JP2004071518A - Compound for positive electrode containing modified polyvinylidene fluoride - Google Patents

Compound for positive electrode containing modified polyvinylidene fluoride Download PDF

Info

Publication number
JP2004071518A
JP2004071518A JP2002260552A JP2002260552A JP2004071518A JP 2004071518 A JP2004071518 A JP 2004071518A JP 2002260552 A JP2002260552 A JP 2002260552A JP 2002260552 A JP2002260552 A JP 2002260552A JP 2004071518 A JP2004071518 A JP 2004071518A
Authority
JP
Japan
Prior art keywords
weight
positive electrode
polyvinylidene fluoride
lithium ion
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002260552A
Other languages
Japanese (ja)
Inventor
Isao Kuribayashi
栗林 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEE KK
Kee KK
Original Assignee
KEE KK
Kee KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEE KK, Kee KK filed Critical KEE KK
Priority to JP2002260552A priority Critical patent/JP2004071518A/en
Publication of JP2004071518A publication Critical patent/JP2004071518A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powdered compound for production of a positive electrode of a lithium ion battery, which contains modified polyvinylidene fluoride. <P>SOLUTION: Modified polyvinylidene fluoride retaining the nature of polyvinylidene fluoride (PVDF) in which ion conductivity is developed in a state that it is impregnated in an electrolytic solution and it is partially subjected to a dehydrofluorination treatment with an alkali and further subjected to an oxidation treatment with an oxidizer, and finely powdered graphite having a large specific surface area as a conductive aid are used, thereby the concentration of an active material is increased in the positive electrode. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
〔産業上の利用範囲〕
本発明は、リチウムイオン二次電池用正極を製造する目的の変性ポリフッ化ビニリデンを含有する粉末状のコンパウンドに関する。
【0002】
〔発明の属する技術分野〕
近年、リチウムイオン二次電池は、種々の電子機器の電源として使用されている。電子機器の小型化、軽量化を図る上で、これらの電子機器の電源としてきわめて有用である。用途の多様化に伴い、電池として、高容量化と製造コスト低減を同時に可能にできることが要望されている。本発明は、リチウムイオン二次電池用正極を製造する目的の粉末状のコンパウンドに関する。
【0003】
〔従来の技術〕
リチウムイオン二次電池の正極を製造する際に、正極活物質の種類により、若干、活物質量と導電助剤とバインダーの比率は、異なり、コバルト酸リチウムを使用する場合は、90から92重量%の活物質とアセチレンブラック単独あるいは微粉人造グラファイトとの混合物5から6重量%と溶剤のN−メチルピロリドン(NMP)に溶解してあるバインダーであるポリフッ化ビニリデン(PVDF)を3から5重量%とを混合するのが一般的であった。またリチウムマンガンスピネルを使用する場合は、88から90重量%の活物質とアセチレンブラック単独あるいは微粉人造グラファイトとの混合物5から7重量%と溶剤のN−メチルピロリドン(NMP)に溶解してあるバインダーであるポリフッ化ビニリデン(PVDF)を5から6重量%とを混合するのが一般的であった。またニッケル酸リチウムを使用する場合は、90から92重量%の活物質とアセチレンブラック単独あるいは微粉人造グラファイトとの混合物5から6重量%と溶剤のN−メチルピロリドン(NMP)に溶解してあるバインダーであるポリフッ化ビニリデン(PVDF)を4から5重量%とを混合するのが一般的であった。いずれも、ペースト状あるいはスラリー状にしてアルミニウム箔に塗布し、溶剤を130から150℃で揮散させて乾燥させた正極シートを製造していた。通常のポリフッ化ビニリデン(PVDF)では、コバルト酸リチウムの場合、3.0重量%未満の量では、またリチウムマンガンスピネルの場合、5.0重量%未満の量では、ニッケル酸リチウムの場合、4.0重量%未満の量では、アルミニウム箔に塗工し、乾燥した後、スリッテイングしたり、折り曲げたり、巻回したりする電池缶に入れる前工程で剥離、脱離を起こし問題であった。また限られた電池缶内にできるだけ正極活物質を入れて容量を高める観点からもバインダー量を少なくすることが好ましいものの、上記の問題があり、使用量を上記記載の重量%より減らすことは、困難であった。
リチウムイオン電池の急速充電特性あるいは急速放電特性の更なる改良には、イオン伝導性を保有し、アルミニウム箔との密着力を保持したまま、正極中の活物質濃度を高めることのできる正極用のバインダーの出現が待たれていた。
【0004】
〔発明が解決しようとする課題〕
電池容量を向上させるために正極中の活物質濃度を高めようとしても従来のバインダーのポリフッ化ビニリデンでは、比率を低減するとアルミニウム箔との密着力が著しく低下するため技術的に限界であった。アルミニウム箔との密着力を良好に保持できて、電解液が含浸された状態でイオン伝導性を保有するバインダーが求められていた。
本発明が解決しようとする課題は、かかる目的を満たすように改質したポリフッ化ビニリデン(PVDF)を含有するリチウムイオン電池用正極製造のための粉末状のコンパウンドを提供することにある。
【0005】
〔課題を解決するための手段〕
本発明者らは、上記課題について種々検討した結果、電解液が含浸された状態でイオン伝導性を示すポリフッ化ビニリデン(PVDF)の性質を保持したまま部分的にアルカリによる脱フッ化水素処理をし、更に酸化剤による酸化処理をされている変性ポリフッ化ビニリデンを得て、アルミニウム箔との密着力を良好に保持しながら正極中の活物質濃度を高めることが可能となることを見出し、かつ塗布液中で均一分散が難しかった導電助剤のアセチレンブラックを使用しないで替わりに大きい比表面積を有する微粉グラファイトを用いることにより、高粘性の取り扱いにくいバインダー溶液を使用せずとも塗布現場まで粉末の状態で輸送できるようにし、塗工液調製が特別な攪拌翼構造を有する高価な攪拌機を必要とせず、溶剤のNMPを塗布現場で添加して通常の攪拌機で短時間で塗布液を調製できる粉末状のコンパウンド組成を見出し、リチウムイオン二次電池用正極を製造する目的に給することのできるように本発明を完成させるに至った。
【0006】
〔発明の実施の形態〕
以下、本発明を具体的に説明する。
すなわち、本発明は、バインダーであるポリフッ化ビニリデンを高分子量のものに限定し、部分的にアルカリによる脱フッ化水素処理をし、更に酸化剤による酸化処理を施している変性ポリフッ化ビニリデンを得てこれをそれぞれの正極活物質と特定の組成範囲での粉末状のリチウムイオン電池用正極製造のための粉末状のコンパウンドである。すなわち、(1)正極活物質が、一般式LiCo1−x(但しMは、鉄、マンガン、アルミニウムの1種以上からなり、0≦x≦0.005の数を表す。)であるコバルト酸リチウム92重量%から96重量%と当該変性ポリフッ化ビニリデン0.5重量%から3重量%を含むことを特徴とするリチウムイオン電池用正極製造のための粉末状のコンパウンド、(2)正極活物質が、一般式LiMn(2−b−c−d)AlCoNi(但し、a、b、c、dは、それぞれ0.98≦a≦1.06、0≦b≦0.05、0≦c≦0.05、0≦d≦0.05の数を表す。)である当該変性リチウムマンガンスピネル91重量%から95重量%と変性ポリフッ化ビニリデン1重量%から4重量%を含むことを特徴とするリチウムイオン電池用正極製造のための粉末状のコンパウンド、(3)正極活物質が、一般式LiMnAlCoNi(1−b−c−d)(但し、a、b、c、dは、それぞれ0.98≦a≦1.05、0.1≦b≦0.34、0≦c≦0.10、0.01≦d≦0.34の数を表す。)である当該変性ニッケル酸リチウム92重量%から96重量%と変性ポリフッ化ビニリデン0.5重量%から4重量%を含むことを特徴とするリチウムイオン電池用正極製造のための粉末状のコンパウンドである。いずれの正極活物質でも変性ポリフッ化ビニリデンを下限の添加量に満たない場合、アルミニウム箔から活物質膜の剥離・脱離を生じ好ましくない。
また上限の添加量を超えると塗布膜の内部抵抗が増加し、また密着力向上に不要な添加量となりコストを高くすることになり、経済性の観点から好ましくない。変性処理前のポリフッ化ビニリデンは、溶剤のN−メチルビロリドン(NMP)と常温から60℃において溶液を形成し、変性処理後、わずかに分子量が低下する程度であり、高分子量の度合いの目安として8重量%ポリマー濃度の25℃での溶液粘度において0.2Pas以上あり、更に好ましくは、0.6Pas以上であり、最も好ましくは、1.2−2.2Pas程度の乳化重合ないし縣濁重合により得られるものである。
