JP2004076231A - Heat resistant organic fiber having high strength, excellent in water repellent, oil repellent and soil-preventing properties, fibrous product of the same and method for roducing them - Google Patents

Heat resistant organic fiber having high strength, excellent in water repellent, oil repellent and soil-preventing properties, fibrous product of the same and method for roducing them Download PDF

Info

Publication number
JP2004076231A
JP2004076231A JP2002241122A JP2002241122A JP2004076231A JP 2004076231 A JP2004076231 A JP 2004076231A JP 2002241122 A JP2002241122 A JP 2002241122A JP 2002241122 A JP2002241122 A JP 2002241122A JP 2004076231 A JP2004076231 A JP 2004076231A
Authority
JP
Japan
Prior art keywords
fiber
resistant organic
thin film
organic fiber
textile product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002241122A
Other languages
Japanese (ja)
Inventor
Mureo Kaku
賀来 群雄
Satoko Iwato
岩戸 聡子
Hideo Nakamura
中村 英夫
Kazuhiko Kosuge
小菅 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Du Pont KK
Original Assignee
Du Pont Toray Co Ltd
Du Pont KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd, Du Pont KK filed Critical Du Pont Toray Co Ltd
Priority to JP2002241122A priority Critical patent/JP2004076231A/en
Priority to US10/644,237 priority patent/US20040034941A1/en
Priority to AU2003265594A priority patent/AU2003265594A1/en
Priority to CA002496263A priority patent/CA2496263A1/en
Priority to KR1020057002811A priority patent/KR20060031792A/en
Priority to EP03793284A priority patent/EP1540070A2/en
Priority to TW092123033A priority patent/TW200415283A/en
Priority to PCT/US2003/026329 priority patent/WO2004018758A2/en
Publication of JP2004076231A publication Critical patent/JP2004076231A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/50Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with organometallic compounds; with organic compounds containing boron, silicon, selenium or tellurium atoms
    • D06M13/51Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond
    • D06M13/513Compounds with at least one carbon-metal or carbon-boron, carbon-silicon, carbon-selenium, or carbon-tellurium bond with at least one carbon-silicon bond
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/513Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads heat-resistant or fireproof
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/647Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing polyether sequences
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/657Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing fluorine
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/11Oleophobic properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • D10B2331/042Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET] aromatic polyesters, e.g. vectran
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • D10B2501/041Gloves

