JP2004072445A - Antenna feeder circuit for medium wave broadcasting - Google Patents

Antenna feeder circuit for medium wave broadcasting Download PDF

Info

Publication number
JP2004072445A
JP2004072445A JP2002229534A JP2002229534A JP2004072445A JP 2004072445 A JP2004072445 A JP 2004072445A JP 2002229534 A JP2002229534 A JP 2002229534A JP 2002229534 A JP2002229534 A JP 2002229534A JP 2004072445 A JP2004072445 A JP 2004072445A
Authority
JP
Japan
Prior art keywords
antenna
impedance
frequency transformer
circuit
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002229534A
Other languages
Japanese (ja)
Inventor
Takuya Okamoto
岡本 卓也
Hirochika Onozawa
小野沢 裕親
Ikushi Fujitani
藤谷 育司
Koji Ikegami
池上 浩司
Atsuo Fujiwara
藤原 厚生
Tokuichi Hamada
浜田 篤一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Integrated Technology Inc
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
NHK Integrated Technology Inc
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, NHK Integrated Technology Inc, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2002229534A priority Critical patent/JP2004072445A/en
Publication of JP2004072445A publication Critical patent/JP2004072445A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Details Of Aerials (AREA)
  • Transmitters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna feeder circuit for medium wave broadcasting which has a simple configuration, facilitates impedance matching, and has excellent lightning resistance. <P>SOLUTION: A high frequency transformer having the lightning resistance improved is connected to an impedance matching circuit connected between a broadcaster for medium wave broadcasting and an antenna, and the primary coil of the high frequency transformer is connected to the impedance matching circuit. The secondary coil of the high frequency transformer is connected to the antenna via a series coil for canceling the imaginary term component of antenna impedance, and impedance conversion is efficiently performed by the high frequency transformer, and a ball gap is inserted to an antenna base part against lightning surge exceeding expectations. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は中波放送装置のアンテナへの給電回路に関し、特に整合調整が容易で、伝送帯域内SWRの劣化が少なく、雷サージ保護を図る上でも有効な中波放送用アンテナ給電回路に関するものである。
【0002】
【従来の技術】
従来技術による耐雷機能を有する中波放送用アンテナ給電回路の一例を図1に示す。同図において、1はアンテナ、2は落雷時に誘起した過大電圧をアース間でショートして放送機を保護するためにアレスタとして接続するボールギャップ、3はアンテナ1に過大な電圧が誘起しないように直流的にアースし、かつ、雷エネルギー(雷サージ)の直流分を含む低周波成分をアースに流すための耐雷コイル、4は雷サージに含まれる直流成分が放送機へ移行するのを防ぐDCカットコンデンサである。ボールギャップ2、耐雷コイル3及びDCカットコンデンサ4は避雷回路を構成する。5はアンテナインピーダンスをインピーダンス整合回路6で調整可能な範囲内の値に変換するための整合用コイルであり、インピーダンス整合回路6はアンテナインピーダンスを中波放送用放送機7の出力インピーダンスに整合させるためのコイルとコンデンサの回路である。このように従来技術では、直並列のコイルおよびコンデンサを多用して、放送機の出力インピーダンスをアンテナインピーダンスに整合を取る手法が用いられていた。
【0003】
【発明が解決しようとする課題】
従来の技術で製作した整合回路においては、雷サージによりDCカットコンデンサや、耐雷コイルおよび整合用コイルが破壊されて、放送が中断することがあり、これらの部品の雷サージによる破壊を防止するためには、個々の部品に十分な耐電流耐電圧特性を持たせる必要があり、回路の大型化や複雑化の要因となっていた。
【0004】
給電側から見たアンテナインピーダンスは一般に、Z=R+jXにて表され、ここに、Rはアンテナの放射抵抗、Xは放射リアクタンスであり、実効高が低いアンテナにおいては一般的に、アンテナインピーダンスZの実数項が低く、放射リアクタンスの虚数項が高い傾向を示すため、この場合、従来技術によるインピーダンス整合手法では整合条件が非常にクリチカルとなり、短い放送休止時間内での調整が困難な場合が生じていた。特に、山頂に設置される小規模ラジオ局では地形状アンテナ高を高くすることができず、またアース網の面積もとれないため、アンテナを基部接地や折り返しにするなどの工夫をせざるを得ない。このようなアンテナでは、中波用の高い周波数帯域においてリアクタンス分が負の大きな値となることが多かった。
【0005】
さらに、アンテナインピーダンスの実数項が低い場合には、アンテナに所要の電力を供給するには大きな電流を流す必要があるが、アンテナの虚数項が高いために、アンテナ基部および給電回路に高電圧が発生するために、非常に高耐圧の部品を使用する必要から、整合装置が大型化していた。
【0006】
また、アンテナインピーダンスの実数項が低い場合は、整合回路の各素子を通過する度に、伝送帯域内のSWRは劣化し、放送機入力プログラムの高域成分により放送機の保護回路が動作し、放送が中断することがあった。
そこで、本発明の目的は、整合回路の使用素子数も少なく、簡素な構成で、インピーダンスの整合調整も容易に行え、伝送帯域内SWRの劣化が著しく少ない耐雷性能に優れた中波放送用アンテナ給電回路を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1に係る発明は、中波放送機用のインピーダンス整合回路とアンテナとの間に接続される中波放送用アンテナ給電回路であって、前記インピーダンス整合回路に一次コイルが接続された高周波トランスと、該高周波トランスの二次コイルに接続され、アンテナインピーダンスのリアクタンス成分を打ち消すための直列回路と、を備えることを特徴とする。
【0008】
また、請求項2の発明は、請求項1において、前記高周波トランスを、一次コイルがリング型フェライトコアーに漏れ磁束が最小限となるように均等に巻回され、かつ、二次コイルがリングの中心を貫通する耐雷型の構造としたことを特徴とする
【0009】
【発明の実施の形態】
以下添付図面を参照して、実施例により本発明を詳細に説明する。
【0010】
図2は、本発明による中波放送用アンテナ給電回路の一実施例を示すブロック図であり、ここに、10はアンテナ、11は想定を上回る雷サージを放電させるために安全を見越して挿入したボールギャップ、12は一般的に高い傾向を示すアンテナインピーダンスの虚数項成分を打ち消すためにアンテナ10に直列に接続した直列コイル、13はアンテナインピーダンスを整合回路14で調整可能な範囲内のインピーダンス値に変換する整合用の高周波トランスであり、直列コイル12と高周波トランス13は中波帯トランス給電部を構成する。14は中波放送用の放送機であり、15はアンテナインピーダンスを放送機14の出力インピーダンスに微調整合させるインピーダンス整合回路である。
【0011】