0.2Pas未満では、本発明のコンパウンドをNMP等に溶解してアルミニウム箔に塗布した場合、密着力が低くなり、また2.2Pasを超えるとNMP等の溶剤への溶解が困難となり、塗布物の密着力も低下して好ましくない。
【0007】
本発明に用いる変性ポリフッ化ビニリデンは、一例としてあげると乳化重合で得られた高分子量のポリフッ化ビニリデンラテックスあるいは、縣濁重合で得られたポリフッ化ビニリデン水分散液を水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸リチウム、テトラブチルアンモニウムブロマイド、水酸化アンモニウム等のアルカリにより、茶褐色を呈するまで、脱フッ化水素処理を部分的に施し、更に適切な6.5−8のPH範囲に塩酸などの酸で調節した後に、酸化剤例えば過酸化水素による酸化処理を施した後、脱水、水洗し乾燥して得る。
アルミニウム箔等の金属箔との密着力を損ねない程度に通常のポリフッ化ビニリデン粉末を併用しても差し支えない。
【0008】
本発明に用いる導電助剤は、例えば比面積30m/g以上300m/g、好ましくは、比面積40m/g以上290m/gを有し、メジアン粒子径が、1ミクロンから4ミクロンの範囲にある天然グラファイトあるいは、人造グラファイトを粉砕して得た微粉体である。溶剤のNMPと混合し、スラリーやペーストを調製する際に、分散性がよく、また電池に組み込まれる際、電解液の粒子表面での保持にも優れる。従来から使用されていたアセチレンブラック類は、できるだけ使用しないことが望ましいが、アルミニウム箔への密着力を著しく損ねない添加量範囲あるいは、適用される高電位において電解液を分解しない範囲で若干量を併用添加することはできる。
本発明に用いるリチウムイオン二次電池用正極活物質を製造する場合、その遷移金属の例えば水酸化物、炭酸塩、酸化物、オキシ水酸化物、有機酸塩等の化合物とリチウムの炭酸塩,水酸化物、有機酸塩とを700℃〜1000℃の範囲のそれぞれの遷移金属に適した温度範囲で焼成して得る。本発明に適した粒度は、一般式LiCo1−xMxO(但しMは、鉄、マンガン、アルミニウムの1種以上からなり、0≦x≦0.005の数を表す。)であるコバルト酸リチウムでは、メジアン粒子径が4ミクロンから20ミクロンの範囲にあるもの、一般式LiMn(2−b−c−d)AlCoNi(但し、a、b、c、dは、それぞれ0.98≦a≦1.06、0≦b≦0.05、0≦c≦0.05、0≦d≦0.05の数を表す。)である変性リチウムマンガンスピネルでは、8ミクロンから25ミクロンの範囲にあるもの、一般式LiMnAlCoNi(1−b−c−d)(但し、a、b、c、dは、それぞれ0.98≦a≦1.05、0.1≦b≦0.34、0≦c≦0.10、0.05≦d≦0.34の数を表す。)である変性ニッケル酸リチウムでは、メジアン粒子径が4ミクロンから20ミクロンの範囲にあるものが好ましい。
小粒子側の上記範囲外では、導電助剤を更に細かくする必要があり、アルミニウム箔との密着力も著しく低下し、好ましくない。また、上記範囲外の大粒子では、アルミ箔と塗布上層部との間に層剥離を生じ好ましくない。
【0009】
本発明のコンパウンドを得るには、通常粉体混合に使用されているタンブラー等の機器で構わないが、生産性と均一混合の上で、0.5分から3分間、500rpmから3000rpmの高速回転する混合機を使用することが好ましい。本発明のコンパウンドの特徴としては、溶剤を入れることなく輸送できるために、倉庫保管も容易であり、輸送梱包も簡便である。しかも、塗布現場でNMP等の溶剤を加えて、塗布液を調製する際に、従来法の粉末のポリフッ化ビニリデンをNMPに溶解する時のように、空気を抱き込んで塊状物を生成してしまい、均一な溶液にするのに多大な時間を要したり、60℃以上に加熱し、強制攪拌をする必要が全くなく、40℃から50℃の加温で通常の攪拌翼で均一混合が可能である。アセチレンブラックをほとんど使用しないことから、NMPの導電助剤微粒子凝集体への吸収がなく、また2次粒子凝集も起きない。活物質粒子間に既に当該変性ポリフッ化ビニリデン粉末粒子がよく分散していることから、NMPへの溶解時、活物質粒子とのせん断により極めて容易に塗布液になるためと推定される。
【0010】
〔実施例〕
以下実施例、比較例により本発明を詳しく説明するが、本発明の範囲は、これに限定されるものではない。
【0011】
リチウムイオン電池用正極活物質の粒子径分布測定は、堀場製作所製のLA−920を用いて水を分散媒して透過率(H)85〜90%で循環速度7で測定する。
完全球形粒子とみなした体積の累積体積率50%の粒子径(D(50))をメジアン粒子径と呼称し、ミクロン単位で表示する。
導電助剤の微粉グラファイトの比面積は、ミクロメリテイクス社製の流動式比表面積測定装置、フローソーブII2300を使用して試料を0.5から1.5グラムを精密秤量し、250℃にて30分間、真空下熱処理した後、窒素ガスの吸着量より求める。2種類以上の微粉グラファイトを使用する場合は、添加量比率に応じた比表面積の和となると仮定して算出する。
各正極物質と微粉グラファイトと変性PVDFあるいはPVDFをバインダーとしてコンパウンドを3000rpmのラボミキサーで混合する。
参考試験のために、BASF社製N−メチルピロリドン(NMP)エレクトロニクスグレードを用い、塗布用のスラリーをつくり、厚さ15μmの三菱アルミニウム社製の両面光沢なしアルミニウム箔の片面に活物質量が10−15mg/cm程度になるように塗布し、150℃で30分間、強制熱風循環乾燥機内で溶媒のNMPと微量水分を除去する。
冷却後、例えば幅2.5cm、長さ4cmの任意の大きさの電極として切断した後、R0.75mmφのステンレススチール棒を介して折り曲げ、折り曲げ部分にアルミニウム箔の金属肌が全く見えない物を評点5とし、折り曲げ部分に金属肌が一部見える度合いに応じて4から1とする。剥離ないしアルミニウム箔と塗布膜との間で層間剥離を生じた物を評点0として密着力の尺度とする。
参考のために、片面塗布の電極を切り出し、130℃で3時間、0.1パスカルの減圧下に乾燥し、グローブボックス内で乾燥アルゴンガス気流中、スクリューセルにこれを正極に、リチウム箔を負極として組み込まれる。
1MLiPF/エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート(1:2:2容積比)の電解液を添加30分後から4.30Vまで0.4mA/cmの定電流密度で4.30Vまで充電し、更に4.30Vの定電圧に3時間に保持し、電流密度が1μA/cm以下になるのを確認後、15分間の休止状態を経て0.4mA/cmの定電流密度で放電し、3.00Vに到達時に停止し、その間に流れた電気量をスクリューセル内の正極活物質重量で割り算し、mAh/gを単位として放電容量(A)を求める。更に15分間の休止状態を経て0.4mA/cmの定電流密度で4.30Vまで充電し、更に4.30Vの定電圧に3時間に保持し、電流密度の1μA/cm以下になるのを確認後、15分間の休止状態を経て0.4mA/cmの定電流密度で放電し、3.00Vに到達時に停止する。その間に流れた電気量をスクリューセル内の正極活物質重量で割り算し、mAh/gを単位として放電容量(B)とする。
この充電と放電を繰り返す。活物質としての寿命の目安としての容量保持率は、前記放電容量(A)に対して第10回目の放電容量(B)の百分率である。
【0012】
〔実施例1〕Li1.01CoOで示されるコバルト酸リチウム粉末(メジアン粒子径5.8ミクロン)14.10g(94重量%)に導電助剤として微粉グラファイトの日本黒鉛工業社製SP270J(メジアン粒子径1.9ミクロン、比表面積261m2/g)を0.4875g(3.25重量%)と同じくKJ(メジアン粒子径2.7ミクロン、比表面積126m2/g)を0.1500g(1.0重量%)を添加してステンレス製実験用サジで5分間混合後、乳化重合で得られるポリフッ化ビニリデンをアルカリによる部分的に脱フッ化水素処理し更に酸化剤による酸化処理されている変性ポリフッ化ビニリデンであるアトフィナ・ジャパン社製MKB272粉末0.2625g(1.75重量%)(8%NMP溶液での粘度は1.2Pasを示す。)とマレイン酸無水物0.0018gを添加し攪拌混合した後、ラボミキサーに移し、1分間混合し、リチウムイオン2次電池正極用コンパウンド粉末を得る。
〔参考例1〕実施例1で得られる正極用コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残存0.89ppm)を6.0g添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。
塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0013】
〔実施例2〕実施例1と同じLi1.01CoOで示されるコバルト酸リチウム粉末(メジアン粒子径5.8ミクロン)14.40g(96.0重量%)に導電助剤として微粉グラファイトの日本黒鉛工業社製LB300(メジアン粒子径1.6ミクロン、比表面積280m2/g)を0.5250g(3.5重量%)を添加してステンレス製実験用サジで5分間混合後、変性ポリフッ化ビニリデンであるアトフィナ・ジャパン社製MKB272粉末0.0750g(0.5重量%)(8%NMP溶液での粘度は1.2Pasを示す。)とマレイン酸無水物0.0018gを添加し攪拌混合した後、ラボミキサーに移し、1分間混合し、正極コンパウンド粉末を得る。
〔参考例2〕実施例1で得られる正極コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残存0.89ppm)を6.2g添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。
塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0014】
〔実施例3〕実施例1と同じLi1.01CoOで示されるコバルト酸リチウム粉末(メジアン粒子径5.8ミクロン)13.95g(93.0重量%)に導電助剤として微粉グラファイトの日本黒鉛工業社製SP270J(メジアン粒子径1.9ミクロン、比表面積261m2/g)を0.4875g(3.25重量%)と同じくKJ(メジアン粒子径2.7ミクロン、比表面積126m2/g)を0.1875g(1.25重量%)を添加してステンレス製実験用サジで5分間混合後に変性ポリフッ化ビニリデンのアトフィナ・ジャパン社製MKB272粉末0.375g(2.50重量%)(8%NMP溶液での粘度は1.2Pasを示す。)とマレイン酸無水物0.0018gを添加し攪拌混合した後、ラボミキサーに移し、1分間混合し、正極コンパウンド粉末を得る。
〔参考例3〕実施例1で得られる正極コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残有0.89ppm)を6.2g添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。
塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0015】
〔実施例4〕2リットルオークレーブ内に脱イオン水1050g、メチルセルロース0.39g、フッ化ビニリデンモノマー410gとジイソプロピルパーオキシジカーボネートを重合開始剤として使用し、25℃で縣濁重合する。重合後、オークレーブより取り出し、ステンレススチール製大型ビーカーに移し、テトラブチルアンモニウムブロマイドを含む15重量%水酸化ナトリウム水溶液を添加し、75℃にてポリマーが茶褐色を呈し、沈殿するまで攪拌する。塩酸を加えて一旦、PHを5とした後、35重量%の過酸化水素と15重量%の水酸化ナトリウムをPH7前後で70℃に保持しながらポリマーが茶褐色から淡黄色になるまで追添して酸化処理する。
酸化処理を終え、脱水、脱イオン水での水洗を少なくとも3度繰り返した後、70℃で真空乾燥する。こうして縣濁重合で得られるポリフッ化ビニリデンをアルカリによる部分的に脱フッ化水素処理をし、更に酸化剤による酸化処理されている変性ポリフッ化ビニリデン粉末0.2250g(1.5重量%)(8%NMP溶液での粘度は1.4Pasを示す。)とLi1.01CoOで示されるコバルト酸リチウム粉末(メジアン粒子径6.2ミクロン)14.13g(94.2重量%)に導電助剤である微粉グラファイトの日本黒鉛工業社製LB300H(メジアン粒子径2.1ミクロン、比表面積258m2/g)を0.5250g(3.50重量%)と同じくSP110J(メジアン粒子径3.4ミクロン、比表面積111m2/g)を0.1200g(0.80重量%)を添加してステンレス製実験用サジで5分間混合後、マレイン酸無水物0.0018gを添加し攪拌混合した後に、ラボミキサーに移し、1分間混合し、正極コンパウンド粉末を得る。
〔参考例4〕実施例4で得られる正極コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残存0.89ppm)を6.5g添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。
塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0016】
〔実施例5〕Li1.05Mn1.95Co0.05で示されるリチウムマンガンスピネル(メジアン粒子径18ミクロン)13.725g(91.5重量%)に導電助剤である微粉グラファイトの日本黒鉛工業社製SP85J(メジアン粒子径3.2ミクロン、比表面積85m2/g)を0.7500g(5.00重量%)を添加してステンレス製実験用サジで5分間混合後、アトフィナ・ジャパン社製MKB272粉末0.5250g(3.5重量%)(8%NMP溶液での粘度は1.2Pasを示す。)とマレイン酸無水物0.0018gを添加し攪拌混合した後、ラボミキサーに移し、1.5分間混合し、正極コンパウンド粉末を得る。
〔参考例5〕実施例5で得られる正極コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残存0.89ppm)を13.2g添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。
塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0017】
〔実施例6〕Li1.04Mn0.30Co0.15Ni0.55で示される変性ニッケル酸リチウム粉末(メジアン粒子径8.1ミクロン)13.80g(92.0重量%)に導電助剤である微粉グラファイトの日本黒鉛工業社製SP270J(メジアン粒子径1.9ミクロン、比表面積261m2/g)を0.4875g(3.25重量%)と同じくKJ(メジアン粒子径2.7ミクロン、比表面積126m2/g)を0.2625g(1.75重量%)を添加してステンレス製実験用サジで5分間混合後に、アトフィナ・ジャパン社製MKB272粉末0.4500g(3.00重量%)(8%NMP溶液での粘度は1.2Pasを示す。)とマレイン酸無水物0.0018gを添加し攪拌混合した後、ラボミキサーに移し、3000rpmで1分間混合し、正極コンパウンド粉末を得る。
〔参考例6〕実施例6で得られる正極コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残存0.89ppm)を15.0gを添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0018】
〔比較例1〕実施例1と同じLi1.01CoOで示されるコバルト酸リチウム粉末(メジアン粒子径5.8ミクロン)13.65g(91.0重量%)に導電助剤であるテイムカル製テイムレツクスKS6(メジアン粒子径3.8ミクロン、比表面積20m2/g)を0.9000g(6.0重量%)添加してステンレス製実験用サジで5分間混合後、アトフィナ・ジャパン社製PVDFの301F粉末0.4500g(3.0重量%)(8%NMP溶液での粘度は0.35Pasを示す。)とマレイン酸無水物0.0018gを添加し攪拌混合した後、ラボミキサーに移し、1分間混合し、正極コンパウンド粉末を得る。
〔参考比較例1〕比較例1で得られる正極コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残存0.89ppm)を6.5g添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0019】
〔比較例2〕実施例1と同じLi1.01CoOで示されるコバルト酸リチウム粉末(メジアン粒子径5.8ミクロン)13.95g(93.0重量%)に導電助剤であるテイムカル製テイムレツクスKS6(メジアン粒子径3.8ミクロン、比表面積20m2/g)を0.4500g(3.0重量%)添加してステンレス製実験用サジで5分間混合後、実施例1と同じ変性ポリフッ化ビニリデンであるアトフィナ・ジャパン社製MKB272粉末0.6000g(4.0重量%)(8%NMP溶液での粘度は1.2Pasを示す。)とマレイン酸無水物0.0018gを添加し攪拌混合した後、ラボミキサーに移し、1分間混合し、正極コンパウンド粉末を得る。
〔参考比較例2〕比較例2で得られる正極コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残存0.89ppm)を6.5g添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0020】
〔比較例3〕
Li1.05Mn1.95Co0.05で示されるリチウムマンガンスピネル(メジアン粒子径18ミクロン)13.275g(88.5重量%)に導電助剤であるテイムカル製テイムレツクスKS6(メジアン粒子径3.8ミクロン、比表面積20m2/g)を0.975g(6.5重量%)添加してステンレス製実験用サジで5分間混合後、クレハ化学社製#1300粉末0.750g(5.0重量%)(8%NMP溶液での粘度は0.45を示す。)とマレイン酸無水物0.0018gを添加し攪拌混合した後、ラボミキサーに移し、1分間混合し、正極コンパウンド粉末を得る。
〔比較参考例3〕比較例3で得られる正極コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残存0.89ppm)を13.2g添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。
塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0021】
〔比較例4〕Li1.04Mn0.30Co0.15Ni0.55で示される変性ニッケル酸リチウム粉末(メジアン粒子径8.1ミクロン)13.35g(89重量%)に導電助剤であるテイムカル社製テイムレツクスKS6(メジアン粒子径3.8ミクロン、比表面積20m/g)を0.900g(6.0重量%)添加してステンレス製実験用サジで5分間混合後、クレハ社製PVDFの#1300粉末0.750g(5.0重量%)(8%NMP溶液での粘度は0.45を示す。)とマレイン酸無水物0.0018gを添加し攪拌混合した後、ラボミキサーに移し、1分間混合し、正極コンパウンド粉末を得る。
〔比較参考例4〕比較例4で得られる正極コンパウンド粉末15.0gにBASF製N−メチルピロリドン(NMP、モノメチルアミン残存0.89ppm)を12.0gを添加し、45℃に加温しながら15分間よく練れるように攪拌する。これをアルミニウム箔にドクターブレードでスラリーを展伸・塗布し、乾燥する。
塗布物の評価結果を放電容量及び容量保持率の測定結果と共に表1に示す。
【0023】
〔発明の効果〕
本発明のリチウムイオン電池用正極製造のための粉末状のコンパウンドは、バインダーポリマーとしてアルカリによる部分的に脱フッ化水素処理され更に酸化剤による酸化処理されている変性ポリフッ化ビニリデンを用いて0.5重量%以上4重量%以下の範囲で使用し、かつ導電性助剤としてBET法による比表面積が、従来の導電助剤としての微粉グラファイトの比表面積より大きい微粉グラファイトを用いることによりアルミニウム箔への優れた密着力を保持したまま塗布膜中の正極活物質含有量を従来の未処理ポリフッ化ビニリデンに比して高めることが出来て、電池容量の向上に貢献するとともに、充・放電を繰り返す時の容量保持率の点でも優れる。
【0022】
【表1】

Figure 2004071518
[0001]
[Industrial use range]
The present invention relates to a powdery compound containing modified polyvinylidene fluoride for producing a positive electrode for a lithium ion secondary battery.
[0002]
[Technical field to which the invention belongs]
In recent years, lithium ion secondary batteries have been used as power sources for various electronic devices. In order to reduce the size and weight of electronic devices, they are extremely useful as power supplies for these electronic devices. With diversification of applications, there is a demand for batteries capable of simultaneously increasing capacity and reducing manufacturing costs. The present invention relates to a powdery compound for producing a positive electrode for a lithium ion secondary battery.
[0003]
[Conventional technology]
When manufacturing a positive electrode of a lithium ion secondary battery, the amount of the active material and the ratio of the conductive additive to the binder are slightly different depending on the type of the positive electrode active material. When lithium cobaltate is used, 90 to 92 weight% is used. % Of active material and acetylene black alone or a mixture of 5 to 6% by weight of finely powdered artificial graphite and 3 to 5% by weight of polyvinylidene fluoride (PVDF) as a binder dissolved in a solvent N-methylpyrrolidone (NMP). It was common to mix In the case of using lithium manganese spinel, a binder dissolved in 88 to 90% by weight of an active material and acetylene black alone or 5 to 7% by weight of a mixture of finely powdered artificial graphite and N-methylpyrrolidone (NMP) as a solvent. Was generally mixed with 5 to 6% by weight of polyvinylidene fluoride (PVDF). When lithium nickelate is used, 90 to 92% by weight of an active material and 5 to 6% by weight of a mixture of acetylene black alone or finely powdered artificial graphite and a binder dissolved in N-methylpyrrolidone (NMP) as a solvent. Was generally mixed with 4 to 5% by weight of polyvinylidene fluoride (PVDF). In each case, a paste or slurry was applied to an aluminum foil, and the solvent was evaporated at 130 to 150 ° C. and dried to produce a positive electrode sheet. In the case of ordinary polyvinylidene fluoride (PVDF), less than 3.0% by weight of lithium cobaltate and less than 5.0% by weight of lithium manganese spinel, 4% of lithium nickelate If the amount is less than 0.0% by weight, the aluminum foil is coated and dried, and peeling and detachment occur in a process prior to being put into a battery can that is slit, bent or wound. In addition, although it is preferable to reduce the amount of the binder from the viewpoint of increasing the capacity by putting the positive electrode active material in a limited battery can as much as possible, there is the above problem, and reducing the amount of use from the above-described weight%, It was difficult.
In order to further improve the rapid charging or discharging characteristics of lithium-ion batteries, it is necessary to increase the active material concentration in the positive electrode while maintaining ionic conductivity and adhesion to the aluminum foil. The appearance of the binder was awaited.
[0004]
[Problems to be solved by the invention]
Even if an attempt is made to increase the active material concentration in the positive electrode in order to increase the battery capacity, the conventional binder polyvinylidene fluoride is technically limited because if the ratio is reduced, the adhesion to the aluminum foil is significantly reduced. There has been a demand for a binder that can maintain good adhesion to an aluminum foil and has ionic conductivity when impregnated with an electrolytic solution.
The problem to be solved by the present invention is to provide a powdery compound for producing a positive electrode for a lithium ion battery containing polyvinylidene fluoride (PVDF) modified so as to satisfy the above object.
[0005]
[Means for solving the problem]
As a result of various studies on the above problems, the present inventors have conducted a partial alkali dehydrofluorination treatment while maintaining the properties of polyvinylidene fluoride (PVDF) exhibiting ion conductivity in a state where the electrolyte is impregnated. Further, it has been found that it is possible to obtain a modified polyvinylidene fluoride that has been oxidized with an oxidizing agent, and to increase the active material concentration in the positive electrode while maintaining good adhesion to the aluminum foil, and By using fine graphite having a large specific surface area instead of using acetylene black, a conductive auxiliary agent that was difficult to uniformly disperse in the coating solution, the powder can be transferred to the coating site without using a highly viscous and difficult-to-handle binder solution. It can be transported in a state, and the coating liquid preparation does not require an expensive stirrer having a special stirring blade structure. Find a powdery compound composition that can be added in a cloth site to prepare a coating solution in a short time with a normal stirrer, and complete the present invention so that it can be supplied for the purpose of producing a positive electrode for a lithium ion secondary battery. Reached.
[0006]
[Embodiment of the invention]
Hereinafter, the present invention will be described specifically.
That is, the present invention limits the polyvinylidene fluoride as the binder to a high molecular weight binder, obtains a modified polyvinylidene fluoride which has been partially dehydrofluorinated with an alkali and further oxidized with an oxidizing agent. This is a powdery compound for producing a positive electrode for a lithium ion battery in a powder form in a specific composition range with each positive electrode active material. That is, (1) the positive electrode active material has the general formula LiCo 1-x M x O 2 (Where M is at least one of iron, manganese, and aluminum, and represents a number of 0 ≦ x ≦ 0.005), from 92% by weight to 96% by weight of lithium cobaltate and 0.1% by weight of the modified polyvinylidene fluoride. A powdery compound for producing a positive electrode for a lithium ion battery, comprising 5 to 3% by weight; (2) a positive electrode active material having a general formula Li a Mn (2-bcd) Al b Co c Ni d O 4 (However, a, b, c, and d represent numbers of 0.98 ≦ a ≦ 1.06, 0 ≦ b ≦ 0.05, 0 ≦ c ≦ 0.05, and 0 ≦ d ≦ 0.05, respectively. A) a powdery compound for producing a positive electrode for a lithium ion battery, comprising 91% to 95% by weight of the modified lithium manganese spinel and 1% to 4% by weight of a modified polyvinylidene fluoride; 3) The positive electrode active material has the general formula Li a Mn b Al c Co d Ni (1-bcd) O 2 (However, a, b, c, and d are 0.98 ≦ a ≦ 1.05, 0.1 ≦ b ≦ 0.34, 0 ≦ c ≦ 0.10, and 0.01 ≦ d ≦ 0.34, respectively. Wherein the modified lithium nickelate contains 92% to 96% by weight of the modified lithium nickelate and 0.5% to 4% by weight of the modified polyvinylidene fluoride for producing a positive electrode for a lithium ion battery. It is a powdery compound. If the amount of modified polyvinylidene fluoride is less than the lower limit in any of the positive electrode active materials, the active material film is undesirably peeled off and detached from the aluminum foil.
On the other hand, if the amount exceeds the upper limit, the internal resistance of the coating film increases, and the amount of addition becomes unnecessary for improving the adhesion, which increases the cost, which is not preferable from the viewpoint of economy. Polyvinylidene fluoride before the denaturation treatment forms a solution at room temperature to 60 ° C. with N-methyl vilolidone (NMP) as a solvent, and the molecular weight slightly decreases after the denaturation treatment. The solution viscosity at 25 ° C. at a concentration of 25% by weight of the polymer is 0.2 Pas or more, more preferably 0.6 Pas or more, and most preferably about 1.2-2.2 Pas by emulsion polymerization or suspension polymerization. Is something that can be done.
If it is less than 0.2 Pas, the adhesion of the compound of the present invention is dissolved in NMP or the like when applied to an aluminum foil, and if it exceeds 2.2 Pas, it becomes difficult to dissolve in a solvent such as NMP. Is also undesirably reduced.
[0007]
The modified polyvinylidene fluoride used in the present invention is, for example, a high-molecular-weight polyvinylidene fluoride latex obtained by emulsion polymerization or an aqueous dispersion of polyvinylidene fluoride obtained by suspension polymerization. , Lithium hydroxide, lithium carbonate, tetrabutylammonium bromide, ammonium hydroxide and the like, partially dehydrofluoride until a brown color is exhibited, and further add hydrochloric acid to an appropriate pH range of 6.5-8. After adjusting with an acid such as, an oxidation treatment with an oxidizing agent such as hydrogen peroxide is performed, followed by dehydration, washing with water and drying.
Ordinary polyvinylidene fluoride powder may be used together to such an extent that the adhesion to metal foil such as aluminum foil is not impaired.
[0008]
The conductive auxiliary agent used in the present invention has a specific area of 30 m, for example. 2 / G or more and 300m 2 / G, preferably 40 m 2 / G or more and 290m 2 / G and a fine powder obtained by pulverizing natural graphite or artificial graphite having a median particle size in the range of 1 to 4 microns. When mixed with NMP as a solvent to prepare a slurry or paste, it has good dispersibility, and when incorporated into a battery, has excellent retention of the electrolyte on the particle surfaces. It is desirable that acetylene blacks, which have been used in the past, be used as little as possible. They can be added together.
When producing the positive electrode active material for a lithium ion secondary battery used in the present invention, a transition metal such as a compound such as hydroxide, carbonate, oxide, oxyhydroxide, organic acid salt and lithium carbonate, A hydroxide and an organic acid salt are calcined in a temperature range of 700 ° C. to 1000 ° C. suitable for each transition metal. Particle sizes suitable for the present invention are of the general formula LiCo 1-x MxO 2 (Where M represents at least one of iron, manganese, and aluminum, and represents a number satisfying 0 ≦ x ≦ 0.005). In the case of lithium cobaltate, the median particle diameter is in a range of 4 μm to 20 μm. , General formula Li a Mn (2-bcd) Al b Co c Ni d O 4 (However, a, b, c, and d represent numbers of 0.98 ≦ a ≦ 1.06, 0 ≦ b ≦ 0.05, 0 ≦ c ≦ 0.05, and 0 ≦ d ≦ 0.05, respectively. ) Is a modified lithium manganese spinel in the range of 8 microns to 25 microns, the general formula Li a Mn b Al c Co d Ni (1-bcd) O 2 (However, a, b, c, and d are 0.98 ≦ a ≦ 1.05, 0.1 ≦ b ≦ 0.34, 0 ≦ c ≦ 0.10, and 0.05 ≦ d ≦ 0.34, respectively. The modified lithium nickelate having a median particle diameter of 4 to 20 microns is preferable.
Outside the above range on the small particle side, it is necessary to make the conductive aid finer, and the adhesion to the aluminum foil is significantly reduced, which is not preferable. In addition, large particles outside the above range are not preferred because delamination occurs between the aluminum foil and the upper layer of the coating.
[0009]
In order to obtain the compound of the present invention, a device such as a tumbler which is usually used for powder mixing may be used, but at a high speed of 500 rpm to 3000 rpm for 0.5 minutes to 3 minutes, after productivity and uniform mixing. It is preferred to use a mixer. As a feature of the compound of the present invention, since it can be transported without adding a solvent, storage in a warehouse is easy, and transport and packaging are simple. In addition, when a coating solution is prepared by adding a solvent such as NMP at the coating site, the air is entrapped to form a lump as in the case of dissolving polyvinylidene fluoride of a conventional powder in NMP. It takes a lot of time to make a uniform solution, and there is no need to heat it to 60 ° C or more and perform forced agitation. Uniform mixing with a normal stirring blade at a temperature of 40 ° C to 50 ° C It is possible. Since acetylene black is scarcely used, there is no absorption of NMP into the conductive additive fine particle aggregate, and no secondary particle aggregation occurs. Since the modified polyvinylidene fluoride powder particles are already well dispersed between the active material particles, it is presumed that the coating liquid is extremely easily formed by shearing with the active material particles when dissolving in NMP.
[0010]
〔Example〕
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited thereto.
[0011]
The particle size distribution of the positive electrode active material for a lithium ion battery is measured by using LA-920 manufactured by HORIBA, Ltd. with water as a dispersion medium and a transmittance (H) of 85 to 90% at a circulation speed of 7.
The particle diameter (D (50)) at a cumulative volume ratio of 50% of the volume regarded as perfect spherical particles is called the median particle diameter and is expressed in units of microns.
The specific area of the fine graphite powder as the conductive additive was determined by precisely weighing 0.5 to 1.5 g of a sample using a flow type specific surface area measuring device, Flowsorb II2300 manufactured by Micromeritics Co., Ltd. at 250 ° C. After heat treatment under vacuum for a minute, it is determined from the adsorption amount of nitrogen gas. When two or more types of fine powder graphite are used, the calculation is performed assuming that the sum of the specific surface areas according to the addition amount ratio is obtained.
The compound is mixed with a lab mixer at 3000 rpm using each positive electrode material, fine powder graphite and modified PVDF or PVDF as a binder.
For the reference test, an N-methylpyrrolidone (NMP) electronics grade manufactured by BASF was used to prepare a slurry for application, and the amount of the active material was 10 μm on one side of a 15 μm-thick double-sided matte aluminum foil manufactured by Mitsubishi Aluminum. -15mg / cm 2 Then, at 150 ° C. for 30 minutes, the solvent NMP and trace water are removed in a forced hot air circulation dryer.
After cooling, for example, after cutting as an electrode of an arbitrary size of 2.5 cm in width and 4 cm in length, it is bent through a stainless steel rod of R0.75 mmφ. The score is set to 5 and is set to 4 to 1 in accordance with the degree to which a part of the metal skin is seen in the bent portion. An object having peeled or delaminated between the aluminum foil and the coating film is regarded as a score of 0, which is used as a scale of adhesion.
For reference, a single-sided electrode was cut out, dried at 130 ° C. for 3 hours under reduced pressure of 0.1 Pascal, and in a glove box, in a dry argon gas stream, a screw cell was used as a positive electrode, and a lithium foil was applied. It is incorporated as a negative electrode.
1MLiPF 6 / Ethylene carbonate: Dimethyl carbonate: Ethyl methyl carbonate (1: 2: 2 volume ratio) 0.4 mA / cm from 30 minutes after addition to 4.30 V 2 At a constant current density of 4.30 V, and further maintained at a constant voltage of 4.30 V for 3 hours, and a current density of 1 μA / cm 2 After confirming the following, after a rest state for 15 minutes, 0.4 mA / cm 2 , And stops when the voltage reaches 3.00 V. The amount of electricity flowing during that time is divided by the weight of the positive electrode active material in the screw cell, and the discharge capacity (A) is determined in mAh / g. 0.4 mA / cm after a rest state for 15 minutes 2 At a constant current density of 4.30 V, and further maintained at a constant voltage of 4.30 V for 3 hours to obtain a current density of 1 μA / cm. 2 After confirming the following, after a rest state for 15 minutes, 0.4 mA / cm 2 And stops when the voltage reaches 3.00V. The amount of electricity flowing during that time is divided by the weight of the positive electrode active material in the screw cell, and the resulting value is defined as the discharge capacity (B) in units of mAh / g.
This charge and discharge are repeated. The capacity retention as a measure of the life as an active material is a percentage of the tenth discharge capacity (B) with respect to the discharge capacity (A).
