JP2004072927A - Controlling device of motor-operated vehicle - Google Patents

Controlling device of motor-operated vehicle Download PDF

Info

Publication number
JP2004072927A
JP2004072927A JP2002230703A JP2002230703A JP2004072927A JP 2004072927 A JP2004072927 A JP 2004072927A JP 2002230703 A JP2002230703 A JP 2002230703A JP 2002230703 A JP2002230703 A JP 2002230703A JP 2004072927 A JP2004072927 A JP 2004072927A
Authority
JP
Japan
Prior art keywords
input
battery
output
internal resistance
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002230703A
Other languages
Japanese (ja)
Other versions
JP4172222B2 (en
Inventor
Tsuyoshi Sodeno
袖野 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002230703A priority Critical patent/JP4172222B2/en
Publication of JP2004072927A publication Critical patent/JP2004072927A/en
Application granted granted Critical
Publication of JP4172222B2 publication Critical patent/JP4172222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately diagnose the deteriorating degree of a battery. <P>SOLUTION: A control device of a motor-operated vehicle includes the battery, and a motor receiving a power from the battery for driving the vehicle and regeneratively generating to supply a power to the battery. The control device judges a plurality of I/O patterns in which at least one of an I/O power or an I/O time of the battery is different (S1). When the I/O in response to the judged specific I/O pattern (a) is finished, current Ia, a voltage Va and SOC (state of change) of the battery at its ending time are detected (S5, S6), an internal resistance value Ra is calculated based on these detected values (S7), an internal resistance deterioration coefficient Ka is obtained based on this Ra (S9), and the deteriorating degree of the battery is diagnosed based on this Ka (S10). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車両駆動用のモータ(モータジェネレータを含む)及びバッテリ(電源,電池,キャパシタ等を含む)を備えた電動車両の制御装置に関し、特に、バッテリの劣化度合いを診断する技術に関する。
【0002】
【従来の技術】
周知のように、電気自動車やハイブリッド車両のように、車両推進源としてモータを利用する電動車両では、このモータと電力の授受を行うバッテリが搭載されている。このようなバッテリの劣化度合いを診断する技術が従来より提案されている。
【0003】
例えば、特開2000−125415号公報には、バッテリの電流及び電圧に基づいて開放電圧及び内部抵抗を求め、これらの値と最低保証電圧から最大出力(パワー)を求め、この値と初期基準値との比率から劣化率を求め、この劣化率に基づいてバッテリの劣化度合いを診断する技術が開示されている。
【0004】
特開2000−270408号公報には、通常の車両運転状態とは異なる特別な診断モードを備え、この診断モードでは診断のために充放電を行い、その充放電中に幾つかの蓄電量における電流及び電圧を逐次記憶し、それらのデータに基づいて蓄電量毎の内部抵抗を求め、これら内部抵抗と初期データとの比較に基づいて劣化を診断する技術が開示されている。
【0005】
特開平8−336202号公報には、通常走行中の電流及び電圧をサンプリングし、これらのサンプリング値を直線回帰演算して内部抵抗を求め、この値と新品時の内部抵抗値との比較により劣化を診断する技術が開示されている。
【0006】
【発明が解決しようとする課題】
車両運転状態に応じてバッテリの入出力電力や入出力時間等の入出力パターンは変化し、この入出力パターンに応じて内部抵抗も変化する。従って、上記の特開2000−125415号公報等のように、バッテリの入出力パターンを考慮せずに内部抵抗を求めた場合、正確な内部抵抗を得ることがことができず、ひいては劣化度合いの診断精度の低下を招くおそれがある。
【0007】
また、特開2000−270408号公報のように、特別な診断モードを行うものでは、劣化診断に要する時間が長く、かつ、通常の運転中でのバッテリの劣化を即座にフィードバック(反映)できないので、劣化診断に基づく入出力の制限(フェイルセーフ)を迅速に行うことができない。
【0008】
特開平8−336202号公報では、通常の運転中に劣化度合いを診断して警告を発するものの、劣化時の入出力の制限(フェールセーフ)については記載されていない。このため、警告とならない程度の軽微な劣化の場合には新品時と同じ入出力制御が行われることとなり、所望の入出力が得られなかったり、過充電や過放電を招くおそれがある。
【0009】
【課題を解決するための手段】
本発明は、このような課題に鑑みてなされたものである。本発明に係る制御装置は、バッテリと、このバッテリから電力の供給を受けて車両を駆動するとともに、回生発電を行ってバッテリへ電力を供給するモータと、を備える電気自動車やハイブリッド車のような電動車両に適用される。そして、バッテリの入出力電力又は入出力時間の少なくとも一方が異なる複数の入出力パターンを判別する判別手段と、各入出力パターン毎に、バッテリの劣化度合いを診断する診断手段と、を有することを特徴としている。