本発明によれば、従来の直並列リアクタンスを使用した整合方式とは異なり、先ず直列コイル12でアンテナ10の虚数項成分を打ち消し、高周波トランス13でアンテナインピーダンスを整合回路15で調整可能な範囲内の最適値にステップアップさせてから整合回路15にてインピーダンスを整合させる。高周波トランス13は、整合回路15に接続される一次コイルの巻回数と、直列コイル12を経てアンテナ10に接続される側の二次コイルの巻回数との比をn:1として、一次側の電流と電圧を二次側に対して著しく低下させる。これにより、インピーダンス整合回路15において使用部品の電圧電流定格を低く抑えることができる。また、高周波トランス13によりインピーダンスは最適値に変換されているので、伝送帯域内のSWRの劣化は最小限となり、また整合回路は簡易な構成で十分である。
【0012】
高周波トランス13は、図3にその構成を示すように、トランスの伝送損失を最小限に抑え、高周波特性の良好なリング型のフェライトコアー20に一次コイル21を必要な巻数に応じて均等に巻回し、二次コイル22はフェライトコアー20のリングの中心を貫通する構造とし、一次コイル21と二次コイル22とを十分に離間させて高電圧耐力を向上させる。
なお、この高周波トランスは上記の耕造に限るものではなく、中波周波数帯域での伝送特性が良好で、それ以外の周波数帯域では減衰量が大きく、かつ耐電圧耐電流の大きいものが使用可能である。
【0013】
本発明によるアンテナ給電回路によれば、アンテナ10を直列コイル12と高周波トランス13の二次コイルで直流的にアースして、直流電位を固定させることができるので、従来技術で必要とされた耐雷コイルを省くことができる。インピーダンス変換用高周波トランス13の二次コイルの電流容量は、図3に示したその構造からして非常に大きくなることからして、雷サージによる大電流に対して十分な強度を保つためには、アンテナ10に直列に挿入したコイル12のみを強固な構造とするだけで十分である。
【0014】
【発明の効果】
本発明によれば、アンテナが直流的にアースされて直流電位が固定されるために、従来回路で必要とされた耐雷コイルが不要になる。また、インピーダンス変換用高周波トランスの二次側コイルの電流容量が極めて大きいため、この二次側コイルに接続するアンテナインピーダンスの虚数項成分打ち消し用直列コイルのみを強固な構造とするだけで、雷サージによる大電流に対して十分な強度を保つことができる。さらに、雷サージによる高電圧に対しても、高周波トランスの一次と二次コイルとの間に十分な距離がとれるため十分な耐電圧特性を確保できる。
【0015】
さらに、従来は実効高が低いアンテナへの給電に際し、整合調整が非常に困難であり、大電流高電圧の発生による回路素子の大型化等の問題があったが、本発明によれば高周波トランスの二次側に接続する直列コイルによってアンテナインピーダンスを最適値にステップアップ簡単な構成とし、また、トランスの一次側の電流と電圧を著しく低くするために、整合回路において放電の危険性が著しく改善され、かつ、使用部品の電圧電流定格が低くて良いことから給電回路全体が非常に小型化される。
【0016】
また、従来は実数項が低いアンテナへの給電に際し、整合回路で伝送帯域内SWRが劣化し、放送機入力プログラムの高域成分で放送機の保護回路が動作し、放送が中断されることがあったが、本発明によれば、トランスでインピーダンスは巻数比nに比例して変換されるため、伝送帯域内SWRの劣化は著しく改善される。また、インピーダンス微調整用の整合回路でもインピーダンスが最適値に変換されているため、伝送帯域内SWRの劣化は最小限となる。この結果、放送の安定度は格段に向上する。
【図面の簡単な説明】
【図1】従来の中波放送用アンテナ給電回路の一例を示す構成図である。
【図2】本発明による中波放送用アンテナ給電回路の一実施例を示す構成図である。
【図3】高周波トランスの構成図である。
【符号の説明】
10 アンテナ
11 ボールギャップ
12 直列コイル
13 高周波トランス
14 放送機
15 インピーダンス整合回路
20 リング型フェライトコアー
21 一次コイル
22 二次コイル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a feeder circuit for an antenna of a medium-wave broadcasting device, and more particularly to a feeder circuit for a medium-wave broadcast antenna, which is easy to adjust and match, has little deterioration in SWR in a transmission band, and is effective in protecting against lightning surge. is there.
[0002]
[Prior art]
FIG. 1 shows an example of a medium-wave broadcasting antenna feed circuit having a lightning-resistant function according to the prior art. In the figure, 1 is an antenna, 2 is a ball gap connected as an arrester to protect the broadcaster by short-circuiting the excessive voltage induced at the time of lightning to ground, and 3 is to prevent an excessive voltage from being induced in the antenna 1. A lightning-resistant coil for grounding DC and flowing a low-frequency component including a DC component of lightning energy (lightning surge) to the ground; 4 is a DC for preventing a DC component contained in lightning surge from being transferred to a broadcasting machine. It is a cut capacitor. The ball gap 2, the lightning protection coil 3 and the DC cut capacitor 4 constitute a lightning protection circuit. Reference numeral 5 denotes a matching coil for converting the antenna impedance into a value within a range that can be adjusted by the impedance matching circuit 6. The impedance matching circuit 6 matches the antenna impedance with the output impedance of the medium-wave broadcasting broadcast 7. It is a circuit of a coil and a capacitor. As described above, in the related art, a method of matching the output impedance of the broadcaster to the antenna impedance by using a series-parallel coil and a capacitor frequently has been used.
[0003]
[Problems to be solved by the invention]
In the matching circuit manufactured by the conventional technology, the lightning surge may destroy the DC cut capacitor, the lightning-resistant coil and the matching coil, and the broadcasting may be interrupted. Therefore, it is necessary to provide each component with a sufficient withstand voltage characteristic, which has been a factor of increasing the size and complexity of the circuit.
[0004]
The antenna impedance viewed from the feed side is generally represented by Z = R + jX, where R is the radiation resistance of the antenna, X is the radiation reactance. Since the real term is low and the imaginary term of the radiance reactance tends to be high, in this case, the matching condition is very critical in the impedance matching method according to the related art, and it may be difficult to adjust within a short broadcast pause time. Was. In particular, small-scale radio stations installed on the top of a mountain cannot increase the height of the terrestrial antenna and the area of the earth network cannot be reduced, so the antenna must be grounded or folded back. Absent. In such an antenna, the reactance component often has a large negative value in a high frequency band for a medium wave.