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat resistant organic fiber having a high strength, excellent in heat resistance and durability, not harming touch and having an excellent soil-preventing function, a fibrous product of the same and a method for producing them. <P>SOLUTION: This heat resistant organic fiber having the high strength, covered by a thin membrane consisting mainly of a fluorocarbon silane, and a fibrous product consisting of the same are provided. Further, the heat resistant organic fiber having the high strength or the fibrous product of the same is treated with as follows; treating the fiber or fibrous products by (a) a hydrolysate of the fluorocarbon silane, and if desired (b) a surfactant and (c) an alkoxysilane compound and (d) an aqueous emulsion containing an acid or an alkali catalyst, and then heat-treating. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、撥水性および撥油性を合わせ有する防汚性に優れた高強力耐熱有機繊維、該繊維を構成要素として含んでいる繊維製品および該繊維製品の製造方法に関する。
【0002】
【従来の技術】
繊維製品は、親水性の汚れのみならず親油性の汚れをも防ぐのが好ましいとされている。親水性の汚れに対しては撥水性でもって、一方、親油性の汚れに対しては撥油性でもって、それぞれの汚れを防ぐことができる。そのため、撥水撥油性を繊維または繊維製品に付与する方法などが検討され、用途によってはすでに実用化されているものもある。このような撥水・撥油性に由来する防汚機能を繊維または繊維製品に付与する方法として、仕上げ剤やコーティング剤等を用いることができ、具体的には、シリコーン系ポリマー、フルオロカーボン系ポリマー、ポリウレタン系ポリマー、ビニル系ポリマーあるいはこれらの共重合系ポリマーのエマルジョンや溶液に繊維または繊維製品を浸漬させたり、または、これらポリマーなどの成分を含むスプレーを吹き付けたりした後に乾燥させて繊維表面に皮膜を形成させる方法、あるいは、これらのポリマーの前駆体となるモノマーやオリゴマーを繊維表面上で重合させて皮膜を形成する方法等が提案され用いられている。
【0003】
しかしながら、これらの方法で上記皮膜を繊維製品全面に被覆した場合、防汚性が繊維に付与されるものの、一方で、繊維の本来有している風合いが、その被覆によって大幅に損ねられてしまうなどの問題があった。特に、通気性・透湿性が要求される場合、その被覆のために、そのような要求に叶うものを得ることが困難であった。また、製品を構成する繊維あるいは繊維束の一本一本を個々に被覆することも可能であるが、重合物のディスパージョンを用いる場合は、ディスパージョンの粒子径より薄い皮膜の形成は不可能であり、多くの場合その厚みは数十μmレベル以上となり、かつ膜強度も十分なものではなかった。
【0004】
したがって、これらのコーティング剤で個々の繊維を被覆した場合において、塗膜がある程度の厚みを持つため、繊維及び繊維製品の風合いを損ねてしまうことになる。また、薄膜を形成するために、溶液タイプのコーティング剤を用い、ポリマーの前駆体を繊維表面で重合固化させる方法もあるが、十分な耐久性を持つ薄膜を得ることは困難である。
【0005】
さらに、このような被覆に用いられるポリマーは、高強力耐熱有機繊維の性能が期待される高温下では溶融したり、分解したりして、時には着火するなど、耐熱性または耐炎性のないものであり、防護衣料用途等の耐熱性または耐炎性を必要とする用途には不適当である。そのため、耐熱性および耐久性に優れ、風合いを損なわず、さらに、優れた防汚機能を持つ繊維またはその繊維製品が切実に求められてきた。
【0006】
【発明が解決しようとする課題】
本発明は、耐熱性および耐久性に優れ、風合いを損なわず、優れた防汚機能を持つ高強力耐熱有機繊維及び繊維製品を提供することを課題とする。また、該繊維および該繊維製品の製造方法を提供することをも課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、フルオロカーボンシランを主成分とする薄膜で、好ましくはフルオロカーボンシランとアルコキシシランの共縮重合物を含有する薄膜で、被覆されている高強力耐熱有機繊維が耐熱性および耐久性に優れ、風合いを損なわず、優れた防汚機能を持つことができることを見出した。上記薄膜が、厚さ1000nm以下であることが好ましく、上記高強力耐熱性有機繊維が、強度10〜50g/Dであり、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維またはヘテロ環芳香族繊維からなる群から選ばれる1以上であることが好ましく、特に、パラフェニレンテレフタルアミド繊維であることがより好ましいことを知見した。
【0008】
また、本発明者らは、上記高強力耐熱有機繊維を構成要素として含んでいる繊維製品が耐熱性および耐久性に優れ、風合いを損なわず、優れた防汚機能を持つことができることを見出した。上記繊維製品が、織物、編物または不織布であることが好ましく、防護衣料用布帛、消防服または手袋であることも好ましいことを見出した。
【0009】
さらに、本発明者らは、上記高強力耐熱有機繊維またはその繊維製品を、(イ)フルオロカーボンシランの加水分解物、(ロ)界面活性剤、(ハ)アルコキシシラン化合物および(ニ)酸又はアルカリ触媒を含有してなる水性エマルジョンで、処理し、ついでこれを加熱処理することによって、上記繊維またはその繊維製品に、耐熱性および耐久性に優れ、風合いを損なわず、優れた防汚機能を付与することができることを知見した。
本発明者らは、かかる種々の新知見を得たのち、さらに検討を重ね、本発明を完成するに至った。
【0010】
すなわち、本発明は、
(1) フルオロカーボンシランを主成分とする薄膜で被覆されている高強力耐熱有機繊維、
(2) フルオロカーボンシランを主成分とする薄膜がフルオロカーボンシランとアルコキシシランの共縮重合物を含有する薄膜であることを特徴とする(1)に記載の高強力耐熱有機繊維、
(3) 薄膜が、厚さ1000nm以下であることを特徴とする(1)又は(2)に記載の繊維、
(4) 高強力耐熱有機繊維が、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維またはヘテロ環芳香族繊維からなる群から選ばれる1以上であることを特徴とする(1)〜(3)のいずれかに記載の繊維、
に関する。
【0011】
また、本発明は、
(5) 高強力耐熱有機繊維が、パラフェニレンテレフタルアミド繊維であることを特徴とする(1)〜(4)のいずれかに記載の繊維、
(6) (1)〜(5)のいずれかに記載の繊維を構成要素として含んでいることを特徴とする繊維製品、
(7) 繊維製品が織物、編物または不織布であることを特徴とする(6)記載の繊維製品、
(8) 繊維製品が、防護衣料用布帛であることを特徴とする(6)記載の繊維製品、
に関する。
【0012】
また、本発明は、
(9) 繊維製品が、消防服であることを特徴とする(6)に記載の繊維製品、
(10) 繊維製品が、手袋であることを特徴とする(6)に記載の繊維製品、
(11) 高強力耐熱有機繊維またはその繊維製品を、
(イ)フルオロカーボンシランの加水分解物、所望によりさらに、(ロ)界面活性剤、(ハ)アルコキシシラン化合物及び(ニ)酸又はアルカリ触媒を含有してなる水性エマルジョンで、処理し、ついで加熱処理することを特徴とする(1)〜(5)のいずれかに記載の繊維又は(6)〜(10)のいずれかに記載の繊維製品の製造方法、
に関する。
【0013】
【発明の実施の形態】
本発明はフルオロカーボンシランを主成分とする薄膜で被覆されている高強力耐熱有機繊維に関する。さらに好ましくはフルオロカーボンシランとアルコキシシランの共縮重合物を含有する薄膜で被覆されている高強力耐熱有機繊維に関する。本発明における高強力耐熱有機繊維は、薄膜形成剤であるフルオロカーボンシランを主成分とする薄膜で、又は薄膜形成剤であるフルオロカーボンシランとアルコキシシランの共縮重合物を含有する薄膜で被覆できる繊維であれば、特に限定されず、公知の繊維であってよい。本発明においては、強度10〜50g/D、熱分解温度300℃以上の繊維が特に好ましく、さらに、強度15g/D以上50g/D以下、熱分解温度350℃以上の繊維がより好ましい。このような好適な高強力耐熱有機繊維として、例えば全芳香族ポリアミド繊維、全芳香族ポリエステル繊維またはヘテロ環芳香族繊維等が挙げられ、また、本発明において、それら繊維を組み合わせた混合繊維等を用いることもできる。
【0014】
上記全芳香族ポリアミド繊維は、公知のものであってよいし、特に限定されるものではない。また、全芳香族ポリアミド繊維は、別名アラミド繊維とも呼ばれており、パラ系アラミド繊維またはメタ系アラミド繊維に大別でき、どちらも本発明において好ましく用いられる。本発明においては、これらアラミド繊維を、公知の方法またはそれに準ずる方法で製造して用いてもよい。本発明において用いられるパラ系アラミド繊維は、公知のものであってよく、特に限定されるものではない。上記パラ系アラミド繊維として、例えば、ポリパラフェニレンテレフタルアミド繊維(米国デュポン社、東レ・デュポン社製、商品名KEVLAR(デュポン社登録商標))またはパラフェニレンテレフタルアミド−パラフェニレン−3,4’−ジフェニレンエーテルテレフタルアミド共重合体繊維(帝人社製、商品名テクノーラ)等の市販品を用いることができる。また、本発明において用いられるメタ系アラミド繊維は、公知のものであってよく、特に限定されるものではない。上記メタ系アラミド繊維として、例えば、ポリメタフェニレンテレフタルアミド繊維(米国デュポン社製、商品名NOMEX(デュポン社登録商標))等の市販品を用いることができる。
【0015】
本発明において用いられる全芳香族ポリエステル繊維は、公知のものであってよく、特に限定されるものではない。上記全芳香族ポリエステル繊維として、例えば、パラヒドロキシ安息香酸の自己縮合ポリマー、テレフタル酸とハイドロキノンからなるポリエステル、または、パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸からなるポリエステル繊維等を用いることができる。本発明において、このような全芳香族ポリエステル繊維を、公知の方法またはそれに準ずる方法で製造して用いることができる。また、本発明において、上記全芳香族ポリエステル繊維として、例えば商品名ベクトラン(クラレ社製)等の市販品を用いることもできる。
【0016】
本発明において用いられるヘテロ環芳香族繊維は、公知のものであってよく、特に限定されるものではない。上記ヘテロ環芳香族繊維として、例えば、ポリパラフェニレンベンゾビスチアゾール繊維、ポリパラフェニレンベンゾビスオキサゾール繊維(以下PBO繊維という)またはポリベンズイミダゾール繊維等を用いることができる。本発明においては、このようなヘテロ環芳香族繊維を、公知の方法またはそれに準ずる方法で製造してもよい。また、本発明において、上記ヘテロ環芳香族繊維として、例えば市販のPBO繊維(東洋紡績社製、商品名ザイロン)等を用いることができる。
【0017】
また、上記高強力耐熱有機繊維は、最終製品の用途、要求性能、繊維の製造コストまたは製品の加工コスト等に応じて、適宜選択される。本発明においては、薄膜の剥離の起因となる高温での寸法変化に対する安定性に優れていて、融点や軟化点を持たず耐熱性に優れていて、かつ比較的安価で汎用性のある上記KEVLAR(デュポン社登録商標)あるいはTwaron(帝人・トワロン社製)の商品名で知られる、パラ系ホモポリマーからなるアラミド繊維を、高強力耐熱有機繊維として用いることが特に好ましい。
【0018】
