opening and closing of a bypass valve disposed in the bypass passage, which includes an electric supercharger driven by an electric motor and a bypass passage bypassing the supercharger 2000-230427.
[0003]
[Problems to be solved by the present invention]
However, in the above conventional example, the optimal timing for opening and closing the bypass valve is not mentioned, and the electric supercharger operates and the bypass valve is closed.
[0004]
Since it takes a certain time from the start of rotation of the electric supercharger to a rotation speed at which a required amount of air can be pumped, if the bypass valve is closed within the predetermined time, the electric supercharger will resist. As a result, the intake air amount of the engine rapidly decreases, and accordingly, a torque step and a deviation of the air-fuel ratio occur.
[0005]
Also, if the bypass valve is opened immediately when supercharging by the electric supercharger is no longer necessary, the pressure in the downstream of the electric supercharger is higher than that in the upstream, so that air flows back through the bypass passage. Therefore, a difference occurs between the measured amount of intake air and the amount of air supplied to the engine, resulting in a difference in torque level and a difference in air-fuel ratio.
[0006]
Therefore, an object of the present invention is to prevent the occurrence of a torque step and a deviation in air-fuel efficiency after opening and closing a bypass valve by optimizing the timing of opening and closing the bypass valve.
[0007]
[Means for Solving the Problems]
A turbocharger driven by exhaust gas of an engine, an electric turbocharger interposed in an intake passage downstream of the turbocharger and driven by an electric motor, and an intake air bypassing the electric supercharger. A bypass passage provided in the passage; and a bypass valve provided in the bypass passage. In a predetermined operation state, the bypass valve is closed and the electric supercharger is operated. In the operating state, the bypass valve is opened and the electric supercharger is stopped.
[0008]
[Action / Effect]
According to the present invention, by opening and closing the bypass valve when air is not flowing through the bypass passage, the electric supercharger becomes a resistance when the bypass valve is opened and closed, and air flows back through the bypass passage. And so on, and a torque step and a deviation of the air-fuel ratio can be prevented.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010]
The first embodiment will be described with reference to FIG.
[0011]
Reference numeral 1 denotes a turbocharger driven by the exhaust gas of the engine 12, and the exhaust gas of the engine 12 is supplied to the turbine 1b through the exhaust passage 50 to rotate the turbine 1b, whereby the turbine 1b is rotated by the shaft 1c. The connected compressor 1a also rotates. As a result, the air sucked from the air cleaner 13 provided upstream of the compressor 1a and supplied to the compressor 1a through the intake passage 6 is compressed and sent to the intake passage 20 downstream of the compressor 1a.
[0012]
An air cleaner 13 and an air flow meter (AFM) 5 for measuring the amount of air taken in from the air cleaner 13 are installed in an intake passage 6 upstream of the turbocharger 1.
[0013]
An electric supercharger 2 for supercharging by driving a compressor 2a by a drive motor 2b is installed in an intake passage 20 downstream of the turbocharger 1.
[0014]
Since the electric supercharger 2 is operated by the drive motor 2b, the time from the start of operation until the rotation speed becomes higher is shorter than that of the turbocharger 1.
[0015]
Therefore, when the turbocharger 1 cannot sufficiently perform supercharging as in a region where the rotation speed of the engine 12 is low or a region where a so-called turbo lag occurs, the electric supercharger 2 is operated, and the turbocharger 1 Make up for the disadvantages.
[0016]
An intake passage 20 upstream of the electric supercharger 2 and downstream of the compressor 1a of the turbocharger 1, bypassing the electric supercharger 2 and upstream of the engine 12 and downstream of the electric supercharger 2; A bypass passage 7 having an outlet is provided at 21, and a bypass valve 3 including an actuator 3b and an on-off valve 3a driven by the actuator 3b is provided in the bypass passage 7.
[0017]
When supercharging is performed by the electric supercharger 2, the bypass valve 3 is closed so that all the air supplied from the turbocharger 1 is guided to the electric supercharger 2. By opening the bypass valve 3 so that the air passes through the bypass passage 7 when the supercharging by the charger 2 becomes unnecessary, the electric supercharger 2 is prevented from becoming an intake resistance in the intake passage 20.
[0018]
The air sent from the turbocharger 1 to the intake passage 20 passes through the electric supercharger 2 and / or the bypass passage 7, and is supplied from the intake passage 21 to the engine 12 for combustion. After being burned by the engine 12, the gas is supplied to the turbine 1b through the exhaust passage 50, rotates the turbine 1b, and is discharged from the exhaust passage 51.