[0005]
Furthermore, when the real term of the antenna impedance is low, a large current needs to flow to supply the required power to the antenna. However, since the imaginary term of the antenna is high, a high voltage is applied to the antenna base and the feed circuit. In order to cause such a problem, it is necessary to use a component having a very high withstand voltage, so that the matching device has been increased in size.
[0006]
Also, when the real term of the antenna impedance is low, the SWR in the transmission band is degraded each time it passes through each element of the matching circuit, and the protection circuit of the broadcaster operates by the high frequency component of the broadcaster input program. Broadcasts were sometimes interrupted.
Therefore, an object of the present invention is to provide a medium-wave broadcasting antenna having a small number of elements used in a matching circuit, a simple configuration, easy adjustment of impedance matching, and excellent lightning resistance with extremely little deterioration of SWR in a transmission band. An object of the present invention is to provide a power supply circuit.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 of the present invention is a medium wave broadcasting antenna feed circuit connected between an antenna and an impedance matching circuit for a medium wave broadcaster, wherein the impedance matching circuit A high-frequency transformer having a primary coil connected to a circuit and a series circuit connected to a secondary coil of the high-frequency transformer for canceling a reactance component of antenna impedance are provided.
[0008]
The invention according to claim 2 is the invention according to claim 1, wherein the high-frequency transformer has a primary coil wound around a ring-type ferrite core evenly so that a leakage magnetic flux is minimized, and a secondary coil is formed of a ring. It is characterized by a lightning-resistant structure penetrating the center.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
[0010]
FIG. 2 is a block diagram showing an embodiment of an antenna feed circuit for medium-wave broadcasting according to the present invention, where 10 is an antenna, and 11 is inserted in anticipation of safety in order to discharge a lightning surge exceeding expected. The ball gap 12 is a series coil connected in series to the antenna 10 to cancel the imaginary component of the antenna impedance which generally shows a high tendency, and 13 is an impedance value within a range where the antenna impedance can be adjusted by the matching circuit 14. This is a matching high-frequency transformer for conversion, and the series coil 12 and the high-frequency transformer 13 constitute a medium-wave band transformer power supply unit. Reference numeral 14 denotes a broadcaster for medium-wave broadcasting, and reference numeral 15 denotes an impedance matching circuit for finely adjusting the antenna impedance to the output impedance of the broadcaster 14.
[0011]
According to the present invention, unlike the matching method using the conventional series-parallel reactance, first, the imaginary term component of the antenna 10 is canceled by the series coil 12, and the antenna impedance is adjusted by the high frequency transformer 13 within the range that can be adjusted by the matching circuit 15. , And then the impedance is matched by the matching circuit 15. The high-frequency transformer 13 sets the ratio of the number of turns of the primary coil connected to the matching circuit 15 to the number of turns of the secondary coil connected to the antenna 10 via the series coil 12 as n: 1, and It significantly reduces current and voltage relative to the secondary. As a result, the voltage and current ratings of the components used in the impedance matching circuit 15 can be kept low. In addition, since the impedance is converted to an optimum value by the high-frequency transformer 13, deterioration of the SWR in the transmission band is minimized, and a simple configuration of the matching circuit is sufficient.