本発明における繊維製品は、フルオロカーボンシランを主成分とする薄膜で、好ましくはフルオロカーボンシランとアルコキシシランの共縮重合物を含有する薄膜で、被覆されている繊維を含んでいれば、特に限定されない。上記繊維製品として、例えば、繊維を1次加工した糸、綿、織物、編物、フェルトまたは紙等を含む広義の不織布、または、ロープまたはコード類等を挙げることができる。さらに、これら1次加工品を単独に、あるいは組み合わせて、さらには樹脂や金属など他の素材を含む組合せでもって加工される2次加工品からその最終製品を含んだもの等も上記繊維製品として用いることができる。本発明においては、繊維製品が織物、編物または不織布が好ましく、防護衣料用布帛、消防服または手袋であることが特に好ましい。
【0019】
本発明において、上記高強力耐熱有機繊維または上記繊維製品を、(イ)フルオロカーボンシランの加水分解物、所望によりさらに(ロ)界面活性剤、(ハ)アルコキシシラン化合物及び(ニ)酸又はアルカリ触媒を含有してなる水性エマルジョンで、処理し、ついで加熱処理することで、フルオロカーボンシランとアルコキシシランの共縮重合物を含有する薄膜で被覆されている(つまり表面に薄膜が形成されている)高強力耐熱有機繊維または繊維製品を製造することができる。
【0020】
上記水性エマルジョンをフルオロカーボンシラン、所望によりさらに界面活性剤、触媒およびアルコキシシランを用いて調整することができる。本発明においては、フルオロカーボンシラン総重量に対し重量比0.1〜1の界面活性剤と、フルオロカーボンシランとを、エマルジョンの総重量に対しフルオロカーボンシランの含有率が0.1〜20重量%、より好適には1〜10重量%となるように、水に分散させて、そのように製造された水分散液に酸またはアルカリ触媒を添加し、次いでフルオロカーボンシランに対して0.1〜10モル分率、より好適には0.4〜0.6モル分率のアルコキシシランを加えて緩やかに撹拌してエマルジョンを調製することが好ましい。この際、厚さ1000nm以下の均一で強固な薄膜を得るために、フルオロカーボンシランまたは/およびアルコキシシランの自己縮合反応を可及的に抑制するのが好ましい。そのために、混合物の攪拌が十分に行われるのが好ましく、フルオロカーボンシランおよびアルコキシシランの添加速度が速すぎるのを避けるのが好ましい。
【0021】
上記フルオロカーボンシランは、式
−(CH−Si{−(O−CHCH−OR    (1)
(Rは炭素原子が3〜18個のパーフルオロアルキル基またはそれらの混合物であり、複数のRは炭素原子が1〜3個の同一のもしくは異なるアルキル基であり、そして、p=2〜4およびn=2〜10である。)
により表される少なくとも1種の加水分解性フルオロカーボンシランが好ましい。本発明において、より好ましくは、Rが平均で8〜12個の炭素原子を有する混合されたパーフルオロアルキル基であり、Rがメチル基であり、そしてp=2およびn=2〜4である。さらに好ましくは、n=2〜3である。より具体的には、nが2であるとき、パーフルオロアルキルエチルトリス(2−(2−メトキシエトキシ)エトキシ)シラン、または、nが3であるとき、(2−(2−(2−メトキシエトキシ)エトキシ)エトキシ)シランが本発明において特に好ましい。また、本発明において、このようなフルオロカーボンシランは公知の方法により製造することができる。さらに、本発明においては、2種以上のフルオロカーボンシランを混合して使用することもできる。
【0022】
また、上記アルコキシシランとして、分子内に2個以上のアルコキシ基をもつ有機ケイ素化合物またはその部分縮合物等が用いられ、例えば、式
Si(R)      (2)
(Rは、OCH、OCHCH、および(OCHCHOCH(m=1〜10)からなる群から選択される1または2以上の基である。)により表されるシリケート、式
Si(OR4−n        (3)
(Rは炭素原子が1〜10個のアルキル基であり、複数のRは炭素原子が1〜3個の同一のもしくは異なるアルキル基であり、そして、n=1〜3である)により表されるオルガノアルコキシシラン等が挙げられる。Rで示されるアルキル基は、適宜の置換基、例えば、アミノ基、エポキシ基、ビニル基、メタクリロキシ基、チオール基、ウレア基またはメルカプト基等で置換されていてもよい。より具体的に例えば、ジメチルジメトキシシラン、メチルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)3−アミノプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリメトキシシランまたはこれらの混合物やその部分縮合物等が挙げられる。
【0023】
上記触媒として、酸またはアルカリを適宜用いることができる。このような酸またはアルカリは、特に限定されず、公知のものであってよい。上記酸として、例えば、リン酸、ホウ酸、塩酸、硫酸、硝酸、酢酸またはギ酸等を用いることができる。また、上記アルカリとして、例えば、アンモニア、ピリジン、水酸化ナトリウムまたは水酸化カリウム等を用いることができる。本発明において、触媒として塩酸またはリン酸を用いることが特に好ましい。
【0024】
上記界面活性剤として、前記エマルジョンを安定化するものであればよく、アニオン系、カチオン系、非イオン系、両性型またはその他公知の界面活性剤を用いることができ、特に限定されるものではない。好適にはノニオン系のものが用いられ、例えばR’−CHCH−O−(CHCHO)11−H(R’は、3〜18個の炭素原子を有するパーフルオロアルキル基であるノニオン系界面活性剤である。)等が挙げられる。
【0025】
本発明において、所望により種々の添加剤、例えば無機または有機フィラー、酸化防止剤、熱安定剤、紫外線吸収剤等の他、滑剤、ワックス類、着色剤または結晶化促進剤等を単独で用いても、複数の組合せで用いてもかまわない。
【0026】
調製した上記エマルジョンをそのまま、または、必要に応じて水で上記エマルジョンを希釈する等して所望の濃度にしたものを、本発明の繊維または繊維製品に、含浸、塗布またはスプレーなどそれぞれの加工プロセスに最適な手段で付着させ、好適には200℃〜400℃、より好適には250℃以上の温度で焼成してフルオロカーボンシランの加水分解又はフルオロカーボンシランの加水分解とアルコキシシランの加水分解のみならず、加水分解物の共縮重合等を完結させることができる。この過程でもって、フルオロカーボンシランとアルコキシシランの共縮重合物を含有する薄膜が形成され得る。焼成温度または焼成時間は、薄膜が完全に硬化できるように、対象とする繊維または繊維製品の耐熱性または加工の経済性等を勘案して、最適な条件でもって設定されることが好ましい。本発明において、好適な焼成温度または焼成時間は、繊維または繊維製品等によってそれぞれ変わってくるが、ポリパラフェニレンテレフタルアミド繊維の場合、エマルジョン付着後、焼成温度約250℃で焼成時間約30分に設定することが特に好ましい。高強力耐熱有機繊維重量に対する高強力繊維の表面を被覆している上記共縮重合物の重量割合は焼成後の乾燥状態で表わし、薄膜形成剤付与率と称され、通常は0.1〜10%程度である。
【0027】
上記薄膜の厚さは、繊維の断面が通常略真円であるから真円として、薄膜形成剤付与率から算出される計算値である。例えば、薄膜形成剤付与率(対繊維重量)が2%で、ファブリック重量16.7gである場合、被覆層重量は16.7×0.02=0.334gであり、本発明で使用されるKEVLAR(デュポン社登録商標)糸の単糸繊度が1.67dtxでKEVLAR(デュポン社登録商標)糸長が100,000mで、KEVLAR(デュポン社登録商標)糸の繊維断面が直径12μmであるとき、前記繊維断面が真円であるとすれば、表面積は約3.7680m(37680cm)となる。この表面部分に上記共宿重合物の乾燥時の比重約2(g/cm)の薄膜が均一に被覆しているとして、厚さは44.3nmとなる。
【0028】
本発明において、繊維または繊維製品に上記エマルジョン処理を施す前、必要に応じて精練や溶剤洗浄等によって繊維表面から油剤などを除去してもよい。また、薄膜の焼成完了後に、残存する触媒や界面活性剤を除去するための洗浄等を行ってもよいし、また、例えば上記した種々の添加剤等を適宜用いてもよい。
【0029】
また、本発明において、あらかじめ高強力耐熱有機繊維にフルオロカーボンシランを主成分とする、好ましくはフルオロカーボンシランとアルコキシシランの共縮重合物からなる、好ましくは1000nm以下の薄膜を被覆したものを用いるほかに、本発明は、上記高強力耐熱有機繊維による布帛を、あるいは該布帛からつくられた防護衣料や繊維から直接編製される防護手袋などの繊維製品を上記した共縮合物で処理することにより、これらの繊維製品を構成する繊維表面に上記薄膜を形成させることができる。繊維表面又は繊維製品表面に上記薄膜が形成されていて、たとえ、その薄膜が繊維表面または繊維製品表面において部分的に形成されていても、本発明においては、当該薄膜で被覆されている繊維または繊維製品であることとする。
【0030】
【実施例】
以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
【0031】
フルオロカーボンシランとして、R−(CH−Si{−(O−CHCH−OCHで表され、Rは、F(CF(k=6、1〜2重量%;k=8、62〜64重量%;k=10、23〜30重量%;k=12〜18、2〜6重量%)であるパーフルオロアルキルの混合物を用いた。
界面活性剤として、R’−CHCH−O−(CHCHO)11−Hで表され、R’は、3〜18個の炭素原子を有するパーフルオロアルキル基であるノニオン系界面活性剤を用いた。
また、オルガノアルコキシシランとして、メチルトリメトキシシラン(CH)Si(OCHを用いた。
【0032】
(実施例1)
(フルオロカーボンシラン/アルコキシシランエマルジョンの調製)
フルオロカーボンシラン100重量部に対して30重量部となる量の界面活性剤を水に溶解した。そして、このようにして得られた水性エマルジョンの総重量に基づいて2.5重量%のフルオロカーボンシランを慣用の攪拌技術により攪拌しながらゆっくりと添加してフルオロカーボンシランの自己縮合を抑制し、フルオロカーボンシランが加水分解された状態を保った。ついで、pHメーターでエマルジョンのpHを測定しながら、リン酸を添加し、pH3になったところで添加を終了した。さらにフルオロカーボンシランに対するオルガノアルコキシシランのモル分率が0.45となるようにメチルトリメトキシシラン(CH)Si(OCHを加え、4時間攪拌しフルオロカーボンシラン/アルコキシシランエマルジョンを調整した。
【0033】
(繊維製品の処理)
東レ・デュポン社製ポリパラフェニレンテレフタルアミド繊維(商品名KEVLAR(デュポン社登録商標))の短繊維スパン糸295dtx(単糸繊度1.67dtex)綿番手20s/双糸を3本引きそろえてSFG−10ゲージタイプの手袋編機(株式会社島精機製作所製)に供給し10ゲージの手袋を編みたてた。得られた手袋を市販の中性洗剤を用いて通常の洗濯をして乾燥した。次いで、この手袋を調製したフルオロカーボンシラン/アルコキシシランエマルジョンに浸漬し手で軽く絞り、エマルジョン液不揮発分の手袋に対する付与率が1%になるように調節した。膜厚を繊維の断面が真円であるとして、薄膜形成樹脂付与率から算出される計算値で求めたところ、膜厚22nmであった。この手袋を250℃オーブン中に30分放置してコート膜を焼成硬化させた。オーブンから取り出し室温まで冷却した後、ぬるま湯で洗浄して風乾した。処理された手袋は、処理前と較べて風合い、外観の変化は見られなかったが、処理後の手袋に水を散布すると水滴が飛散し、処理前の手袋に比較して撥水性に著しい差異が観察された。
【0034】
(実施例2)
(織布製品の処理)
単糸繊度1.67dtx、フィラメント数2000本からなる東レ・デュポン株式会社製 KEVLAR29(デュポン社登録商標)繊維を用いて、織密度タテ17.5本/25mm、ヨコ16.8本/25mm、目付444g/mの平織り織布を作製した。該織布5cm角を実施例で調整したフルオロカーボンシラン/アルコキシシランエマルジョンに5分間浸漬し、引き上げた後、エマルジョン液不揮発分の手袋に対する付与率が1%になるように調節した。この織布を250℃オーブン中に30分放置してコート膜を焼成硬化させた。皮膜の厚みは実施例1と同じく約22nmであった。
【0035】
(試験例)
(1)撥水・撥油性
実施例2で得られた硬化させた織布の表面に純水とヘキサデカンをそれぞれ2μl滴下し、接触角計(協和界面科学株式会社製)により接触角を測定した。測定結果を下記表1に示す。
【0036】
なお、比較例として、実施例2に記載の方法で作製しているがフルオロカーボンシラン/アルコキシシランエマルジョンで処理していない織布の表面に純水とヘキサデカンをそれぞれ2μl滴下し、接触角を測定した。測定結果を表1に示す。
【0037】
【表1】