【0010】
【発明の効果】
本発明によれば、複数の入出力パターンを判別し、各入出力パターン毎に劣化度合いを診断しているため、入出力パターンに応じた正確な劣化診断を行うことができる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施の形態を説明する。図1は、この発明の一実施例に係る電動車両の制御装置を示す概略構成図である。図において、二重線はパワートレインの動力伝達経路を表し、太線は強電系(例えば42V系)の電力線を表し、細線は制御系の信号線を表している。
【0012】
この電動車両は、車両推進源としてエンジン1とモータ2とを併用するハイブリッド車両である。モータ2はエンジン1の出力軸に直結されており、このモータ2と車軸とを結ぶパワートレインに、自動変速機3や図示せぬトルクコンバータ等が設けられている。自動変速機3は、例えば周知の遊星歯車機構を利用した有段変速機、あるいはトロイダル式やベルト式の無段変速機である。
【0013】
モータ2は、インバータ(図示省略)を介して電力の授受を行う強電(例えば42V)系のバッテリ4に接続され、力行運転及び回生(発電)運転の双方が可能な三相交流型のモータジェネレータであり、エンジン始動時にはバッテリ4から供給される電力により力行運転を行ってエンジンを回転駆動し、制動時や回生時には回生発電を行ってバッテリ4へ電力を供給し、バッテリ4を充電する。
【0014】
バッテリ4とモータ2とを接続する強電系回路には、ON−OFFを切り換えるメインリレー5や、バッテリ4の電圧・電流を検出する電圧センサ6及び電流センサ7が設けられる。また、この強電系回路には、電動パワーステアリング8のような強電系の補機類が接続されるとともに、DC/DCコンバータ9を介して弱電系(例えば14V系)のバッテリや補機類等(図示省略)が接続される。
【0015】
CPU,ROM,RAM等を備え、様々な制御処理を記憶及び実行する制御装置(マイクロコンピュータシステム)として、エンジンコントロールユニット11と、モータコントローラ12と、バッテリ4の蓄電量(SOC)を演算・検出するバッテリコントローラ13と、車両全体の動作を制御する車両コントローラ14と、が設けられている。この車両コントローラ14は、上記の各種センサ類等により検出・演算される車両運転状態に基づいて、エンジンコントロールユニット11やバッテリコントローラ13へ指令信号を出力する。この指令信号を受けて、エンジンコントロールユニット11は燃料噴射制御や点火時期制御等のエンジン制御を行い、モータコントローラ12はモータ2のトルクや回転数を制御する。
【0016】
図2は、本実施例に係る制御の流れを示すフローチャートである。このプログラムは、通常走行中には所定時間毎、例えば10ms毎に実行される。
【0017】
S(ステップ)1では、各種センサ類から得られる車両運転状態や車両要求等に基づいて、バッテリ4の電力の入出力要求が予め設定された複数の入出力パターンのいずれかに該当するかを判別する(判別手段)。言い換えると、バッテリの入出力形態が異なる複数の車両運転条件のいずれかに該当するかを判別する。該当する入出力パターン(又は車両運転条件)がなければ本プログラムを終了し、該当するパターンが存在すれば、その入出力パターンに対し、後述するS2以降の処理を実行する。
【0018】
複数の入出力パターンは、バッテリへの入出力電力又は入出力時間の少なくとも一方が異なるように予め選定されている。一例として、この実施例では、入出力パターンを、例えば、信号待ち等でエンジンを自動停止するアイドルストップ状態から短時間でエンジンを自動再始動する即始動パターンa、上記のアイドルストップ状態である程度時間が経過した後にエンジンを自動再始動する始動待ちパターンb、急加速時のようにエンジン出力に加えてモータ駆動力を付与するアシストパターンc、エンジンによりモータを駆動して発電を行う発電パターンd、制動時等で車両走行エネルギーをモータにより回生する回生パターンeの5つのパターンに分類している。
【0019】
S2では、後述する図3の入出力可能パワーの演算用のサブルーチンが実行される。続くS3では、S1で判別された特定の入出力パターンに応じた実際のバッテリの電力の入出力を行う。言い換えると、特定の入出力パターンに応じた入出力を実際に行う前に、後述する入出力可能パワー演算ルーチンを実行し、必要に応じて入出力の制限を行うようにしている。
【0020】
例えば、即始動パターンaでは約8KW×0.2s(秒)の出力、始動待ちパターンbでは約8KW×1.5sの出力、アシストパターンcでは約10KW×5sの出力、発電パターンdでは約10KW×30sの入力、回生パターンeでは約10KW×5sの入力、が行われる。始動待ちパターンbでは、即始動パターンaに比して、吸気負圧が大きい(大気圧に近い)ので、エンジンのオーバーシュートを抑制するために入出力時間を相対的に長く設定している。なお、車両運転状態に応じて上記の入出力電力(KW)及び入出力時間(s)が多少変動することもある。
【0021】
以下、即始動パターンaを例にとってS4以降の処理内容を説明する。S4で入出力が終了したと判定されると、S5へ進み、入出力の終了直後の電流値Ia及び電圧値Vaをサンプリング値として検出・記憶する。これらの電流値や電圧値は、各パターン毎に個別にサンプリングされる(Ia,Ib,Ic,Id,Ie,Va,Vb,Vc,Vd,Ve)。
【0022】
S6では、図6に示すようなSOC−開放電圧の設定マップを参照して、現在(入出力の終了直後)のSOCから開放電圧Eaを求める。SOCと開放電圧の関係は、バッテリの種類等により定まるもので、基本的には図6に示すようにSOCが大きくなるに従って開放電圧が高くなる関係にある。
【0023】
S7では、S5及びS6で得られたEa,Va,Eaと関係式(V=E−IR)から、S1で判別された特定の入出力パターン、ここでは即始動パターンaに対する内部抵抗値Raを演算する(図7参照)。このようにして得られた最新の内部抵抗値が各パターン毎にバックアップメモリ等に記憶・更新され(Ra,Rb,Rc,Rd,Re)、後述する図3のルーチンのS13で入出力可能パワーを求める際に利用される。
【0024】
S8では、内部抵抗値Raに基づいて、バックアップメモリ等に記憶されている内部抵抗の最小値をRa(min)を更新する。具体的には、S7で得られた最新の内部抵抗値Raが記憶されている最小値Ra(min)よりも低い場合にのみ、最小値をRaへ更新する。通常、内部抵抗は使用時間の経過とともに高くなるので、基本的にはバッテリ新品時の内部抵抗が最小値となる。従って、S8の処理に代えて、新品時あるいはバッテリ交換時の内部抵抗を最小値Ra(min)として固定しても良い。
【0025】
S9では、上記の内部抵抗値Raと、該当する特定の入出力パターン、ここでは即始動パターンaに対する最小値Ra(min)とに基づいて、内部抵抗劣化係数Ka=Ra/Ra(min)を演算する。
【0026】
S10では、この内部抵抗劣化係数Kaに基づいて、バッテリの劣化度合いを診断し、その劣化度合い(情報)を記憶するとともに、必要に応じて警告灯の点灯や警告音を出す等の警告の表示を行う。具体的には、内部抵抗劣化係数Kaが所定のしきい値を超える場合に、バッテリが劣化していると診断し、警告を表示する。この警告の表示は、この入出力パターンaに該当する運転条件のときにのみ行っても良く、あるいは全ての運転条件において行うようにしても良い。