[0012]
As shown in FIG. 3, the high-frequency transformer 13 minimizes the transmission loss of the transformer and uniformly winds the primary coil 21 around the ring-shaped ferrite core 20 having good high-frequency characteristics according to the required number of turns. By turning, the secondary coil 22 has a structure penetrating the center of the ring of the ferrite core 20, and the primary coil 21 and the secondary coil 22 are sufficiently separated from each other to improve the high voltage withstand voltage.
The high-frequency transformer is not limited to the above-mentioned cultivation, but may be used that has good transmission characteristics in the medium-wave frequency band, a large attenuation in other frequency bands, and a large withstand voltage and withstand current. is there.
[0013]
According to the antenna feed circuit according to the present invention, the antenna 10 can be grounded DC by the series coil 12 and the secondary coil of the high-frequency transformer 13 to fix the DC potential. The coil can be omitted. Since the current capacity of the secondary coil of the high-frequency transformer for impedance conversion 13 is very large due to the structure shown in FIG. 3, in order to maintain sufficient strength against a large current due to a lightning surge. It is sufficient that only the coil 12 inserted in series with the antenna 10 has a strong structure.
[0014]
【The invention's effect】
According to the present invention, since the antenna is DC grounded and the DC potential is fixed, the lightning protection coil required in the conventional circuit becomes unnecessary. In addition, since the current capacity of the secondary coil of the high-frequency transformer for impedance conversion is extremely large, it is only necessary to make the series coil for canceling the imaginary component of the imaginary component of the antenna impedance connected to this secondary coil a strong structure. Sufficient strength against a large current caused by the Further, even with a high voltage due to a lightning surge, a sufficient distance can be secured between the primary and secondary coils of the high-frequency transformer, so that sufficient withstand voltage characteristics can be secured.
[0015]
Further, in the past, when power was supplied to an antenna having a low effective height, it was very difficult to perform matching adjustment, and there was a problem that a large current and a high voltage generated a circuit element, and the like. Step up the antenna impedance to the optimum value with a series coil connected to the secondary side of the transformer.Since the configuration is simple, and the current and voltage on the primary side of the transformer are significantly reduced, the danger of discharge in the matching circuit is significantly improved. In addition, since the voltage and current ratings of the components used can be low, the entire power supply circuit can be extremely reduced in size.
[0016]
Conventionally, when power is supplied to an antenna with a low real number term, the matching circuit degrades the SWR within the transmission band, and the protection circuit of the broadcaster operates due to the high-frequency component of the broadcaster input program, and the broadcast is interrupted. there was, but according to the present invention, since the impedance transformer is converted in proportion to the turns ratio n 2, deterioration of the transmission band SWR is significantly improved. Further, even in the matching circuit for fine-tuning the impedance, the impedance is converted to the optimum value, so that the deterioration of the SWR in the transmission band is minimized. As a result, the stability of the broadcast is significantly improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an example of a conventional medium-wave broadcasting antenna feeding circuit.
FIG. 2 is a configuration diagram showing one embodiment of a medium-wave broadcasting antenna feed circuit according to the present invention.
FIG. 3 is a configuration diagram of a high-frequency transformer.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Antenna 11 Ball gap 12 Series coil 13 High frequency transformer 14 Broadcasting machine 15 Impedance matching circuit 20 Ring type ferrite core 21 Primary coil 22 Secondary coil