Figure 2004076231
実施例2の織布と比較例の織布を比較すると、未処理の場合、水・ヘキサデカンがしみ込み、接触角の測定が不能であるのに対し、フルオロカーボンシラン/アルコキシシランエマルジョンで処理した実施例2では高い撥水撥油性を示した。
【0038】
(2)耐熱性
処理された織布を250℃のオーブンに入れ、表2に示す時間経過後に、接触角を測定した。測定結果を表2に示す。
【0039】
【表2】
Figure 2004076231
実施例2では、250℃で24時間経過後も、高い撥水性を維持していることが分かる。
【0040】
(3)防汚性
処理された織布及び未処理の織布に自動車用エンジンオイル(実際に自動車にて約1000km走行後のエンジンオイル)をスポイトで一滴ずつ3箇所滴下し、1時間放置した。洗濯用洗剤(花王株式会社製、商品名アタック)を標準使用量である0.083wt%になるように水道水に溶解した。エンジンオイルを滴下した織布を合成洗剤水溶液中に入れ、5分間攪拌した後、水道水で1分間流した。この際の外観の比較として、未処理品においてはしみ込んだオイルの汚れが洗濯後でも消えることがなかったのに対し、処理品では完全にオイルの汚れが無くなった。また洗濯後の生地においては、十分な撥水性を維持していた。
【0041】
【発明の効果】
本発明によって、耐熱性および耐久性に優れ、風合いを損なわず、優れた防汚機能を持つ高強力耐熱有機繊維を提供できる。そして、本発明にかかる繊維を用いれば、例えば、消防服や手袋などにおいて、耐切創性、防炎性、高温下での寸法安定性に優れ、また、繊維表面が撥水撥油性の薄膜で覆われているので、汚れに難くかつクリーニングが容易であり、さらに、薄膜の膜厚が極めて薄いために、繊維の本来持つ特性、例えば風合いなどを損なうことなく保たれている繊維製品を提供できる。また、本発明によって、高強力耐熱有機繊維の本来持つ特性、例えば風合いなどを損なうことなく、撥水撥油性に由来する高い防汚機能を容易に付与して、上記繊維および上記繊維製品を製造できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength heat-resistant organic fiber having both water repellency and oil repellency and excellent in antifouling property, a fiber product containing the fiber as a constituent element, and a method for producing the fiber product.
[0002]
[Prior art]
It is said that textiles preferably prevent not only hydrophilic stains but also lipophilic stains. Each stain can be prevented by having water repellency for hydrophilic stains and oil repellency for lipophilic stains. For this reason, methods for imparting water repellency and oil repellency to fibers or fiber products have been studied, and some of them have already been put into practical use depending on the use. As a method of imparting the antifouling function derived from such water repellency and oil repellency to a fiber or a textile product, a finishing agent or a coating agent can be used, and specifically, a silicone polymer, a fluorocarbon polymer, Fibers or textiles are immersed in an emulsion or solution of a polyurethane-based polymer, vinyl-based polymer, or a copolymer of these polymers, or a spray containing components such as these polymers is sprayed on and dried to form a film on the fiber surface. And a method of forming a film by polymerizing monomers or oligomers which are precursors of these polymers on the fiber surface has been proposed and used.
[0003]
However, when the above film is coated on the entire surface of the fiber product by these methods, the stain resistance is imparted to the fiber, but the texture originally possessed by the fiber is significantly impaired by the coating. There was such a problem. In particular, when air permeability and moisture permeability are required, it is difficult to obtain a material that meets such requirements due to the coating. It is also possible to individually coat the fibers or fiber bundles that make up the product, but if a polymer dispersion is used, it is not possible to form a film thinner than the particle size of the dispersion. In many cases, the thickness was on the order of several tens of μm or more, and the film strength was not sufficient.
[0004]
Therefore, when individual fibers are coated with these coating agents, the coating film has a certain thickness, which impairs the feel of the fibers and the textile products. There is also a method of forming a thin film by using a solution type coating agent and polymerizing and solidifying a polymer precursor on the fiber surface, but it is difficult to obtain a thin film having sufficient durability.
[0005]
Furthermore, the polymer used for such a coating does not have heat resistance or flame resistance, such as melting or decomposing at high temperatures where the performance of high-strength heat-resistant organic fibers is expected, and sometimes igniting. It is not suitable for applications requiring heat resistance or flame resistance, such as protective clothing. Therefore, there has been a keen demand for a fiber or a fiber product thereof that has excellent heat resistance and durability, does not impair the texture, and has an excellent antifouling function.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-strength heat-resistant organic fiber and a fiber product which have excellent heat resistance and durability, do not impair the texture, and have an excellent antifouling function. Another object is to provide a method for producing the fiber and the fiber product.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that a thin film containing fluorocarbon silane as a main component, preferably a thin film containing a co-condensation polymer of fluorocarbon silane and alkoxysilane, is coated. It has been found that a strong heat-resistant organic fiber has excellent heat resistance and durability, does not impair the texture, and can have an excellent antifouling function. The thin film preferably has a thickness of 1000 nm or less, and the high-strength heat-resistant organic fiber has a strength of 10 to 50 g / D, and is formed of a wholly aromatic polyamide fiber, a wholly aromatic polyester fiber, or a heterocyclic aromatic fiber. It has been found that it is preferably at least one selected from the group consisting of, in particular, paraphenylene terephthalamide fiber.
[0008]
Further, the present inventors have found that a fiber product containing the high-strength heat-resistant organic fiber as a component is excellent in heat resistance and durability, does not impair the texture, and can have an excellent antifouling function. . It has been found that the fiber product is preferably a woven fabric, a knitted fabric, or a nonwoven fabric, and is also preferably a protective clothing cloth, a firefighting suit, or a glove.
[0009]
Further, the present inventors, the above-mentioned high-strength heat-resistant organic fiber or its fiber product, (a) hydrolyzate of fluorocarbon silane, (b) surfactant, (c) alkoxysilane compound and (d) acid or alkali By treating with an aqueous emulsion containing a catalyst and then heat-treating, the above-mentioned fiber or its fiber product has excellent heat resistance and durability, imparts an excellent antifouling function without impairing the texture. I found that I can do it.
After obtaining such various new findings, the present inventors have further studied and completed the present invention.
[0010]
That is, the present invention
(1) high-strength heat-resistant organic fibers coated with a thin film mainly composed of fluorocarbon silane,
(2) The high-strength heat-resistant organic fiber according to (1), wherein the thin film containing fluorocarbonsilane as a main component is a thin film containing a copolycondensate of fluorocarbonsilane and alkoxysilane.
(3) The fiber according to (1) or (2), wherein the thin film has a thickness of 1000 nm or less.
(4) The method according to (1) to (3), wherein the high-strength heat-resistant organic fiber is at least one selected from the group consisting of wholly aromatic polyamide fibers, wholly aromatic polyester fibers, and heterocyclic aromatic fibers. Fiber according to any of the above,
About.
[0011]
Also, the present invention
(5) The fiber according to any one of (1) to (4), wherein the high-strength heat-resistant organic fiber is a paraphenylene terephthalamide fiber.
(6) A fiber product comprising the fiber according to any one of (1) to (5) as a constituent element,
(7) The textile product according to (6), wherein the textile product is a woven fabric, a knitted fabric, or a nonwoven fabric.
(8) The textile product according to (6), wherein the textile product is a protective clothing fabric.
About.
[0012]
Also, the present invention
(9) The textile product according to (6), wherein the textile product is a firefighter suit.
(10) The textile product according to (6), wherein the textile product is a glove.
(11) High strength heat resistant organic fiber or its fiber product
(B) treatment with a hydrolyzate of fluorocarbon silane and, if desired, an aqueous emulsion containing (b) a surfactant, (c) an alkoxysilane compound and (d) an acid or alkali catalyst, followed by heat treatment A method for producing a fiber according to any one of (1) to (5) or a fiber product according to any of (6) to (10),
About.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a high-strength heat-resistant organic fiber covered with a thin film containing fluorocarbonsilane as a main component. More preferably, the present invention relates to a high-strength heat-resistant organic fiber coated with a thin film containing a copolycondensation product of fluorocarbon silane and alkoxy silane. The high-strength heat-resistant organic fiber in the present invention is a fiber that can be coated with a thin film containing fluorocarbon silane as a thin film-forming agent as a main component or a thin film containing a co-condensation polymer of fluorocarbon silane and alkoxysilane as a thin-film forming agent. If there is, it is not particularly limited, and may be a known fiber. In the present invention, fibers having a strength of 10 to 50 g / D and a thermal decomposition temperature of 300 ° C or more are particularly preferable, and fibers having a strength of 15 g / D to 50 g / D and a thermal decomposition temperature of 350 ° C or more are more preferable. Such suitable high-strength heat-resistant organic fibers include, for example, wholly aromatic polyamide fibers, wholly aromatic polyester fibers or heterocyclic aromatic fibers, and the like, and in the present invention, mixed fibers or the like obtained by combining those fibers. It can also be used.
[0014]
The wholly aromatic polyamide fiber may be a known one, and is not particularly limited. Further, the wholly aromatic polyamide fiber is also called an aramid fiber, and can be roughly classified into a para-aramid fiber or a meta-aramid fiber, and both are preferably used in the present invention. In the present invention, these aramid fibers may be produced and used by a known method or a method analogous thereto. The para-aramid fiber used in the present invention may be a known one and is not particularly limited. As the para-aramid fiber, for example, polyparaphenylene terephthalamide fiber (manufactured by DuPont, Toray Dupont, KEVLAR (registered trademark of DuPont)) or paraphenylene terephthalamide-paraphenylene-3,4'- Commercial products such as diphenylene ether terephthalamide copolymer fiber (manufactured by Teijin Limited, trade name: Technora) can be used. Further, the meta-aramid fiber used in the present invention may be a known one, and is not particularly limited. As the meta-aramid fiber, for example, a commercially available product such as polymetaphenylene terephthalamide fiber (manufactured by DuPont in the United States, trade name NOMEX (registered trademark of DuPont)) can be used.
[0015]
The wholly aromatic polyester fiber used in the present invention may be a known one and is not particularly limited. As the wholly aromatic polyester fiber, for example, a self-condensation polymer of parahydroxybenzoic acid, a polyester fiber composed of terephthalic acid and hydroquinone, or a polyester fiber composed of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid is used. Can be. In the present invention, such a wholly aromatic polyester fiber can be produced and used by a known method or a method analogous thereto. In the present invention, a commercially available product such as Vectran (trade name, manufactured by Kuraray Co., Ltd.) can also be used as the wholly aromatic polyester fiber.
[0016]
The heterocyclic aromatic fiber used in the present invention may be a known one, and is not particularly limited. As the heterocyclic aromatic fiber, for example, polyparaphenylene benzobisthiazole fiber, polyparaphenylene benzobisoxazole fiber (hereinafter, referred to as PBO fiber), polybenzimidazole fiber, or the like can be used. In the present invention, such a heterocyclic aromatic fiber may be produced by a known method or a method analogous thereto. In the present invention, as the heterocyclic aromatic fiber, for example, a commercially available PBO fiber (manufactured by Toyobo Co., Ltd., trade name: Zylon) can be used.
[0017]
The high-strength heat-resistant organic fiber is appropriately selected according to the use of the final product, required performance, fiber manufacturing cost, product processing cost, and the like. In the present invention, the KEVLAR, which is excellent in stability against dimensional change at a high temperature causing peeling of a thin film, has no melting point or softening point, has excellent heat resistance, and is relatively inexpensive and versatile, It is particularly preferable to use an aramid fiber made of a para-type homopolymer known as a trade name of DuPont (registered trademark) or Twaron (manufactured by Teijin Twaron) as the high-strength heat-resistant organic fiber.
[0018]
The fiber product in the present invention is not particularly limited as long as it is a thin film containing fluorocarbon silane as a main component, preferably a thin film containing a copolycondensation product of fluorocarbon silane and alkoxysilane, and contains a fiber coated. Examples of the fiber product include a nonwoven fabric in a broad sense including yarn, cotton, woven fabric, knitted fabric, felt, paper or the like obtained by primary processing of fibers, or ropes or cords. In addition, these primary products are used alone or in combination, and the final products from the secondary products processed with a combination including other materials such as resin and metal are also used as the above-mentioned textile products. Can be used. In the present invention, the textile is preferably a woven fabric, a knitted fabric, or a nonwoven fabric, and particularly preferably a protective clothing fabric, a firefighting suit, or a glove.
[0019]
In the present invention, the above-mentioned high-strength heat-resistant organic fiber or the above-mentioned fiber product can be obtained by adding (i) a hydrolyzate of fluorocarbon silane, optionally (ii) a surfactant, (iii) an alkoxysilane compound and (ii) an acid or alkali catalyst. Is coated with a thin film containing a copolycondensate of fluorocarbon silane and alkoxy silane (that is, a thin film is formed on the surface). Strong heat resistant organic fibers or fiber products can be manufactured.
[0020]
The aqueous emulsion can be prepared using a fluorocarbon silane and, if desired, a surfactant, a catalyst and an alkoxysilane. In the present invention, a surfactant having a weight ratio of 0.1 to 1 based on the total weight of the fluorocarbon silane and the fluorocarbon silane are used, and the content of the fluorocarbon silane is 0.1 to 20% by weight based on the total weight of the emulsion. It is preferably dispersed in water so as to have a concentration of 1 to 10% by weight, and an acid or alkali catalyst is added to the aqueous dispersion thus prepared. It is preferable to add an alkoxysilane in an amount of 0.4 to 0.6 mole fraction, and to stir gently to prepare an emulsion. At this time, in order to obtain a uniform and strong thin film having a thickness of 1000 nm or less, it is preferable to suppress the self-condensation reaction of fluorocarbon silane and / or alkoxysilane as much as possible. For that purpose, it is preferable that the mixture is sufficiently stirred, and it is preferable to avoid that the addition rate of the fluorocarbon silane and the alkoxysilane is too high.
[0021]
The fluorocarbon silane has the formula
Rf− (CH2)p-Si {-(O-CH2CH2)n-OR13(1)
(RfIs a perfluoroalkyl group having 3 to 18 carbon atoms or a mixture thereof;1Is the same or different alkyl group having 1 to 3 carbon atoms, and p = 2 to 4 and n = 2 to 10. )
At least one hydrolyzable fluorocarbon silane represented by In the present invention, more preferably, RfIs a mixed perfluoroalkyl group having an average of 8 to 12 carbon atoms;1Is a methyl group and p = 2 and n = 2-4. More preferably, n = 2-3. More specifically, when n is 2, perfluoroalkylethyltris (2- (2-methoxyethoxy) ethoxy) silane, or when n is 3, (2- (2- (2-methoxy Ethoxy) ethoxy) ethoxy) silane is particularly preferred in the present invention. In the present invention, such a fluorocarbon silane can be produced by a known method. Further, in the present invention, two or more kinds of fluorocarbon silanes can be used as a mixture.
[0022]
Further, as the alkoxysilane, an organosilicon compound having two or more alkoxy groups in a molecule or a partial condensate thereof is used.
Si (R)4(2)
(R is OCH3, OCH2CH3, And (OCH2CH2)mOCH3One or more groups selected from the group consisting of (m = 1 to 10). ), Represented by the formula
R2 nSi (OR3)4-n        (3)
(R2Is an alkyl group having 1 to 10 carbon atoms, and a plurality of R3Is an identical or different alkyl group having 1 to 3 carbon atoms, and n = 1 to 3). R2May be substituted with an appropriate substituent such as an amino group, an epoxy group, a vinyl group, a methacryloxy group, a thiol group, a urea group or a mercapto group. More specifically, for example, dimethyldimethoxysilane, methyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) 3-aminopropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane or These mixtures and partial condensates thereof are exemplified.
[0023]
As the catalyst, an acid or an alkali can be appropriately used. Such an acid or alkali is not particularly limited, and may be a known one. As the acid, for example, phosphoric acid, boric acid, hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid or the like can be used. Further, as the alkali, for example, ammonia, pyridine, sodium hydroxide, potassium hydroxide, or the like can be used. In the present invention, it is particularly preferable to use hydrochloric acid or phosphoric acid as a catalyst.
[0024]
Any surfactant may be used as long as it stabilizes the emulsion, and anionic, cationic, nonionic, amphoteric or other known surfactants can be used, and are not particularly limited. . Preferably, a nonionic type is used.f'-CH2CH2-O- (CH2CH2O)11-H (Rf'Is a nonionic surfactant which is a perfluoroalkyl group having 3 to 18 carbon atoms. ) And the like.
[0025]
In the present invention, if desired, various additives such as inorganic or organic fillers, antioxidants, heat stabilizers, ultraviolet absorbers, etc., as well as lubricants, waxes, coloring agents or crystallization accelerators, etc. may be used alone. May be used in plural combinations.
[0026]
The above-prepared emulsion is used as it is, or the emulsion obtained by diluting the above-mentioned emulsion with water as required to a desired concentration is applied to the fiber or fiber product of the present invention by a respective processing process such as impregnation, application or spraying. To 200 ° C. to 400 ° C., more preferably at a temperature of 250 ° C. or more, and not only hydrolysis of fluorocarbon silane or hydrolysis of fluorocarbon silane and hydrolysis of alkoxysilane And the copolycondensation of the hydrolyzate can be completed. In this process, a thin film containing a copolycondensate of fluorocarbon silane and alkoxy silane can be formed. The baking temperature or baking time is preferably set under optimum conditions in consideration of the heat resistance of the target fiber or fiber product or the economics of processing so that the thin film can be completely cured. In the present invention, a suitable baking temperature or baking time varies depending on a fiber or a fiber product. In the case of polyparaphenylene terephthalamide fiber, after the emulsion is attached, the baking temperature is about 250 ° C. and the baking time is about 30 minutes. It is particularly preferable to set. The weight ratio of the copolycondensate covering the surface of the high-strength fiber with respect to the weight of the high-strength heat-resistant organic fiber is expressed in a dry state after firing, and is referred to as a thin film forming agent application rate, and is usually 0.1 to 10%. %.