[0019]
A pressure sensor 8 is arranged in an intake passage 20 upstream of the electric supercharger 2 and a pressure sensor 9 is arranged in an intake passage 21 downstream of the electric supercharger 2 to detect the pressure in each intake passage. The detection result is a pressure detection signal P 1 , as P 2 are read into the engine control unit (ECM) 4.
[0020]
A rotation speed sensor 11 is arranged near the shaft 2c of the electric supercharger 2 to detect the rotation speed of the compressor 2a. The measurement result is read into the ECM 4 as the rotation speed detection signal Nc.
[0021]
Further, the acceleration state detection signal Th from the acceleration state detection means 31 is also read into the ECM 4. The acceleration state detecting means 31 detects the change speed of the opening (or accelerator opening) of the throttle valve 31a, and determines that the vehicle is in an acceleration state when the change speed of the throttle opening exceeds a predetermined value. Is what you do.
[0022]
The ECM 4 controls the motor 2 b of the electric supercharger 2 and the actuator 3 b of the bypass valve 3 based on the pressure detection signals P 1 and P 2 , the rotation speed detection signal Nc, and the acceleration state detection signal Th.
[0023]
The control of the motor 2b and the actuator 3b executed by the ECM 4 will be described with reference to the flowchart of FIG.
[0024]
When the electric supercharger 2 is stopped and the bypass valve 3 is open, and the acceleration state is detected, the state flag F of the state in which supercharging by the electric supercharger 2 can be performed is set to 0, and the electric supercharger 2 is used. A state flag indicating that the supercharger has finished accelerating, the electric supercharger 2 is stopped and the bypass valve 3 is open, and the supercharger 2 cannot perform supercharging even if the acceleration state is detected. Let F be 1.
[0025]
In step S11, it is determined whether the vehicle is in an accelerating state. If not accelerating, the state flag F is set to 0 in step S13. If the vehicle is accelerating, the process proceeds to step S12.
[0026]
In step S12, it is determined whether or not the status flag F is 0. If F = 0, a determination is made in step S14 regarding the state of the electric supercharger 2. If the electric supercharger 2 is stopped, step S16 is performed. To operate the electric supercharger 2.
[0027]
As a result, the moment the acceleration state is detected and the electric supercharger 2 is operated, the bypass valve 3 is always open, and the intake air flows through both the electric supercharger 2 and the bypass passage 7. .
[0028]
At the moment when the electric supercharger 2 is operated and immediately after the operation, the compressor 2a has an intake resistance in the intake pipe 20 because the rotation speed of the compressor 2a is low. A sudden decrease in the amount of air generated causes a sudden torque fluctuation and a deviation in air-fuel efficiency.
[0029]
However, in this embodiment, since the bypass valve 3 is open, the air can be supplied to the engine 12 through the bypass passage 7, and the electric supercharger 2 is operated in step S14 in which the torque fluctuation and the deviation of the air-fuel efficiency can be prevented. If yes, the state of the bypass valve 3 is determined in step S15.
[0030]
If the bypass valve 3 is open in step S15, the air amount Qs passing through the electric supercharger 2 is compared with the air amount Qa in the intake passage 6 detected by the AFM 5 in step S17.
[0031]
The amount of air Qs (mass flow rate) passing through the electric supercharger 2 is determined by the rotational speed of the compressor 2 a detected by the rotational speed sensor 11 disposed near the shaft 2 c of the electric supercharger 2, and the pressure disposed in the intake passage 20. Based on the pressure and temperature in the intake passage 20 detected by the sensor 8 and the intake air temperature sensor 32, it is obtained from the following equation.
[0032]
Qs = (conversion coefficient) × (rotation speed of compressor 2a) × (intake pipe 20 pressure) 圧 力 (intake pipe 20 temperature) (*)
If the amount of air Qs passing through the electric supercharger 2 is equal to or more than the amount of air Qa in the intake passage 6 in step S17, the bypass valve 3 is closed in step S19.
[0033]
If the amount of air Qs passing through the electric supercharger 2 is the same as the amount of air Qa in the intake passage 6, all the air supplied from the turbocharger 1 has passed through the electric supercharger 2. No air flows into the bypass passage 7. That is, the rotation speed of the electric supercharger 2 is sufficiently high.