【0027】
また、劣化度合いに応じて、その入出力パターンに対応する車両の機能について、使用の制限すなわちフェールセーフを行う。例えば、即始動パターンaの場合、始動電力に制限を掛ける、又はアイドルストップを禁止する、あるいはモーター始動を停止し、スタータ始動にする。始動待ちパターンbの場合、始動待ちを禁止し、即始動へ切り換える。アシストパターンcの場合、モータ2によるアシスト出力を制限する(あるいはアシスト出力増)。発電パターンdの場合、モータ2の発電電力を制限する(あるいは入力増)。回生パターンeの場合、モータ2の回生電力を制限する(あるいは入力増)。
【0028】
図3は、図2のS2で実行される入出力可能パワー演算サブルーチンを示している。ここでも即始動パターン(a)を例にとって説明する。
【0029】
S11では、上記のS6と同様、現在のSOCに基づいて入出力パワー演算用の開放電圧Epaを求める。このEpaとS6のEaとは、仮にSOCの値が同じであれば同じ値となる。
【0030】
S12では、特定の入出力パターン(ここでは即始動パターン)aにおける最低保障電圧Vminaを読み込む。この最低保証電圧は、バッテリの電圧低下時の性能に依存し、かつ、電力出力時間が短くなるほど低くなる傾向にある。この最低保証電圧は、各入出力パターン毎に予め設定した固定値であっても良く、あるいは入出力電力と入出力時間とに基づいてマップやテーブルから検索するようにしても良い。
【0031】
S13では、S7で記憶された内部抵抗値Ra及びS11で求めた開放電圧Epaと周知の関係式(V=E−IR)から最大電流値Imaxaを求め、この最大電流値ImaxaとS12の最低保障電圧Vminaとに基づいて、特定のパターンaにおける入出力可能パワーPa=Vmina×Imaxaを求める。このS13で用いられる内部抵抗値Raは、前回の入出力パターンaに対する劣化診断の実行時にS7で記憶されたものである。つまり、図8にも示すように、現在のSOCから求められたEpaと、前回の劣化診断ルーチンS5〜S10の実行時にS7で求められた内部抵抗値Raと、入出力パターンに応じて定まる最低保証電圧Vminaと、に基づいて、入出力可能パワーPaを演算する。なお、図9に示すように、内部抵抗は、SOCが所定値(例えば20%)以下となる放電末期までほぼフラットな特性であるために、図8にも示すようにPaを簡略的に求めることができるのである。
【0032】
S14では、入出力可能パワーPaに応じて、続く図2のS3の入出力に対する制限すなわちフェイルセーフを行い、本サブルーチンを終了して図2のメインルーチンへ戻り、S3以降の処理を継続する。例えば、即始動パターンの入出力可能パワーPaがその要求出力である8KWよりも低ければ、S3での出力値を制限する。制限が大きい場合には正確な劣化診断ができなくなるので、好ましくはS5以降の劣化診断を中止する。
【0033】
上述したS2〜S10(サブルーチンのS11〜S14を含む)を、S1で判別された入出力パターン毎に行い、それぞれのパターン毎に内部抵抗劣化係数Ka,Kb,Kc,Kd,Ke、入出力可能パワーPa,Pb,Pc,Pd,Peを求める。そして、各入出力パターン毎に、内部抵抗劣化係数に基づいて劣化度合いを診断し、必要に応じて警告灯の点灯や劣化情報の記億を行い、サービス性を向上させるとともに、その入出力パターンに対応する車両の機能の制限を行う。
【0034】
図4は、入出力時間と内部抵抗との関係を示している。同じ入出力電力でも、入出力時間が変化すると、内部抵抗も変化する。具体的には、入出力時間が長くなるほど内部抵抗が増加する傾向にある。図5は、入出力電力と内部抵抗との関係を示している。同じ入出力時間でも、入出力電力が変化すると、内部抵抗も変化する。具体的には、入出力電力が大きくなるほど、抵抗が増加する傾向にある。
【0035】
本実施例では、バッテリ4の入出力電力や入出力時間の異なる複数の入出力パターン毎にバッテリの劣化度合いを診断しているため、入出力パターンに応じて変化する内部抵抗の影響を受けることなく正確に劣化度合いを診断することができる。また、バッテリの劣化度合いに応じた入出力の制限や警告を入出力パターン毎に正確に行うことができ、バッテリの過充電や過放電を招くことなく、バッテリの能力を最大限利用することが可能となる。
【0036】
また、特定の入出力パターンに応じた入出力の終了(S4の判定が肯定されるタイミング)直後に、そのI,V,SOCを検出し、これらのI,V,SOCに基づいて、内部抵抗値及びその劣化係数を求め、この内部抵抗劣化係数に基づいて劣化度合いを診断している。このように、入出力の実行直後に劣化度合いを診断しているため、診断時間が短く済むとともに、その診断結果を速やかに警告・制限等にフィードバックすることが可能となり、かつ、I,V,SOC等のサンプリング値を記憶するメモリの容量も抑制される。
【0037】
更に、各入出力パターン毎に、劣化度合いを診断するために演算された内部抵抗値を記憶しておき(S7)、次にその特定の入出力パターンに応じた入出力を行う直前に、この特定の入出力パターンに対して記憶されている内部抵抗値を用いて入出力可能パワーを演算し(S13)、この入出力可能パワーに基づいて、直後に行われる入出力を制限・変更するようにしている(S14)。このように、各入出力パターン(及び入出力パターンに対応する車両運転条件)毎に求めた内部抵抗値を利用しているため、入出力可能パワーを精度良く求めることができ、かつ、この入出可能パワーに基づいて速やかに入出力を制限することができ、過充電・過放電を招くことなく、バッテリの性能を最大限に利用することが可能となる。具体的には、入出力パワーが大き過ぎて入出力ができなくなったり、入出力パワーが小さ過ぎてバッテリ本来の性能が発揮できないというような事態を招くことがない。
【0038】
以上のように本発明を具体的な実施例に基づいて説明してきたが、本発明はこの実施例に限定されるものではなく、その趣旨を逸脱しない範囲で、種々の変形・変更を含むものである。例えば、モータのみを車両推進源とする電気自動車に本発明を適用しても良い。
【図面の簡単な説明】
【図1】本発明の一実施例に係る電動車両の制御装置を示す概略構成図。
【図2】本実施例の制御の流れを示すフローチャート。
【図3】図2のフローチャートのサブルーチン。
【図4】バッテリの入出力時間と内部抵抗との関係を示す特性図。
【図5】バッテリの入出力電力と内部抵抗との関係を示す特性図。
【図6】バッテリのSOCと開放電圧との関係を示す特性図。
【図7】内部抵抗値の求め方を示す特性図。
【図8】入出力パワーの求め方を示す特性図。
【図9】バッテリのSOCと内部抵抗との関係を示す特性図。
【符号の説明】
1…エンジン
2…モータ
4…バッテリ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for an electric vehicle including a motor for driving a vehicle (including a motor generator) and a battery (including a power supply, a battery, a capacitor, and the like), and particularly to a technique for diagnosing the degree of deterioration of the battery.