[0012]
[Example 1] Li 1.01 CoO 2 14.10 g (94% by weight) of lithium cobalt oxide powder (median particle diameter: 5.8 microns) represented by the formula: SP270J (median particle diameter: 1.9 microns, specific surface area: 261 m2) of fine graphite as a conductive aid made of Nippon Graphite Industry Co., Ltd. / G) was added to 0.4875 g (3.25% by weight), and 0.1500 g (1.0% by weight) of KJ (median particle diameter 2.7 microns, specific surface area 126 m2 / g) was added. After mixing for 5 minutes using a saji, the modified polyvinylidene fluoride obtained by emulsion polymerization is partially dehydrofluorinated with an alkali and then oxidized with an oxidizing agent. 0.2625 g (1.75% by weight) (viscosity in an 8% NMP solution shows 1.2 Pas) and maleic acid After stirring mixture was added anhydride 0.0018 g, transferred to a laboratory mixer, and mixed for 1 minute, to obtain a compound powder for a lithium ion secondary battery positive electrode.
Reference Example 1 6.0 g of N-methylpyrrolidone (NMP, monomethylamine remaining 0.89 ppm) manufactured by BASF was added to 15.0 g of the compound powder for a positive electrode obtained in Example 1, and the mixture was heated to 45 ° C. while adding 15 g. Stir to mix well for minutes. The slurry is spread and applied to an aluminum foil with a doctor blade and dried.
Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0013]
Example 2 Same Li as in Example 1 1.01 CoO 2 14.40 g (96.0% by weight) of lithium cobaltate powder (median particle diameter: 5.8 microns) represented by the formula: LB300 (median particle diameter: 1.6 microns, ratio of fine graphite) of fine graphite as a conductive aid made by Nippon Graphite Industry Co., Ltd. After adding 0.5250 g (3.5% by weight) of a surface area of 280 m 2 / g) and mixing with a stainless steel laboratory sag for 5 minutes, 0.0750 g of a modified polyvinylidene fluoride MKB272 powder (0. 5% by weight) (the viscosity in an 8% NMP solution shows 1.2 Pas) and 0.0018 g of maleic anhydride were added and mixed by stirring. Then, the mixture was transferred to a laboratory mixer, mixed for 1 minute, and mixed with the positive electrode compound powder. obtain.
[Reference Example 2] 6.2 g of N-methylpyrrolidone (NMP, monomethylamine remaining 0.89 ppm) manufactured by BASF was added to 15.0 g of the positive electrode compound powder obtained in Example 1, and the mixture was heated to 45 ° C for 15 minutes. Stir to mix well. The slurry is spread and applied to an aluminum foil with a doctor blade and dried.
Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0014]
[Embodiment 3] The same Li as in Embodiment 1 1.01 CoO 2 13.95 g (93.0% by weight) of lithium cobalt oxide powder (median particle diameter: 5.8 microns) represented by the formula: SP270J (median particle diameter: 1.9 microns, ratio of fine powder graphite) manufactured by Nippon Graphite Industry Co., Ltd. 0.1875 g (1.25 wt%) of KJ (median particle diameter 2.7 μm, specific surface area 126 m 2 / g) as well as 0.4875 g (3.25 wt%) of surface area 261 m 2 / g) and stainless steel After mixing with a laboratory sag for 5 minutes, 0.375 g (2.50% by weight) of modified polyvinylidene fluoride MKB272 powder (manufactured by Atofina Japan Co., Ltd.) (the viscosity in an 8% NMP solution shows 1.2 Pas) and maleic acid After adding 0.0018 g of anhydride and stirring and mixing, the mixture is transferred to a laboratory mixer and mixed for 1 minute to obtain a positive electrode compound powder.
Reference Example 3 6.2 g of BASF N-methylpyrrolidone (NMP, monomethylamine balance 0.89 ppm) was added to 15.0 g of the positive electrode compound powder obtained in Example 1, and heated at 45 ° C. Stir to mix well for minutes. The slurry is spread and applied to an aluminum foil with a doctor blade and dried.
Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0015]
Example 4 In a 2-liter oak clave, 1050 g of deionized water, 0.39 g of methylcellulose, 410 g of vinylidene fluoride monomer and diisopropyl peroxydicarbonate were used as a polymerization initiator to carry out suspension polymerization at 25 ° C. After polymerization, the polymer is taken out of the oak clave, transferred to a large stainless steel beaker, and added with a 15% by weight aqueous solution of sodium hydroxide containing tetrabutylammonium bromide. The mixture is stirred at 75 ° C. until the polymer turns brown and precipitates. Hydrochloric acid was added to once adjust the pH to 5, and then 35% by weight of hydrogen peroxide and 15% by weight of sodium hydroxide were added until the polymer turned from brown to pale yellow while maintaining the temperature at 70 ° C. around PH7. Oxidation treatment.
After completion of the oxidation treatment, dehydration and washing with deionized water are repeated at least three times, followed by vacuum drying at 70 ° C. The polyvinylidene fluoride thus obtained by the suspension polymerization is partially dehydrofluorinated with an alkali, and further oxidized with an oxidizing agent. The modified polyvinylidene fluoride powder 0.2250 g (1.5% by weight) (8 % NMP solution shows a viscosity of 1.4 Pas) and Li 1.01 CoO 2 14.13 g (94.2% by weight) of lithium cobalt oxide powder (median particle diameter of 6.2 microns) represented by LB300H (median particle diameter of 2.1 microns, manufactured by Nippon Graphite Industry Co., Ltd.) 0.1250 g (0.80 wt%) of SP110J (median particle diameter 3.4 microns, specific surface area 111 m 2 / g) and 0.5250 g (3.50 wt%) of specific surface area 258 m 2 / g) were added. After mixing with a stainless steel experimental sag for 5 minutes, 0.0018 g of maleic anhydride was added and mixed with stirring, then transferred to a laboratory mixer and mixed for 1 minute to obtain a positive electrode compound powder.
[Reference Example 4] 6.5 g of BASF N-methylpyrrolidone (NMP, 0.89 ppm of monomethylamine remaining) was added to 15.0 g of the positive electrode compound powder obtained in Example 4, and the mixture was heated to 45 ° C for 15 minutes. Stir to mix well. The slurry is spread and applied to an aluminum foil with a doctor blade and dried.
Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0016]
[Example 5] Li 1.05 Mn 1.95 Co 0.05 O 4 13.725 g (91.5% by weight) of lithium manganese spinel (median particle diameter: 18 microns) represented by the formula: SP85J (median particle diameter: 3.2 microns, specific surface area: 85 m2) manufactured by Nippon Graphite Industry Co., Ltd. / G) was added and mixed with a stainless steel laboratory sag for 5 minutes, and then 0.5250 g (3.5% by weight) of MKB272 powder manufactured by Atofina Japan Co., Ltd. (8% NMP The solution has a viscosity of 1.2 Pas) and 0.0018 g of maleic anhydride, and the mixture is stirred and mixed, then transferred to a laboratory mixer and mixed for 1.5 minutes to obtain a positive electrode compound powder.
[Reference Example 5] To 15.0 g of the positive electrode compound powder obtained in Example 5, 13.2 g of N-methylpyrrolidone (NMP, monomethylamine remaining 0.89 ppm) manufactured by BASF was added, and the mixture was heated to 45 ° C for 15 minutes. Stir to mix well. The slurry is spread and applied to an aluminum foil with a doctor blade and dried.
Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0017]
Example 6 Li 1.04 Mn 0.30 Co 0.15 Ni 0.55 O 2 13.80 g (92.0% by weight) of a modified lithium nickelate powder (median particle size of 8.1 microns) represented by the following formula (A) is a powdered graphite as a conductive additive SP270J (median particle size of 1.9 microns) manufactured by Nippon Graphite Industry Co., Ltd. 0.4875 g (3.25% by weight) of specific surface area 261 m2 / g) and 0.2625 g (1.75% by weight) of KJ (median particle diameter 2.7 microns, specific surface area 126 m2 / g) as well as 0.487 g (3.25% by weight). After mixing with a stainless steel experimental sag for 5 minutes, 0.4500 g (3.00% by weight) of MKB272 powder (manufactured by Atofina Japan Co., Ltd.) (viscosity in an 8% NMP solution shows 1.2 Pas) and maleic anhydride. After adding 0.0018 g and stirring and mixing, the mixture is transferred to a laboratory mixer and mixed at 3000 rpm for 1 minute to obtain a positive electrode compound powder.