Claims (2)

中波放送機用のインピーダンス整合回路とアンテナとの間に接続される中波放送用アンテナ給電回路であって、
前記インピーダンス整合回路に一次コイルが接続された高周波トランスと、
該高周波トランスの二次コイルに接続され、アンテナインピーダンスのリアクタンス成分を打ち消すための直列回路と、
を備えることを特徴とする中波放送用アンテナ給電回路。
A medium-wave broadcasting antenna feeding circuit connected between an impedance matching circuit and an antenna for a medium-wave broadcasting machine,
A high-frequency transformer having a primary coil connected to the impedance matching circuit,
A series circuit connected to a secondary coil of the high-frequency transformer and for canceling a reactance component of an antenna impedance;
A medium-wave broadcasting antenna feeding circuit, comprising:
前記高周波トランスを、一次コイルがリング型フェライトコアーに均等に巻回され、かつ、二次コイルがリングの中心を貫通する耐雷型の構造としたことを特徴とする請求項1に記載の中波放送用アンテナ給電回路。2. The medium wave according to claim 1, wherein the high-frequency transformer has a lightning-resistant structure in which a primary coil is evenly wound around a ring-type ferrite core and a secondary coil passes through the center of the ring. Broadcast antenna feed circuit.
JP2002229534A 2002-08-07 2002-08-07 Antenna feeder circuit for medium wave broadcasting Withdrawn JP2004072445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229534A JP2004072445A (en) 2002-08-07 2002-08-07 Antenna feeder circuit for medium wave broadcasting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229534A JP2004072445A (en) 2002-08-07 2002-08-07 Antenna feeder circuit for medium wave broadcasting