[0002]
[Prior art]
As is well known, an electric vehicle that uses a motor as a vehicle propulsion source, such as an electric vehicle or a hybrid vehicle, is equipped with a battery that exchanges power with the motor. Techniques for diagnosing such a degree of battery deterioration have been conventionally proposed.
[0003]
For example, Japanese Patent Application Laid-Open No. 2000-125415 discloses that an open-circuit voltage and an internal resistance are obtained based on a current and a voltage of a battery, a maximum output (power) is obtained from these values and a minimum guaranteed voltage, and this value and an initial reference value are obtained. A technique is disclosed in which a deterioration rate is obtained from the ratio of the above, and the degree of deterioration of the battery is diagnosed based on the deterioration rate.
[0004]
Japanese Patent Application Laid-Open No. 2000-270408 has a special diagnostic mode different from a normal vehicle driving state. In this diagnostic mode, charging / discharging is performed for diagnosis, and during charging / discharging, the current in several storage amounts is measured. And a voltage are sequentially stored, an internal resistance for each charged amount is obtained based on the data, and a diagnosis of deterioration is made based on a comparison between the internal resistance and initial data.
[0005]
Japanese Unexamined Patent Publication No. 8-336202 discloses that current and voltage during normal running are sampled, and these sampled values are subjected to linear regression calculation to obtain an internal resistance. A technique for diagnosing is disclosed.
[0006]
[Problems to be solved by the invention]
The input / output pattern such as the input / output power and input / output time of the battery changes according to the vehicle driving state, and the internal resistance also changes according to the input / output pattern. Therefore, when the internal resistance is obtained without considering the input / output pattern of the battery as in the above-mentioned Japanese Patent Application Laid-Open No. 2000-125415, an accurate internal resistance cannot be obtained, and the deterioration There is a possibility that the diagnostic accuracy may be reduced.
[0007]
In the case of performing a special diagnosis mode as in JP-A-2000-270408, the time required for the deterioration diagnosis is long, and the deterioration of the battery during normal operation cannot be immediately fed back (reflected). In addition, input / output restrictions (fail-safe) based on deterioration diagnosis cannot be quickly performed.
[0008]
Japanese Patent Application Laid-Open No. 8-336202 discloses a method of diagnosing the degree of deterioration during normal operation and issuing a warning, but does not describe the restriction of input / output (fail-safe) at the time of deterioration. For this reason, in the case of a slight deterioration that does not cause a warning, the same input / output control as in a new product is performed, and a desired input / output may not be obtained, or overcharging or overdischarging may be caused.
[0009]
[Means for Solving the Problems]
The present invention has been made in view of such a problem. A control device according to the present invention, such as an electric vehicle or a hybrid vehicle, includes a battery, and a motor that receives power supplied from the battery to drive the vehicle and performs regenerative power generation to supply power to the battery. Applied to electric vehicles. And determining means for determining a plurality of input / output patterns having at least one of different input / output power or input / output time of the battery, and diagnosing means for diagnosing the degree of deterioration of the battery for each input / output pattern. Features.
[0010]
【The invention's effect】
According to the present invention, since a plurality of input / output patterns are determined and the degree of deterioration is diagnosed for each input / output pattern, an accurate deterioration diagnosis according to the input / output patterns can be performed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a control device for an electric vehicle according to one embodiment of the present invention. In the figure, a double line indicates a power transmission path of a power train, a thick line indicates a power line of a high-current system (for example, a 42 V system), and a thin line indicates a signal line of a control system.
[0012]
This electric vehicle is a hybrid vehicle that uses both an engine 1 and a motor 2 as a vehicle propulsion source. The motor 2 is directly connected to an output shaft of the engine 1, and an automatic transmission 3, a torque converter (not shown), and the like are provided in a power train connecting the motor 2 and an axle. The automatic transmission 3 is, for example, a stepped transmission using a well-known planetary gear mechanism, or a continuously variable transmission of a toroidal type or a belt type.
[0013]
The motor 2 is connected to a high-power (for example, 42 V) battery 4 that transmits and receives power via an inverter (not shown), and is a three-phase AC type motor generator capable of both powering operation and regenerative (power generation) operation. When the engine is started, a power running operation is performed by the power supplied from the battery 4 to rotate the engine, and during braking or regeneration, regenerative power generation is performed to supply power to the battery 4 and charge the battery 4.
[0014]
A high-power circuit connecting the battery 4 and the motor 2 is provided with a main relay 5 that switches between ON and OFF, and a voltage sensor 6 and a current sensor 7 that detect the voltage and current of the battery 4. In addition, to the high-power circuit, high-power auxiliary equipment such as the electric power steering 8 is connected, and a low-power (for example, 14 V) battery or auxiliary equipment is connected via the DC / DC converter 9. (Not shown) is connected.