[0034]
If the bypass valve 3 is left open in this state, the air flows backward in the bypass passage 7 and sufficient air is not supplied to the engine 12, so that the bypass valve 3 is closed.
[0035]
Therefore, when the air amount Qs passing through the electric supercharger 2 increases after the supercharging by the electric supercharger 2 is started and becomes equal to the air amount Qa of the intake passage 6, that is, Qs-Qa = 0. If the bypass valve 3 is closed when there is no more air passing through the bypass passage 7, the amount of air supplied from the intake passage 21 to the engine 12 is not affected. The bypass valve 3 can be closed without causing the fluctuation of the air-fuel consumption or the deviation of the air-fuel efficiency.
[0036]
If the amount of air Qs passing through the electric supercharger 2 is smaller than the amount of air Qa in the intake passage 6, there is air passing through the bypass passage 7. Therefore, when the bypass valve 3 is closed in this state, the air passes through the bypass passage 7. The air that has been flowing also passes through the electric supercharger 2. However, since the rotation speed of the electric supercharger 2 is not sufficiently high, air is clogged upstream of the electric supercharger 2, the amount of air supplied to the engine 12 decreases, and torque fluctuation and An air-fuel consumption gap occurs.
[0037]
Therefore, in this state, the bypass valve 3 is kept open.
When the bypass valve 3 is closed in step S15, the pressure P1 in the intake passage 20 upstream of the electric supercharger 2 is compared with the pressure P2 in the intake passage 21 downstream in step S18.
[0038]
If the pressure P1 in the intake passage 20 is equal to or higher than the pressure P2 in the intake passage 21 in step S18, the bypass valve 3 is opened in step S20, the electric supercharger 2 is stopped in step S21, and the state flag F is set to 1 in step S22. I do.
[0039]
The state where the pressure P1 of the intake passage 20 is equal to or higher than the pressure P2 of the intake passage 21 means that the amount of air supplied by the turbocharger 1 to the intake passage 20 is larger than the amount of air supplied by the electric supercharger 2 to the intake passage 21. There are many states.
[0040]
That is, the supercharging by the turbocharger 1 is sufficiently increased, and the supercharging by the electric supercharger 2 is not required.
[0041]
In this state, since the electric supercharger 2 merely has an intake resistance in the intake passage 20, the bypass valve 3 is opened to allow air to flow through the bypass passage 7, and the electric supercharger 2 is stopped.
[0042]
Even when the bypass valve 3 is opened, the air does not flow backward through the bypass passage 7 from the intake passage 21 toward the intake passage 20 because the pressure P1 in the intake passage 20 is equal to or higher than the pressure P2 in the intake passage 21. Therefore, since the amount of air supplied to the engine 12 does not change, there is no fluctuation in torque or deviation in air-fuel efficiency.
[0043]
As described above, the bypass valve 3 operates in principle in connection with the operation of the electric supercharger 2, that is, the bypass valve 3 is closed while the electric supercharger 2 is operating and is open when the operation is stopped, but the open bypass is open. The valve 3 is switched to the closed side when air does not flow through the bypass passage 7, and the closed bypass valve 3 is switched to the open side when air does not flow back through the bypass passage 7 even when the bypass valve 3 is opened. Therefore, there is no occurrence of torque fluctuation or deviation of air-fuel efficiency at the moment when the opening and closing of the bypass valve 3 is switched.
[0044]
In the above, the acceleration state detection method can also determine that the vehicle is in an acceleration state if the opening of the throttle or the accelerator is larger than a predetermined value.
[0045]
The amount of air Qs passing through the electric supercharger 2 obtained in step S17 can be calculated as follows.
[0046]
That is, a means (not shown) for detecting the voltage and current of the drive motor 2b is provided to determine the amount of air Qs passing through the electric supercharger 2 from the voltage and current detected by the drive motor 2b shown in FIG. The rotational speed of the drive motor 2b is obtained by using the characteristic diagram of FIG. 3, and the rotational speed of the compressor 2a obtained from the rotational speed of the drive motor 2b and the air amount that the compressor 2a pumps per unit rotational speed, which is measured in advance, is obtained. It is determined by the following equation.
[0047]
Qs = (number of rotations of drive motor 2b) × (amount of air pumped by compressor 2a per unit number of rotations)
Therefore, in this case, it is possible to easily determine the air amount Qs passing through the electric supercharger 2 by detecting the voltage and current of the electric motor 2b.
[0048]
A second embodiment will be described with reference to FIGS.