[Reference Example 6] 15.0 g of N-methylpyrrolidone (NMP, monomethylamine remaining 0.89 ppm) manufactured by BASF was added to 15.0 g of the positive electrode compound powder obtained in Example 6, and the mixture was heated to 45 ° C while heating. Stir to mix well for minutes. The slurry is spread and applied to an aluminum foil with a doctor blade and dried. Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0018]
Comparative Example 1 Same Li as in Example 1 1.01 CoO 2 13.65 g (91.0% by weight) of lithium cobaltate powder (median particle size: 5.8 microns) represented by the formula below was used as a conductive assistant by Tymrex KS6 manufactured by Timcal (median particle size: 3.8 microns, specific surface area: 20 m2 / g). ) Was added and mixed with a stainless steel experimental sag for 5 minutes, followed by 0.4500 g (3.0% by weight) of 301F powder of PVDF manufactured by Atofina Japan (8% NMP solution). And 0.318 Pas.) And 0.0018 g of maleic anhydride were added and mixed by stirring, then transferred to a laboratory mixer and mixed for 1 minute to obtain a positive electrode compound powder.
[Reference Comparative Example 1] 6.5 g of BASF N-methylpyrrolidone (NMP, monomethylamine remaining 0.89 ppm) was added to 15.0 g of the positive electrode compound powder obtained in Comparative Example 1, and the mixture was heated to 45 ° C while heating. Stir to mix well for minutes. The slurry is spread and applied to an aluminum foil with a doctor blade and dried. Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0019]
Comparative Example 2 Same Li as in Example 1 1.01 CoO 2 13.95 g (93.0% by weight) of lithium cobalt oxide powder (median particle diameter: 5.8 microns) represented by the formula: Tymrex KS6 manufactured by Timcal (median particle diameter: 3.8 microns, specific surface area: 20 m2 / g) ) Was added and mixed with a stainless steel laboratory sag for 5 minutes, and 0.6000 g of the modified polyvinylidene fluoride MKB272 powder manufactured by Atofina Japan Ltd. (4. 0% by weight) (the viscosity in an 8% NMP solution shows 1.2 Pas) and 0.0018 g of maleic anhydride, and the mixture was stirred and mixed. Then, the mixture was transferred to a laboratory mixer and mixed for 1 minute to prepare a positive electrode compound powder. obtain.
[Reference Comparative Example 2] 6.5 g of N-methylpyrrolidone (NMP, monomethylamine remaining 0.89 ppm) manufactured by BASF was added to 15.0 g of the positive electrode compound powder obtained in Comparative Example 2, and the mixture was heated to 45 ° C while heating. Stir to mix well for minutes. The slurry is spread and applied to an aluminum foil with a doctor blade and dried. Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0020]
[Comparative Example 3]
Li 1.05 Mn 1.95 Co 0.05 O 4 13.275 g (88.5% by weight) of lithium manganese spinel (median particle diameter: 18 microns) represented by the following formula (1) was added with a conductive auxiliary agent, Tamrex KS6 manufactured by Timcal (median particle diameter: 3.8 microns, specific surface area: 20 m2 / g). .975 g (6.5 wt%) was added and mixed with a stainless steel laboratory sag for 5 minutes, and then 0.750 g (5.0 wt%) of # 1300 powder manufactured by Kureha Chemical Co., Ltd. .45) and maleic anhydride (0.0018 g) were added and mixed by stirring, then transferred to a laboratory mixer and mixed for 1 minute to obtain a positive electrode compound powder.
Comparative Reference Example 3 To 15.0 g of the positive electrode compound powder obtained in Comparative Example 3, 13.2 g of N-methylpyrrolidone manufactured by BASF (NMP, monomethylamine remaining 0.89 ppm) was added, and the mixture was heated to 45 ° C while heating. Stir to mix well for minutes. The slurry is spread and applied to an aluminum foil with a doctor blade and dried.
Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0021]
[Comparative Example 4] Li 1.04 Mn 0.30 Co 0.15 Ni 0.55 O 2 13.35 g (89% by weight) of a modified lithium nickelate powder (median particle diameter of 8.1 microns) represented by the following formula was used as a conductive auxiliary agent, Tamelex KS6 manufactured by Timcal (median particle diameter of 3.8 microns, specific surface area of 20 m). 2 / G) was added and mixed with a stainless steel laboratory sag for 5 minutes, and then 0.750 g (5.0% by weight) of # 1300 powder of Kureha PVDF (8% NMP The solution has a viscosity of 0.45) and 0.0018 g of maleic anhydride, and the mixture is stirred and mixed, then transferred to a laboratory mixer and mixed for 1 minute to obtain a positive electrode compound powder.
Comparative Reference Example 4 12.0 g of N-methylpyrrolidone (NMP, monomethylamine remaining 0.89 ppm) manufactured by BASF was added to 15.0 g of the positive electrode compound powder obtained in Comparative Example 4, and the mixture was heated to 45 ° C. Stir to mix well for 15 minutes. The slurry is spread and applied to an aluminum foil with a doctor blade and dried.
Table 1 shows the evaluation results of the coated articles together with the measurement results of the discharge capacity and the capacity retention.
[0023]
〔The invention's effect〕
The powdery compound for producing the positive electrode for a lithium ion battery of the present invention is prepared by using a modified polyvinylidene fluoride which is partially dehydrofluorinated with an alkali and further oxidized with an oxidizing agent as a binder polymer. It is used in the range of 5% by weight or more and 4% by weight or less, and the specific surface area by the BET method as a conductive aid is larger than the specific surface area of the fine powder graphite as a conventional conductive aid. The positive electrode active material content in the coating film can be increased compared to conventional untreated polyvinylidene fluoride while maintaining the excellent adhesion strength of the coating film, contributing to the improvement of the battery capacity, and repeating charging and discharging. It is also excellent in terms of capacity retention at the time.
[0022]
[Table 1]
Figure 2004071518

Claims (4)

リチウムイオン電池用正極活物質と比面積30m/g以上300m/gを有する微粉グラファイトの導電助剤とバインダーポリマーとからなり、バインダーポリマーがアルカリによる部分的に脱フッ化水素処理され更に酸化剤による酸化処理されている変性ポリフッ化ビニリデンであり、0.5重量%以上4重量%以下の範囲にあることを特徴とするリチウムイオン電池用正極製造のための粉末状のコンパウンド。It consists of a positive electrode active material for a lithium ion battery, a conductive aid of fine powder graphite having a specific area of 30 m 2 / g or more and 300 m 2 / g, and a binder polymer, and the binder polymer is partially dehydrofluorinated with alkali and further oxidized. A powdered compound for producing a positive electrode for a lithium ion battery, which is a modified polyvinylidene fluoride that has been oxidized by an agent and is in a range of 0.5% by weight or more and 4% by weight or less. リチウムイオン電池用正極活物質が、一般式LiCo1−x(但しMは、鉄、マンガン、アルミニウムの1種以上からなり、0≦x≦0.005の数を表す。)であるコバルト酸リチウム92重量%以上96重量%以下と当該変性ポリフッ化ビニリデン0.5重量%以上3重量%以下を含むことを特徴とする請求項1に記載のリチウムイオン電池用正極製造のための粉末状のコンパウンド。The positive electrode active material for a lithium ion battery is represented by the general formula LiCo 1-x M x O 2 (where M is at least one of iron, manganese, and aluminum, and represents a number 0 ≦ x ≦ 0.005). 2. The method for producing a positive electrode for a lithium ion battery according to claim 1, comprising 92 wt% to 96 wt% of a certain lithium cobalt oxide and 0.5 wt% to 3 wt% of the modified polyvinylidene fluoride. Powdery compound. リチウムイオン電池用正極活物質が、一般式LiMn(2−b−c−d)AlCoNi(但し、a、b、c、dは、それぞれ0.98≦a≦1.06、0≦b≦0.05、0≦c≦0.05、0≦d≦0.05の数を表す。)である当該変性リチウムマンガンスピネル91重量%以上95重量%以下と変性ポリフッ化ビニリデン1重量%以上4重量%以下を含むことを特徴とする請求項1に記載のリチウムイオン電池用正極製造のための粉末状のコンパウンド。Cathode active material for a lithium ion battery, the general formula Li a Mn (2-b- c-d) Al b Co c Ni d O 4 ( where, a, b, c, d is, 0.98 ≦ a ≦ respectively 1.06, 0 ≦ b ≦ 0.05, 0 ≦ c ≦ 0.05, and 0 ≦ d ≦ 0.05.) 91% by weight or more and 95% by weight or less of the modified lithium manganese spinel. The powdery compound for producing a positive electrode for a lithium ion battery according to claim 1, wherein the compound comprises 1% by weight to 4% by weight of polyvinylidene fluoride. リチウムイオン電池用正極活物質が、一般式LiMnAlCoNi(1−b−c−d)(但し、a、b、c、dは、それぞれ0.98≦a≦1.05、0.1≦b≦0.34、0≦c≦0.10、0.01≦d≦0.34の数を表す。)である当該変性ニッケル酸リチウム92重量%以上96重量%以下と変性ポリフッ化ビニリデン0.5重量%以上4重量%以下を含むことを特徴とする請求項1に記載のリチウムイオン電池用正極製造のための粉末状のコンパウンド。Cathode active material for a lithium ion battery, the general formula Li a Mn b Al c Co d Ni (1-b-c-d) O 2 ( where, a, b, c, d is, 0.98 ≦ a ≦ respectively 1.05, 0.1 ≦ b ≦ 0.34, 0 ≦ c ≦ 0.10, 0.01 ≦ d ≦ 0.34) 92% by weight or more and 96% by weight of the modified lithium nickelate 2. The powdery compound for producing a positive electrode for a lithium ion battery according to claim 1, wherein the powdery compound contains at most 0.5% by weight and at least 0.5% by weight and at most 4% by weight of modified polyvinylidene fluoride.
JP2002260552A 2002-08-05 2002-08-05 Compound for positive electrode containing modified polyvinylidene fluoride Pending JP2004071518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260552A JP2004071518A (en) 2002-08-05 2002-08-05 Compound for positive electrode containing modified polyvinylidene fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002260552A JP2004071518A (en) 2002-08-05 2002-08-05 Compound for positive electrode containing modified polyvinylidene fluoride

Publications (1)

Publication Number Publication Date
JP2004071518A true JP2004071518A (en) 2004-03-04

Family

ID=32024550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260552A Pending JP2004071518A (en) 2002-08-05 2002-08-05 Compound for positive electrode containing modified polyvinylidene fluoride

Country Status (1)

Country Link
JP (1) JP2004071518A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285633A (en) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd Non-aqueous system secondary battery and its charging method
JP2007005148A (en) * 2005-06-24 2007-01-11 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN1316653C (en) * 2005-01-28 2007-05-16 中国科学院成都有机化学有限公司 Positive electrode material for lithium ion cell, its preparing method and lithium ion cell
JP2007184127A (en) * 2006-01-05 2007-07-19 Nissan Motor Co Ltd Secondary battery, electrode therefor, and manufacturing method thereof
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
JP2016006767A (en) * 2014-05-29 2016-01-14 株式会社半導体エネルギー研究所 Manufacturing method of electrode, electrode, storage battery, and electronic apparatus
CN105470461A (en) * 2014-10-15 2016-04-06 万向A一二三系统有限公司 High-nickel base cathode paste for lithium-ion battery and preparation method of high-nickel base cathode paste
KR20170044185A (en) 2014-08-26 2017-04-24 다이니치 세이카 고교 가부시키가이샤 Coating liquid, coating film, and composite material
US10193152B2 (en) 2015-09-09 2019-01-29 Samsung Electronics Co., Ltd. Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles
CN113728472A (en) * 2019-07-15 2021-11-30 株式会社Lg新能源 Method for manufacturing electrode binder and electrode assembly comprising the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285633A (en) * 2004-03-30 2005-10-13 Osaka Gas Co Ltd Non-aqueous system secondary battery and its charging method
CN1316653C (en) * 2005-01-28 2007-05-16 中国科学院成都有机化学有限公司 Positive electrode material for lithium ion cell, its preparing method and lithium ion cell
US8815204B2 (en) 2005-04-13 2014-08-26 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US8574541B2 (en) 2005-04-13 2013-11-05 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US9416024B2 (en) 2005-04-13 2016-08-16 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US7939203B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Battery containing Ni-based lithium transition metal oxide
US7939049B2 (en) 2005-04-13 2011-05-10 Lg Chem, Ltd. Cathode material containing Ni-based lithium transition metal oxide
US7943111B2 (en) 2005-04-13 2011-05-17 Lg Chem, Ltd. Process of making cathode material containing Ni-based lithium transition metal oxide
US8426066B2 (en) 2005-04-13 2013-04-23 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8450013B2 (en) 2005-04-13 2013-05-28 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8540961B2 (en) 2005-04-13 2013-09-24 Lg Chem, Ltd. Method of preparing material for lithium secondary battery of high performance
US9590235B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8784770B2 (en) 2005-04-13 2014-07-22 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US8795897B2 (en) 2005-04-13 2014-08-05 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US7648693B2 (en) 2005-04-13 2010-01-19 Lg Chem, Ltd. Ni-based lithium transition metal oxide
US9412996B2 (en) 2005-04-13 2016-08-09 Lg Chem, Ltd. Material for lithium secondary battery of high performance
US9590243B2 (en) 2005-04-13 2017-03-07 Lg Chem, Ltd. Material for lithium secondary battery of high performance
JP2007005148A (en) * 2005-06-24 2007-01-11 Hitachi Maxell Ltd Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2007184127A (en) * 2006-01-05 2007-07-19 Nissan Motor Co Ltd Secondary battery, electrode therefor, and manufacturing method thereof
US11735738B2 (en) 2014-05-29 2023-08-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming electrode, electrode, storage battery, and electric device
JP2020155409A (en) * 2014-05-29 2020-09-24 株式会社半導体エネルギー研究所 Electrode, storage battery, and electrical appliance
US11165066B2 (en) 2014-05-29 2021-11-02 Semiconductor Energy Laboratory Co., Ltd. Method for forming electrode, electrode, storage battery, and electric device
JP2016006767A (en) * 2014-05-29 2016-01-14 株式会社半導体エネルギー研究所 Manufacturing method of electrode, electrode, storage battery, and electronic apparatus
KR20170044185A (en) 2014-08-26 2017-04-24 다이니치 세이카 고교 가부시키가이샤 Coating liquid, coating film, and composite material
US10619070B2 (en) 2014-08-26 2020-04-14 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Coating liquid, coating film, and composite material
CN105470461B (en) * 2014-10-15 2018-03-23 万向一二三股份公司 High Ni-based anode sizing agent of a kind of lithium ion battery and preparation method thereof
CN105470461A (en) * 2014-10-15 2016-04-06 万向A一二三系统有限公司 High-nickel base cathode paste for lithium-ion battery and preparation method of high-nickel base cathode paste
US10193152B2 (en) 2015-09-09 2019-01-29 Samsung Electronics Co., Ltd. Cathode active material particles, lithium ion battery prepared by using the cathode active material particles, and method of preparing the cathode active material particles
CN113728472A (en) * 2019-07-15 2021-11-30 株式会社Lg新能源 Method for manufacturing electrode binder and electrode assembly comprising the same

Similar Documents

Publication Publication Date Title
TWI640119B (en) Method of preparing cathode for secondary battery
JP3585122B2 (en) Non-aqueous secondary battery and its manufacturing method
US9595714B2 (en) Electrode-forming composition
TW565961B (en) Nonaqueous electrolyte secondary battery and its manufacturing method
JP6694054B2 (en) Rechargeable solid-state lithium-ion battery cathode material
WO1998054774A1 (en) Method of producing electrode for non-aqueous electrolytic cells
JP2004071518A (en) Compound for positive electrode containing modified polyvinylidene fluoride
WO2018168615A1 (en) Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element
JP6417722B2 (en) Conductive adhesive composition for electrochemical element electrode, current collector with adhesive layer, and electrode for electrochemical element
CA3183229A1 (en) Method of preparing cathode for secondary battery
JPH1145706A (en) Manufacture of electrode for nonaqueous electrolytic battery
JP4203866B2 (en) Method for producing electrode for non-aqueous electrolyte battery
JP2018206579A (en) Carbon black slurry for electrode, composition for forming electrode, and manufacturing method of electrode for lithium ion secondary battery
CA3140640A1 (en) Method of preparing cathode for secondary battery
JP4410315B2 (en) Non-aqueous electrolyte battery electrode
JPH1145717A (en) Electrode for nonaqueous electrolytic battery
CN106410125B (en) Coal ash-NCM ternary composite cathode material, preparation and its preparation of slurry
CA3183230A1 (en) Cathode and cathode slurry for secondary battery
JP2004039539A (en) Positive electrode active material for secondary battery
JP2004071517A (en) Compound for negative electrode containing modified polyvinylidene fluoride
JPH1145707A (en) Manufacture of electrode for nonaqueous electrolytic battery
JP4013241B2 (en) Method for producing solid electrolyte battery
JP6487369B2 (en) Conductive paste for preparing positive electrode of lithium ion secondary battery
WO2015065232A1 (en) Composite nanomaterial for chemical current sources and method for producing same
JP2019220401A (en) Carbon black slurry for electrode and composition for forming electrode