[0015]
A control device (microcomputer system) including a CPU, a ROM, a RAM, etc., for storing and executing various control processes, calculates and detects an engine control unit 11, a motor controller 12, and a charged amount (SOC) of the battery 4. A battery controller 13 that controls the operation of the entire vehicle is provided. The vehicle controller 14 outputs a command signal to the engine control unit 11 and the battery controller 13 based on the vehicle operating state detected and calculated by the various sensors and the like. In response to the command signal, the engine control unit 11 performs engine control such as fuel injection control and ignition timing control, and the motor controller 12 controls the torque and the number of revolutions of the motor 2.
[0016]
FIG. 2 is a flowchart illustrating a control flow according to the present embodiment. This program is executed every predetermined time, for example, every 10 ms during normal running.
[0017]
In S (step) 1, it is determined whether the input / output request of the power of the battery 4 corresponds to any of a plurality of preset input / output patterns based on the vehicle driving state and the vehicle request obtained from various sensors. Determine (determination means). In other words, it is determined whether the input / output mode of the battery corresponds to any of a plurality of different vehicle operating conditions. If there is no corresponding input / output pattern (or vehicle driving condition), this program is terminated, and if there is a corresponding pattern, the process from S2 onward described later is executed for the input / output pattern.
[0018]
The plurality of input / output patterns are selected in advance so that at least one of input / output power to the battery and input / output time is different. As an example, in this embodiment, the input / output pattern is, for example, an immediate start pattern a in which the engine is automatically restarted in a short time from an idle stop state in which the engine is automatically stopped at a traffic light or the like. A start waiting pattern b for automatically restarting the engine after elapse, an assist pattern c for providing a motor driving force in addition to the engine output as in rapid acceleration, a power generation pattern d for driving the motor by the engine to generate power, The vehicle driving energy is classified into five patterns, that is, a regenerative pattern e for regenerating the vehicle running energy by a motor during braking or the like.
[0019]
In S2, a subroutine for calculating input / output possible power shown in FIG. 3 described below is executed. At S3, the actual battery power is input / output according to the specific input / output pattern determined at S1. In other words, before actually performing input / output according to a specific input / output pattern, an input / output possible power calculation routine to be described later is executed, and input / output is restricted as necessary.
[0020]
For example, about 8 KW × 0.2 s (second) output in the immediate start pattern a, about 8 KW × 1.5 s output in the start waiting pattern b, about 10 KW × 5 s output in the assist pattern c, and about 10 KW in the power generation pattern d The input of × 30 s and the input of about 10 KW × 5 s in the regenerative pattern e are performed. In the start waiting pattern b, since the intake negative pressure is larger (closer to the atmospheric pressure) than in the immediate start pattern a, the input / output time is set relatively long in order to suppress overshoot of the engine. Note that the input / output power (KW) and the input / output time (s) may slightly fluctuate depending on the vehicle driving state.
[0021]
Hereinafter, the processing content after S4 will be described using the immediate start pattern a as an example. If it is determined in S4 that the input / output has been completed, the process proceeds to S5, and the current value Ia and the voltage value Va immediately after the end of the input / output are detected and stored as sampling values. These current values and voltage values are individually sampled for each pattern (Ia, Ib, Ic, Id, Ie, Va, Vb, Vc, Vd, Ve).
[0022]
In S6, the open circuit voltage Ea is obtained from the current (immediately after the end of the input / output) SOC with reference to the SOC-open circuit voltage setting map as shown in FIG. The relationship between the SOC and the open circuit voltage is determined by the type of the battery and the like. Basically, as shown in FIG. 6, the open circuit voltage increases as the SOC increases.
[0023]
In S7, the internal resistance value Ra for the specific input / output pattern determined in S1, from the relational expression (V = E-IR) obtained in S5 and S6 and the relational expression (V = E-IR), here, the immediate start pattern a is calculated. Compute (see FIG. 7). The latest internal resistance value thus obtained is stored and updated in a backup memory or the like for each pattern (Ra, Rb, Rc, Rd, Re), and the input / output power available in S13 of the routine of FIG. Used when asking for
[0024]
In S8, based on the internal resistance value Ra, Ra (min) is updated to the minimum value of the internal resistance stored in the backup memory or the like. Specifically, the minimum value is updated to Ra only when the latest internal resistance value Ra obtained in S7 is lower than the stored minimum value Ra (min). Normally, the internal resistance increases with the elapse of use time, so that the internal resistance when the battery is new is basically the minimum value. Therefore, instead of the process of S8, the internal resistance at the time of new product or battery replacement may be fixed as the minimum value Ra (min).
[0025]
In S9, the internal resistance deterioration coefficient Ka = Ra / Ra (min) is determined based on the internal resistance value Ra and the corresponding specific input / output pattern, here, the minimum value Ra (min) for the immediate starting pattern a. Calculate.
[0026]
In S10, the degree of deterioration of the battery is diagnosed based on the internal resistance deterioration coefficient Ka, the degree of deterioration (information) is stored, and a warning display such as turning on a warning light or issuing a warning sound as necessary is displayed. I do. Specifically, when the internal resistance deterioration coefficient Ka exceeds a predetermined threshold value, it is diagnosed that the battery is deteriorated, and a warning is displayed. The display of the warning may be performed only under the operating conditions corresponding to the input / output pattern a, or may be performed under all the operating conditions.
[0027]
Further, in accordance with the degree of deterioration, the function of the vehicle corresponding to the input / output pattern is restricted in use, that is, fail-safe. For example, in the case of the immediate start pattern a, the start electric power is limited, the idle stop is prohibited, or the motor start is stopped and the starter is started. In the case of the start waiting pattern b, the start waiting is prohibited and the operation is switched to the immediate start. In the case of the assist pattern c, the assist output by the motor 2 is limited (or the assist output is increased). In the case of the power generation pattern d, the power generated by the motor 2 is limited (or the input is increased). In the case of the regenerative pattern e, the regenerative power of the motor 2 is limited (or the input is increased).
[0028]
FIG. 3 shows an input / output available power calculation subroutine executed in S2 of FIG. Here, the instant starting pattern (a) will be described as an example.