[0049]
FIG. 4 shows the configuration of the present embodiment, which is basically the same as the first embodiment, except that an air flow meter (AFM) 40 is provided in the bypass passage 7 upstream of the bypass valve 3 so that the bypass passage 7 is connected. The flowing air amount Qb is measured. The air amount measured by the AFM 40 is read into the ECM 4.
[0050]
FIG. 5 shows a control flow of the present embodiment, which is basically the same as that of the first embodiment, except that the criterion for changing the bypass valve 3 from open to closed is different.
In the present embodiment, the bypass valve 3 is closed when the air amount Qb flowing through the bypass passage 7 becomes 0 or almost 0 in step S47.
[0051]
Other steps are the same as those in FIG. 2, and steps S41 to S46 correspond to steps S11 to S16, and steps S48 to S52 correspond to steps S18 to S22, respectively.
[0052]
As a result, the bypass valve 3 is closed when air does not flow through the bypass passage 7, so that the amount of air supplied to the engine 12 does not change at the moment when the bypass valve 3 is closed, and a sudden torque fluctuation occurs. And a difference in air-fuel efficiency can be prevented.
[0053]
From the above, the following effects can be obtained in each of the above embodiments.
{Circle around (1)} In a state where the turbocharger 1 cannot perform sufficient supercharging as in a region where the engine speed is low, the electric supercharger 2 whose supercharging pressure does not depend on the engine speed is operated, and the turbocharger is operated. The shortage of supercharging of the supercharger 1 can be compensated.
[0054]
Further, when the turbocharger 1 is in a state capable of sufficiently supercharging, the bypass valve 3a is opened, so that the air passes through the bypass passage, which may cause a pressure loss due to passing through the electric supercharger 2. There is no.
{Circle around (2)} When the operation of the electric supercharger 2 is started, the bypass valve 3 is always opened so that the intake air flows through both the electric supercharger 2 and the bypass passage 7. Immediately after the operation, the electric supercharger 2 does not become the intake resistance. Therefore, the amount of air supplied to the engine 12 does not suddenly decrease, and it is possible to prevent a sudden change in torque and a deviation in air-fuel efficiency.
(3) By closing the bypass valve 3 at the moment when the amount of air passing through the intake passage 6 and the amount of air passing through the electric supercharger 2 become equal, the amount of air supplied to the engine 12 decreases Does not decrease sharply at the moment of closing. Therefore, it is possible to prevent a sudden change in torque and a deviation in air-fuel efficiency when the bypass valve 3 is closed.
(4) By closing the bypass valve 3 when air does not flow through the bypass passage 7, the amount of air supplied to the engine 12 does not change at the moment when the bypass valve 3 is closed.
[0055]
Therefore, it is possible to prevent a sudden change in torque and a deviation in air-fuel efficiency when the bypass valve 3 is closed.
{Circle around (5)} By opening the bypass valve 3 at the moment when the pressures in the intake passages 20 and 21 become equal, it is possible to prevent the air from flowing back through the bypass passage 7 at the moment when the bypass valve 3 is opened. As a result, the amount of air supplied to the engine 12 at the moment when the bypass valve 3 is opened does not suddenly decrease, and it is possible to prevent a sudden change in torque and a deviation in air-fuel efficiency.
[0056]
It is needless to say that the present invention is not limited to the above-described embodiment, and various changes can be made within the scope of the technical idea described in the claims.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a first embodiment of the present invention.
FIG. 2 is a flowchart illustrating a control routine according to the first embodiment.
FIG. 3 is a characteristic diagram of a drive motor used in the present invention.
FIG. 4 is a diagram showing a configuration of a second embodiment.
FIG. 5 is a flowchart illustrating a control routine according to a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Turbocharger 2 Electric supercharger 2a Compressor 2b Drive motor 2c Shaft 3 Bypass valve 4 Engine control unit (ECM)
5 Air flow meter (AFM)
6 Intake passage 7 Bypass passage pressure sensor 11 Rotation speed sensor 12 Engine 13 Air cleaner 20, 21 Intake passage 31 Acceleration state detecting means 31a Throttle valve 32 Intake temperature sensor 40 Air flow meter S47 It is determined whether or not there is an amount of air flowing through the bypass passage.

