JP2004071357A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2004071357A
JP2004071357A JP2002229110A JP2002229110A JP2004071357A JP 2004071357 A JP2004071357 A JP 2004071357A JP 2002229110 A JP2002229110 A JP 2002229110A JP 2002229110 A JP2002229110 A JP 2002229110A JP 2004071357 A JP2004071357 A JP 2004071357A
Authority
JP
Japan
Prior art keywords
light
lighting device
light source
phosphor
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002229110A
Other languages
Japanese (ja)
Other versions
JP4197109B2 (en
Inventor
Tatsuya Morioka
森岡 達也
Shinya Ishida
石田 真也
Daisuke Hanaoka
花岡 大介
Mototaka Tanetani
種谷 元隆
Shigeo Fujita
藤田 茂夫
Shizuo Fujita
藤田 静雄
Yoichi Kawakami
川上 養一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002229110A priority Critical patent/JP4197109B2/en
Publication of JP2004071357A publication Critical patent/JP2004071357A/en
Application granted granted Critical
Publication of JP4197109B2 publication Critical patent/JP4197109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting device capable of setting a color balance easily with high electro-optical conversion efficiency and high brightness. <P>SOLUTION: A lighting device 10 includes a light source 11 emitting a primary light, and a wavelength conversion portion 12 which absorbs the primary light and then emits a secondary light having a longer peak wavelength than that of the primary light. The wavelength conversion portion 12 is laminated in order of an optical direction from red 13, green 14, and blue phosphor 15. Thus, every secondary light emitted from respective phosphors 13 to 15 is not absorbed by the other phosphors emitting the other colors, so that white light produced by mixing the three colors is emitted from the lighting device 10. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、一次光を発する光源と、一次光を吸収して二次光を発する波長変換部とを備えた照明装置に関するものである。
【0002】
【従来の技術】
低消費電力、小型、且つ高輝度が期待される次世代の照明装置として、ナノ結晶の蛍光体と、その蛍光体を励起する一次光を発する光源とからなる照明装置の開発が盛んに行われている。蛍光体にナノ結晶を用いることにより、従来の蛍光体と比較して発光効率の向上が期待されている。更に、このようなナノ結晶は、従来の蛍光体を励起するために必要とされる吸収帯幅(エネルギー幅)と比較して吸収帯幅が広いので、光源の波長幅に対する許容度が高い。そのため、光源としては半導体発光素子等を使用できる。
【0003】
このような照明装置の一例として特開平11−340516号公報がある。この公報では、ナノ結晶からなる青色蛍光体を混在させた白色蛍光体を有する波長変換部と、その波長変換部を励起する光源とからなる照明装置が開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、この公報に記載されている照明装置は、赤色、緑色、青色蛍光体を混在させて白色光を発しているので、均一な白色光を発光させるためには波長変換部となる領域全面に均一に赤色、緑色、青色蛍光体を混在させなければならず、非常に困難である。
【0005】
また、青色蛍光体の上に緑色或いは赤色蛍光体が形成されると、青色蛍光体から発光された青色光は緑色或いは赤色蛍光体に吸収され、緑色光或いは赤色光が発光される。同様に、緑色蛍光体の上に赤色蛍光体が形成されると、緑色蛍光体から発光された緑色光は赤色蛍光体に吸収され、赤色光が発光される。従って、照明装置の色バランスは設定した色からずれてしまい、設定色に対する輝度が低下する。
【0006】
更に、光源として発光ダイオード(以下、LEDと記すことがある)を使用した場合は、LED表面からの発光成分しか蛍光体を励起せず、その他の方向に放射される光のほとんどは損失光となってしまう。従って、LEDに入力される電流に対して蛍光体を介して出力される光強度、即ち電気光変換効率は非常に低いものであった。
【0007】
本発明は、上記の問題点に鑑み、色バランスの設定が容易であり、且つ電気光変換効率及び輝度の高い照明装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために本発明は、一次光を発する少なくとも1つの光源と、一次光の少なくとも一部を吸収して、一次光のピーク波長よりも長い或いは同等のピーク波長を有する二次光を発する波長変換部とを備えた照明装置において、前記波長変換部は複数の蛍光体からなり、各蛍光体は吸収帯域が異なり、少なくとも1つの蛍光体で発せられた二次光が他の蛍光体で吸収される吸収帯を有することを特徴とするものである。
【0009】
この構成によると、設定した色バランスを容易に得ることができ、且つ設定色の輝度が高い照明装置を得ることができる。
【0010】
上記の照明装置において、前記複数の蛍光体は、光路順に、二次光のピーク波長の長い蛍光体順に積層することができる。また、前記複数の蛍光体は、粒径の異なるナノ結晶を用い、光路順に、粒径の大きい蛍光体順に積層することができる。また、前記複数の蛍光体は、光路方向に互いに重ならないような、面状に配設された複数のセルからなるようにしてもよい。
【0011】
これらの構成によると、各蛍光体から発光した二次光は他色を発光する蛍光体に再度吸収されることがなくなる。
【0012】
また上記の照明装置において、前記波長変換部の光路方向の両面に導光体を設けることにより、照明装置の光源に近い部分が明るく、光源から離れるに従って暗くなることを回避でき、均一な発光を得ることができる。更に、GaN系半導体レーザを光源に用いた場合は、出射光の放射角度は30°程度しかないため、照明装置の照射範囲を大きくするには光源と波長変換部との距離を大きくする必要があるが、導光体を用いることによりその距離を短くすることができ、照明装置を小型化することができる。
【0013】
また、前記波長変換部の一次光の入射面に、一次光を前記波長変換部へ導く導光体を設けてもよい。そして、この導光体には光を拡散する拡散材を添加することが好ましい。更に、導光体の前記波長変換部と反対面に、光を反射する凹凸形状の金属膜を設けることが好ましい。更に、前記光源と前記導光体との間に、390nm以下の波長の光を遮蔽する第1の光学膜を設けることにより、紫外光成分によって生じる樹脂の劣化を防止できる。更に、導光体の前記光源側の側面を除いた側面の少なくとも一部に、光を反射する第1の反射板を設けることにより、導光体から波長変換部以外に放射される損失光を低減することができ、電気光変換効率の高い照明装置を得ることができる。
【0014】
また上記の照明装置において、前記光源と前記波長変換部との間に、前記一次光を透過し、且つ前記二次光を遮蔽する第2の光学膜を設けることにより、光損失を低減でき、電気光変換効率の高い照明装置を得ることができる。そして、前記波長変換部の二次光出射面上に又は該面と空間を有して、前記二次光を透過し、且つ前記一次光を遮蔽する第3の光学膜を設けることにより、励起光(一次光)の再利用が可能となり、電気光変換効率の高い照明装置を得ることができる。また、光学膜は膜中の干渉により光の反射を生じるので励起光成分中の特に目に対する安全性の低い紫外光を効果的に反射し、目に対する安全性を向上させることができる。更に、所望する光の照射方向と反対側に、光を反射する第2の反射板を設けることにより、照明装置から放出される光の損失を抑制して有効に利用することができる。なお、放熱性の観点から、前記光源は前記第2の反射板に直接又は熱伝導性材を介して固定することが好ましい。
【0015】
以上の照明装置は、前記光源を駆動する駆動回路を備え、該駆動回路はパルス電流発生部を有し、前記光源はパルス光を発振することにより、CW(連続)駆動と比較して熱による影響を受けにくく、大光量を放射することもできる。また、信頼性を良好にすることもできる。従って、光源の信頼性を良好に保ちながら光出力を向上させることができ、輝度の高い照明装置を提供することができる。
【0016】
【発明の実施の形態】
以下に本発明の実施形態について図面を参照して説明する。なお、同一又は対応する部分には同一の符号を付し、その詳細な説明を省略する。本明細書において、「ナノ結晶」とは結晶サイズを励起子ボーア半径程度まで小さくし、量子サイズ効果による励起子の閉じこめやバンドギャップの増大が観測される結晶を指すものとする。
【0017】
〈第1の実施形態〉
図1は、第1の実施形態の照明装置の要部の側面図である。照明装置10は、一次光を発する光源11と、一次光の少なくとも一部を吸収して、一次光のピーク波長よりも長いピーク波長を有する二次光を発する波長変換部12とを備えている。
【0018】
光源11としては、例えば、430nmにピーク波長を有するGaN系発光ダイオード、ZnO系発光ダイオード、ダイヤモンド系発光ダイオード等を用いることができる。また、波長変換部12としては、InN系のナノ結晶を用いることができる。InNはバルク構造では2.05eVのバンドギャップを有しているという説と0.6〜0.8eVのバンドギャップを有しているという説があるが、その何れにおいても、粒径を小さく(ナノ結晶化)していくと、量子効果によってバンドギャップを青色から赤色の範囲で制御することができる。
【0019】
波長変換部12は、赤色発光する粒径を有し、最も粒径の大きいInN系ナノ結晶である赤色蛍光体13と、緑色発光する粒径を有し、中間の粒径のInN系ナノ結晶である緑色蛍光体14と、青色発光する粒径を有し、最も粒径の小さいInN系ナノ結晶である青色蛍光体15とがアクリル樹脂中に積層されたものである。それら蛍光体は光源11に近い順に、赤色蛍光体13、緑色蛍光体14、青色蛍光体15と積層されている。蛍光体13〜15の種類としては、Si、Zn1−xCdSe等、バルクで青色から近紫外領域に少なくとも吸収帯があるような材料を用いることができる。
【0020】
この粒径の異なる波長変換部12は、化学合成法やイオン注入法等により作成することができる。なお、この波長変換部12は、各蛍光体13〜15を直接積み上げたもの或いは各蛍光体13〜15を直接積み上げたものをアクリル樹脂等で埋め込んだもの、各蛍光体13〜15をアクリル樹脂だけでなく他の有機物や無機物に埋め込んだものの積層体としてもよい。
【0021】
各蛍光体13〜15は、各バンドギャップより大きいエネルギーを有した光を全て吸収し、バンドギャップに相当する二次光を発色する。この為、図2の模式図に示すように、バンドギャップEgの大きい蛍光体(例えば青色)で発光した二次光は、バンドギャップEgの小さい蛍光体(例えば赤色)に吸収されてしまう。最終的に、これら蛍光体から放射された各二次光が混色することによって、設定した所望の発色を生じる。
【0022】
本実施形態の照明装置10においては、光源11から出射された励起光(一次光)の一部が、まず赤色蛍光体13に吸収されて赤色光(二次光)が放射される。次に、励起光の残りの成分が緑色蛍光体14に吸収されて緑色光(二次光)が放射される。このとき、赤色光(二次光)は緑色蛍光体14のバンドギャップより小さいので、緑色蛍光体14に吸収されることなく透過する。更に、励起光の残りの成分が青色蛍光体15に吸収されて青色光(二次光)が放射される。このとき、赤色光(二次光)或いは緑色光(二次光)は青色蛍光体15のバンドギャップより小さいので、青色蛍光体15に吸収されることなく透過する。最終的に、これら蛍光体から放射された各二次光が混色することによって、白色光が発せられる。
【0023】
上記のような順で各蛍光体を積層することにより、各蛍光体から発光した二次光は他色を発光する蛍光体に再度吸収されることがなく、設定した色バランスを容易に得ることができ、且つ設定色の輝度が高い照明装置を得ることができる。また、色バランスの設定は各蛍光体の膜厚又は密度を変えるだけで容易に且つ独立に制御することができる。
【0024】
なお、波長変換部12は、赤色蛍光体13と緑色蛍光体14との積層体とし、青色の発光源としては光源11の励起光を用いるようにしてもよい。また、波長変換部12は、上記の蛍光体13〜15と他の蛍光体とを組み合わせてもよい。
【0025】
また、波長変換部12において、赤色蛍光体13と緑色蛍光体14との間に、緑色光を反射して赤色光を透過する膜を設けてもよい。これにより、緑色光が赤色蛍光体13を励起するのを抑制することができ、緑色光の輝度を低下させずに色バランスを良好に保つことができる。また、緑色蛍光体14と青色蛍光体15との間に、青色光を反射して赤色光及び緑色光を透過する膜を設けても同様の効果を得ることができる。
【0026】
また、波長変換部12の構成は、光源11に近い順に、青色蛍光体15、緑色蛍光体14、赤色蛍光体13と積層してもよい。この場合は、青色光(二次光)が緑色蛍光体14或いは赤色蛍光体13で吸収される割合、所謂吸収係数を考慮して各蛍光体13〜15の厚みを設定すればよい。このように、色バランスは各蛍光体13〜15の厚みを制御することで行うことができ、従来例の各蛍光体をランダムに混在させた場合と比較して色バランスの設定を容易に行うことができる。更に、従来例よりも色バランスの面内均一性を良好にすることができる。
【0027】
〈第2の実施形態〉
図3は第2の実施形態の照明装置の要部の側面図、図4は図3の平面図である。赤色蛍光体13、緑色蛍光体14、青色蛍光体15のセルが順に平面状に敷き詰められており、その平面は光路方向に重ならないように設けられている。それ以外の構成は第1の実施形態と同様である。
【0028】
このように、各セルは光路方向に重なっていないので各蛍光体から発光した二次光は他色を発光する蛍光体に再度吸収されることがほとんどなく、設定した色バランスを容易に得ることができ、且つ設定色の輝度が高い照明装置を得ることができる。また、色バランスの設定はセルの表面積を変えるだけで容易に且つ独立に制御することができる。
【0029】
なお、セルの配置や表面積は本実施形態に限定されるものではなく、各セルで発光した二次光が混色して所望の色となるような任意の配置や表面積とすることができる。
【0030】
また、波長変換部12は、赤色蛍光体13と緑色蛍光体14とを用い、青色の発光源としては光源11の励起光を用いるようにしてもよい。また、波長変換部12は、上記の蛍光体13〜15と他の蛍光体とを組み合わせてもよい。
【0031】
〈第3の実施形態〉
第3の実施形態の照明装置10は、光源11としてGaN系半導体レーザを使用するものである。照明装置10の他の構成は第1又は第2の実施形態と同様である。
【0032】
半導体発光素子は、電気光交換効率が比較的良好であり、素子が小さいという特徴がある。従って、照明装置10の光源11として用いることにより、低消費電力、小型化を実現できる。このような半導体発光素子の例として、発光ダイオードと半導体レーザが挙げられる。発光ダイオードは素子の全方向に発光するので、集光するために、例えば光を反射させる形状の金属フレームに素子を載せ、更にこの金属フレームを樹脂で包み、樹脂表面をレンズ加工する必要がある。
【0033】
しかしながら、このような構成としても素子からは抗される光を全て集光するのは困難であり、また、素子を金属フレームに載せる必要があるので小型化することも困難である。
【0034】
一方、半導体レーザは、共振器端面からほとんどの光が発光される。従って、共振器方向に波長変換部12を設けるだけで発光ダイオードを使用した場合と比較して容易に励起光の利用効率を向上させることができる。その結果、照明装置10の光電気変換効率を向上させることができる。
【0035】
なお、半導体レーザとしては、電極ストライプ構造(不図示)を用いることができる。この電極ストライプ構造を有する半導体レーザはワットクラスの光出力をだすことが可能であり、照明装置10の光源11として適している。更に、GaN系半導体レーザは結晶構造が強く、発光領域が劣化しにくいのでワットクラスの光出力をだす光源として適している。
【0036】
また、ポリカーボネート等の樹脂中にナノ結晶の蛍光体が埋め込まれているような波長変換部の場合は、励起光(一次光)に390nm以下の紫外光成分が含まれていると、樹脂による吸収が生じる。更に、励起光強度が強い場合は、吸収によって樹脂が変質するとともに、電気光変換効率が低下してしまう。
【0037】
図5に、半導体レーザ及び発光ダイオードの波長スペクトルを示す。半導体レーザは発光ダイオードと比較して波長のスペクトル幅が狭く、積分光強度としてみると390nm以下の光強度は小さい。このため半導体レーザでは青色蛍光体15を励起できるように約430nm以下の波長で、且つアクリルでの吸収が防止できるような390nm以上の波長領域の発振波長を設定することが望ましい。これにより、樹脂の変質による電気光変換効率の低下を抑制することができる。なお、発振波長の制御方法としては発光領域の幅や混晶比を適宜調整することによって容易に実現することができる。
【0038】
以上の結果、光源11としてGaN系半導体レーザを使用することで、輝度の高い照明装置10を得ることができる。なお、半導体レーザと波長変換部12との間に390nm以下の光を遮蔽する遮蔽膜を設けることによって、樹脂に対する紫外線の影響を抑制することができる。この遮蔽膜としては、酸化シリコン、酸化ジルコニア、フッ化マグネシウム、酸化アルミニウム、酸化チタン等の誘電体膜の単層或いは多層膜やCdS、CdSSeコロイドをガラス中に分散させた色ガラスフィルター(シャープカットフィルター)を用いることができる。
【0039】
なお、半導体レーザの素子構造としては、上記以外に活性層が複数アレイ状に並んだ構造を用いることもできる。
【0040】
〈第4の実施形態〉
図6は、第4の実施形態の照明装置の要部の側面図である。波長変換部12における各蛍光体は、光源11に近い順に、赤色蛍光体13、緑色蛍光体14、青色蛍光体15が形成されている。そして、この波長変換部12を挟むように、光を拡散する拡散材が添加されたアクリル樹脂が光学膜として形成され、導光体16をなしている。
【0041】
また、赤色蛍光体13の側面方向には、GaN系半導体レーザからなる光源11が設けられている。光源11は、発光領域17と、単層又は多層膜からなる反射率が約80〜95%の反射膜18(図6では3層)とを備えている。この反射膜18により、波長変換部12と反対側に励起光が出射されることを防止し、光損失による半導体レーザの消費電力を抑制することができる。
【0042】
なお、波長変換部12と反対方向の反射膜側に、光源11の光出力がモニターできるような光モニター用の受光素子(不図示)及び光出力を安定化するためのフィードバック回路(不図示)を設けてもよい。
【0043】
本実施形態の照明装置10において、光源11から出射された励起光(一次光)は、各蛍光体13〜15で吸収・発光され、導光体16を透過して図6の矢印の方向に放射され、混色されて白色光となる。
【0044】
上記のような構成とすることにより、設定した色バランスを容易に得ることができ、且つ電気光変換効率及び設定色の輝度が高い照明装置を得ることができる。また、色バランスの設定は各蛍光体の体積又は密度を変えるだけで容易に且つ独立に制御することができる。
【0045】
第1又は第2の実施形態のように導光体16を設けない構成では、光源11の出射光の強度分布がガウシアン分布であるため、照明装置10の光源11に近い部分が明るく、光源11から離れるに従って暗くなってしまうが、本実施形態によれば均一な発光を得ることができる。
【0046】
更に、GaN系半導体レーザを光源11に用いた場合は、出射光の放射角度は30°程度しかないため、照明装置10の照射範囲を大きくするには光源11と波長変換部12との距離を大きくする必要があるが、導光体16を用いることによりその距離を短くすることができ、照明装置10を小型化することができる。
【0047】
〈第5の実施形態〉
図7は、第5の実施形態の照明装置の要部の側面図である。波長変換部12における各蛍光体は、光源11に近い順に、赤色蛍光体13、緑色蛍光体14、青色蛍光体15が繰り返し形成されている。そして、この波長変換部12の下面には導光体16が形成され、光を波長変換部12へ拡散する拡散材が添加されている。この拡散材としては、金属微粒子等を用いることができる。
【0048】
また、赤色蛍光体13の側面方向には、発光領域17を有するGaN系半導体レーザからなる光源11が設けられている。
【0049】
本実施形態の照明装置10において、光源11から出射された励起光(一次光)は、導光体16で拡散され、各蛍光体13〜15で吸収・発光され、混色されて白色光となる。
【0050】
上記のような構成とすることにより、設定した色バランスを容易に得ることができ、且つ電気光変換効率及び設定色の輝度が高い照明装置を得ることができる。また、色バランスの設定は各蛍光体の体積又は密度を変えるだけで容易に且つ独立に制御することができる。
【0051】
第1又は第2の実施形態のように導光体16を設けない構成では、光源11の出射光の強度分布がガウシアン分布であるため、照明装置10の光源11に近い部分が明るく、光源11から離れるに従って暗くなってしまうが、本実施形態によれば均一な発光を得ることができる。
【0052】
〈第6の実施形態〉
図8は、第6の実施形態の照明装置の要部の側面図である。第5の実施形態と異なる点は、導光体16に拡散材を添加する代わりに、導光体16の底面に光を反射する凹凸形状の金属膜19を設けたことと、光源11の導光体16側の側面に390nm以下の波長の励起光を反射又は吸収する光学膜20を設けたことである。
【0053】
本実施形態の照明装置10において、光源11から出射される励起光(一次光)は光学膜20で390nm以下の波長が遮蔽され、透過した励起光は導光体16に入射し、金属膜19で反射され、各蛍光体13〜15で吸収・発光され、混色されて白色光となる。
【0054】
上記のような構成とすることにより、設定した色バランスを容易に得ることができ、且つ電気光変換効率及び設定色の輝度が高い照明装置を得ることができる。また、色バランスの設定は各蛍光体の体積又は密度を変えるだけで容易に且つ独立に制御することができる。
【0055】
また、光学膜20を設けることにより、紫外光成分によって生じる樹脂の劣化を防止できる。
【0056】
図9に、第6の実施形態の他の照明装置の要部の側面図を示す。図8と異なる点は導光体16の構造であり、それ以外の構成は図8と同様である。導光体16の表面には略台形の凹凸形状が形成されている。この凹凸形状は光源11に近い領域ではなだらかな台形とし、光源から遠くなるに従って急斜面の台形とする。
【0057】
ここで、導光体16を透過する光のうち凹凸形状に対して入射角が大きい成分は凹凸形状を透過して波長変換部12へ進み、一方、凹凸形状に対して入射角が小さい成分は凹凸形状で反射する。この原理により、導光体16の光源11に近い領域では凹凸形状で反射しやすく、導光体16の光源11から遠い領域では凹凸形状を透過しやすい。
【0058】
また、導光体16内部の光強度は光源11に近い方が強い。従って、導光体16において、光源11に近い部分では光強度は強いが波長変換部12へ透過しにくく、光源11から遠い部分では光強度は弱いが波長変換部12へは透過しやすいので、光源11からの距離に関係なく波長変換部12へ入射する光強度を均一に保つことができる。
【0059】
なお、導光体16の構造としては、コア層とクラッド層が設けられたような光導波路構造としてもよい。
【0060】
〈第7の実施形態〉
図10は第7の実施形態の照明装置の要部の側面図、図11は図10の平面図である。光源11側の側面を除いた導光体16の各面に単層又は多層の反射板21(図10、11では2層)を設けた以外の構成は、図8に示した第6の実施形態と同じ構成である。なお、反射板21の材料としては、誘電体膜、樹脂、金属膜等を用いることができる。
【0061】
このように、反射板21を設けることにより、導光体16から波長変換部12以外に放射される損失光を低減することができ、電気光変換効率の高い照明装置10を得ることができる。
【0062】
〈第8の実施形態〉
図12は第8の実施形態の照明装置の要部の側面図である。導光体16と波長変換部12との間に、光源11の励起光(一次光)を透過し、波長変換部12から発光した二次光を反射する光学膜22(図12では4層)を設けた以外の構成は、図8に示した第6の実施形態と同じ構成である。なお、光学膜22の材料としては、酸化シリコン、酸化ジルコニア、フッ化マグネシウム、酸化アルミニウム、酸化チタン等の誘電体膜の単層或いは多層膜等を用いることができる。
【0063】
これらの二つの誘電体を選び出し,それら材料の屈折率をもとに各膜厚を設計して,それに基づき二つの誘電体を交互に積層させ多層膜とすることで、任意の波長域に高い反射率を有しそれ以外の波長域において高い透過率を有するような光学膜22(フィルター)を実現することができる。
【0064】
図13は、上記原理に基づいて作製された光学膜22の光透過性を示す図である。ここで、光学膜22としては、導光体16に近い順に酸化チタン、フッ化マグネシウム、酸化チタンを積層したものを用いた。図13に示すように、光学膜22は、青色蛍光体15を励起するのに必要な430nm以下の波長の励起光はほぼ100%透過し、各蛍光体から発光された二次光はほとんど透過しない。
【0065】
このように、光学膜22を設けることにより、波長変換部12から全方位に発光される二次光のうち、導光体16側に放射される二次光を反射するので、光損失を低減でき、電気光変換効率の高い照明装置10を得ることができる。
【0066】
更に、光学膜22に390nm以下の励起光を反射・吸収する特性を付加すると、紫外光成分によって生じる樹脂の劣化を防止できる。
【0067】
〈第9の実施形態〉
図14は、第9の実施形態の照明装置の要部の側面図である。波長変換部12の上面に、光源11の励起光(一次光)を反射し、波長変換部12から発光した二次光を透過する光学膜23(図14では4層)を設けた以外の構成は、図12に示した第8の実施形態と同じ構成である。なお、光学膜23の材料としては、誘電体等の無機材や有機材を用いることができる。
【0068】
このように、光学膜23を設けることにより、波長変換部12で波長変換されていない励起光(一次光)を反射して再度波長変換部12へ入射させることにより、励起光(一次光)の再利用が可能となり、電気光変換効率の高い照明装置10を得ることができる。また、光学膜23は膜中の干渉により光の反射を生じるので励起光成分中の特に目に対する安全性の低い紫外光を効果的に反射し、目に対する安全性を向上させることができる。
【0069】
〈第10の実施形態〉
図15は、第10の実施形態の照明装置の要部の側面図である。照明装置10から放射される光を反射する反射板24を設け、光源11と反射板24との間に熱伝導性材25を設けた以外の構成は、図14に示した第9の実施形態と同じ構成である。なお、反射板24としては金属或いはガラス表面にAl等の金属コートを施した材料を用いることができる。また、反射板24の形状には特に限定はなく、照明装置の用途に合わせて設計することができる。また、熱伝導性材25は熱伝導性が良く光源11の熱膨張係数に近い材料を用いるのが好ましく、例えば、ダイヤモンド、Si、SiC、AlN等を用いることができる。
【0070】
このように、反射板24を設けることにより、照明装置10から放出される光の損失を抑制して有効に利用することができる。
【0071】
また、一般に室内照明用の照明装置は高輝度が要求される。例えば、白色照明の光量として10W必要な場合、光学系及び蛍光体の光損失を50%とすると光源11は20W必要になる。そして、光源11の変換損失を30%とすると光源11には約66W入力する必要がある。このとき、約70%の約46Wが熱として放出される。この熱を熱伝導性材25を介して反射板24へ伝達することにより、光源11の出力や寿命の低下を抑制することができる。なお、光源11は反射板24に直接接触させても同様の効果を得ることができる。
【0072】
なお、明るい照明を得るために、一つの反射板24上に複数の光源11及び波長変換部12を配設してもよい。
【0073】
〈第11の実施形態〉
第11の実施形態は光源11の駆動回路に関する実施形態である。図16は、光源11の駆動回路26の構成を示すブロック図である。駆動回路26は、パルス電流発生部27と、光源11に直流電流を印加するバイアス電圧部28と、電流電圧変換部29とを備えている。
【0074】
パルス電流発生部27は、パルス周期が遅いと光のちらつきが生じやすく、速いと回路構成が複雑になる。従って、50Hz〜50MHz程度のパルス周期が好ましい。
【0075】
図17(a)は光源を駆動する駆動電流を示す図、図17(b)は駆動電流で駆動される光源11の励起光の波形を示す図、図17(c)は波長変換部12から放射される発光波形を示す図である。図17(c)において波長変換部12から放射される発光波形は励起光で発生するキャリアの発光寿命の影響で光パルスの立下りに裾が発生する。このような立下りの裾は、波長変換部12の発光寿命が短ければ短く、長ければ長い。
【0076】
このような特性を利用して、波長変換部12の発光寿命が比較的長く、光のちらつきが許容でき、且つ消費電力を低くすることが要求される場合にはデューティーを50%以下と短めに設定することができる。なお、パルス周期とデューティーは、用途に応じて様々な値を設定することができる。
【0077】
このように、光源11をパルス駆動すると、CW(連続)駆動と比較して熱による影響を受けにくく、大光量を放射することもできる。また、信頼性を良好にすることもできる。従って、光源11の信頼性を良好に保ちながら光出力を向上させることができ、輝度の高い照明装置を提供することができる。
【0078】
また、励起光が強い場合は波長変換部12の変換効率の非線形効果が発生するので、電気光変換効率を向上させることもできる。更に、光源11を変調することにより、発振波長のチャーピングが生じる。波長のチャーピングによって、光源11の可干渉性は低下するので、照明装置10から照射された励起光自体の目に対する安全性を高めることができる。
【0079】
更に、第4の実施形態の導光体16には拡散材が添加されているので、光源22の干渉性の影響により、拡散材内で多重干渉を起こす結果、発光パターンにムラが発生する可能性がある。そこで、上記のように光源11を変調することにより、可干渉性が低下するので発光パターンのムラを防止できる。
【0080】
なお、上記の各実施形態は可能であればそれらのいくつかを組み合わせても何の問題もない。なお、本発明において光源11は複数設けてもよい。
【0081】
【発明の効果】
本発明によると、波長変換部を複数の蛍光体で構成し、各蛍光体の吸収帯域が異なり、少なくとも1つの蛍光体で発せられた二次光が他の蛍光体で吸収される吸収帯を有し、各蛍光体の間で二次光の再吸収が起きないように各蛍光体を配列することにより、色バランスの設定が容易であり、且つ電気光変換効率及び輝度の高い照明装置を提供することができる。
【図面の簡単な説明】
【図1】第1の実施形態の照明装置の要部の側面図である。
【図2】本発明の蛍光体の発光のメカニズムを示す模式図である。
【図3】第2の実施形態の照明装置の要部の側面図である。
【図4】図3の平面図である。
【図5】半導体レーザ及び発光ダイオードの波長スペクトルを示す図である。
【図6】第4の実施形態の照明装置の要部の側面図である。
【図7】第5の実施形態の照明装置の要部の側面図である。
【図8】第6の実施形態の照明装置の要部の側面図である。
【図9】第6の実施形態の他の照明装置の要部の側面図を示す。
【図10】第7の実施形態の照明装置の要部の側面図である。
【図11】図10の平面図である。
【図12】第8の実施形態の照明装置の要部の側面図である。
【図13】第8の実施形態の光学膜の光透過性を示す図である。
【図14】第9の実施形態の照明装置の要部の側面図である。
【図15】第10の実施形態の照明装置の要部の側面図である。
【図16】本発明の光源の駆動回路の構成を示すブロック図である。
【図17】(a)光源を駆動する駆動電流を示す図である。
(b)駆動電流で駆動される光源の励起光の波形を示す図である。
(c)波長変換部から放射される発光波形を示す図である。
【符号の説明】
10  照明装置
11  光源
12  波長変換部
13  赤色蛍光体
14  緑色蛍光体
15  青色蛍光体
16  導光体
19  金属膜
20  光学膜(第1の光学膜)
21  反射板(第1の反射板)
22  光学膜(第2の光学膜)
23  光学膜(第3の光学膜)
24  反射板(第2の反射板)
25  熱伝導性材
26  駆動回路
27  パルス電流発生部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a lighting device including a light source that emits primary light and a wavelength conversion unit that absorbs primary light and emits secondary light.
[0002]
[Prior art]
As a next-generation lighting device that is expected to have low power consumption, small size, and high brightness, a lighting device including a nanocrystal phosphor and a light source that emits primary light that excites the phosphor is actively developed. ing. The use of nanocrystals for the phosphor is expected to improve the luminous efficiency as compared with conventional phosphors. Further, such a nanocrystal has a wide absorption band width (energy width) as compared with a conventional absorption band width (energy width) required for exciting a phosphor, and thus has a high tolerance to the wavelength width of the light source. Therefore, a semiconductor light emitting element or the like can be used as the light source.
[0003]
Japanese Patent Application Laid-Open No. 11-340516 is an example of such a lighting device. This publication discloses a lighting device including a wavelength conversion unit having a white phosphor mixed with a blue phosphor made of nanocrystals, and a light source for exciting the wavelength conversion unit.
[0004]
[Problems to be solved by the invention]
However, the illumination device described in this publication emits white light by mixing red, green, and blue phosphors, so that uniform white light is emitted over the entire area serving as a wavelength conversion unit. It is very difficult to mix red, green, and blue phosphors uniformly, which is very difficult.
[0005]
When a green or red phosphor is formed on the blue phosphor, blue light emitted from the blue phosphor is absorbed by the green or red phosphor, and green or red light is emitted. Similarly, when a red phosphor is formed on a green phosphor, green light emitted from the green phosphor is absorbed by the red phosphor and red light is emitted. Therefore, the color balance of the lighting device is shifted from the set color, and the luminance for the set color is reduced.
[0006]
Further, when a light emitting diode (hereinafter, sometimes referred to as an LED) is used as a light source, only a light emitting component from the LED surface excites the phosphor, and most of the light emitted in other directions is lost light. turn into. Therefore, the intensity of light output through the phosphor with respect to the current input to the LED, that is, the electro-optical conversion efficiency is very low.
[0007]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a lighting device that can easily set a color balance, and has high electro-optical conversion efficiency and high luminance.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides at least one light source that emits primary light and a secondary light that absorbs at least a part of the primary light and has a peak wavelength longer than or equal to the peak wavelength of the primary light. And a wavelength conversion unit that emits light. The wavelength conversion unit includes a plurality of phosphors, each of the phosphors has a different absorption band, and the secondary light emitted by at least one of the phosphors emits another fluorescent light. It has an absorption band that is absorbed by the body.
[0009]
According to this configuration, it is possible to easily obtain the set color balance, and to obtain an illuminating device in which the luminance of the set color is high.
[0010]
In the above-described lighting device, the plurality of phosphors can be stacked in the order of the optical path and in the order of the phosphor having the longer peak wavelength of the secondary light. In addition, the plurality of phosphors can be stacked in the order of the optical path and in the order of the phosphors having the larger particle diameters using nanocrystals having different particle diameters. Further, the plurality of phosphors may include a plurality of cells arranged in a plane so as not to overlap each other in the optical path direction.
[0011]
According to these configurations, the secondary light emitted from each phosphor is not absorbed again by the phosphor emitting another color.
[0012]
Further, in the above lighting device, by providing light guides on both surfaces of the wavelength conversion unit in the optical path direction, a portion near the light source of the lighting device is bright, and it is possible to avoid darkening as the distance from the light source increases, and uniform light emission is obtained. Obtainable. Furthermore, when a GaN-based semiconductor laser is used as the light source, the emission angle of the emitted light is only about 30 °, so that it is necessary to increase the distance between the light source and the wavelength converter in order to increase the irradiation range of the illumination device. However, by using a light guide, the distance can be reduced, and the size of the lighting device can be reduced.
[0013]
Further, a light guide that guides the primary light to the wavelength converter may be provided on the primary light incident surface of the wavelength converter. And it is preferable to add a diffusing material for diffusing light to this light guide. Further, it is preferable to provide a metal film having an uneven shape for reflecting light on a surface of the light guide opposite to the wavelength conversion portion. Further, by providing a first optical film between the light source and the light guide for blocking light having a wavelength of 390 nm or less, deterioration of the resin caused by ultraviolet light components can be prevented. Furthermore, by providing a first reflector that reflects light on at least a part of a side surface of the light guide except for the side on the light source side, loss light radiated from the light guide to portions other than the wavelength conversion portion is reduced. Thus, a lighting device with high electric-to-light conversion efficiency can be obtained.
[0014]
Further, in the above lighting device, by providing a second optical film that transmits the primary light and shields the secondary light between the light source and the wavelength conversion unit, light loss can be reduced, A lighting device with high light-to-light conversion efficiency can be obtained. Then, by providing a third optical film that transmits the secondary light and shields the primary light on the secondary light emission surface of the wavelength conversion unit or on the surface with the space and the space, Light (primary light) can be reused, and a lighting device with high electro-optical conversion efficiency can be obtained. In addition, the optical film reflects light due to interference in the film, so that the ultraviolet light in the excitation light component, which is particularly low for the eye, can be effectively reflected, and the safety for the eye can be improved. Furthermore, by providing a second reflector that reflects light on the side opposite to the desired light irradiation direction, loss of light emitted from the lighting device can be suppressed and used effectively. In addition, it is preferable that the light source be fixed to the second reflection plate directly or via a heat conductive material from the viewpoint of heat dissipation.
[0015]
The above lighting device includes a driving circuit for driving the light source, the driving circuit includes a pulse current generating unit, and the light source oscillates pulsed light, so that the light source generates heat compared to CW (continuous) driving. It is hardly affected and can emit a large amount of light. Further, the reliability can be improved. Therefore, the light output can be improved while the reliability of the light source is kept good, and a lighting device with high luminance can be provided.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same or corresponding portions are denoted by the same reference numerals, and detailed description thereof will be omitted. In this specification, the term “nanocrystal” refers to a crystal whose crystal size is reduced to about the exciton Bohr radius, and in which confinement of an exciton and an increase in a band gap due to a quantum size effect are observed.
[0017]
<First embodiment>
FIG. 1 is a side view of a main part of the lighting device according to the first embodiment. The lighting device 10 includes a light source 11 that emits primary light, and a wavelength conversion unit 12 that absorbs at least a part of the primary light and emits secondary light having a peak wavelength longer than the peak wavelength of the primary light. .
[0018]
As the light source 11, for example, a GaN-based light-emitting diode having a peak wavelength at 430 nm, a ZnO-based light-emitting diode, a diamond-based light-emitting diode, or the like can be used. Further, as the wavelength conversion section 12, InN-based nanocrystals can be used. There are theories that InN has a bandgap of 2.05 eV and a theory that it has a bandgap of 0.6 to 0.8 eV in the bulk structure. With nano-crystallization, the band gap can be controlled in the range from blue to red by the quantum effect.
[0019]
The wavelength conversion section 12 has a red phosphor 13 which has a particle diameter that emits red light and has the largest particle diameter, and an InN nanocrystal that has a particle diameter that emits green light and has an intermediate particle diameter. And a blue phosphor 15, which is an InN-based nanocrystal having the smallest particle size and emitting blue light, is laminated in an acrylic resin. These phosphors are laminated with a red phosphor 13, a green phosphor 14, and a blue phosphor 15 in the order close to the light source 11. Phosphors 13 to 15 include Si, Zn 1-x Cd x It is possible to use a material such as Se that has at least an absorption band in a blue to near-ultraviolet region in bulk.
[0020]
The wavelength converters 12 having different particle diameters can be formed by a chemical synthesis method, an ion implantation method, or the like. The wavelength conversion unit 12 is formed by directly stacking the phosphors 13 to 15 or embedding the stack of the phosphors 13 to 15 directly with an acrylic resin or the like. Not only that, it is also possible to form a laminate of one embedded in another organic or inorganic substance.
[0021]
Each of the phosphors 13 to 15 absorbs all light having energy larger than each band gap, and emits secondary light corresponding to the band gap. For this reason, as shown in the schematic diagram of FIG. 1 The secondary light emitted from a phosphor having a large (eg, blue) has a band gap Eg. 2 Is absorbed by a phosphor having a small size (for example, red). Finally, the respective secondary lights emitted from these phosphors are mixed to produce a desired desired color development.
[0022]
In the illumination device 10 of the present embodiment, a part of the excitation light (primary light) emitted from the light source 11 is first absorbed by the red phosphor 13 to emit red light (secondary light). Next, the remaining components of the excitation light are absorbed by the green phosphor 14 and green light (secondary light) is emitted. At this time, the red light (secondary light) is smaller than the band gap of the green phosphor 14 and is transmitted without being absorbed by the green phosphor 14. Further, the remaining component of the excitation light is absorbed by the blue phosphor 15 and blue light (secondary light) is emitted. At this time, since the red light (secondary light) or the green light (secondary light) is smaller than the band gap of the blue phosphor 15, the red light (secondary light) is transmitted without being absorbed by the blue phosphor 15. Finally, white light is emitted by mixing the secondary lights emitted from these phosphors.
[0023]
By stacking the respective phosphors in the above order, the secondary light emitted from each phosphor is not re-absorbed by the phosphor emitting another color, and the set color balance can be easily obtained. And an illuminating device having high luminance of the set color can be obtained. The setting of the color balance can be easily and independently controlled simply by changing the film thickness or density of each phosphor.
[0024]
The wavelength converter 12 may be a laminate of the red phosphor 13 and the green phosphor 14, and the excitation light of the light source 11 may be used as the blue light source. Further, the wavelength conversion section 12 may combine the above-mentioned phosphors 13 to 15 with another phosphor.
[0025]
In the wavelength converter 12, a film that reflects green light and transmits red light may be provided between the red phosphor 13 and the green phosphor 14. Thereby, it is possible to suppress the green light from exciting the red phosphor 13, and it is possible to maintain a good color balance without lowering the luminance of the green light. The same effect can be obtained by providing a film that reflects blue light and transmits red light and green light between the green phosphor 14 and the blue phosphor 15.
[0026]
In addition, the configuration of the wavelength conversion unit 12 may be such that the blue phosphor 15, the green phosphor 14, and the red phosphor 13 are stacked in the order close to the light source 11. In this case, the thickness of each of the phosphors 13 to 15 may be set in consideration of the rate at which blue light (secondary light) is absorbed by the green phosphor 14 or the red phosphor 13, that is, the so-called absorption coefficient. As described above, the color balance can be performed by controlling the thickness of each of the phosphors 13 to 15, and the color balance can be easily set as compared with the conventional case where each of the phosphors is randomly mixed. be able to. Further, the in-plane uniformity of the color balance can be improved as compared with the conventional example.
[0027]
<Second embodiment>
FIG. 3 is a side view of a main part of the lighting device according to the second embodiment, and FIG. 4 is a plan view of FIG. The cells of the red phosphor 13, the green phosphor 14, and the blue phosphor 15 are sequentially laid in a plane, and the planes are provided so as not to overlap in the optical path direction. Other configurations are the same as those of the first embodiment.
[0028]
As described above, since the cells do not overlap in the optical path direction, the secondary light emitted from each phosphor is hardly re-absorbed by the phosphor emitting another color, and the set color balance can be easily obtained. And an illuminating device having high luminance of the set color can be obtained. The setting of the color balance can be easily and independently controlled only by changing the surface area of the cell.
[0029]
Note that the arrangement and surface area of the cells are not limited to the present embodiment, and may be any arrangement and surface area such that the secondary light emitted from each cell is mixed to give a desired color.
[0030]
Further, the wavelength conversion section 12 may use the red phosphor 13 and the green phosphor 14 and use the excitation light of the light source 11 as the blue light source. Further, the wavelength conversion section 12 may combine the above-mentioned phosphors 13 to 15 with another phosphor.
[0031]
<Third embodiment>
The lighting device 10 of the third embodiment uses a GaN-based semiconductor laser as the light source 11. Other configurations of the lighting device 10 are the same as those of the first or second embodiment.
[0032]
The semiconductor light emitting device is characterized in that the electric light exchange efficiency is relatively good and the device is small. Therefore, by using the light source 11 of the lighting device 10, low power consumption and downsizing can be realized. Examples of such a semiconductor light emitting device include a light emitting diode and a semiconductor laser. Since the light emitting diode emits light in all directions of the element, in order to collect light, it is necessary to mount the element on a metal frame having a shape that reflects light, for example, wrap the metal frame with resin, and process the resin surface with a lens. .
[0033]
However, even with such a configuration, it is difficult to collect all the light resisted by the element, and it is also difficult to reduce the size because the element needs to be mounted on a metal frame.
[0034]
On the other hand, in a semiconductor laser, most light is emitted from the end face of the resonator. Therefore, only by providing the wavelength conversion section 12 in the resonator direction, the utilization efficiency of the excitation light can be easily improved as compared with the case where the light emitting diode is used. As a result, the photoelectric conversion efficiency of the lighting device 10 can be improved.
[0035]
Note that an electrode stripe structure (not shown) can be used as the semiconductor laser. The semiconductor laser having the electrode stripe structure can produce a watt-class light output, and is suitable as the light source 11 of the lighting device 10. Further, a GaN-based semiconductor laser has a strong crystal structure and is hardly deteriorated in a light-emitting region, so that it is suitable as a light source producing a watt-class light output.
[0036]
Further, in the case of a wavelength conversion section in which a nanocrystalline phosphor is embedded in a resin such as polycarbonate, if the excitation light (primary light) contains an ultraviolet light component of 390 nm or less, the absorption by the resin will occur. Occurs. Further, when the excitation light intensity is high, the resin is deteriorated by absorption, and the electro-optical conversion efficiency is reduced.
[0037]
FIG. 5 shows wavelength spectra of the semiconductor laser and the light emitting diode. Semiconductor lasers have a narrower spectral width than wavelengths of light emitting diodes, and the integrated light intensity is lower than 390 nm. For this reason, it is desirable to set the oscillation wavelength of the semiconductor laser to a wavelength of about 430 nm or less so as to excite the blue phosphor 15 and a wavelength range of 390 nm or more so that absorption by acrylic can be prevented. As a result, it is possible to suppress a decrease in the electro-optical conversion efficiency due to deterioration of the resin. The oscillation wavelength can be easily controlled by appropriately adjusting the width of the light emitting region and the mixed crystal ratio.
[0038]
As a result, by using a GaN-based semiconductor laser as the light source 11, the lighting device 10 with high luminance can be obtained. In addition, by providing a shielding film between the semiconductor laser and the wavelength conversion section 12 for shielding light of 390 nm or less, the influence of ultraviolet rays on the resin can be suppressed. As the shielding film, a monolayer or multilayer film of a dielectric film such as silicon oxide, zirconia oxide, magnesium fluoride, aluminum oxide, titanium oxide, or a color glass filter (sharp cut) in which CdS or CdSSe colloid is dispersed in glass. Filter) can be used.
[0039]
In addition, as the element structure of the semiconductor laser, a structure in which a plurality of active layers are arranged in an array may be used in addition to the above.
[0040]
<Fourth embodiment>
FIG. 6 is a side view of a main part of the lighting device according to the fourth embodiment. As for each phosphor in the wavelength converter 12, a red phosphor 13, a green phosphor 14, and a blue phosphor 15 are formed in the order close to the light source 11. Then, an acrylic resin to which a diffusing material for diffusing light is added is formed as an optical film so as to sandwich the wavelength conversion portion 12, thereby forming the light guide 16.
[0041]
Further, a light source 11 made of a GaN-based semiconductor laser is provided in the side direction of the red phosphor 13. The light source 11 includes a light emitting region 17 and a reflective film 18 (three layers in FIG. 6) having a reflectivity of about 80 to 95% made of a single layer or a multilayer film. The reflection film 18 can prevent the excitation light from being emitted to the side opposite to the wavelength conversion unit 12 and can suppress power consumption of the semiconductor laser due to light loss.
[0042]
A light-receiving element for light monitoring (not shown) for monitoring the light output of the light source 11 and a feedback circuit for stabilizing the light output (not shown) are provided on the reflection film side opposite to the wavelength converter 12. May be provided.
[0043]
In the illumination device 10 of the present embodiment, the excitation light (primary light) emitted from the light source 11 is absorbed and emitted by each of the phosphors 13 to 15, passes through the light guide 16, and moves in the direction of the arrow in FIG. The light is emitted and mixed to become white light.
[0044]
With the above-described configuration, it is possible to easily obtain the set color balance, and to obtain an illuminating device with high electro-optical conversion efficiency and high brightness of the set color. The setting of the color balance can be easily and independently controlled only by changing the volume or density of each phosphor.
[0045]
In the configuration in which the light guide 16 is not provided as in the first or second embodiment, since the intensity distribution of the light emitted from the light source 11 is a Gaussian distribution, a portion close to the light source 11 of the illumination device 10 is bright, and the light source 11 However, according to the present embodiment, uniform light emission can be obtained.
[0046]
Furthermore, when a GaN-based semiconductor laser is used for the light source 11, the emission angle of the emitted light is only about 30 °. Therefore, in order to increase the irradiation range of the illumination device 10, the distance between the light source 11 and the wavelength converter 12 must be increased. Although the distance needs to be increased, the distance can be shortened by using the light guide 16, and the size of the lighting device 10 can be reduced.
[0047]
<Fifth embodiment>
FIG. 7 is a side view of a main part of the lighting device according to the fifth embodiment. In each of the phosphors in the wavelength converter 12, a red phosphor 13, a green phosphor 14, and a blue phosphor 15 are repeatedly formed in the order closer to the light source 11. A light guide 16 is formed on the lower surface of the wavelength converter 12, and a diffusing material for diffusing light to the wavelength converter 12 is added. As the diffusing material, metal fine particles or the like can be used.
[0048]
Further, a light source 11 made of a GaN-based semiconductor laser having a light emitting region 17 is provided in the side direction of the red phosphor 13.
[0049]
In the illumination device 10 of the present embodiment, the excitation light (primary light) emitted from the light source 11 is diffused by the light guide 16, absorbed and emitted by each of the phosphors 13 to 15, and mixed to become white light. .
[0050]
With the above-described configuration, it is possible to easily obtain the set color balance, and to obtain an illuminating device with high electro-optical conversion efficiency and high brightness of the set color. The setting of the color balance can be easily and independently controlled only by changing the volume or density of each phosphor.
[0051]
In the configuration in which the light guide 16 is not provided as in the first or second embodiment, since the intensity distribution of the light emitted from the light source 11 is a Gaussian distribution, a portion close to the light source 11 of the illumination device 10 is bright, and the light source 11 However, according to the present embodiment, uniform light emission can be obtained.
[0052]
<Sixth embodiment>
FIG. 8 is a side view of a main part of the lighting device according to the sixth embodiment. The difference from the fifth embodiment is that instead of adding a diffusing material to the light guide 16, an uneven metal film 19 for reflecting light is provided on the bottom surface of the light guide 16, and the light guide of the light source 11 is not provided. The optical film 20 that reflects or absorbs excitation light having a wavelength of 390 nm or less is provided on the side surface on the side of the optical body 16.
[0053]
In the illumination device 10 of the present embodiment, the excitation light (primary light) emitted from the light source 11 is shielded by the optical film 20 at a wavelength of 390 nm or less, and the transmitted excitation light enters the light guide 16 and the metal film 19. And is absorbed and emitted by each of the phosphors 13 to 15 and mixed to form white light.
[0054]
With the above-described configuration, it is possible to easily obtain the set color balance, and to obtain an illuminating device with high electro-optical conversion efficiency and high brightness of the set color. The setting of the color balance can be easily and independently controlled only by changing the volume or density of each phosphor.
[0055]
In addition, by providing the optical film 20, deterioration of the resin caused by the ultraviolet light component can be prevented.
[0056]
FIG. 9 shows a side view of a main part of another lighting device according to the sixth embodiment. 8 is different from FIG. 8 in the structure of the light guide 16, and other configurations are the same as those in FIG. 8. The surface of the light guide 16 has a substantially trapezoidal uneven shape. This uneven shape is a gentle trapezoid in a region close to the light source 11, and a steep trapezoid as the distance from the light source 11 increases.
[0057]
Here, of the light transmitted through the light guide 16, a component having a large incident angle with respect to the uneven shape passes through the uneven shape and proceeds to the wavelength conversion unit 12, while a component having a small incident angle with respect to the uneven shape is Reflects in uneven shape. According to this principle, the light guide 16 is easily reflected in an uneven shape in a region near the light source 11, and is easily transmitted through the uneven shape in a region of the light guide 16 far from the light source 11.
[0058]
The light intensity inside the light guide 16 is higher near the light source 11. Therefore, in the light guide 16, the light intensity is strong in a portion close to the light source 11 but is hardly transmitted to the wavelength conversion unit 12, and the light intensity is weak in a portion far from the light source 11 but easily transmitted to the wavelength conversion unit 12, Irrespective of the distance from the light source 11, the light intensity incident on the wavelength converter 12 can be kept uniform.
[0059]
The structure of the light guide 16 may be an optical waveguide structure in which a core layer and a clad layer are provided.
[0060]
<Seventh embodiment>
FIG. 10 is a side view of a main part of the lighting device of the seventh embodiment, and FIG. 11 is a plan view of FIG. Except for providing a single-layer or multilayer reflector 21 (two layers in FIGS. 10 and 11) on each surface of the light guide 16 except for the side surface on the light source 11 side, the sixth embodiment shown in FIG. It has the same configuration as the form. In addition, as a material of the reflection plate 21, a dielectric film, a resin, a metal film, or the like can be used.
[0061]
By providing the reflection plate 21 in this manner, loss light radiated from the light guide 16 to portions other than the wavelength conversion section 12 can be reduced, and the lighting device 10 with high electro-optical conversion efficiency can be obtained.
[0062]
<Eighth embodiment>
FIG. 12 is a side view of a main part of the lighting device according to the eighth embodiment. An optical film 22 (four layers in FIG. 12) between the light guide 16 and the wavelength converter 12 that transmits the excitation light (primary light) of the light source 11 and reflects the secondary light emitted from the wavelength converter 12. The configuration other than that provided is the same as that of the sixth embodiment shown in FIG. In addition, as the material of the optical film 22, a single-layer or multilayer film of a dielectric film such as silicon oxide, zirconia, magnesium fluoride, aluminum oxide, and titanium oxide can be used.
[0063]
By selecting these two dielectrics, designing each film thickness based on the refractive index of those materials, and alternately laminating the two dielectrics based on the two materials to form a multilayer film, it is possible to increase the wavelength in any wavelength range. An optical film 22 (filter) having a reflectance and a high transmittance in other wavelength ranges can be realized.
[0064]
FIG. 13 is a diagram illustrating light transmittance of the optical film 22 manufactured based on the above principle. Here, as the optical film 22, a film in which titanium oxide, magnesium fluoride, and titanium oxide are laminated in order from the light guide 16 is used. As shown in FIG. 13, the optical film 22 transmits almost 100% of the excitation light having a wavelength of 430 nm or less necessary to excite the blue phosphor 15, and almost transmits the secondary light emitted from each phosphor. do not do.
[0065]
As described above, by providing the optical film 22, of the secondary light emitted in all directions from the wavelength conversion unit 12, the secondary light emitted to the light guide 16 is reflected, so that the optical loss is reduced. As a result, it is possible to obtain the lighting device 10 having high electro-optical conversion efficiency.
[0066]
Further, if the optical film 22 is provided with a property of reflecting and absorbing excitation light of 390 nm or less, it is possible to prevent deterioration of the resin caused by the ultraviolet light component.
[0067]
<Ninth embodiment>
FIG. 14 is a side view of a main part of the lighting device of the ninth embodiment. Configuration other than that an optical film 23 (four layers in FIG. 14) that reflects excitation light (primary light) of the light source 11 and transmits secondary light emitted from the wavelength conversion unit 12 is provided on the upper surface of the wavelength conversion unit 12. Has the same configuration as the eighth embodiment shown in FIG. In addition, as a material of the optical film 23, an inorganic material such as a dielectric or an organic material can be used.
[0068]
As described above, by providing the optical film 23, the excitation light (primary light) that has not been wavelength-converted by the wavelength conversion unit 12 is reflected and incident on the wavelength conversion unit 12 again, so that the excitation light (primary light) is Reuse becomes possible, and the lighting device 10 with high electro-optical conversion efficiency can be obtained. Further, the optical film 23 reflects light due to interference in the film, so that the ultraviolet light in the excitation light component, which is particularly low for the eye, is effectively reflected, and the safety for the eye can be improved.
[0069]
<Tenth embodiment>
FIG. 15 is a side view of a main part of the lighting device according to the tenth embodiment. The ninth embodiment shown in FIG. 14 is the same as the ninth embodiment shown in FIG. 14 except that a reflector 24 that reflects light emitted from the lighting device 10 is provided, and a heat conductive material 25 is provided between the light source 11 and the reflector 24. It has the same configuration as. In addition, as the reflection plate 24, a metal or a material in which a glass surface is coated with a metal such as Al can be used. The shape of the reflection plate 24 is not particularly limited, and can be designed according to the use of the lighting device. Further, as the heat conductive material 25, it is preferable to use a material having good heat conductivity and a coefficient close to the thermal expansion coefficient of the light source 11, and for example, diamond, Si, SiC, AlN or the like can be used.
[0070]
By providing the reflection plate 24 in this manner, loss of light emitted from the lighting device 10 can be suppressed and used effectively.
[0071]
In general, a lighting device for indoor lighting requires high luminance. For example, when 10 W is required as the light amount of white illumination, the light source 11 needs 20 W when the optical loss of the optical system and the phosphor is 50%. If the conversion loss of the light source 11 is assumed to be 30%, it is necessary to input about 66 W to the light source 11. At this time, about 70% of about 46 W is released as heat. By transmitting this heat to the reflection plate 24 via the heat conductive material 25, it is possible to suppress a decrease in the output of the light source 11 and the life. Note that the same effect can be obtained even when the light source 11 is brought into direct contact with the reflection plate 24.
[0072]
In addition, in order to obtain bright illumination, a plurality of light sources 11 and the wavelength conversion unit 12 may be provided on one reflector 24.
[0073]
<Eleventh embodiment>
The eleventh embodiment is an embodiment relating to a drive circuit of the light source 11. FIG. 16 is a block diagram illustrating a configuration of the drive circuit 26 of the light source 11. The drive circuit 26 includes a pulse current generator 27, a bias voltage unit 28 for applying a DC current to the light source 11, and a current-voltage converter 29.
[0074]
In the pulse current generation unit 27, when the pulse cycle is slow, light flicker easily occurs, and when the pulse cycle is fast, the circuit configuration becomes complicated. Therefore, a pulse period of about 50 Hz to 50 MHz is preferable.
[0075]
FIG. 17A shows a drive current for driving the light source, FIG. 17B shows a waveform of the excitation light of the light source 11 driven by the drive current, and FIG. FIG. 3 is a diagram showing a light emission waveform emitted. In FIG. 17C, the emission waveform radiated from the wavelength conversion unit 12 has a tail at the falling edge of the optical pulse due to the influence of the emission lifetime of carriers generated by the excitation light. Such a tail of the fall is short if the emission life of the wavelength conversion unit 12 is short, and long if the emission life is long.
[0076]
Utilizing such characteristics, when the emission life of the wavelength conversion unit 12 is relatively long, flicker of light can be tolerated, and low power consumption is required, the duty should be shortened to 50% or less. Can be set. Note that the pulse cycle and the duty can be set to various values depending on the application.
[0077]
As described above, when the light source 11 is pulse-driven, the light source 11 is hardly affected by heat as compared with the CW (continuous) driving, and can emit a large amount of light. Further, the reliability can be improved. Therefore, the light output can be improved while maintaining the reliability of the light source 11 satisfactorily, and a lighting device with high luminance can be provided.
[0078]
Further, when the excitation light is strong, a non-linear effect of the conversion efficiency of the wavelength conversion unit 12 occurs, so that the electro-optical conversion efficiency can be improved. Further, by modulating the light source 11, chirping of the oscillation wavelength occurs. Since the coherence of the light source 11 is reduced by the wavelength chirping, the safety of the excitation light itself emitted from the illumination device 10 to the eyes can be improved.
[0079]
Further, since the diffusing material is added to the light guide 16 of the fourth embodiment, multiple interference occurs in the diffusing material due to the coherence of the light source 22, which may cause unevenness in the light emission pattern. There is. Therefore, by modulating the light source 11 as described above, the coherence is reduced, so that it is possible to prevent unevenness of the light emission pattern.
[0080]
The above embodiments have no problem even if some of them are combined if possible. In the present invention, a plurality of light sources 11 may be provided.
[0081]
【The invention's effect】
According to the present invention, the wavelength conversion section is constituted by a plurality of phosphors, and the absorption band of each phosphor is different, and the absorption band in which the secondary light emitted by at least one phosphor is absorbed by another phosphor is used. By arranging the respective phosphors so that secondary light is not re-absorbed between the respective phosphors, it is easy to set a color balance, and a lighting device having high electro-optical conversion efficiency and high brightness is provided. Can be provided.
[Brief description of the drawings]
FIG. 1 is a side view of a main part of a lighting device according to a first embodiment.
FIG. 2 is a schematic view showing a light emission mechanism of the phosphor of the present invention.
FIG. 3 is a side view of a main part of a lighting device according to a second embodiment.
FIG. 4 is a plan view of FIG. 3;
FIG. 5 is a diagram showing wavelength spectra of a semiconductor laser and a light emitting diode.
FIG. 6 is a side view of a main part of a lighting device according to a fourth embodiment.
FIG. 7 is a side view of a main part of a lighting device according to a fifth embodiment.
FIG. 8 is a side view of a main part of a lighting device according to a sixth embodiment.
FIG. 9 is a side view of a main part of another lighting device according to the sixth embodiment.
FIG. 10 is a side view of a main part of a lighting device according to a seventh embodiment.
FIG. 11 is a plan view of FIG. 10;
FIG. 12 is a side view of a main part of a lighting device according to an eighth embodiment.
FIG. 13 is a diagram illustrating light transmittance of an optical film according to an eighth embodiment.
FIG. 14 is a side view of a main part of a lighting device according to a ninth embodiment.
FIG. 15 is a side view of a main part of a lighting device according to a tenth embodiment.
FIG. 16 is a block diagram showing a configuration of a light source driving circuit of the present invention.
FIG. 17A is a diagram showing a drive current for driving a light source.
(B) is a diagram showing a waveform of excitation light of a light source driven by a drive current.
(C) is a diagram illustrating a light emission waveform radiated from a wavelength conversion unit.
[Explanation of symbols]
10 Lighting equipment
11 Light source
12 wavelength converter
13 Red phosphor
14 Green phosphor
15 Blue phosphor
16 Light guide
19 Metal film
20 Optical film (first optical film)
21 Reflector (first reflector)
22 Optical film (second optical film)
23 Optical film (third optical film)
24 Reflector (second reflector)
25 Thermal conductive material
26 Drive circuit
27 Pulse current generator

Claims (16)

一次光を発する少なくとも1つの光源と、一次光の少なくとも一部を吸収して、一次光のピーク波長よりも長い或いは同等のピーク波長を有する二次光を発する波長変換部とを備えた照明装置において、
前記波長変換部は複数の蛍光体からなり、各蛍光体は吸収帯域が異なり、少なくとも1つの蛍光体で発せられた二次光が他の蛍光体で吸収される吸収帯を有することを特徴とする照明装置。
A lighting device comprising: at least one light source that emits primary light; and a wavelength conversion unit that absorbs at least a part of the primary light and emits secondary light having a peak wavelength longer than or equal to the peak wavelength of the primary light. At
The wavelength conversion unit is composed of a plurality of phosphors, each phosphor has a different absorption band, and has an absorption band in which secondary light emitted by at least one phosphor is absorbed by another phosphor. Lighting equipment.
前記複数の蛍光体は、光路順に、二次光のピーク波長の長い蛍光体順に積層することを特徴とする請求項1記載の照明装置。The lighting device according to claim 1, wherein the plurality of phosphors are stacked in the order of the optical path and in the order of the phosphor having the longer peak wavelength of the secondary light. 前記複数の蛍光体は、粒径の異なるナノ結晶であることを特徴とする請求項1記載の照明装置。The lighting device according to claim 1, wherein the plurality of phosphors are nanocrystals having different particle diameters. 前記複数の蛍光体は、光路順に、粒径の大きい蛍光体順に積層することを特徴とする請求項3記載の照明装置。The lighting device according to claim 3, wherein the plurality of phosphors are stacked in the order of the optical path and the phosphor having a larger particle size. 前記複数の蛍光体は、光路方向に互いに重ならないような、面状に配設された複数のセルからなることを特徴とする請求項1又は3記載の照明装置。The lighting device according to claim 1, wherein the plurality of phosphors include a plurality of cells arranged in a planar shape so as not to overlap each other in an optical path direction. 前記波長変換部の光路方向の両面に導光体を設けたことを特徴とする請求項1又は3記載の照明装置。The lighting device according to claim 1, wherein light guides are provided on both surfaces of the wavelength converter in the optical path direction. 前記波長変換部の一次光の入射面に、一次光を前記波長変換部へ導く導光体を設けたことを特徴とする請求項1又は3記載の照明装置。The lighting device according to claim 1, wherein a light guide that guides the primary light to the wavelength conversion unit is provided on a primary light incident surface of the wavelength conversion unit. 前記導光体に光を拡散する拡散材を添加したことを特徴とする請求項7記載の照明装置。The lighting device according to claim 7, wherein a diffusing material that diffuses light is added to the light guide. 前記導光体の前記波長変換部と反対面に、光を反射する凹凸形状の金属膜を設けたことを特徴とする請求項7記載の照明装置。The lighting device according to claim 7, wherein a metal film having an uneven shape for reflecting light is provided on a surface of the light guide opposite to the wavelength converter. 前記光源と前記導光体との間に、390nm以下の波長の光を遮蔽する第1の光学膜を設けたことを特徴とする請求項7記載の照明装置。The lighting device according to claim 7, wherein a first optical film that blocks light having a wavelength of 390 nm or less is provided between the light source and the light guide. 前記導光体の前記光源側の側面を除いた側面の少なくとも一部に、光を反射する第1の反射板を設けたことを特徴とする請求項7記載の照明装置。The lighting device according to claim 7, wherein a first reflector that reflects light is provided on at least a part of a side surface of the light guide except a side on the light source side. 前記光源と前記波長変換部との間に、前記一次光を透過し、且つ前記二次光を遮蔽する第2の光学膜を設けたことを特徴とする請求項1〜11の何れかに記載の照明装置。The second optical film that transmits the primary light and shields the secondary light is provided between the light source and the wavelength conversion unit. Lighting equipment. 前記波長変換部の二次光出射面上に又は該面と空間を有して、前記二次光を透過し、且つ前記一次光を遮蔽する第3の光学膜を設けたことを特徴とする請求項1〜12の何れかに記載の照明装置。A third optical film that transmits the secondary light and shields the primary light is provided on the secondary light exit surface of the wavelength conversion unit or on the secondary light exit surface or having a space with the surface. The lighting device according to claim 1. 所望する光の照射方向と反対側に、光を反射する第2の反射板を設けたことを特徴とする請求項1〜13の何れかに記載の照明装置。The lighting device according to any one of claims 1 to 13, wherein a second reflecting plate that reflects light is provided on a side opposite to a desired light irradiation direction. 前記光源を前記第2の反射板に直接又は熱伝導性材を介して固定したことを特徴とする請求項14記載の照明装置。The lighting device according to claim 14, wherein the light source is fixed to the second reflector directly or via a heat conductive material. 前記光源を駆動する駆動回路を備え、該駆動回路はパルス電流発生部を有し、前記光源はパルス光を発振することを特徴とする請求項1〜15の何れかに記載の照明装置。The lighting device according to any one of claims 1 to 15, further comprising a driving circuit that drives the light source, the driving circuit having a pulse current generating unit, and the light source oscillating pulse light.
JP2002229110A 2002-08-06 2002-08-06 Lighting device Expired - Lifetime JP4197109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229110A JP4197109B2 (en) 2002-08-06 2002-08-06 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229110A JP4197109B2 (en) 2002-08-06 2002-08-06 Lighting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008121294A Division JP2008258171A (en) 2008-05-07 2008-05-07 Planar light-emitting device

Publications (2)

Publication Number Publication Date
JP2004071357A true JP2004071357A (en) 2004-03-04
JP4197109B2 JP4197109B2 (en) 2008-12-17

Family

ID=32015624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229110A Expired - Lifetime JP4197109B2 (en) 2002-08-06 2002-08-06 Lighting device

Country Status (1)

Country Link
JP (1) JP4197109B2 (en)

Cited By (131)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175452A (en) * 2003-11-18 2005-06-30 Sharp Corp Semiconductor laser device and lighting system
JP2005277127A (en) * 2004-03-25 2005-10-06 Stanley Electric Co Ltd Light-emitting device
EP1605199A2 (en) * 2004-06-04 2005-12-14 LumiLeds Lighting U.S., LLC Remote wavelength conversion in an illumination device
WO2006003930A1 (en) * 2004-06-30 2006-01-12 Mitsubishi Chemical Corporation Light emitting device and illuminator employing it, back light for display, and display
WO2006011571A1 (en) * 2004-07-28 2006-02-02 Kyocera Corporation Light source and endoscope equipped with this light source
JP2006080443A (en) * 2004-09-13 2006-03-23 Fujikura Ltd Light emitting diode and manufacturing method thereof
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
JP2006108661A (en) * 2004-09-30 2006-04-20 Agilent Technol Inc Light source utilizing wavelength converting material
WO2006100957A1 (en) * 2005-03-22 2006-09-28 Idemitsu Kosan Co., Ltd. Color conversion substrate, method for manufacturing same and light-emitting device
JP2006313902A (en) * 2005-05-02 2006-11-16 Samsung Electro Mech Co Ltd White light emitting device
WO2006137359A1 (en) 2005-06-20 2006-12-28 Rohm Co., Ltd. White semiconductor light emitting element and manufacturing method thereof
JP2007005098A (en) * 2005-06-23 2007-01-11 Seiko Instruments Inc Phosphor film, lighting system and display device using it
JP2007005483A (en) * 2005-06-22 2007-01-11 Toshiba Corp Semiconductor light emitting device
JP2007036042A (en) * 2005-07-28 2007-02-08 Sony Corp Light-emitting apparatus and optical apparatus
JP2007088261A (en) * 2005-09-22 2007-04-05 Sanyo Electric Co Ltd Light emitting apparatus
JP2007149500A (en) * 2005-11-28 2007-06-14 Sony Corp Light source device, display device and method of manufacturing light source device
JP2007149909A (en) * 2005-11-28 2007-06-14 Nichia Chem Ind Ltd Light-emitting device
WO2007074932A1 (en) * 2005-12-27 2007-07-05 Showa Denko K.K. Light guide member, flat light source device, and display device
JP2007173397A (en) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd Light-emitting module, and display device and lighting device using the same
JP2007188962A (en) * 2006-01-11 2007-07-26 Sharp Corp Light emitting element with phosphor film, and method of manufacturing same
JP2007201301A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Electronics Devices Inc Light emitting device using white led
JP2007266174A (en) * 2006-03-28 2007-10-11 Kyocera Corp Light emitting device
JP2007324475A (en) * 2006-06-02 2007-12-13 Sharp Corp Wavelength conversion member and light emitting device
JP2008505440A (en) * 2004-06-30 2008-02-21 スリーエム イノベイティブ プロパティズ カンパニー Illumination system with phosphor having a plurality of optical waveguides and display using the same
JP2008047912A (en) * 2006-08-10 2008-02-28 Lg Electronics Inc Driving system of light emitting element, and driving method thereof
JP2008098486A (en) * 2006-10-13 2008-04-24 Kyocera Corp Light emitting element
KR100826379B1 (en) 2006-08-08 2008-05-02 삼성전기주식회사 monolithic white light emitting device
JP2008123969A (en) * 2006-11-15 2008-05-29 Sony Corp Phosphor member, light source device, and display device
JP2008518401A (en) * 2004-10-22 2008-05-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Light-emitting devices containing semiconductor nanocrystals
JP2008130279A (en) * 2006-11-17 2008-06-05 Nichia Chem Ind Ltd Surface light emitting device, and its manufacturing method
JP2008159705A (en) * 2006-12-21 2008-07-10 Matsushita Electric Works Ltd Light-emitting device
JP2008159708A (en) * 2006-12-21 2008-07-10 Matsushita Electric Works Ltd Light-emitting device
JP2008191321A (en) * 2007-02-02 2008-08-21 Stanley Electric Co Ltd Surface light source device using color conversion filter
JP2008243961A (en) * 2007-03-26 2008-10-09 Matsushita Electric Works Ltd Light emitting device
JP2008276176A (en) * 2006-11-22 2008-11-13 Alps Electric Co Ltd Optical guiding member, optical waveguide and light guide plate
JP2008544553A (en) * 2005-06-23 2008-12-04 レンセレイアー ポリテクニック インスティテュート Package design to generate white light with short wavelength LED and down conversion material
CN101351891A (en) * 2005-12-22 2009-01-21 科锐Led照明科技公司 Lighting device
JP2009016689A (en) * 2007-07-06 2009-01-22 Toshiba Lighting & Technology Corp Illuminator
JP2009512178A (en) * 2005-11-04 2009-03-19 パナソニック株式会社 LIGHT EMITTING MODULE AND DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
JP2009076494A (en) * 2007-09-18 2009-04-09 Panasonic Electric Works Co Ltd Light emitting device
EP2048437A1 (en) * 2006-07-28 2009-04-15 Fujifilm Corporation Surface area illumination device
WO2009059454A1 (en) * 2007-11-05 2009-05-14 Lite-On It Corporation A lighting device which colour and colour temperature is changed
JP2009135306A (en) * 2007-11-30 2009-06-18 Panasonic Electric Works Co Ltd Light-emitting apparatus
JP2009529231A (en) * 2006-03-06 2009-08-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting diode module
JP2009229974A (en) * 2008-03-25 2009-10-08 Alpine Electronics Inc Liquid crystal display and light color setting method for liquid crystal display
JP2009245981A (en) * 2008-03-28 2009-10-22 Toyota Central R&D Labs Inc Led light-emitting device
JP2009538001A (en) * 2006-05-21 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Optical structures containing nanocrystals
US7611642B2 (en) 2006-06-06 2009-11-03 Sharp Kabushiki Kaisha Oxynitride phosphor and light emitting device
EP2191517A2 (en) * 2007-08-31 2010-06-02 LG Innotek Co., Ltd. Light emitting device package
JP2010123918A (en) * 2008-10-21 2010-06-03 Toshiba Lighting & Technology Corp Lighting device
US7737621B2 (en) 2005-05-30 2010-06-15 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
JP2010525512A (en) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system
JP4570680B1 (en) * 2009-06-12 2010-10-27 シャープ株式会社 Light irradiation device and inspection device
JP2010533976A (en) * 2007-07-18 2010-10-28 キユーデイー・ビジヨン・インコーポレーテツド Quantum dot-based light sheet useful for solid-state lighting
JP2010248530A (en) * 2010-07-28 2010-11-04 Sharp Corp Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member
JP2010261048A (en) * 2010-07-28 2010-11-18 Sharp Corp Light-emitting device and its manufacturing method
JP2010541221A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor light source with primary radiation source and luminescence conversion element
WO2011004795A1 (en) * 2009-07-07 2011-01-13 シーシーエス株式会社 Light emitting device
JP2011503817A (en) * 2007-11-19 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light source and illumination system having a predetermined appearance
JP2011526060A (en) * 2008-06-27 2011-09-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ lighting equipment
JP2011199322A (en) * 2004-05-05 2011-10-06 Rensselaer Polytechnic Inst High-efficiency light source using solid-state emitter and down-conversion material
CN102217098A (en) * 2008-06-30 2011-10-12 普瑞光电股份有限公司 A light emitting device having a transparent thermally conductive layer
WO2011145418A1 (en) * 2010-05-19 2011-11-24 シャープ株式会社 Phosphor display device, and phosphor layer
JP2012009712A (en) * 2010-06-25 2012-01-12 Sharp Corp Light emitting device and lighting system
JP2012018977A (en) * 2010-07-06 2012-01-26 Toshiba Corp Light-emitting device
JP2012036265A (en) * 2010-08-05 2012-02-23 Sharp Corp Illuminating device
JP2012507844A (en) * 2008-11-05 2012-03-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
JP2012069908A (en) * 2010-08-25 2012-04-05 Stanley Electric Co Ltd Wavelength conversion structure and light source device
WO2012090702A1 (en) * 2010-12-28 2012-07-05 株式会社日立製作所 Lighting device
WO2012124587A1 (en) * 2011-03-16 2012-09-20 シャープ株式会社 Wavelength conversion member, production method for same, light-emitting device, illumination device, and headlight
WO2012134706A1 (en) * 2011-03-28 2012-10-04 Osram Sylvania Inc. Led device utilizing quantum dots
JP2012193283A (en) * 2011-03-16 2012-10-11 Sharp Corp Light-emitting body, illuminating device, and headlight
JPWO2010119934A1 (en) * 2009-04-14 2012-10-22 パナソニック株式会社 Light emitting device, light characteristic adjusting method, and light emitting device manufacturing method
RU2468472C2 (en) * 2006-12-15 2012-11-27 Конинклейке Филипс Электроникс Н.В. Tunable white point light source using wavelength converting element
EP2541632A2 (en) 2011-06-28 2013-01-02 Sharp Kabushiki Kaisha Light emitting device and method for producing the same
WO2013003526A1 (en) * 2011-06-28 2013-01-03 Osram Sylvania Inc. Lighting device having a color tunable wavelength converter
WO2013015357A1 (en) * 2011-07-28 2013-01-31 オリンパス株式会社 Light source device
US8450918B2 (en) 2010-03-10 2013-05-28 Kabushiki Kaisha Toshiba Light-emitting apparatus, display apparatus, and light emitter
US8470617B2 (en) 2006-04-07 2013-06-25 Qd Vision, Inc. Composition including material, methods of depositing material, articles including same and systems for depositing material
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2013534042A (en) * 2010-05-27 2013-08-29 メルク パテント ゲーエムベーハー Down conversion
JP2013222807A (en) * 2012-04-16 2013-10-28 Sharp Corp Phosphor light-emitting part, light-emitting device and method for manufacturing phosphor light-emitting part
JP2014002980A (en) * 2012-06-20 2014-01-09 Sharp Corp Phosphor light emission unit, light emission device and method of manufacturing phosphor light emission unit
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
JP2014508815A (en) * 2010-12-07 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Method for manufacturing part of coloring and part of coloring
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
JP2014082416A (en) * 2012-10-18 2014-05-08 Sharp Corp Light-emitting device
JP2014089966A (en) * 2007-06-25 2014-05-15 Qd Vision Inc Compositions, optical component, system including optical component, devices, and other products
WO2014115492A1 (en) * 2013-01-24 2014-07-31 パナソニック株式会社 Solid-state light source device
CN104037307A (en) * 2013-03-04 2014-09-10 奥斯兰姆施尔凡尼亚公司 Led Lamp With Quantum Dots Layer
US8836212B2 (en) 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US8901585B2 (en) 2003-05-01 2014-12-02 Cree, Inc. Multiple component solid state white light
US8908740B2 (en) 2006-02-14 2014-12-09 Nichia Corporation Light emitting device
WO2015025950A1 (en) * 2013-08-23 2015-02-26 富士フイルム株式会社 Light conversion member, and backlight unit and liquid crystal display device which include same
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
US8981339B2 (en) 2009-08-14 2015-03-17 Qd Vision, Inc. Lighting devices, an optical component for a lighting device, and methods
JP2015076594A (en) * 2013-10-11 2015-04-20 シチズン電子株式会社 Phosphor layer and production method therefor, led light-emitting device using phosphor layer
JP2015518276A (en) * 2012-04-05 2015-06-25 コーニンクレッカ フィリップス エヌ ヴェ Full spectrum light emitting device
WO2015091081A1 (en) * 2013-12-20 2015-06-25 Koninklijke Philips N.V. A light emitting device
US9120149B2 (en) 2006-06-24 2015-09-01 Qd Vision, Inc. Methods and articles including nanomaterial
US9142734B2 (en) 2003-02-26 2015-09-22 Cree, Inc. Composite white light source and method for fabricating
US9140844B2 (en) 2008-05-06 2015-09-22 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US9167659B2 (en) 2008-05-06 2015-10-20 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
JP2015228389A (en) * 2014-05-30 2015-12-17 日亜化学工業株式会社 Method for manufacturing optical functional member, method for manufacturing light-emitting device, and light-emitting device
JP2016072382A (en) * 2014-09-29 2016-05-09 日亜化学工業株式会社 Light-emitting device and method of manufacturing the same
JP2016082014A (en) * 2014-10-15 2016-05-16 日亜化学工業株式会社 Light-emitting device
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
WO2016143765A1 (en) * 2015-03-09 2016-09-15 シャープ株式会社 Lighting device, display device, and television receiving device
JP2017075973A (en) * 2015-10-13 2017-04-20 パナソニックIpマネジメント株式会社 Light source device and projection type image display device
JP2017090625A (en) * 2015-11-09 2017-05-25 日本碍子株式会社 Optical component and method for manufacturing the same
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US9701899B2 (en) 2006-03-07 2017-07-11 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
JP2017538275A (en) * 2014-12-01 2017-12-21 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. Quantum dot backlight module and display device
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
WO2018055722A1 (en) * 2016-09-23 2018-03-29 マクセル株式会社 Video projection lighting device
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
FR3061358A1 (en) * 2016-12-27 2018-06-29 Aledia METHOD FOR MANUFACTURING AN OPTOELECTRONIC DEVICE COMPRISING PHOTOLUMINESCENT PLOTS OF PHOTORESIN
US10074782B2 (en) 2014-09-24 2018-09-11 Nichia Corporation Light emitting device
JP2019021890A (en) * 2017-07-13 2019-02-07 東貝光電科技股▲ふん▼有限公司Unity Opto Technology Co.,Ltd. Led light-emitting device
JP2019045778A (en) * 2017-09-06 2019-03-22 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
WO2019102787A1 (en) * 2017-11-21 2019-05-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
EP3531007A1 (en) * 2006-12-20 2019-08-28 Rensselaer Polytechnic Institute Light emitting apparatus using multiple colored radiation emitting sources and a down conversion, diffuser element
JP2019194673A (en) * 2018-04-26 2019-11-07 パナソニックIpマネジメント株式会社 Wavelength conversion element, phosphor wheel, light source device, and projection type image display device
WO2020008943A1 (en) * 2018-07-02 2020-01-09 ウシオ電機株式会社 Fluorescent light source device
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
CN111624810A (en) * 2020-05-12 2020-09-04 深圳市隆利科技股份有限公司 Direct type backlight module
US11472979B2 (en) 2007-06-25 2022-10-18 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial
CN116582981A (en) * 2023-07-14 2023-08-11 中建照明有限公司 Smart home illumination control method and device and related equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142179A1 (en) 2010-05-13 2011-11-17 オリンパス株式会社 Illumination device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243826A (en) * 1993-02-19 1994-09-02 Fuji Xerox Co Ltd Double luminous plane-form light source, and image reading and display device
JPH11145519A (en) * 1997-09-02 1999-05-28 Toshiba Corp Semiconductor light-emitting element, semiconductor light-emitting device, and image-display device
JPH11340516A (en) * 1998-05-26 1999-12-10 Sony Corp Display device and illuminator thereof
JP2000030521A (en) * 1998-07-08 2000-01-28 Mitsubishi Electric Corp Surface emitting light source
JP2000031531A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Light emitter
JP2000214792A (en) * 1999-01-26 2000-08-04 Ohtsu Tire & Rubber Co Ltd :The Back light unit, back light, and space sheet used for the same
JP2001043830A (en) * 1999-07-29 2001-02-16 Nec Lighting Ltd Back light unit
JP2002076434A (en) * 2000-08-28 2002-03-15 Toyoda Gosei Co Ltd Light emitting device
JP2002134284A (en) * 2000-10-27 2002-05-10 Stanley Electric Co Ltd Driver of white light emitting diode

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243826A (en) * 1993-02-19 1994-09-02 Fuji Xerox Co Ltd Double luminous plane-form light source, and image reading and display device
JPH11145519A (en) * 1997-09-02 1999-05-28 Toshiba Corp Semiconductor light-emitting element, semiconductor light-emitting device, and image-display device
JPH11340516A (en) * 1998-05-26 1999-12-10 Sony Corp Display device and illuminator thereof
JP2000030521A (en) * 1998-07-08 2000-01-28 Mitsubishi Electric Corp Surface emitting light source
JP2000031531A (en) * 1998-07-14 2000-01-28 Toshiba Electronic Engineering Corp Light emitter
JP2000214792A (en) * 1999-01-26 2000-08-04 Ohtsu Tire & Rubber Co Ltd :The Back light unit, back light, and space sheet used for the same
JP2001043830A (en) * 1999-07-29 2001-02-16 Nec Lighting Ltd Back light unit
JP2002076434A (en) * 2000-08-28 2002-03-15 Toyoda Gosei Co Ltd Light emitting device
JP2002134284A (en) * 2000-10-27 2002-05-10 Stanley Electric Co Ltd Driver of white light emitting diode

Cited By (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9142734B2 (en) 2003-02-26 2015-09-22 Cree, Inc. Composite white light source and method for fabricating
US9666772B2 (en) 2003-04-30 2017-05-30 Cree, Inc. High powered light emitter packages with compact optics
US8901585B2 (en) 2003-05-01 2014-12-02 Cree, Inc. Multiple component solid state white light
JP2005175452A (en) * 2003-11-18 2005-06-30 Sharp Corp Semiconductor laser device and lighting system
JP2005277127A (en) * 2004-03-25 2005-10-06 Stanley Electric Co Ltd Light-emitting device
JP2011199322A (en) * 2004-05-05 2011-10-06 Rensselaer Polytechnic Inst High-efficiency light source using solid-state emitter and down-conversion material
EP3621301A1 (en) * 2004-06-04 2020-03-11 Signify North America Corporation Remote wavelength conversion in an illumination device
EP1605199A2 (en) * 2004-06-04 2005-12-14 LumiLeds Lighting U.S., LLC Remote wavelength conversion in an illumination device
EP1605199A3 (en) * 2004-06-04 2011-01-26 Philips Lumileds Lighting Company LLC Remote wavelength conversion in an illumination device
EP3383034A1 (en) * 2004-06-04 2018-10-03 Philips Lighting North America Corporation Remote wavelength conversion in an illumination device
JP2008505440A (en) * 2004-06-30 2008-02-21 スリーエム イノベイティブ プロパティズ カンパニー Illumination system with phosphor having a plurality of optical waveguides and display using the same
JP2006019409A (en) * 2004-06-30 2006-01-19 Mitsubishi Chemicals Corp Light emitting device as well as illumination, back light for display and display employing same
US7474050B2 (en) 2004-06-30 2009-01-06 Mitsubishi Chemical Corporation Light emitting device, and lighting system, backlight for display and display using the same
JP4801058B2 (en) * 2004-06-30 2011-10-26 スリーエム イノベイティブ プロパティズ カンパニー Illumination system with phosphor having a plurality of optical waveguides and display using the same
WO2006003930A1 (en) * 2004-06-30 2006-01-12 Mitsubishi Chemical Corporation Light emitting device and illuminator employing it, back light for display, and display
WO2006011571A1 (en) * 2004-07-28 2006-02-02 Kyocera Corporation Light source and endoscope equipped with this light source
JP2006080443A (en) * 2004-09-13 2006-03-23 Fujikura Ltd Light emitting diode and manufacturing method thereof
JP4729281B2 (en) * 2004-09-13 2011-07-20 株式会社フジクラ Light emitting diode and light emitting diode manufacturing method
JP2006108661A (en) * 2004-09-30 2006-04-20 Agilent Technol Inc Light source utilizing wavelength converting material
US7758224B2 (en) 2004-10-01 2010-07-20 Nichia Corporation Light emitting device
EP1795798A4 (en) * 2004-10-01 2010-02-24 Nichia Corp Light-emitting device
CN101027520B (en) * 2004-10-01 2010-05-05 日亚化学工业株式会社 Light-emitting device
WO2006038502A1 (en) * 2004-10-01 2006-04-13 Nichia Corporation Light-emitting device
US8197111B2 (en) 2004-10-01 2012-06-12 Nichia Corporation Light emitting device
EP1795798A1 (en) * 2004-10-01 2007-06-13 Nichia Corporation Light-emitting device
US10225906B2 (en) 2004-10-22 2019-03-05 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
JP2012142296A (en) * 2004-10-22 2012-07-26 Massachusetts Institute Of Technology Light-emitting device including semiconductor nanocrystals
JP2008518401A (en) * 2004-10-22 2008-05-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Light-emitting devices containing semiconductor nanocrystals
WO2006100957A1 (en) * 2005-03-22 2006-09-28 Idemitsu Kosan Co., Ltd. Color conversion substrate, method for manufacturing same and light-emitting device
JP2006313902A (en) * 2005-05-02 2006-11-16 Samsung Electro Mech Co Ltd White light emitting device
US8084934B2 (en) 2005-05-02 2011-12-27 Samsung-Electro Mechanics Co., Ltd. White light emitting device
US8729788B2 (en) 2005-05-30 2014-05-20 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US10008644B2 (en) 2005-05-30 2018-06-26 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US7737621B2 (en) 2005-05-30 2010-06-15 Sharp Kabushiki Kaisha Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US9281456B2 (en) 2005-05-30 2016-03-08 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
US9722149B2 (en) 2005-05-30 2017-08-01 Sharp Kabushiki Kaisha Light emitting device and fabricating method thereof
WO2006137359A1 (en) 2005-06-20 2006-12-28 Rohm Co., Ltd. White semiconductor light emitting element and manufacturing method thereof
JP2007005483A (en) * 2005-06-22 2007-01-11 Toshiba Corp Semiconductor light emitting device
JP4579065B2 (en) * 2005-06-23 2010-11-10 セイコーインスツル株式会社 Illumination device and display device including the same
JP2008544553A (en) * 2005-06-23 2008-12-04 レンセレイアー ポリテクニック インスティテュート Package design to generate white light with short wavelength LED and down conversion material
JP2013153191A (en) * 2005-06-23 2013-08-08 Rensselaer Polytechnic Institute Package design for producing white light with short-wavelength leds and down-conversion materials
JP2007005098A (en) * 2005-06-23 2007-01-11 Seiko Instruments Inc Phosphor film, lighting system and display device using it
JP2007036042A (en) * 2005-07-28 2007-02-08 Sony Corp Light-emitting apparatus and optical apparatus
JP2007088261A (en) * 2005-09-22 2007-04-05 Sanyo Electric Co Ltd Light emitting apparatus
JP2009512178A (en) * 2005-11-04 2009-03-19 パナソニック株式会社 LIGHT EMITTING MODULE AND DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
JP2007149909A (en) * 2005-11-28 2007-06-14 Nichia Chem Ind Ltd Light-emitting device
JP2007149500A (en) * 2005-11-28 2007-06-14 Sony Corp Light source device, display device and method of manufacturing light source device
JP2007173397A (en) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd Light-emitting module, and display device and lighting device using the same
JP2012054242A (en) * 2005-12-22 2012-03-15 Cree Inc Lighting device
JP2009527071A (en) * 2005-12-22 2009-07-23 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Lighting device
US8328376B2 (en) 2005-12-22 2012-12-11 Cree, Inc. Lighting device
US8858004B2 (en) 2005-12-22 2014-10-14 Cree, Inc. Lighting device
CN101351891A (en) * 2005-12-22 2009-01-21 科锐Led照明科技公司 Lighting device
TWI400495B (en) * 2005-12-27 2013-07-01 Showa Denko Kk Light guide member, flat light source device, and display device
EP1969284A1 (en) * 2005-12-27 2008-09-17 Showa Denko K.K. Light guide member, flat light source device, and display device
EP1969284A4 (en) * 2005-12-27 2010-12-22 Showa Denko Kk Light guide member, flat light source device, and display device
WO2007074932A1 (en) * 2005-12-27 2007-07-05 Showa Denko K.K. Light guide member, flat light source device, and display device
US7914197B2 (en) 2005-12-27 2011-03-29 Showa Denko K.K. Light guide member, flat light source device, and display device
KR100985696B1 (en) * 2005-12-27 2010-10-05 쇼와 덴코 가부시키가이샤 Light guide member, flat light source device, and display device
JP2007188962A (en) * 2006-01-11 2007-07-26 Sharp Corp Light emitting element with phosphor film, and method of manufacturing same
JP4726633B2 (en) * 2006-01-11 2011-07-20 シャープ株式会社 Method for manufacturing light emitting device
JP2007201301A (en) * 2006-01-30 2007-08-09 Sumitomo Metal Electronics Devices Inc Light emitting device using white led
US8908740B2 (en) 2006-02-14 2014-12-09 Nichia Corporation Light emitting device
JP2009529231A (en) * 2006-03-06 2009-08-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting diode module
US10633582B2 (en) 2006-03-07 2020-04-28 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, and other products
US10393940B2 (en) 2006-03-07 2019-08-27 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9874674B2 (en) 2006-03-07 2018-01-23 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US9701899B2 (en) 2006-03-07 2017-07-11 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US8718437B2 (en) 2006-03-07 2014-05-06 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
JP2007266174A (en) * 2006-03-28 2007-10-11 Kyocera Corp Light emitting device
US8470617B2 (en) 2006-04-07 2013-06-25 Qd Vision, Inc. Composition including material, methods of depositing material, articles including same and systems for depositing material
US8906804B2 (en) 2006-04-07 2014-12-09 Qd Vision, Inc. Composition including material, methods of depositing material, articles including same and systems for depositing materials
KR101453111B1 (en) * 2006-05-21 2014-10-27 매사추세츠 인스티튜트 오브 테크놀로지 Optical structures including nanocrystals
JP2014013897A (en) * 2006-05-21 2014-01-23 Massachusetts Institute Of Technology Optical structure containing nanocrystals
JP2009538001A (en) * 2006-05-21 2009-10-29 マサチューセッツ・インスティテュート・オブ・テクノロジー Optical structures containing nanocrystals
JP2007324475A (en) * 2006-06-02 2007-12-13 Sharp Corp Wavelength conversion member and light emitting device
US8138666B2 (en) 2006-06-02 2012-03-20 Sharp Kabushiki Kaisha Wavelength conversion member and light-emitting device
US7611642B2 (en) 2006-06-06 2009-11-03 Sharp Kabushiki Kaisha Oxynitride phosphor and light emitting device
US9120149B2 (en) 2006-06-24 2015-09-01 Qd Vision, Inc. Methods and articles including nanomaterial
EP2048437A4 (en) * 2006-07-28 2013-07-17 Fujifilm Corp Surface area illumination device
EP2048437A1 (en) * 2006-07-28 2009-04-15 Fujifilm Corporation Surface area illumination device
KR100826379B1 (en) 2006-08-08 2008-05-02 삼성전기주식회사 monolithic white light emitting device
US8358257B2 (en) 2006-08-10 2013-01-22 Lg Electronics Inc. Operating system and method of light emitting device
JP2008047912A (en) * 2006-08-10 2008-02-28 Lg Electronics Inc Driving system of light emitting element, and driving method thereof
JP2008098486A (en) * 2006-10-13 2008-04-24 Kyocera Corp Light emitting element
JP2008123969A (en) * 2006-11-15 2008-05-29 Sony Corp Phosphor member, light source device, and display device
JP2008130279A (en) * 2006-11-17 2008-06-05 Nichia Chem Ind Ltd Surface light emitting device, and its manufacturing method
JP2008276176A (en) * 2006-11-22 2008-11-13 Alps Electric Co Ltd Optical guiding member, optical waveguide and light guide plate
US8663498B2 (en) 2006-11-24 2014-03-04 Sharp Kabushiki Kaisha Phosphor, method of producing the same, and light emitting apparatus
US9624427B2 (en) 2006-11-24 2017-04-18 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US10259997B2 (en) 2006-11-24 2019-04-16 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
US9884990B2 (en) 2006-11-24 2018-02-06 Ge Phosphors Technology, Llc Phosphor, method of producing the same, and light emitting apparatus
RU2468472C2 (en) * 2006-12-15 2012-11-27 Конинклейке Филипс Электроникс Н.В. Tunable white point light source using wavelength converting element
EP3531007A1 (en) * 2006-12-20 2019-08-28 Rensselaer Polytechnic Institute Light emitting apparatus using multiple colored radiation emitting sources and a down conversion, diffuser element
JP2008159708A (en) * 2006-12-21 2008-07-10 Matsushita Electric Works Ltd Light-emitting device
JP2008159705A (en) * 2006-12-21 2008-07-10 Matsushita Electric Works Ltd Light-emitting device
US8836212B2 (en) 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
JP2008191321A (en) * 2007-02-02 2008-08-21 Stanley Electric Co Ltd Surface light source device using color conversion filter
JP2008243961A (en) * 2007-03-26 2008-10-09 Matsushita Electric Works Ltd Light emitting device
JP2010525512A (en) * 2007-04-17 2010-07-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting system
JP2014089966A (en) * 2007-06-25 2014-05-15 Qd Vision Inc Compositions, optical component, system including optical component, devices, and other products
US11472979B2 (en) 2007-06-25 2022-10-18 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial
US11866598B2 (en) 2007-06-25 2024-01-09 Samsung Electronics Co., Ltd. Compositions and methods including depositing nanomaterial
JP2009016689A (en) * 2007-07-06 2009-01-22 Toshiba Lighting & Technology Corp Illuminator
JP2010533976A (en) * 2007-07-18 2010-10-28 キユーデイー・ビジヨン・インコーポレーテツド Quantum dot-based light sheet useful for solid-state lighting
KR101730164B1 (en) * 2007-07-18 2017-04-25 삼성전자주식회사 Quantum dot-based light sheets useful for solid-state lighting
EP2191517A4 (en) * 2007-08-31 2013-07-31 Lg Innotek Co Ltd Light emitting device package
EP2191517A2 (en) * 2007-08-31 2010-06-02 LG Innotek Co., Ltd. Light emitting device package
JP2009076494A (en) * 2007-09-18 2009-04-09 Panasonic Electric Works Co Ltd Light emitting device
JP2010541221A (en) * 2007-09-28 2010-12-24 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor light source with primary radiation source and luminescence conversion element
US8564185B2 (en) 2007-09-28 2013-10-22 Osram Opto Semiconductors Gmbh Semiconductor light source having a primary radiation source and a luminescence conversion element
CN101836039B (en) * 2007-11-05 2012-08-22 建兴电子科技股份有限公司 A lighting device which colour and colour temperature is changed
WO2009059454A1 (en) * 2007-11-05 2009-05-14 Lite-On It Corporation A lighting device which colour and colour temperature is changed
JP2011503817A (en) * 2007-11-19 2011-01-27 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light source and illumination system having a predetermined appearance
JP2009135306A (en) * 2007-11-30 2009-06-18 Panasonic Electric Works Co Ltd Light-emitting apparatus
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
JP2009229974A (en) * 2008-03-25 2009-10-08 Alpine Electronics Inc Liquid crystal display and light color setting method for liquid crystal display
JP2009245981A (en) * 2008-03-28 2009-10-22 Toyota Central R&D Labs Inc Led light-emitting device
US10145539B2 (en) 2008-05-06 2018-12-04 Samsung Electronics Co., Ltd. Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
US10627561B2 (en) 2008-05-06 2020-04-21 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US9140844B2 (en) 2008-05-06 2015-09-22 Qd Vision, Inc. Optical components, systems including an optical component, and devices
US9167659B2 (en) 2008-05-06 2015-10-20 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles, an optical component for a solid state lighting device, and methods
US10359555B2 (en) 2008-05-06 2019-07-23 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US9946004B2 (en) 2008-05-06 2018-04-17 Samsung Electronics Co., Ltd. Lighting systems and devices including same
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
JP2011526060A (en) * 2008-06-27 2011-09-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ lighting equipment
US9256021B2 (en) 2008-06-27 2016-02-09 Koninklijke Philips N.V. Lighting apparatus
JP2012502449A (en) * 2008-06-30 2012-01-26 ブリッジラックス インコーポレイテッド Light emitting device having a transparent heat conductive layer
CN102217098A (en) * 2008-06-30 2011-10-12 普瑞光电股份有限公司 A light emitting device having a transparent thermally conductive layer
JP2010123918A (en) * 2008-10-21 2010-06-03 Toshiba Lighting & Technology Corp Lighting device
JP2012507844A (en) * 2008-11-05 2012-03-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting device
US8648372B2 (en) 2009-04-14 2014-02-11 Panasonic Corporation Light-emitting device, method for adjusting optical properties, and method for manufacturing light-emitting devices
JPWO2010119934A1 (en) * 2009-04-14 2012-10-22 パナソニック株式会社 Light emitting device, light characteristic adjusting method, and light emitting device manufacturing method
JP2010287510A (en) * 2009-06-12 2010-12-24 Sharp Corp Light irradiation device and inspection device
WO2010143328A1 (en) * 2009-06-12 2010-12-16 シャープ株式会社 Light irradiation device and inspection device
JP4570680B1 (en) * 2009-06-12 2010-10-27 シャープ株式会社 Light irradiation device and inspection device
WO2011004795A1 (en) * 2009-07-07 2011-01-13 シーシーエス株式会社 Light emitting device
US8981339B2 (en) 2009-08-14 2015-03-17 Qd Vision, Inc. Lighting devices, an optical component for a lighting device, and methods
US9391244B2 (en) 2009-08-14 2016-07-12 Qd Vision, Inc. Lighting devices, an optical component for a lighting device, and methods
US8967821B2 (en) 2009-09-25 2015-03-03 Cree, Inc. Lighting device with low glare and high light level uniformity
US8450918B2 (en) 2010-03-10 2013-05-28 Kabushiki Kaisha Toshiba Light-emitting apparatus, display apparatus, and light emitter
WO2011145418A1 (en) * 2010-05-19 2011-11-24 シャープ株式会社 Phosphor display device, and phosphor layer
US9689556B2 (en) 2010-05-27 2017-06-27 Merck Patent Gmbh Down conversion array comprising quantum dots
US9765947B2 (en) 2010-05-27 2017-09-19 Merck Patent Gmbh Down conversion
JP2013534042A (en) * 2010-05-27 2013-08-29 メルク パテント ゲーエムベーハー Down conversion
JP2012009712A (en) * 2010-06-25 2012-01-12 Sharp Corp Light emitting device and lighting system
US9048399B2 (en) 2010-07-06 2015-06-02 Kabushiki Kaisha Toshiba Light emitting device
JP2012018977A (en) * 2010-07-06 2012-01-26 Toshiba Corp Light-emitting device
JP2010261048A (en) * 2010-07-28 2010-11-18 Sharp Corp Light-emitting device and its manufacturing method
JP2010248530A (en) * 2010-07-28 2010-11-04 Sharp Corp Manufacturing method for wavelength conversion member, light-emitting device, and wavelength conversion member
JP2012036265A (en) * 2010-08-05 2012-02-23 Sharp Corp Illuminating device
US8513872B2 (en) 2010-08-05 2013-08-20 Sharp Kabushiki Kaisha Light emitting apparatus and method for manufacturing thereof
JP2012069908A (en) * 2010-08-25 2012-04-05 Stanley Electric Co Ltd Wavelength conversion structure and light source device
JP2014508815A (en) * 2010-12-07 2014-04-10 コーニンクレッカ フィリップス エヌ ヴェ Method for manufacturing part of coloring and part of coloring
JP2012142107A (en) * 2010-12-28 2012-07-26 Hitachi Ltd Lighting system
WO2012090702A1 (en) * 2010-12-28 2012-07-05 株式会社日立製作所 Lighting device
JP2012193283A (en) * 2011-03-16 2012-10-11 Sharp Corp Light-emitting body, illuminating device, and headlight
WO2012124587A1 (en) * 2011-03-16 2012-09-20 シャープ株式会社 Wavelength conversion member, production method for same, light-emitting device, illumination device, and headlight
WO2012134706A1 (en) * 2011-03-28 2012-10-04 Osram Sylvania Inc. Led device utilizing quantum dots
CN103430337A (en) * 2011-03-28 2013-12-04 奥斯兰姆施尔凡尼亚公司 LED device utilizing quantum dots
US8455898B2 (en) 2011-03-28 2013-06-04 Osram Sylvania Inc. LED device utilizing quantum dots
EP2541632A2 (en) 2011-06-28 2013-01-02 Sharp Kabushiki Kaisha Light emitting device and method for producing the same
US8502441B2 (en) 2011-06-28 2013-08-06 Sharp Kabushiki Kaisha Light emitting device having a coated nano-crystalline phosphor and method for producing the same
WO2013003526A1 (en) * 2011-06-28 2013-01-03 Osram Sylvania Inc. Lighting device having a color tunable wavelength converter
JP2013030631A (en) * 2011-07-28 2013-02-07 Olympus Corp Light source apparatus
US9587798B2 (en) 2011-07-28 2017-03-07 Olympus Corporation Light source device
CN103703310A (en) * 2011-07-28 2014-04-02 奥林巴斯株式会社 Light source device
WO2013015357A1 (en) * 2011-07-28 2013-01-31 オリンパス株式会社 Light source device
JP2015518276A (en) * 2012-04-05 2015-06-25 コーニンクレッカ フィリップス エヌ ヴェ Full spectrum light emitting device
JP2017163151A (en) * 2012-04-05 2017-09-14 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Full spectrum light emitting arrangement
JP2013222807A (en) * 2012-04-16 2013-10-28 Sharp Corp Phosphor light-emitting part, light-emitting device and method for manufacturing phosphor light-emitting part
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
JP2014002980A (en) * 2012-06-20 2014-01-09 Sharp Corp Phosphor light emission unit, light emission device and method of manufacturing phosphor light emission unit
JP2014082416A (en) * 2012-10-18 2014-05-08 Sharp Corp Light-emitting device
JPWO2014115492A1 (en) * 2013-01-24 2017-01-26 パナソニックIpマネジメント株式会社 Solid state light source device
WO2014115492A1 (en) * 2013-01-24 2014-07-31 パナソニック株式会社 Solid-state light source device
US10139053B2 (en) 2013-01-24 2018-11-27 Panasonic Intellectual Property Management Co., Ltd. Solid-state light source device
CN104037307A (en) * 2013-03-04 2014-09-10 奥斯兰姆施尔凡尼亚公司 Led Lamp With Quantum Dots Layer
US10615324B2 (en) 2013-06-14 2020-04-07 Cree Huizhou Solid State Lighting Company Limited Tiny 6 pin side view surface mount LED
WO2015025950A1 (en) * 2013-08-23 2015-02-26 富士フイルム株式会社 Light conversion member, and backlight unit and liquid crystal display device which include same
JP2015076594A (en) * 2013-10-11 2015-04-20 シチズン電子株式会社 Phosphor layer and production method therefor, led light-emitting device using phosphor layer
US10451793B2 (en) 2013-12-20 2019-10-22 Signify Holding B.V. Lighting device having plural light-sources and light guide with wavelength converting means and out coupling means
CN105829797B (en) * 2013-12-20 2021-01-22 昕诺飞控股有限公司 Light emitting device
WO2015091081A1 (en) * 2013-12-20 2015-06-25 Koninklijke Philips N.V. A light emitting device
CN105829797A (en) * 2013-12-20 2016-08-03 飞利浦照明控股有限公司 A light emitting device
JP2015228389A (en) * 2014-05-30 2015-12-17 日亜化学工業株式会社 Method for manufacturing optical functional member, method for manufacturing light-emitting device, and light-emitting device
US10074782B2 (en) 2014-09-24 2018-09-11 Nichia Corporation Light emitting device
US10651349B2 (en) 2014-09-24 2020-05-12 Nichia Corporation Light emitting device
US11710807B2 (en) 2014-09-24 2023-07-25 Nichia Corporation Light emitting device
JP2016072382A (en) * 2014-09-29 2016-05-09 日亜化学工業株式会社 Light-emitting device and method of manufacturing the same
US9991668B2 (en) 2014-10-15 2018-06-05 Nichia Corporation Light emitting device
JP2016082014A (en) * 2014-10-15 2016-05-16 日亜化学工業株式会社 Light-emitting device
JP2017538275A (en) * 2014-12-01 2017-12-21 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. Quantum dot backlight module and display device
WO2016143765A1 (en) * 2015-03-09 2016-09-15 シャープ株式会社 Lighting device, display device, and television receiving device
JPWO2016143765A1 (en) * 2015-03-09 2017-12-28 シャープ株式会社 Lighting device, display device, and television receiver
JP2017075973A (en) * 2015-10-13 2017-04-20 パナソニックIpマネジメント株式会社 Light source device and projection type image display device
JP2017090625A (en) * 2015-11-09 2017-05-25 日本碍子株式会社 Optical component and method for manufacturing the same
WO2018055722A1 (en) * 2016-09-23 2018-03-29 マクセル株式会社 Video projection lighting device
JPWO2018055722A1 (en) * 2016-09-23 2019-03-28 マクセル株式会社 Video projection lighting system
WO2018122520A1 (en) * 2016-12-27 2018-07-05 Aledia Process for fabricating an optoelectronic device including photoluminescent pads of photoresist
FR3061358A1 (en) * 2016-12-27 2018-06-29 Aledia METHOD FOR MANUFACTURING AN OPTOELECTRONIC DEVICE COMPRISING PHOTOLUMINESCENT PLOTS OF PHOTORESIN
US11171267B2 (en) 2016-12-27 2021-11-09 Aledia Process for fabricating an optoelectronic device including photoluminescent pads of photoresist
JP2019021890A (en) * 2017-07-13 2019-02-07 東貝光電科技股▲ふん▼有限公司Unity Opto Technology Co.,Ltd. Led light-emitting device
JP2019045778A (en) * 2017-09-06 2019-03-22 セイコーエプソン株式会社 Wavelength conversion element, light source device, and projector
JPWO2019102787A1 (en) * 2017-11-21 2020-12-03 日本電気硝子株式会社 Wavelength conversion member and light emitting device
CN111213075A (en) * 2017-11-21 2020-05-29 日本电气硝子株式会社 Wavelength conversion member and light emitting device
CN111213075B (en) * 2017-11-21 2022-11-29 日本电气硝子株式会社 Wavelength conversion member and light emitting device
JP7212319B2 (en) 2017-11-21 2023-01-25 日本電気硝子株式会社 Wavelength conversion member and light emitting device
WO2019102787A1 (en) * 2017-11-21 2019-05-31 日本電気硝子株式会社 Wavelength conversion member and light emitting device
JP7304507B2 (en) 2018-04-26 2023-07-07 パナソニックIpマネジメント株式会社 Wavelength conversion element, phosphor wheel, light source device, and projection display device
JP2019194673A (en) * 2018-04-26 2019-11-07 パナソニックIpマネジメント株式会社 Wavelength conversion element, phosphor wheel, light source device, and projection type image display device
WO2020008943A1 (en) * 2018-07-02 2020-01-09 ウシオ電機株式会社 Fluorescent light source device
CN111624810A (en) * 2020-05-12 2020-09-04 深圳市隆利科技股份有限公司 Direct type backlight module
CN116582981A (en) * 2023-07-14 2023-08-11 中建照明有限公司 Smart home illumination control method and device and related equipment
CN116582981B (en) * 2023-07-14 2023-09-29 中建照明有限公司 Smart home illumination control method and device and related equipment

Also Published As

Publication number Publication date
JP4197109B2 (en) 2008-12-17

Similar Documents

Publication Publication Date Title
JP4197109B2 (en) Lighting device
JP2008258171A (en) Planar light-emitting device
US7022260B2 (en) Fluorescent member, and illumination device and display device including the same
JP4822919B2 (en) Light emitting device and vehicle headlamp
JP4642054B2 (en) Surface emitting device
JP5216384B2 (en) Light emitting device
KR100826396B1 (en) Led packages
US11165223B2 (en) Semiconductor light source
KR20050027982A (en) Lighting devices using feedback enhanced light emitting diode
JP2013536460A (en) Display device
WO2013054763A1 (en) Light-source device
JP2004354495A (en) Light source device
JP2011187285A (en) Light emitting device
US20140016300A1 (en) Light emitting device, illuminating apparatus, and light emitting method
JP2006261554A (en) Light emitting diode device
RU2555199C2 (en) Lighting device
JP5853441B2 (en) Light emitting device
KR20070065486A (en) White light emitting device
US20110140128A1 (en) Monochromatic light source with high aspect ratio
US11508882B2 (en) Quantum dot LED, manufacturing method thereof and display device
JP2004161841A (en) Phosphor and lighting system and display device containing the same
JP2014235859A (en) Solid lighting device
KR101774204B1 (en) Wavelength-selective nanoporous structure and display panel with the same
JP2004266030A (en) Lighting apparatus and display apparatus
US11822052B2 (en) Colour wheel assembly, light source system, and projection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4197109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

EXPY Cancellation because of completion of term