[0029]
In S11, as in S6, the open-circuit voltage Epa for input / output power calculation is obtained based on the current SOC. This Epa and Ea of S6 become the same value if the SOC value is the same.
[0030]
In S12, the minimum guarantee voltage Vmin in the specific input / output pattern (here, the immediate start pattern) a is read. The minimum guaranteed voltage depends on the performance of the battery when the voltage drops, and tends to decrease as the power output time becomes shorter. The minimum guaranteed voltage may be a fixed value set in advance for each input / output pattern, or may be searched from a map or a table based on input / output power and input / output time.
[0031]
In S13, the maximum current value Imaxa is obtained from the internal resistance value Ra stored in S7 and the open circuit voltage Epa obtained in S11 and a well-known relational expression (V = E-IR). Based on the voltage Vmin, the input / output available power Pa = Vmin × Imaxa in the specific pattern a is obtained. The internal resistance value Ra used in S13 was stored in S7 at the time of executing the previous deterioration diagnosis on the input / output pattern a. That is, as shown in FIG. 8, Epa obtained from the current SOC, the internal resistance value Ra obtained in S7 at the time of executing the previous deterioration diagnosis routines S5 to S10, and the minimum value determined according to the input / output pattern. The input / output available power Pa is calculated based on the guaranteed voltage Vmin. As shown in FIG. 9, since the internal resistance has a substantially flat characteristic until the end of discharge when the SOC becomes equal to or less than a predetermined value (for example, 20%), Pa is simply obtained as shown in FIG. You can do it.
[0032]
In S14, the restriction on input / output in S3 in FIG. 2 is performed, that is, fail-safe is performed according to the input / output available power Pa, the subroutine ends, the process returns to the main routine in FIG. For example, if the input / output available power Pa of the immediate start pattern is lower than the required output of 8 KW, the output value in S3 is limited. If the limit is large, accurate deterioration diagnosis cannot be performed, so that the deterioration diagnosis after S5 is preferably stopped.
[0033]
S2 to S10 (including S11 to S14 of the subroutine) described above are performed for each input / output pattern determined in S1, and the internal resistance deterioration coefficients Ka, Kb, Kc, Kd, Ke, and input / output are enabled for each pattern. The powers Pa, Pb, Pc, Pd, and Pe are determined. Then, for each input / output pattern, the degree of deterioration is diagnosed based on the internal resistance deterioration coefficient, the warning light is turned on and deterioration information is recorded as necessary, and the serviceability is improved. The function of the vehicle corresponding to is restricted.
[0034]
FIG. 4 shows the relationship between the input / output time and the internal resistance. Even with the same input / output power, if the input / output time changes, the internal resistance also changes. Specifically, the internal resistance tends to increase as the input / output time increases. FIG. 5 shows the relationship between input / output power and internal resistance. Even in the same input / output time, when the input / output power changes, the internal resistance also changes. Specifically, the resistance tends to increase as the input / output power increases.
[0035]
In the present embodiment, the deterioration degree of the battery is diagnosed for each of a plurality of input / output patterns having different input / output powers and input / output times of the battery 4, so that the battery 4 may be affected by the internal resistance that changes according to the input / output patterns. The degree of deterioration can be accurately diagnosed without any problem. In addition, input / output restrictions and warnings according to the degree of deterioration of the battery can be accurately performed for each input / output pattern, so that the maximum capacity of the battery can be used without causing overcharging or overdischarging of the battery. It becomes possible.
[0036]
Immediately after the end of input / output according to a specific input / output pattern (timing at which the determination in S4 is affirmed), the I, V, and SOC are detected, and the internal resistance is determined based on these I, V, and SOC. The value and its deterioration coefficient are obtained, and the degree of deterioration is diagnosed based on the internal resistance deterioration coefficient. As described above, since the degree of deterioration is diagnosed immediately after the execution of the input / output, the diagnosis time can be shortened, and the result of the diagnosis can be promptly fed back to the warning / restriction. The capacity of a memory for storing a sampling value such as SOC is also reduced.
[0037]
Further, the internal resistance value calculated for diagnosing the degree of deterioration is stored for each input / output pattern (S7), and immediately before performing input / output according to the specific input / output pattern, Input / output possible power is calculated using an internal resistance value stored for a specific input / output pattern (S13), and based on this input / output possible power, input / output performed immediately after is limited / changed. (S14). As described above, since the internal resistance value obtained for each input / output pattern (and the vehicle operating conditions corresponding to the input / output pattern) is used, the input / output possible power can be obtained with high accuracy. Input / output can be quickly limited based on the possible power, and the performance of the battery can be utilized to the maximum without causing overcharge and overdischarge. Specifically, there is no possibility that input / output cannot be performed because the input / output power is too large, or that the original performance of the battery cannot be exhibited because the input / output power is too small.
[0038]
As described above, the present invention has been described based on the specific embodiments. However, the present invention is not limited to the embodiments and includes various modifications and changes without departing from the gist thereof. . For example, the present invention may be applied to an electric vehicle using only a motor as a vehicle propulsion source.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a control device for an electric vehicle according to an embodiment of the present invention.
FIG. 2 is a flowchart showing a control flow according to the embodiment.
FIG. 3 is a subroutine of the flowchart of FIG. 2;
FIG. 4 is a characteristic diagram showing a relationship between an input / output time of a battery and an internal resistance.
FIG. 5 is a characteristic diagram showing a relationship between input / output power of a battery and internal resistance.
FIG. 6 is a characteristic diagram showing the relationship between the SOC of the battery and the open circuit voltage.
FIG. 7 is a characteristic diagram showing how to determine an internal resistance value.
FIG. 8 is a characteristic diagram showing how to determine input / output power.
FIG. 9 is a characteristic diagram showing a relationship between the SOC of the battery and the internal resistance.