Claims (10)

エンジンの排気ガスにより駆動されるターボ過給機と、
前記ターボ過給機の下流の吸気通路に介装され、電動機により駆動される電動過給機と、
前記電動過給機を迂回して吸気通路に設けたバイパス通路と、
前記バイパス通路内に設けたバイパス弁と、
前記電動過給機と前記バイパス弁とを互いに関連付けて制御し、かつ前記バイパス弁が開いても前記バイパス通路の空気の流れがほぼ生じないときに、前記バイパス弁の開閉の切り替えを行う制御手段とを備えたことを特徴とする過給装置。
A turbocharger driven by engine exhaust gas,
An electric supercharger that is interposed in an intake passage downstream of the turbocharger and is driven by an electric motor;
A bypass passage provided in the intake passage to bypass the electric supercharger,
A bypass valve provided in the bypass passage;
Control means for controlling the electric supercharger and the bypass valve in association with each other, and for switching the opening and closing of the bypass valve when the flow of air in the bypass passage hardly occurs even when the bypass valve is opened A supercharging device comprising:
エンジンの排気ガスにより駆動されるターボ過給機と、
前記ターボ過給機の下流の吸気通路に介装され、電動機により駆動される電動過給機と、
前記電動過給機を迂回して吸気通路に設けたバイパス通路と、
前記バイパス通路内に設けたバイパス弁とを備え、
所定の運転状態では、前記バイパス弁を閉とすると共に前記電動過給機を駆動させることを特徴とする過給装置。
A turbocharger driven by engine exhaust gas,
An electric supercharger that is interposed in an intake passage downstream of the turbocharger and is driven by an electric motor;
A bypass passage provided in the intake passage to bypass the electric supercharger,
A bypass valve provided in the bypass passage,
In a predetermined operating state, the supercharging device closes the bypass valve and drives the electric supercharger.
前記ターボ過給機のコンプレッサー上流の吸気通路に流入する空気量を計測する手段と、
前記電動過給機を通過する空気量を計測する手段と、
車両の加速状態を検出する加速状態検出手段とを設け、
前記加速状態検出手段により加速状態が検出されたときには、前記電動過給機を駆動させるとともに、前記ターボ過給機の上流の吸気通路に流入する空気量と前記電動過給機を通過する空気量とがほぼ一致したときに前記バイパス弁を閉とする請求項1、2に記載の過給装置。
Means for measuring the amount of air flowing into the intake passage upstream of the compressor of the turbocharger,
Means for measuring the amount of air passing through the electric supercharger,
Providing acceleration state detection means for detecting the acceleration state of the vehicle,
When an acceleration state is detected by the acceleration state detection means, the electric supercharger is driven, and the amount of air flowing into the intake passage upstream of the turbocharger and the amount of air passing through the electric supercharger 3. The supercharging device according to claim 1, wherein the bypass valve is closed when the values substantially coincide with each other.
前記電動過給機の回転速度を検出する手段を設け、電動過給機通過空気量を前記回転速度に基づいて求める請求項3に記載の過給装置。4. The supercharger according to claim 3, further comprising means for detecting a rotational speed of the electric supercharger, wherein the amount of air passing through the electric supercharger is determined based on the rotational speed. 前記電動過給機の回転速度を前記電動機にかかる電圧および前記電動機に流れる電流から求める請求項4に記載の過給装置。The supercharger according to claim 4, wherein the rotation speed of the electric supercharger is obtained from a voltage applied to the electric motor and a current flowing through the electric motor. 前記電動過給機の上流の吸気通路内の圧力を検出する圧力検出手段と、
前記電動過給機の上流の吸気通路内の温度を検出する温度検出手段とを設け、電動過給機の回転速度から求めた電動過給機を通過する空気量を、吸気通路内圧または大気圧と吸気温度に基づいて補正する請求項3に記載の過給装置。
Pressure detection means for detecting the pressure in the intake passage upstream of the electric supercharger,
Temperature detecting means for detecting the temperature in the intake passage upstream of the electric supercharger, and the amount of air passing through the electric supercharger determined from the rotation speed of the electric supercharger is determined by the intake passage internal pressure or the atmospheric pressure. 4. The supercharging device according to claim 3, wherein the correction is performed based on the temperature and the intake air temperature.
前記ターボ過給機のコンプレッサー上流の吸気通路に流入する空気量を計測する手段と、
前記バイパス通路を通過する空気量を計測する手段と、
車両の加速状態を検出する加速状態検出手段とを設け、
前記加速状態検出手段により加速状態が検出されたとき、前記電動過給機を駆動させるとともに、前記バイパス通路を通過する空気量がほぼゼロになったときに、前記バイパス弁を閉とする請求項1、2に記載の過給装置。
Means for measuring the amount of air flowing into the intake passage upstream of the compressor of the turbocharger,
Means for measuring the amount of air passing through the bypass passage,
Providing acceleration state detection means for detecting the acceleration state of the vehicle,
When the acceleration state is detected by the acceleration state detection means, the electric turbocharger is driven, and the bypass valve is closed when the amount of air passing through the bypass passage becomes substantially zero. 3. The supercharging device according to claim 1.
前記加速状態検出手段は、スロットルまたはアクセルの開度が所定値より大きくなったことで車両が加速状態であると判断する請求項3または7に記載の過給機構装置。8. The supercharging mechanism device according to claim 3, wherein the acceleration state detection unit determines that the vehicle is in an acceleration state when an opening degree of a throttle or an accelerator becomes larger than a predetermined value. 9. 前記加速状態検出手段は、スロットルまたはアクセルの開度の変化速度が所定値より大きくなったことで車両が加速状態であると判断する請求項3または7に記載の過給装置。The supercharging device according to claim 3 or 7, wherein the acceleration state detection means determines that the vehicle is in an acceleration state when a change speed of a throttle or accelerator opening becomes greater than a predetermined value. 電動過給機の空気流量を計測する手段として、前記電動過給機の上流と下流の吸気通路内の圧力をそれぞれ検出する圧力検出手段を設け、前記各圧力検出手段によって検出した前記電動過給機の上流の圧力と下流の圧力がほぼ等しくなったとき前記電動過給機をオフにするとともに、前記バイパス弁を開とする請求項3に記載の過給装置。As means for measuring the air flow rate of the electric supercharger, pressure detecting means for respectively detecting pressures in the intake passages upstream and downstream of the electric supercharger are provided, and the electric supercharger detected by each of the pressure detecting means is provided. 4. The supercharger according to claim 3, wherein the electric turbocharger is turned off and the bypass valve is opened when the pressure upstream and downstream of the machine are substantially equal.
JP2002238894A 2002-08-20 2002-08-20 Supercharging device Pending JP2004076659A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002238894A JP2004076659A (en) 2002-08-20 2002-08-20 Supercharging device
US10/623,564 US6938420B2 (en) 2002-08-20 2003-07-22 Supercharger for internal combustion engine
DE60302118T DE60302118T2 (en) 2002-08-20 2003-08-05 Charger for internal combustion engines
EP03017873A EP1391595B1 (en) 2002-08-20 2003-08-05 Supercharger for internal combustion engine
CNB031549691A CN1303312C (en) 2002-08-20 2003-08-19 Supercharger for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002238894A JP2004076659A (en) 2002-08-20 2002-08-20 Supercharging device

Publications (1)

Publication Number Publication Date
JP2004076659A true JP2004076659A (en) 2004-03-11

Family

ID=32022149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002238894A Pending JP2004076659A (en) 2002-08-20 2002-08-20 Supercharging device

Country Status (1)

Country Link
JP (1) JP2004076659A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008188A (en) * 2006-06-29 2008-01-17 Shin Caterpillar Mitsubishi Ltd Output control device for working machine and output control method for working machine
DE102005046366B4 (en) * 2004-09-29 2008-02-21 Mitsubishi Jidosha Kogyo K.K. Combustion engine with two chargers
US20130174545A1 (en) * 2012-01-09 2013-07-11 GM Global Technology Operations LLC Control systems and methods for super turbo-charged engines
JP2015521722A (en) * 2012-06-20 2015-07-30 デイコ アイピー ホールディングス, エルエルシーDayco Ip Holdings, Llc Variable flow valve for turbocharger
US20150240826A1 (en) * 2012-09-11 2015-08-27 IFP Energies Nouvelles Method of determining a pressure upstream of a compressor for an engine equipped with double supercharging
WO2015128936A1 (en) * 2014-02-25 2015-09-03 三菱重工業株式会社 Multistage electric centrifugal compressor and supercharging system of internal combustion engine
CN104912653A (en) * 2014-03-14 2015-09-16 郑春初 Automotive engine boost and tail gas purification technology and combination
KR20170123878A (en) * 2016-04-29 2017-11-09 현대자동차주식회사 Engine system
US10132424B2 (en) 2014-05-05 2018-11-20 Dayco Ip Holdings, Llc Variable flow valve having metered flow orifice