[0027]
The thickness of the thin film is a calculated value calculated from the thin film forming agent application rate as a perfect circle since the cross section of the fiber is generally a perfect circle. For example, when the rate of applying the thin film forming agent (to the weight of the fiber) is 2% and the weight of the fabric is 16.7 g, the weight of the coating layer is 16.7 × 0.02 = 0.334 g, which is used in the present invention. When the single-fiber fineness of the KEVLAR (DuPont registered trademark) yarn is 1.67 dtx, the KEVLAR (DuPont registered trademark) yarn length is 100,000 m, and the fiber cross section of the KEVLAR (DuPont registered trademark) yarn is 12 μm in diameter, Assuming that the fiber cross section is a perfect circle, the surface area is about 3.7680 m.2(37680cm2). A specific gravity of about 2 (g / cm) at the time of drying the above-mentioned3Assuming that the thin film is uniformly coated, the thickness becomes 44.3 nm.
[0028]
In the present invention, before applying the above-mentioned emulsion treatment to the fiber or the fiber product, an oil agent or the like may be removed from the fiber surface by scouring or solvent washing as necessary. After the firing of the thin film is completed, washing or the like for removing the remaining catalyst or surfactant may be performed, or the above-mentioned various additives may be appropriately used.
[0029]
Further, in the present invention, in addition to using a high-strength heat-resistant organic fiber containing fluorocarbon silane as a main component, preferably a co-condensed polymer of fluorocarbon silane and alkoxysilane, preferably coated with a thin film of preferably 1000 nm or less. The present invention provides a fabric made of the above-described high-strength heat-resistant organic fiber, or a textile product such as protective clothing made of the fabric or protective gloves directly knitted from the fiber, treated with the above-described co-condensate. The above-mentioned thin film can be formed on the surface of the fiber constituting the textile product. The thin film is formed on a fiber surface or a fiber product surface, even if the thin film is partially formed on the fiber surface or the fiber product surface, in the present invention, the fiber or the fiber coated with the thin film It is a textile product.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
[0031]
As fluorocarbon silane, Rf− (CH2)2-Si {-(O-CH2CH2)2-OCH33And RfIs F (CF2)kA mixture of perfluoroalkyls (k = 6, 1-2% by weight; k = 8, 62-64% by weight; k = 10, 23-30% by weight; k = 12-18, 2-6% by weight) Was used.
As a surfactant, Rf'-CH2CH2-O- (CH2CH2O)11-Hf'Used a nonionic surfactant which is a perfluoroalkyl group having 3 to 18 carbon atoms.
Further, as the organoalkoxysilane, methyltrimethoxysilane (CH3) Si (OCH3)3Was used.
[0032]
(Example 1)
(Preparation of fluorocarbon silane / alkoxy silane emulsion)
A surfactant in an amount of 30 parts by weight with respect to 100 parts by weight of the fluorocarbon silane was dissolved in water. Then, 2.5% by weight of fluorocarbon silane based on the total weight of the aqueous emulsion thus obtained is slowly added with stirring by a conventional stirring technique to suppress self-condensation of fluorocarbon silane, Was kept in a hydrolyzed state. Next, phosphoric acid was added while measuring the pH of the emulsion with a pH meter, and the addition was stopped when the pH reached 3. Further, methyltrimethoxysilane (CH) is added so that the molar fraction of the organoalkoxysilane with respect to the fluorocarbonsilane becomes 0.45.3) Si (OCH3)3And stirred for 4 hours to prepare a fluorocarbon silane / alkoxy silane emulsion.
[0033]
(Textile processing)
Short-fiber spun yarn of 295 dtx (single yarn fineness: 1.67 dtex) of polyparaphenylene terephthalamide fiber (trade name: KEVLAR (registered trademark of Dupont)) manufactured by Toray Dupont Co., Ltd. It was supplied to a 10-gauge type glove knitting machine (manufactured by Shima Seiki Seisakusho) to knit 10-gauge gloves. The obtained gloves were subjected to ordinary washing with a commercially available neutral detergent and dried. Next, the glove was immersed in the prepared fluorocarbon silane / alkoxy silane emulsion and squeezed lightly by hand to adjust the application rate of the emulsion liquid non-volatile content to the glove to 1%. The film thickness was 22 nm as determined by a calculation value calculated from the application ratio of the thin film forming resin, assuming that the cross section of the fiber was a perfect circle. The glove was left in an oven at 250 ° C. for 30 minutes to bake and cure the coated film. After taking out of the oven and cooling to room temperature, it was washed with lukewarm water and air-dried. The treated gloves did not change in texture and appearance compared to before the treatment, but when sprayed on the gloves after treatment, water droplets scattered and markedly different in water repellency compared to the gloves before treatment. Was observed.
[0034]
(Example 2)
(Processing of woven fabric products)
Using KEVLAR29 (DuPont registered trademark) fiber manufactured by Toray Dupont Co., Ltd. consisting of 2,000 filaments and having a single yarn fineness of 1.67 dtx, weaving density 17.5 / 25 mm, weft 16.8 / 25 mm, weight 444 g / m2Was produced. A 5 cm square of the woven fabric was immersed in the fluorocarbon silane / alkoxy silane emulsion prepared in the example for 5 minutes, pulled up, and adjusted so that the application ratio of the emulsion liquid non-volatile content to the gloves was 1%. The woven fabric was left in an oven at 250 ° C. for 30 minutes to sinter and cure the coat film. The thickness of the film was about 22 nm as in Example 1.
[0035]
(Test example)
(1) Water and oil repellency
2 μl of pure water and hexadecane were respectively dropped on the surface of the cured woven fabric obtained in Example 2, and the contact angle was measured with a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd.). The measurement results are shown in Table 1 below.
[0036]
As a comparative example, 2 μl of pure water and hexadecane were respectively dropped on the surface of the woven fabric produced by the method described in Example 2 but not treated with the fluorocarbon silane / alkoxysilane emulsion, and the contact angle was measured. . Table 1 shows the measurement results.
[0037]
[Table 1]
Figure 2004076231
Comparing the woven fabric of Example 2 with the woven fabric of the comparative example, when untreated, water / hexadecane soaked and the contact angle could not be measured. Example 2 showed high water and oil repellency.
[0038]
(2) Heat resistance
The treated woven fabric was placed in an oven at 250 ° C., and after a lapse of time shown in Table 2, the contact angle was measured. Table 2 shows the measurement results.
[0039]
[Table 2]
Figure 2004076231
In Example 2, it can be seen that high water repellency is maintained even after 24 hours at 250 ° C.
[0040]
(3) Antifouling property
On the treated and untreated woven fabrics, automobile engine oil (engine oil actually after traveling about 1000 km by automobile) was dropped at three places by a dropper and left for 1 hour. A laundry detergent (Attack, manufactured by Kao Corporation) was dissolved in tap water to a standard usage amount of 0.083% by weight. The woven fabric to which the engine oil was dropped was put into a synthetic detergent aqueous solution, stirred for 5 minutes, and then poured with tap water for 1 minute. As a comparison of appearance at this time, oil stains soaked in the untreated product did not disappear even after washing, whereas the stains in the treated product were completely eliminated. Further, the fabric after washing maintained sufficient water repellency.
[0041]
【The invention's effect】
According to the present invention, it is possible to provide a high-strength heat-resistant organic fiber which has excellent heat resistance and durability, does not impair the texture, and has an excellent antifouling function. And, if the fiber according to the present invention is used, for example, in firefighting clothes and gloves, cut resistance, flame resistance, excellent dimensional stability under high temperature, and the fiber surface is a water- and oil-repellent thin film. Because it is covered, it is hard to be stained and easy to clean.Furthermore, since the thickness of the thin film is extremely thin, it is possible to provide a fiber product which is maintained without impairing the inherent properties of the fiber, for example, texture. . Further, according to the present invention, the above-mentioned fibers and the above-mentioned fiber products are produced by easily imparting a high antifouling function derived from water- and oil-repellency without impairing the inherent properties of the high-strength heat-resistant organic fibers, for example, texture. it can.

Claims (11)

フルオロカーボンシランを主成分とする薄膜で被覆されている高強力耐熱有機繊維。High-strength, heat-resistant organic fiber coated with a thin film containing fluorocarbon silane as a main component. フルオロカーボンシランを主成分とする薄膜がフルオロカーボンシランとアルコキシシランの共縮重合物を含有する薄膜であることを特徴とする請求項1に記載の高強力耐熱有機繊維。The high-strength heat-resistant organic fiber according to claim 1, wherein the thin film containing fluorocarbon silane as a main component is a thin film containing a copolycondensate of fluorocarbon silane and alkoxysilane. 薄膜が、厚さ1000nm以下であることを特徴とする請求項1又は2に記載の繊維。The fiber according to claim 1 or 2, wherein the thin film has a thickness of 1000 nm or less. 高強力耐熱有機繊維が、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維またはヘテロ環芳香族繊維からなる群から選ばれる1以上であることを特徴とする請求項1〜3のいずれかに記載の繊維。The high-strength heat-resistant organic fiber is at least one selected from the group consisting of a wholly aromatic polyamide fiber, a wholly aromatic polyester fiber and a heterocyclic aromatic fiber, according to any one of claims 1 to 3, wherein fiber. 高強力耐熱有機繊維が、パラフェニレンテレフタルアミド繊維であることを特徴とする請求項1〜4のいずれかに記載の繊維。The fiber according to any one of claims 1 to 4, wherein the high-strength heat-resistant organic fiber is a paraphenylene terephthalamide fiber. 請求項1〜5のいずれかに記載の繊維を構成要素として含んでいることを特徴とする繊維製品。A fiber product comprising the fiber according to any one of claims 1 to 5 as a constituent element. 繊維製品が織物、編物または不織布であることを特徴とする請求項6記載の繊維製品。The textile product according to claim 6, wherein the textile product is a woven fabric, a knitted fabric, or a nonwoven fabric. 繊維製品が、防護衣料用布帛であることを特徴とする請求項6記載の繊維製品。The textile product according to claim 6, wherein the textile product is a cloth for protective clothing. 繊維製品が、消防服であることを特徴とする請求項6に記載の繊維製品。The textile product according to claim 6, wherein the textile product is a firefighting suit. 繊維製品が、手袋であることを特徴とする請求項6に記載の繊維製品。The textile product according to claim 6, wherein the textile product is a glove. 高強力耐熱有機繊維またはその繊維製品を、
(イ)フルオロカーボンシランの加水分解物、所望によりさらに、(ロ)界面活性剤、(ハ)アルコキシシラン化合物及び(ニ)酸又はアルカリ触媒
を含有してなる水性エマルジョンで、処理し、ついで加熱処理することを特徴とする請求項1〜5のいずれかに記載の繊維又は請求項6〜10のいずれかに記載の繊維製品の製造方法。
High-strength heat-resistant organic fiber or its fiber products,
(A) treatment with a hydrolyzate of fluorocarbon silane and, if desired, an aqueous emulsion containing (b) a surfactant, (c) an alkoxysilane compound and (d) an acid or alkali catalyst, followed by heat treatment A method for producing a fiber according to any one of claims 1 to 5 or a fiber product according to any one of claims 6 to 10.
JP2002241122A 2002-08-21 2002-08-21 Heat resistant organic fiber having high strength, excellent in water repellent, oil repellent and soil-preventing properties, fibrous product of the same and method for roducing them Pending JP2004076231A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002241122A JP2004076231A (en) 2002-08-21 2002-08-21 Heat resistant organic fiber having high strength, excellent in water repellent, oil repellent and soil-preventing properties, fibrous product of the same and method for roducing them
US10/644,237 US20040034941A1 (en) 2002-08-21 2003-08-20 Organic fibers and textile products
AU2003265594A AU2003265594A1 (en) 2002-08-21 2003-08-21 Organic fibers and textile products
CA002496263A CA2496263A1 (en) 2002-08-21 2003-08-21 Organic fibers and textile products
KR1020057002811A KR20060031792A (en) 2002-08-21 2003-08-21 Organic fibers and textile products
EP03793284A EP1540070A2 (en) 2002-08-21 2003-08-21 Organic fibers and textile products
TW092123033A TW200415283A (en) 2002-08-21 2003-08-21 Organic fibers and textile products
PCT/US2003/026329 WO2004018758A2 (en) 2002-08-21 2003-08-21 Organic fibers and textile products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241122A JP2004076231A (en) 2002-08-21 2002-08-21 Heat resistant organic fiber having high strength, excellent in water repellent, oil repellent and soil-preventing properties, fibrous product of the same and method for roducing them

Publications (1)

Publication Number Publication Date
JP2004076231A true JP2004076231A (en) 2004-03-11

Family

ID=31884540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241122A Pending JP2004076231A (en) 2002-08-21 2002-08-21 Heat resistant organic fiber having high strength, excellent in water repellent, oil repellent and soil-preventing properties, fibrous product of the same and method for roducing them

Country Status (3)

Country Link
US (1) US20040034941A1 (en)
JP (1) JP2004076231A (en)
TW (1) TW200415283A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517181A (en) * 2004-10-19 2008-05-22 サザンミルズ インコーポレイテッド Blended outer shell fabric
JP2008138109A (en) * 2006-12-04 2008-06-19 Kazufumi Ogawa Water-repelling, oil-repelling and stainproofing liquid and method for producing the same, and water-repelling, oil-repelling and stainproofing method using the same
JP2009097125A (en) * 2007-10-18 2009-05-07 Teijin Techno Products Ltd Fiber structure having excellent cut resistance and method for producing the same
JP2009114559A (en) * 2007-11-02 2009-05-28 Kazufumi Ogawa Water-repellent and oil-repellent stain-resistant apparel product and method for producing the same
JP2009203584A (en) * 2008-02-28 2009-09-10 Tomoegawa Paper Co Ltd Water-repellent porous form
KR20160112171A (en) * 2015-03-18 2016-09-28 (주)오로피노 Fabric using high strength heat-resisting fiber and its manufacturing method
JP2018031085A (en) * 2016-08-23 2018-03-01 本田技研工業株式会社 Method for producing fabric
KR102002532B1 (en) * 2018-02-20 2019-07-22 주식회사 범양글러브 Golf groves and manufacturing method thereof
CN111155223A (en) * 2020-01-10 2020-05-15 张威劲 Preparation method of high-strength flame-retardant fabric

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465764B2 (en) * 2004-06-18 2008-12-16 Ocv Intellectual Captial, Llc Epoxy sizing composition for filament winding
US8129018B2 (en) * 2004-06-18 2012-03-06 Ocv Intellectual Capital, Llc Sizing for high performance glass fibers and composite materials incorporating same
KR101966263B1 (en) 2011-01-19 2019-04-08 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
US9932484B2 (en) 2011-01-19 2018-04-03 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces and biological applications thereof
US9706804B1 (en) 2011-07-26 2017-07-18 Milliken & Company Flame resistant fabric having intermingled flame resistant yarns
AU2013289879B2 (en) 2012-07-12 2017-04-06 President And Fellows Of Harvard College Slippery self-lubricating polymer surfaces
WO2014012039A1 (en) 2012-07-13 2014-01-16 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces having improved stability
US20150210951A1 (en) * 2012-07-13 2015-07-30 President And Fellows Of Harvard College Multifunctional repellent materials
EP2969258A4 (en) 2013-03-13 2016-11-30 Harvard College Solidifiable composition for preparation of liquid-infused slippery surfaces and methods of applying
CN109023921A (en) * 2018-09-11 2018-12-18 南通大学 One kind being based on TiO2The preparation method of the bionic super-hydrophobic kevlar fabric of nanotube
TWI807540B (en) * 2021-12-16 2023-07-01 臺灣塑膠工業股份有限公司 Fiber composite and method for producing the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648904A (en) * 1986-02-14 1987-03-10 Scm Corporation Aqueous systems containing silanes for rendering masonry surfaces water repellant
DE3613384C1 (en) * 1986-04-21 1988-01-07 Wacker Chemie Gmbh Aqueous emulsions of organopolysiloxane and the use of such emulsions
US4990377A (en) * 1988-05-02 1991-02-05 Pcr Group, Inc. Buffered silane emulsions having low volatile organic compounds when cured
DE4029640A1 (en) * 1990-09-19 1992-03-26 Goldschmidt Ag Th PREPARATION FOR WATER REPELLENT IMPREGNATION OF POROESER MINERAL BUILDING MATERIALS
DE4118184A1 (en) * 1991-06-03 1992-12-10 Inst Neue Mat Gemein Gmbh COATING COMPOSITIONS BASED ON FLUORIC INORGANIC POLYCONDENSATES, THEIR PRODUCTION AND THEIR USE
US5274159A (en) * 1993-02-18 1993-12-28 Minnesota Mining And Manufacturing Company Destructable fluorinated alkoxysilane surfactants and repellent coatings derived therefrom
US5442011A (en) * 1994-03-04 1995-08-15 E. I. Du Pont De Nemours And Company Polymeric fluorocarbon siloxanes, emulsions and surface coatings thereof
US5550184A (en) * 1994-03-04 1996-08-27 E. I. Du Pont De Nemours & Company Hydrolyzed silane emulsions and their use as surface coatings
DE4418308A1 (en) * 1994-05-26 1995-11-30 Bayer Ag Aq. self-crosslinking compsn. contg. alkoxy:silane with per:fluoroalkyl gps.
JP3196621B2 (en) * 1995-04-20 2001-08-06 信越化学工業株式会社 Water-soluble surface treatment agent
JP3211656B2 (en) * 1996-03-18 2001-09-25 信越化学工業株式会社 Water-soluble fiber treating agent and method for producing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008517181A (en) * 2004-10-19 2008-05-22 サザンミルズ インコーポレイテッド Blended outer shell fabric
JP2008138109A (en) * 2006-12-04 2008-06-19 Kazufumi Ogawa Water-repelling, oil-repelling and stainproofing liquid and method for producing the same, and water-repelling, oil-repelling and stainproofing method using the same
JP2009097125A (en) * 2007-10-18 2009-05-07 Teijin Techno Products Ltd Fiber structure having excellent cut resistance and method for producing the same
JP2009114559A (en) * 2007-11-02 2009-05-28 Kazufumi Ogawa Water-repellent and oil-repellent stain-resistant apparel product and method for producing the same
JP2009203584A (en) * 2008-02-28 2009-09-10 Tomoegawa Paper Co Ltd Water-repellent porous form
KR20160112171A (en) * 2015-03-18 2016-09-28 (주)오로피노 Fabric using high strength heat-resisting fiber and its manufacturing method
KR101661910B1 (en) 2015-03-18 2016-10-04 (주)오로피노 Fabric using high strength heat-resisting fiber and its manufacturing method
JP2018031085A (en) * 2016-08-23 2018-03-01 本田技研工業株式会社 Method for producing fabric
KR102002532B1 (en) * 2018-02-20 2019-07-22 주식회사 범양글러브 Golf groves and manufacturing method thereof
CN111155223A (en) * 2020-01-10 2020-05-15 张威劲 Preparation method of high-strength flame-retardant fabric
CN111155223B (en) * 2020-01-10 2021-10-22 台州市凯达利塑纺有限公司 Preparation method of high-strength flame-retardant fabric

Also Published As

Publication number Publication date
US20040034941A1 (en) 2004-02-26
TW200415283A (en) 2004-08-16

Similar Documents

Publication Publication Date Title
JP2004076231A (en) Heat resistant organic fiber having high strength, excellent in water repellent, oil repellent and soil-preventing properties, fibrous product of the same and method for roducing them
JP7107230B2 (en) Treatment agent for fiber treatment, fiber and method for producing the same, and fiber sheet and method for producing the same
TR201809401T4 (en) Process for dyeing fabric wrap using denim fabric with fire resistant properties and indigo blue dye.
TW200400299A (en) Compound material composed of heat-resistant fiber and siloxane polymer
JP2009530511A (en) Fabrics containing ceramic particles and methods for their production
US3810775A (en) Process for making fibrous material water-repellent
JP2018184692A (en) Water-repellent fabric and method for producing the same
JP2009525408A (en) Novel textile surface impregnation method
WO2007092639A2 (en) Coated fabrics with increased abrasion resistance
JP4622530B2 (en) Pollen adhesion prevention fiber structure
JP5506265B2 (en) Textile treatment agent, antibacterial and antifungal fiber product manufacturing method
JP3862267B2 (en) Composite composed of heat-resistant fiber and siloxane polymer
JP2004263360A (en) Method for producing hydrophobically finished aramid fabric and use thereof
TWI642733B (en) Composition of fluorine-free water repellent, fluorine-free water repellent element and fluorine-free water repellent yarn
JP4391379B2 (en) Water-repellent high-strength synthetic fiber structure and water-repellent processing method
JP3740437B2 (en) Textile processing agent having pollen adhesion prevention function, processing method and fiber structure
KR101170206B1 (en) Complex Agent For Wool Containing Textiles And Finishing Method Using Thereby
JP4628952B2 (en) Fiber deepening agent, deepening method and fiber
KR20060031792A (en) Organic fibers and textile products
JP2006514165A (en) Organic fiber and textile products
JP2007247089A (en) Fiber structure
CN109252360A (en) A kind of preparation method of super-hydrophobic textile fabric
JPH0681271A (en) Production of water-and oil-repellent cloth
JP6069721B1 (en) Sewing thread, protective material, protective clothing and protective equipment using the sewing thread
JPH09279480A (en) Smoothened polyester fiber and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070911