[Explanation of symbols]
1: Engine 2: Motor 4: Battery

Claims (7)

バッテリと、このバッテリから電力の供給を受けて車両を駆動するとともに、回生発電を行ってバッテリへ電力を供給するモータと、を備える電動車両の制御装置において、
バッテリの入出力電力又は入出力時間の少なくとも一方が異なる複数の入出力パターンを判別する判別手段と、
各入出力パターン毎に、バッテリの劣化度合いを診断する診断手段と、
を有することを特徴とする電動車両の制御装置。
In a control device for an electric vehicle, including a battery and a motor that receives power supplied from the battery to drive the vehicle, and performs regenerative power generation to supply power to the battery.
Determining means for determining a plurality of input / output patterns having at least one of different input / output power or input / output time of a battery;
Diagnostic means for diagnosing the degree of battery deterioration for each input / output pattern;
A control device for an electric vehicle, comprising:
上記診断手段によりバッテリの劣化度合いが高いと診断された入出力パターンに対応する車両の機能について、使用の制限又は警告の表示を行うことを特徴とする請求項1に記載の電動車両の制御装置。The control apparatus for an electric vehicle according to claim 1, wherein a use restriction or a warning is displayed for a function of the vehicle corresponding to the input / output pattern diagnosed as having a high degree of battery deterioration by the diagnosis means. . 上記診断手段は、
上記判別手段により判別された特定の入出力パターンに応じた入出力の終了直後に、バッテリの蓄電量、電流、及び電圧を検出する手段と、
これらの検出値に基づいて、バッテリの内部抵抗値を算出する手段と、
上記特定の入出力パターンに対応して予め設定された最小値と上記内部抵抗値とに基づいて内部抵抗劣化係数を算出する手段と、
この内部抵抗劣化係数に基づいて、バッテリの劣化度合いを診断する手段と、
を有することを特徴とする請求項1又は2に記載の電動車両の制御装置。
The diagnostic means,
Immediately after the end of input / output according to the specific input / output pattern determined by the determination means, means for detecting a charged amount of battery, current, and voltage;
Means for calculating an internal resistance value of the battery based on the detected values;
Means for calculating an internal resistance deterioration coefficient based on the minimum value and the internal resistance value set in advance corresponding to the specific input / output pattern,
Means for diagnosing the degree of battery deterioration based on the internal resistance deterioration coefficient;
The control device for an electric vehicle according to claim 1 or 2, further comprising:
上記診断手段により演算されるバッテリの内部抵抗値を各入出力パターン毎に記憶する手段と、
上記判別手段により特定の入出力パターンが判別されたときに、バッテリの入出力を行う前に、上記特定の入出力パターンに対する入出力可能パワーを上記内部抵抗値に基づいて演算する手段と、
この入出力可能パワーに基づいて、少なくとも上記特定の入出力パターンの入出力を制限する手段と、
を有することを特徴とする請求項1〜3のいずれかに記載の電動車両の制御装置。
Means for storing the internal resistance value of the battery calculated by the diagnostic means for each input / output pattern;
Means for calculating the input / output available power for the specific input / output pattern based on the internal resistance value before performing input / output of the battery when the specific input / output pattern is determined by the determination means;
Means for restricting input / output of at least the specific input / output pattern based on the input / output available power,
The control device for an electric vehicle according to any one of claims 1 to 3, further comprising:
上記モータが、少なくとも減速時に回生発電を行うモータジェネレータであることを特徴とする請求項1〜4のいずれかに記載の電動車両の制御装置。The control device for an electric vehicle according to any one of claims 1 to 4, wherein the motor is a motor generator that performs regenerative power generation at least during deceleration. 上記電動車両が、車両推進源として上記モータとエンジンとを併用するハイブリッド車両であることを特徴とする請求項1〜5のいずれかに記載の電動車両の制御装置。The control device for an electric vehicle according to any one of claims 1 to 5, wherein the electric vehicle is a hybrid vehicle that uses the motor and the engine together as a vehicle propulsion source. バッテリと、このバッテリから電力の供給を受けて車両を駆動するとともに、回生発電を行ってバッテリへ電力を供給するモータと、を備える電動車両の制御装置において、
バッテリの入出力形態が異なる複数の車両運転条件を判別する判別手段と、
各車両運転条件毎に、バッテリの劣化度合いを診断する診断手段と、
を有することを特徴とする車両の診断装置。
In a control device for an electric vehicle, including a battery and a motor that receives power supplied from the battery to drive the vehicle, and performs regenerative power generation to supply power to the battery.