CN110541767A (en) * 2018-05-28 2019-12-06 现代自动车株式会社 Method for preventing vehicle surge
CN111042910A (en) * 2019-12-26 2020-04-21 一汽解放汽车有限公司 Supercharging system for engine and control method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005046366B4 (en) * 2004-09-29 2008-02-21 Mitsubishi Jidosha Kogyo K.K. Combustion engine with two chargers
US7451597B2 (en) 2004-09-29 2008-11-18 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Intake system of internal combustion engine
JP4729446B2 (en) * 2006-06-29 2011-07-20 キャタピラー エス エー アール エル Work machine output control device and work machine output control method
JP2008008188A (en) * 2006-06-29 2008-01-17 Shin Caterpillar Mitsubishi Ltd Output control device for working machine and output control method for working machine
US20130174545A1 (en) * 2012-01-09 2013-07-11 GM Global Technology Operations LLC Control systems and methods for super turbo-charged engines
US8925316B2 (en) * 2012-01-09 2015-01-06 GM Global Technology Operations LLC Control systems and methods for super turbo-charged engines
JP2015521722A (en) * 2012-06-20 2015-07-30 デイコ アイピー ホールディングス, エルエルシーDayco Ip Holdings, Llc Variable flow valve for turbocharger
US9739281B2 (en) * 2012-09-11 2017-08-22 IFP Energies Nouvelles Method of determining a pressure upstream of a compressor for an engine equipped with double supercharging
US20150240826A1 (en) * 2012-09-11 2015-08-27 IFP Energies Nouvelles Method of determining a pressure upstream of a compressor for an engine equipped with double supercharging
WO2015128936A1 (en) * 2014-02-25 2015-09-03 三菱重工業株式会社 Multistage electric centrifugal compressor and supercharging system of internal combustion engine
US10174670B2 (en) 2014-02-25 2019-01-08 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Multi-stage electric centrifugal compressor and supercharging system for internal combustion engine
CN104912653A (en) * 2014-03-14 2015-09-16 郑春初 Automotive engine boost and tail gas purification technology and combination
US10132424B2 (en) 2014-05-05 2018-11-20 Dayco Ip Holdings, Llc Variable flow valve having metered flow orifice
KR20170123878A (en) * 2016-04-29 2017-11-09 현대자동차주식회사 Engine system
KR102383216B1 (en) 2016-04-29 2022-04-05 현대자동차 주식회사 Engine system
CN110541767A (en) * 2018-05-28 2019-12-06 现代自动车株式会社 Method for preventing vehicle surge
CN110541767B (en) * 2018-05-28 2023-06-23 现代自动车株式会社 Method for preventing surge of vehicle
CN111042910A (en) * 2019-12-26 2020-04-21 一汽解放汽车有限公司 Supercharging system for engine and control method

Similar Documents

Publication Publication Date Title
JP3951951B2 (en) Control device for internal combustion engine
JP4120524B2 (en) Engine control device
JP4306703B2 (en) Control device for an internal combustion engine with a supercharger
JP4375369B2 (en) Control device for an internal combustion engine with a supercharger
WO2008018380A1 (en) Control device for internal combustion engine with supercharger
JP2004278442A (en) Internal combustion engine control device
JP2009185801A (en) Variable turbocharger and its control method
JP2010180781A (en) Control device for internal combustion engine with supercharger
JP2004076659A (en) Supercharging device
JP2004003411A (en) Variable nozzle opening control device of exhaust turbo-supercharger
JP2005048742A (en) Fuel injection control device for diesel engine
JP2010024878A (en) Control device for internal combustion engine
JP3933075B2 (en) Control device for electric supercharging mechanism
JP3846462B2 (en) Bypass valve control device for electric supercharging mechanism
JP3969314B2 (en) Turbocharger
JP2008101552A (en) Supercharging control device
JP4518045B2 (en) Control device for an internal combustion engine with a supercharger
JP2004251248A (en) Supercharging device of internal combustion engine
JP2005163674A (en) Supercharging device for internal combustion engine
JP4052040B2 (en) Supercharger control device for internal combustion engine
JP3826887B2 (en) Control device for electric supercharging mechanism
JP7251493B2 (en) Internal combustion engine control system
JP2004301043A (en) Supercharger for internal combustion engine
JP2004084482A (en) Engine system for gas heat pump
JP2004169662A (en) Electric supercharging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108