Publications (1)

Publication Number Publication Date
JP2004072445A true JP2004072445A (en) 2004-03-04

Family

ID=32015875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229534A Withdrawn JP2004072445A (en) 2002-08-07 2002-08-07 Antenna feeder circuit for medium wave broadcasting

Country Status (1)

Country Link
JP (1) JP2004072445A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100911A1 (en) * 2005-03-18 2006-09-28 Niigata Seimitsu Co., Ltd. Portable apparatus with built-in fm transmitter
JP5477512B2 (en) * 2011-02-23 2014-04-23 株式会社村田製作所 Impedance conversion circuit and communication terminal device
JP2014112825A (en) * 2012-10-31 2014-06-19 Nippon Telegr & Teleph Corp <Ntt> Small sized radio transmitter
US9197187B2 (en) 2011-05-09 2015-11-24 Murata Manufacturing Co., Ltd. Front-end circuit and communication terminal apparatus
CN108037480A (en) * 2017-11-03 2018-05-15 中国航空无线电电子研究所 Middle long-wave antenna simulator and application method for NDB

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100911A1 (en) * 2005-03-18 2006-09-28 Niigata Seimitsu Co., Ltd. Portable apparatus with built-in fm transmitter
GB2438135A (en) * 2005-03-18 2007-11-14 Niigata Seimitsu Co Ltd Portable apparatus with built-in FM transmitter
JP5477512B2 (en) * 2011-02-23 2014-04-23 株式会社村田製作所 Impedance conversion circuit and communication terminal device
US9197187B2 (en) 2011-05-09 2015-11-24 Murata Manufacturing Co., Ltd. Front-end circuit and communication terminal apparatus
JP2014112825A (en) * 2012-10-31 2014-06-19 Nippon Telegr & Teleph Corp <Ntt> Small sized radio transmitter
CN108037480A (en) * 2017-11-03 2018-05-15 中国航空无线电电子研究所 Middle long-wave antenna simulator and application method for NDB

Similar Documents

Publication Publication Date Title
US6587019B2 (en) Dual directional harmonics dissipation system
US8437411B2 (en) Receiving apparatus
JP2533243B2 (en) Power supply that suppresses radiated electromagnetic interference
US20050253768A1 (en) Ultra-wideband V-UHF antenna
US20110241967A1 (en) Antenna Assemblies For Use With Portable Communications Devices
US7330072B2 (en) Circuit for power amplification
CN107210709A (en) Integrated CMOS transmission/reception switch in radio-frequency apparatus
KR101177393B1 (en) Low profile, broad band monopole antenna with heat dissipating ferrite/powder iron network and method for constructing the same
US11923624B2 (en) Antenna device and electronic apparatus
US5483208A (en) Radio frequency choke and tap
JP2004072445A (en) Antenna feeder circuit for medium wave broadcasting
KR100621135B1 (en) Antenna system for terrestrial broadcasting
TW201639295A (en) Antenna impedance matching using negative impedance converter and pre- and post-matching networks
US3437931A (en) Shunt fed pi-l output network
Best The inverse relationship between quality factor and bandwidth in multiple resonant antennas
JP5001980B2 (en) Antenna booster unit for terrestrial digital TV
EP1387485A1 (en) Circuit for power amplification
US7205952B2 (en) Broad band slot style television broadcast antenna
EP1533863A1 (en) An Active Antenna
US9019044B2 (en) Filter for a magnetron power supply lead
TW201721971A (en) LTE antenna structure
US20030155868A1 (en) Apparatus for protection of an Inductive Output Tube (IOT) from stored energy in a linear High Voltage Power Supply (HVPS) and its associated filter circuit during a high voltage arc
JPH0638497Y2 (en) Plate modulation circuit for high power broadcasting
JP5650047B2 (en) booster
Miki Technologies for all solid state TV transmitter

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101