Determining means for determining a plurality of vehicle operating conditions having different battery input / output configurations;
Diagnostic means for diagnosing the degree of battery deterioration for each vehicle operating condition;
A diagnostic device for a vehicle, comprising:
JP2002230703A 2002-08-08 2002-08-08 Control device for electric vehicle Expired - Fee Related JP4172222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002230703A JP4172222B2 (en) 2002-08-08 2002-08-08 Control device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002230703A JP4172222B2 (en) 2002-08-08 2002-08-08 Control device for electric vehicle

Publications (2)

Publication Number Publication Date
JP2004072927A true JP2004072927A (en) 2004-03-04
JP4172222B2 JP4172222B2 (en) 2008-10-29

Family

ID=32016673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002230703A Expired - Fee Related JP4172222B2 (en) 2002-08-08 2002-08-08 Control device for electric vehicle

Country Status (1)

Country Link
JP (1) JP4172222B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008038A (en) * 2004-06-29 2006-01-12 Shin Kobe Electric Mach Co Ltd Deterioration determination method for lead-acid battery and deterioration determination device
JP2007056745A (en) * 2005-08-24 2007-03-08 Nissan Motor Co Ltd Controller for idle stop vehicle
WO2007114410A1 (en) * 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle battery information display device
JP2009107555A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Power output apparatus, vehicle equipped with the same, and method for controlling the power output apparatus
WO2009116495A1 (en) * 2008-03-21 2009-09-24 株式会社小松製作所 Method and device for determining the degradation state of a storage device in hybrid construction equipment
JP2010119223A (en) * 2008-11-13 2010-05-27 Toyota Motor Corp Vehicle battery diagnostic system, and vehicle
FR2944358A1 (en) * 2009-04-09 2010-10-15 Peugeot Citroen Automobiles Sa Battery's e.g. lithium-ion battery, health state estimating device for electrical traction of e.g. hybrid vehicle, has samplers to calculate difference between symptomatic and effective parameters, and comparator to indicate health state
JP2015126594A (en) * 2013-12-26 2015-07-06 三菱自動車工業株式会社 Driving battery degradation determination device for vehicle
JP2016090227A (en) * 2014-10-29 2016-05-23 トヨタ自動車株式会社 Secondary battery diagnostic apparatus
EP2100765A3 (en) * 2008-02-29 2016-08-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Battery management control system
CN112339573A (en) * 2020-11-17 2021-02-09 哈尔滨学院 Pure electric vehicle drive control strategy optimization method based on mathematical modeling
JP2021048690A (en) * 2019-09-18 2021-03-25 株式会社Subaru Power supply system of electric vehicle
WO2021193005A1 (en) * 2020-03-27 2021-09-30 本田技研工業株式会社 Management system, management method, server apparatus, program, battery information providing system, and battery information providing method
US11342769B2 (en) 2017-01-13 2022-05-24 Denso Corporation Control device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008038A (en) * 2004-06-29 2006-01-12 Shin Kobe Electric Mach Co Ltd Deterioration determination method for lead-acid battery and deterioration determination device
JP4507720B2 (en) * 2004-06-29 2010-07-21 新神戸電機株式会社 Deterioration determination method and deterioration determination device for lead acid battery
JP4517981B2 (en) * 2005-08-24 2010-08-04 日産自動車株式会社 Idle stop vehicle control device
JP2007056745A (en) * 2005-08-24 2007-03-08 Nissan Motor Co Ltd Controller for idle stop vehicle
WO2007114410A1 (en) * 2006-03-31 2007-10-11 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle battery information display device
US7880597B2 (en) 2006-03-31 2011-02-01 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle battery information display device
JP2009107555A (en) * 2007-10-31 2009-05-21 Toyota Motor Corp Power output apparatus, vehicle equipped with the same, and method for controlling the power output apparatus
EP2100765A3 (en) * 2008-02-29 2016-08-24 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Battery management control system
JP2009227044A (en) * 2008-03-21 2009-10-08 Komatsu Ltd Deteriorated state decision method and device for electricity accumulation device in hybrid construction machine
WO2009116495A1 (en) * 2008-03-21 2009-09-24 株式会社小松製作所 Method and device for determining the degradation state of a storage device in hybrid construction equipment
US8362786B2 (en) 2008-03-21 2013-01-29 Komatsu Ltd. Method and device for determining degradation state of electrical storage device in hybrid construction equipment
JP2010119223A (en) * 2008-11-13 2010-05-27 Toyota Motor Corp Vehicle battery diagnostic system, and vehicle
US8594871B2 (en) 2008-11-13 2013-11-26 Toyota Jidosha Kabushiki Kaisha Vehicle battery diagnosis system, and vehicle
CN102216139B (en) * 2008-11-13 2014-02-19 丰田自动车株式会社 Vehicle battery diagnosis system, and vehicle
FR2944358A1 (en) * 2009-04-09 2010-10-15 Peugeot Citroen Automobiles Sa Battery's e.g. lithium-ion battery, health state estimating device for electrical traction of e.g. hybrid vehicle, has samplers to calculate difference between symptomatic and effective parameters, and comparator to indicate health state
JP2015126594A (en) * 2013-12-26 2015-07-06 三菱自動車工業株式会社 Driving battery degradation determination device for vehicle
JP2016090227A (en) * 2014-10-29 2016-05-23 トヨタ自動車株式会社 Secondary battery diagnostic apparatus
US11342769B2 (en) 2017-01-13 2022-05-24 Denso Corporation Control device
JP2021048690A (en) * 2019-09-18 2021-03-25 株式会社Subaru Power supply system of electric vehicle
JP7352421B2 (en) 2019-09-18 2023-09-28 株式会社Subaru Electric vehicle power system
WO2021193005A1 (en) * 2020-03-27 2021-09-30 本田技研工業株式会社 Management system, management method, server apparatus, program, battery information providing system, and battery information providing method
CN112339573A (en) * 2020-11-17 2021-02-09 哈尔滨学院 Pure electric vehicle drive control strategy optimization method based on mathematical modeling
CN112339573B (en) * 2020-11-17 2021-09-10 哈尔滨学院 Pure electric vehicle drive control strategy optimization method based on mathematical modeling

Also Published As

Publication number Publication date
JP4172222B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
JP6574456B2 (en) Control device for electric vehicle
JP4553019B2 (en) Automotive power supply
US20180233943A1 (en) Power supply system for vehicle
JP2002004910A (en) Automatic engine stopping and starting device for vehicle
CN103842837A (en) Secondary battery control device and method
JP6237977B2 (en) Hybrid vehicle failure determination device
JP2004072927A (en) Controlling device of motor-operated vehicle
JP2004509598A (en) Adjustment method of generator voltage in automobile
JP2004271410A (en) Battery controlling apparatus for electric vehicle
JP2002235597A (en) Engine operation detection using crankshaft speed
US20140149024A1 (en) Method and system for controlling start of hybrid electric vehicle
JP2019209811A (en) Battery diagnosis device
JP2005065352A (en) Battery charge/discharge controller
JP2000166105A (en) Charged state controller for battery
JP2003319503A (en) Vehicle power source controlling method, vehicle power source controlling device, and vehicle power source controlling program
JP4064398B2 (en) Charge / discharge control device for motor battery
JP4438088B2 (en) Charge state detection device for secondary battery for vehicle
JP3772730B2 (en) Deterioration diagnosis device for vehicle battery
JP7373113B2 (en) Vehicle power control device
JP2001228222A (en) Residual capacity detection device of capacitor
JP3843934B2 (en) Control device for hybrid vehicle
US11505085B2 (en) Power supply system in vehicle
JP2006180665A (en) Charger for hybrid vehicle
KR20030072744A (en) Method for battery management on hybrid electric vehicle
JP2004222475A (en) Power controller for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees