JP2004063551A - Semiconductor element surface protecting film and semiconductor element unit - Google Patents

Semiconductor element surface protecting film and semiconductor element unit Download PDF

Info

Publication number
JP2004063551A
JP2004063551A JP2002216391A JP2002216391A JP2004063551A JP 2004063551 A JP2004063551 A JP 2004063551A JP 2002216391 A JP2002216391 A JP 2002216391A JP 2002216391 A JP2002216391 A JP 2002216391A JP 2004063551 A JP2004063551 A JP 2004063551A
Authority
JP
Japan
Prior art keywords
film
semiconductor element
semiconductor
protecting
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002216391A
Other languages
Japanese (ja)
Inventor
Hiroshi Kirihara
桐原 博
Yoichi Hosokawa
細川 羊一
Michio Uruno
宇留野 道生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002216391A priority Critical patent/JP2004063551A/en
Publication of JP2004063551A publication Critical patent/JP2004063551A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Abstract

<P>PROBLEM TO BE SOLVED: To realize a semiconductor element surface protecting film and a semiconductor element unit excellent in protection property of a semiconductor element surface and invisibility by means of laser markings. <P>SOLUTION: There is provided a film 4 used for the semiconductor element 3 whose circuit surface is arranged toward a side of semiconductor interconnection substrate 1 and further used for protecting a face side opposed to the circuit surface of the semiconductor element 3. A coloring agent different in color from that of the opaque film 4 is contained in the opaque film4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、回路面が半導体配線基板側に向けて配置されるフェイスダウン構造の半導体装置に適用され、半導体素子の表面を保護するための半導体素子表面保護用フィルム及び本半導体素子表面保護用フィルムを使用した半導体素子ユニットに関する。
【0002】
【従来の技術】
従来から、電子機器の小型化・軽量化が進められており、これに伴い基板への高密度実装が要求され、電子機器に搭載する半導体パッケージの小型化・軽量化が進められている。
【0003】
半導体パッケージは、時代の変遷とともに各種変化しており、従来、LOC(Lead On Chip)やQFP(Quad Flat Package)等と呼ばれるパッケージがあり、例えば、16M以降のDRAMでは、LOCのパッケージが使用されている。
【0004】
通常、パッケージには、製品を識別するためにロットナンバーやメーカー名などの識別情報を印字しており、製品がどのように作製されたかが判別できるようになっている。そして、LOCやQFP等のパッケージの場合には、パッケージ外面に形成された封止材に、製品を判別するための識別情報を直接レーザーマーキングしていた。
【0005】
レーザーマーキングに使用されるレーザーとしては、炭酸ガスレーザーとYAGレーザーとがあり、封止材にレーザーマーキングをする際には、主に、YAGレーザーが使用されている。YAGレーザーを使用して封止材にレーザーマーキングする方法の原理について、以下、図10(a)〜図10(c)を用いて簡単に説明する。
【0006】
図10(a)は、レーザーマーキングを行う被処理材である封止材20の断面を示す図であり、本図に示すように、樹脂21中にはシリカフィラー22及び顔料(カーボン)23が均一に分散されている。
【0007】
封止材20の表面側からYAGレーザー24を照射すると、図10(b)に示すように、レーザーを照射した部位に存在するカーボンの粒23a,23b,23cが、レーザーの波長に応じて選択的に熱せられる。
【0008】
すると、図10(c)に示すように、カーボン粒23a,23b,23cがその周囲の樹脂21とともに蒸発し、樹脂21中にシリカフィラー22のみが残る。カーボンが蒸発した後の色が白色であるため、レーザー照射位置が、白くマーキングされているように見える。このようにして封止材上にレーザーマーキングが行われる。
【0009】
近年、半導体パッケージの小型化・軽量化がより一層進められており、上述したLOCやQFP等のパッケージよりもさらに小型化・軽量化したCSP(ChipSize Package)やμBGA(Ball Grid Array)等のパッケージの開発が行われている。このようなパッケージでは、半導体素子と基板とを接続する配線を半導体素子の中央部に配置してその部分のみを封止しているため、従来における半導体素子の全体を封止材により封止した形状と比べ、より一層パッケージの小型化・軽量化を図ることができる。
【0010】
【発明が解決しようとする課題】
しかしながら、上述したパッケージでは、小型化・軽量化を図ることができるが、半導体素子がフェイスダウン型となっており、つまり、半導体素子の回路面が半導体配線基板側に向けられ、パッケージの上部に半導体素子の裏面が露出している形状であるため、パッケージを製造し、あるいは、パッケージを搬送する時に、半導体素子の端部が欠けてしまう等の問題を有していた。
【0011】
また、特に、CSPなどのパッケージの中には、封止材により封止していない形状のものもあるため、半導体素子に直接レーザーマーキングするか、あるいは、半導体素子に直接印刷することにより、製品を判別するための識別情報を印字していた。
【0012】
しかし、半導体素子に直接レーザーマーキングをした場合には、半導体素子と識別情報との明確なコントラストが出ないため、半導体素子とマーキングとの識別力が低く、視認性が悪いという問題を有していた。
【0013】
また、半導体素子に直接印刷することにより識別情報のマーキングをした場合には、半導体素子上に識別情報を明確に表示できるため、半導体素子と識別情報との識別性が高いという利点を有する。しかし、印刷によると工程数が多いため、識別情報を印字するための作業時間が大幅に増大してしまうという問題を有していた。
【0014】
さらに、封止材により封止しない形状のCSP等のパッケージにあっては、保護膜を形成する方法や、あるいは、保護フィルムを貼り付ける等の方法を用いて半導体素子の表面を保護している。このような保護膜または保護フィルムとしては、例えば、透明または半透明の膜またはフィルムが使用されている。この理由は、半導体に用いられる材料はイオン性不純物の析出を嫌うため不純物の混入はできるだけ避けているというのが現状であり、また、材料中にイオン補足剤を導入してイオン性不純物の析出を防止しており、顔料及び染料といった不純物の混入をしないことが前提となっているためである。このため、透明あるいは半透明の膜またはフィルムに直接レーザーを照射して製品を判別する識別情報を表示した場合であってもレーザーマーキングの視認性は劣っていた。
【0015】
本発明は、上述した問題を解決するためになされたものであり、半導体素子表面の保護特性およびレーザーマーキングによる視認性が優れた半導体素子表面保護用フィルム及び半導体素子ユニットを得ることを目的とする。
【0016】
【課題を解決するための手段】
上記目的を解決すべく種々研究し、回路面と対向する面側の半導体素子の表面にフィルムを被覆して半導体素子の表面を保護すると共に、不透明なフィルム中にフィルムの色とは異なる着色剤を添加して、フィルムに識別情報を表示する際、レーザーを照射して着色剤を揮発させて、レーザー照射によるマーキング部と非マーキング部との色の差を明確とすることにより、レーザーマーキングの視認性が優れた半導体素子表面保護用フィルム及びこの半導体素子表面保護用フィルムを使用した半導体素子ユニットを得たものである。
【0017】
すなわち、本発明は、回路面が半導体配線基板側に向けて配置される半導体素子に使用され、かつ、当該半導体素子の回路面と対向する面側を保護するためのフィルムであって、不透明なフィルム中に当該フィルムとは色が異なる着色剤が含有されていることを特徴とする。
【0018】
また、上記発明において、フィルムに着色剤が含有されており、当該着色剤の含有量が、フィルムに対して0.1〜10質量%であることを特徴とする。
【0019】
さらに、上記発明において、フィルムに白色のフィラーが含有されており、当該白色のフィラーの含有量が、1〜70質量%であることを特徴とする。
【0020】
また、上記発明において、着色剤は、カーボンフィラーであることを特徴とする。
【0021】
上記発明において、フィルムの25℃における弾性率が、20〜2000MPaであることを特徴とする。
【0022】
また、フィルムの厚さが、25〜200μmであることを特徴とする。
【0023】
本発明の半導体素子ユニットは、回路面が半導体配線基板側に向けて配置される半導体素子と、当該半導体素子の回路面と対向する面側に形成され、不透明なフィルム中に当該フィルムとは色が異なる着色剤が含有された半導体素子表面保護用フィルムと、を備えることを特徴とする。
【0024】
また、上記半導体素子ユニットの半導体素子表面保護用フィルムが、上記記載の半導体素子表面保護用フィルムであることを特徴とする。
【0025】
【発明の実施の形態】
以下、本発明の実施形態について図1〜図9、表1及び表2を用いて説明する。
【0026】
図1は、本発明の半導体表面保護用フィルムを適用した半導体装置の一部の断面を示す図である。図1に示すように、半導体配線基板1上に樹脂等の接着剤から成る接着剤層2を介して半導体素子3が搭載されており、半導体素子3の回路面は半導体配線基板1側に向けて配置されるとともに、半導体素子3の回路面と対向する面側には半導体素子表面保護用フィルム4が被覆形成されている。半導体配線基板1及び接着剤層2の中央部には、半導体配線基板1の配線の一部と半導体素子のボンディングパッドとを各端部とする接続部材5がボンディングされており、ボンディング部位の周囲は封止材6により封止されている。また、半導体配線基板1の裏面には配線7を介して外部接続端子8が接続されている。
【0027】
上記構成の半導体装置に適用される本発明の半導体素子ユニットAは、図2の断面図に示すように、半導体素子3の表面上に半導体素子表面保護用フィルムが被覆形成される。この半導体素子表面保護用フィルム4は、通常、図3の断面図に示すように3層構造のフィルムを有しており、半導体素子表面保護用フィルム4の両面に、ベースフィルム9および保護フィルム10が各々形成されている。なお、保護フィルム10は半導体素子表面保護用フィルム4の種類に応じて形成され、保護フィルム10が必ず形成されるものではない。
【0028】
本発明の半導体素子表面保護用フィルム4に使用する樹脂としては、半導体素子3がリフロー温度にさらされたときに剥離することがない半導体素子3との接着力を有していれば特に成分に制限はなく、例えば、ポリイミド樹脂、ポリアミド樹脂、ポリエーテルスルホン樹脂、ポリアミドイミド樹脂等の熱可塑性樹脂、エポキシ樹脂、ビスマレイミド樹脂、シアネート樹脂、フェノール樹脂、ポリウレタン樹脂等の熱硬化性樹脂またはそれらを含有する接着剤及びその混合物を使用することができる。また、ベースフィルム9としては耐熱フィルムを使用することができ、ベースフィルム9の表面は、例えば、シリコーン等で離型処理することが好ましい。
【0029】
また、半導体素子表面保護用フィルム4に使用する樹脂に含まれる着色剤としては、例えば、カーボンブラック、黒鉛、チタンカーボン、二酸化マンガン、フタロシアニン系等の顔料及び染料を用いることができる。半導体素子表面保護用フィルム4に含有する着色剤の含有量は、0.1〜10質量%が好ましく、より好ましくは0.5〜2.0質量%である。着色剤の含有量が0.1質量%以下になると、フィルムに色が付かずレーザーマーキング後の視認性が悪くなり、逆に、着色剤の含有量が10質量%以上になると、イオン性不純物の増加、フィルム延性の低下または半導体素子との接着強度の低下等の問題が発生してしまうからである。
【0030】
また、レーザーマーキングに使用されるレーザーは、YAGレーザーであることが多いため、着色剤としてYAGレーザーにより揮発し易いカーボンブラックを使用することが好ましい。
【0031】
さらに、半導体素子表面保護用フィルム4に使用する樹脂に含まれる白色フィラーとしては、例えば、結晶性シリカ、非晶性シリカ、酸化アルミニウム、炭酸カルシウム、炭酸マグネシウム、窒化アルミニウム、窒化ホウ素等が挙げられる。また、白色フィラーの含有量は1〜70質量%とすることが好ましく、特に、5〜50質量%とすることが好ましい。白色フィラーの含有量が1質量%以下になると、レーザーマーキングにより着色剤が揮発した後に、半導体素子表面保護用フィルム4の色が白くならず、レーザーマーキングした後の視認性が悪くなり、逆に、白色フィラーの含有量が70質量%以上になると、半導体素子表面保護用フィルム4がもろくなり成形性が低下し、シリコンウエハとの接着強度の低下等の問題が発生するためである。
【0032】
また、半導体素子表面保護用フィルム4の樹脂中の着色剤と白色フィラーとの割合は、適宜調整することができる。例えば、マーキングのかすれが生じた場合には、着色剤の含有量を増加させると良く、コントラストが不足している場合には、白色フィラーの含有量を増加させると良い。また、すすが出やすい場合には、着色剤の含有量を低下させてレーザーマーキングを行うことができる。
【0033】
上記3層構造のフィルムは、例えば、耐熱性フィルムから成るベースフィルム9上に接着フィルムの形成する材料のワニスを塗布した後、加熱乾燥し、その後、溶剤を除去して形成される。このときの加熱乾燥条件は、使用するフィルムの成分やワニスの溶媒等によって異なるが、一般的には70〜200℃の温度により3〜30分間加熱するものである。
【0034】
また、このような接着フィルムを使用して半導体素子3上に半導体素子表面保護用フィルムを形成する場合には、半導体素子に負荷を与えず、作業性に優れる点で、半導体素子3への接着可能な温度が180℃以下であることが好ましく、140℃以下であることがより好ましい。
【0035】
さらに、本発明の半導体素子表面保護用フィルム4の厚さは、25〜200μmであることが好ましく、特に、50〜100μmであることがより好ましい。半導体素子表面保護用フィルム4の厚さが25μm以下になると半導体素子3の欠けの原因となる衝撃を吸収しきれないため、半導体素子3を保護する保護フィルムとしての特性が低下し、逆に、半導体素子表面保護用フィルムの厚さが200μm以上になると、パッケージ全体の厚さが増えてパッケージ設計の障害になるからである。
【0036】
本発明の半導体素子表面保護用フィルム4は、25℃での弾性率が20〜2000MPaであることが好ましく、50〜1000MPaであることがより好ましい。弾性率が20MPa以下になると半導体素子表面保護用フィルム4にタック性が残り、搬送中にフィルム同士が貼り付く、またはフィルムに埃が貼り付くなどして作業性の低下、不純物の増加に繋がるからである。逆に、弾性率が2000MPa以上になると、半導体素子表面保護用フィルム4を成形し、貼り付けた後に半導体素子3にそりが発生し、パッケージの信頼性の悪化、作業性の低下等の問題が発生するからである。
【0037】
上記3層構造のフィルムに含まれる半導体素子表面保護用フィルム4を使用して、半導体装置を製造する手順について図4〜図9を用いて説明する。
【0038】
まず、3層構造から成るフィルムの保護フィルム10を剥離し、図4に示すように、ベースフィルム9の付いた半導体素子表面保護用フィルム4を半導体素子3であるシリコンウエハ上にヒートプレス、ラミネーター等で圧着して半導体表面保護用フィルム4を形成する。その後、ベースフィルム9を剥離する。ここで、半導体素子表面保護用フィルム4が熱硬化性樹脂の場合は必要に応じてフィルムの硬化を行う。その後、図5に示すようにウエハをダイシンングした後、図6に示すように接着剤から成る接着剤層11を介してTAB12を貼り付ける。さらに、図7に示すようにワイヤボンディング及び半田ボール付けをする。その後、図8に示すように、半導体素子表面保護用フィルム4側からYAGレーザーを照射し、製品を判別するための識別情報を表示した後、図9に示すように、実装基板15上に設置して半導体装置が形成される。
【0039】
また、半導体表面保護用フィルム4を形成する方法は、上述したフィルムラミネートやヒートプレス等による方法に限定されるものではなく、半導体表面保護用フィルム4の原材料を溶剤に溶解したワニスをウエハの上にスピンコーター、バーコーター等によって塗布し、加熱乾燥し、溶剤を除去して、直接シリコンウエア上に製膜することができる。なお、この時のスピンコート条件及び加熱乾燥条件は使用するフィルム成分、ワニスの溶媒によって異なるが、一般に70〜200℃、3〜30分である。なお、スピンコーターによりウエハ上に半導体表面保護用フィルム4を製膜する場合には、前述した樹脂中で接着性を有していない樹脂でも半導体素子3がリフロー温度にさらされたときに剥離することがない半導体素子3との接着力を有していれば使用することができる。
【0040】
上述したように、YAGレーザーの照射により識別情報をマーキングしているが、本発明は、着色剤を含有させて着色した半導体素子表面保護用フィルム4を使用したため、レーザーマーキングを行った後の視認性が良好である。また、フィルムの視認性は、画像処理装置を用いてマーキング部と非マーキング部の正反射光強度を256段階に数値化し、その数値の差を比較することにより、視認性の評価を行った。また、良好な視認性を得るためには反射光強度の差が40以上必要であり、60以上であれば特に好ましい。
【0041】
以下、例1〜例8を用いて、さらに具体的に説明する。
【0042】
例1
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(エポキシ当量175、東都化成株式会社製のYD−8125を使用)60重量部、フェノールノボラック型のエポキシ樹脂(東都化成株式会社製のYDCN−703を使用)5重量部、硬化剤としてビスフェノールAノボラック樹脂(大日本インキ製のLF−2882を使用)35重量部、白色フィラーとしてシリコンフィラー(株式会社アドマテックス製のアドマファインSO−C2を使用)30重量部、着色剤としてカーボンブラックを含有した樹脂系加工顔料(御国色素のCFブラックHGBK−02)を35重量部、溶剤としてシクロヘキサノン30重量部をビーズミルにより混合したワニスに、エポキシ基含有アクリル系共重合体としてエポキシ基含有アクリルゴム(分子量100万、帝国化学産業株式会社製のHTR−860P−3)230重量部、硬化促進剤として1−シアノエチル−2−フェニルイミダゾール(キュアゾール2PZ−CNを使用)0.5重量部からなる成分に溶剤としてシクロヘキサノンを1700重量部加えて攪拌混合し、半導体素子表面保護用ワニスを得た。(これをワニスAとする)
得られたワニスAを離型剤付きのベースフィルム(帝人製ピューレックスA31)上に50μm厚みで塗工し、ベースフィルム付き接着フィルムを得た。この接着フィルムをシリコンウエハの裏面に120℃でラミネートし、シリコンウエハ上に形成された半導体素子表面保護用フィルムを得た。
【0043】
例2
本例では、例1に示したワニスを乾燥後の厚さが45〜55μmになるようにシリコンウエハの裏面にスピンコートによって製膜した後、140℃で5分乾燥してシリコンウエハ上に半導体素子表面保護用フィルムを形成した。
【0044】
例3
エポキシ樹脂としてビスフェノールA型エポキシ樹脂(エポキシ当量175、東都化成株式会社製のYD−8125を使用)50重量部、フェノールノボラック型のエポキシ樹脂(東都化成株式会社製のYDCN−703を使用)15重量部、硬化剤としてビスフェノールAノボラック樹脂(大日本インキ製のLF−2882を使用)20重量部、フェノキシ樹脂としてビスフェノール型フェノキシ樹脂(東都化成株式会社製のYP−50を使用)15重量部、着色剤としてカーボンブラックを含有した樹脂系加工顔料(御国色素のCFブラックHGBK−02)を35重量部、溶剤としてシクロヘキサノン30重量部をビーズミルにより混合したワニスに、エポキシ基含有アクリル系共重合体としてエポキシ基含有アクリルゴム(分子量100万、帝国化学産業株式会社製のHTR−860P−3)230重量部、硬化促進剤として1−シアノエチル−2−フェニルイミダゾール(キュアゾール2PZ−CNを使用)0.5重量部からなる成分に溶剤としてシクロヘキサノンを1700重量部加えて攪拌混合し、半導体素子表面保護用ワニスを得た。(これをワニスBとする)
このフィルムは樹脂自体が乳白色であるため、シリコンフィラーを含有させなかった。その他は、例1と同様の方法を用いて半導体素子表面保護用フィルムを形成した。
【0045】
例4
例1に示すワニス組成のうちシリコンフィラーの含有量を80質量%としてワニスを作製し、その他は例1と同じ手順を用いて、シリコンウエハ上に半導体素子表面保護用フィルムを形成した。
【0046】
例5
例1に示すワニス組成のうち樹脂系加工顔料の含有量を20質量%としてワニスを作製し、その他は例1と同じ手順を用いて、シリコンウエハ上に半導体素子表面保護用フィルムを形成した。
【0047】
例6
例1と同様にしてシリコンウエハ上に半導体素子表面保護用フィルムを形成したものであるが、フィルムの厚さを15μmとした。
【0048】
例7
本例では、例1に示すワニス組成のうちシリコンフィラーを含有しなかった。その他は例1と同じ手順を用いてシリコンウエハ上に半導体素子表面保護用フィルムを形成した。
【0049】
例8
本例では、例1に示すワニスの組成のうち樹脂系加工顔料の含有量を0.05質量%としてワニスを作製し、その他は例1と同じ手順を用いてシリコンウエハ上に半導体素子表面保護用フィルムを形成した。
【0050】
上記例1〜例8で使用した各フィルムの配合及び特性を示す。
【0051】
【表1】

Figure 2004063551
【0052】
得られた各半導体素子表面保護用フィルムを硬化した後、出力5.0J/パルスのYAGレーザーによりレーザーマーキングを行って視認性を確認した。なお、視認性の評価は、レーザーマーキング後のフィルム表面をスキャナによって画像取り込みを行い、画像処理ソフト(Adobe社製PHOTOSHOP)によってマーキング部分及びその周りの非マーキング部分の2階調化を行う。この操作により、画像は明度によって白黒の256段階に分けられる。次に、マーキング部分が白く、非マーキング部分が黒く表示される「2階調化する境界のしきい値」と、マーキング部分も黒く表示されマーキング/非マーキング部分の境界が無くなる「2階調化する境界のしきい値」の値を求め、その差が40以上である場合に視認性が良好であるとし(○)、その差が30以上40未満である場合に視認性がほぼ良好であるとし(△)、その差が30未満である場合に視認性が不良である(×)として評価を行った。評価結果を表2に示す。
【0053】
また、上述した例1〜例8の各組成材料及び製造方法を用いて、フィルム試験片を各々作製した。なお、各フィルム試験片のサイズは、3mm×20mmとし、各フィルム試験片について、試験条件を昇温速度2℃/分、測定温度20〜200℃として弾性率を測定した。測定結果を表2に示す。
【0054】
【表2】
Figure 2004063551
【0055】
表2に示すように、例1〜例3は視認性に優れ、チップ保護膜としての特性にも優れるものであった。例4〜例6は、それぞれフィルム成形性、素子との接着性、チップ保護性において例1及び例3より劣るものの、レーザーマーキングの視認性には優れるものであった。例7では、白色のフィラーを含有しなかったため、元の接着剤の色が透明に近く、レーザーマーキングを行って表面付近の着色剤が揮発しても下層に存在する着色剤の色がフィルム表面から見えてしまい、レーザーマーキングを行った場合であっても、結果として色の違いが生じず、視認性が低下していた。また、例8では、着色剤の含有量が少ないため、マーキング部分とそれ以外の部分のコントラストは上記例に比べると劣り、着色剤を含有させないよりは視認性は向上したが、充分ではなかった。
【0056】
これに対し例1はフィルムに着色剤と白色のシリコンフィラーを含有することによりレーザーマーキング後に良好な視認性を得られた。また、例2は、フィルムを単体で形成してからシリコンウエハに貼り付ける方法によっても、レーザーマーキング後に良好な視認性を持つフィルムを得られることが判明した。また、例3では、ベースとなる樹脂が不透明な乳白色であることから、白色フィラーを含有しない場合であっても、視認性が良好であった。
【0057】
本実施形態によれば、フィルムを着色することによりレーザーマーキングの視認性を良好とすることができ、容易に識別情報を製品に表示することが可能であり、かつ、半導体素子の表面の保護特性が優れているため、パッケージの製造時あるいはパッケージの搬送時に、半導体素子端部の欠けを防止することができる。
【0058】
【発明の効果】
以上説明したように、本発明の半導体素子表面保護用フィルムによれば、優れた半導体素子表面の保護特性およびレーザーマーキングによる視認性を得ることができ、その結果、製造コストを削減することができると共に高品質の製品を提供することができる。
【図面の簡単な説明】
【図1】本実施形態における、半導体素子表面保護用フィルムを適用した半導体装置の一部を示す断面図。
【図2】半導体素子ユニットの構成を示す断面図。
【図3】本発明の半導体用フィルムを備えた3層構造のフィルムを示す断面図。
【図4】半導体装置の製造工程の一部を示し、半導体素子表面保護用フィルムをシリコンチップ上に形成する際の工程を示す図。
【図5】半導体装置の製造工程の一部を示し、ウエハをダイシングする工程を示す図。
【図6】半導体装置の製造工程の一部を示し、TABを貼り付ける工程を示す図。
【図7】半導体装置の製造工程の一部を示し、ワイヤボンディング及び半田ボール付けをする工程を示す図。
【図8】半導体装置の製造工程の一部を示し、レーザー照射により識別情報を表示する工程を示す図。
【図9】半導体装置の製造工程の一部を示し、実装基板上に実装する工程を示す図。
【図10】YAGレーザーを使用して封止材にレーザーマーキングする方法の原理について説明する図であり、(a)〜(c)は、封止材の断面を示す図。
【符号の説明】
1 半導体配線基板
2 接着剤層
3 半導体素子
4 半導体素子表面保護用フィルム
5 接続部材
6 封止材
7 配線
8 外部接続端子
9 ベースフィルム
10 保護フィルム
11 接着剤層
12 TAB
13 ワイヤボンディング
14 半田ボール
15 実装基板
A 半導体素子ユニット[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is applied to, for example, a semiconductor device of a face-down structure in which a circuit surface is arranged toward a semiconductor wiring substrate side, a semiconductor element surface protection film for protecting the surface of a semiconductor element, and the semiconductor element surface protection. The present invention relates to a semiconductor element unit using a film for use.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, miniaturization and weight reduction of electronic devices have been promoted, and accordingly, high-density mounting on substrates has been demanded, and miniaturization and weight reduction of semiconductor packages mounted on electronic devices has been promoted.
[0003]
Semiconductor packages have variously changed with the times, and there are conventionally packages called LOC (Lead On Chip) and QFP (Quad Flat Package). For example, LOC packages are used in DRAMs of 16M or later. ing.
[0004]
Usually, identification information such as a lot number and a manufacturer name is printed on the package to identify the product, so that it is possible to determine how the product was manufactured. In the case of a package such as LOC and QFP, laser sealing is directly performed on the sealing material formed on the outer surface of the package with identification information for identifying a product.
[0005]
Lasers used for laser marking include carbon dioxide gas lasers and YAG lasers. When performing laser marking on a sealing material, YAG lasers are mainly used. The principle of the method of laser marking a sealing material using a YAG laser will be briefly described below with reference to FIGS. 10 (a) to 10 (c).
[0006]
FIG. 10A is a diagram showing a cross section of a sealing material 20 which is a material to be subjected to laser marking. As shown in FIG. 10A, a silica filler 22 and a pigment (carbon) 23 are contained in a resin 21. It is evenly distributed.
[0007]
When the YAG laser 24 is irradiated from the surface side of the sealing material 20, as shown in FIG. 10 (b), carbon particles 23a, 23b, 23c present at the laser-irradiated portion are selected according to the wavelength of the laser. It is heated.
[0008]
Then, as shown in FIG. 10C, the carbon particles 23a, 23b and 23c evaporate together with the surrounding resin 21 and only the silica filler 22 remains in the resin 21. Since the color after the carbon has evaporated is white, the laser irradiation position appears to be marked white. In this way, laser marking is performed on the sealing material.
[0009]
In recent years, the size and weight of semiconductor packages have been further reduced, and packages such as CSP (ChipSize Package) and μBGA (Ball Grid Array) have been further downsized and reduced in weight than packages such as LOC and QFP. Is being developed. In such a package, the wiring connecting the semiconductor element and the substrate is arranged at the center of the semiconductor element and only that part is sealed. Therefore, the entire conventional semiconductor element is sealed with a sealing material. As compared with the shape, the size and weight of the package can be further reduced.
[0010]
[Problems to be solved by the invention]
However, in the above-mentioned package, although the size and weight can be reduced, the semiconductor element is a face-down type, that is, the circuit surface of the semiconductor element is directed to the semiconductor wiring board side, and the Since the back surface of the semiconductor element has an exposed shape, there is a problem that the end of the semiconductor element is chipped when a package is manufactured or the package is transported.
[0011]
Also, in particular, some packages, such as CSP, are not sealed with a sealing material. Therefore, products can be manufactured by direct laser marking on semiconductor elements or printing directly on semiconductor elements. The identification information for discriminating was printed.
[0012]
However, when laser marking is performed directly on a semiconductor element, there is no clear contrast between the semiconductor element and the identification information, so that the discriminating power between the semiconductor element and the marking is low and visibility is poor. Was.
[0013]
In addition, when the identification information is marked by directly printing on the semiconductor element, the identification information can be clearly displayed on the semiconductor element, so that there is an advantage that the identification property between the semiconductor element and the identification information is high. However, according to the printing, the number of steps is large, so that there is a problem that the work time for printing the identification information is significantly increased.
[0014]
Further, in the case of a package such as a CSP that is not sealed with a sealing material, the surface of the semiconductor element is protected by a method of forming a protective film or a method of attaching a protective film. . As such a protective film or protective film, for example, a transparent or translucent film or film is used. The reason for this is that the materials used for semiconductors avoid the deposition of ionic impurities as much as possible, so that the contamination of impurities is avoided as much as possible. This is because it is assumed that impurities such as pigments and dyes are not mixed. For this reason, even when a transparent or translucent film or film is directly irradiated with a laser to display identification information for identifying a product, the visibility of the laser marking is poor.
[0015]
The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a semiconductor element surface protection film and a semiconductor element unit having excellent protection characteristics of a semiconductor element surface and excellent visibility by laser marking. .
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned object, various studies have been carried out, and a film is coated on the surface of the semiconductor element on the side opposite to the circuit surface to protect the surface of the semiconductor element, and a colorant different from the color of the film in the opaque film. In addition, when displaying identification information on the film, by irradiating the laser to volatilize the colorant and clarifying the color difference between the marked part and the non-marked part by laser irradiation, the laser marking A semiconductor element surface protection film having excellent visibility and a semiconductor element unit using the semiconductor element surface protection film are obtained.
[0017]
That is, the present invention is a film used for a semiconductor element having a circuit surface arranged toward a semiconductor wiring substrate side, and a film for protecting a surface side of the semiconductor element facing the circuit surface, which is opaque. It is characterized in that the film contains a colorant different in color from the film.
[0018]
Further, in the above invention, a colorant is contained in the film, and the content of the colorant is 0.1 to 10% by mass with respect to the film.
[0019]
Further, in the above invention, a white filler is contained in the film, and the content of the white filler is 1 to 70% by mass.
[0020]
Further, in the above invention, the colorant is a carbon filler.
[0021]
In the above invention, the elastic modulus at 25 ° C. of the film is from 20 to 2000 MPa.
[0022]
Further, the thickness of the film is 25 to 200 μm.
[0023]
The semiconductor element unit according to the present invention includes a semiconductor element having a circuit surface arranged toward the semiconductor wiring board and a surface formed on the surface of the semiconductor element facing the circuit surface. And a film for protecting the surface of a semiconductor element containing a colorant different from the above.
[0024]
The semiconductor element surface protection film of the semiconductor element unit is the semiconductor element surface protection film described above.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 9 and Tables 1 and 2.
[0026]
FIG. 1 is a diagram showing a cross section of a part of a semiconductor device to which a film for protecting a semiconductor surface of the present invention is applied. As shown in FIG. 1, a semiconductor element 3 is mounted on a semiconductor wiring board 1 via an adhesive layer 2 made of an adhesive such as a resin, and a circuit surface of the semiconductor element 3 faces the semiconductor wiring board 1 side. The surface of the semiconductor element 3 facing the circuit surface is coated with a semiconductor element surface protection film 4. At the center of the semiconductor wiring substrate 1 and the adhesive layer 2, a connection member 5 having a part of a wiring of the semiconductor wiring substrate 1 and a bonding pad of a semiconductor element at each end is bonded. Are sealed by a sealing material 6. An external connection terminal 8 is connected to the back surface of the semiconductor wiring substrate 1 via a wiring 7.
[0027]
In the semiconductor element unit A of the present invention applied to the semiconductor device having the above configuration, as shown in the sectional view of FIG. 2, a semiconductor element surface protecting film is formed on the surface of the semiconductor element 3 by coating. The semiconductor element surface protection film 4 usually has a three-layer film as shown in the sectional view of FIG. 3, and a base film 9 and a protection film 10 are provided on both sides of the semiconductor element surface protection film 4. Are respectively formed. The protective film 10 is formed according to the type of the semiconductor element surface protecting film 4, and the protective film 10 is not always formed.
[0028]
The resin used for the semiconductor element surface protection film 4 of the present invention is particularly a component as long as the semiconductor element 3 has an adhesive force with the semiconductor element 3 which does not peel off when exposed to a reflow temperature. There is no limitation, for example, a thermoplastic resin such as a polyimide resin, a polyamide resin, a polyether sulfone resin, a polyamide imide resin, an epoxy resin, a bismaleimide resin, a cyanate resin, a phenol resin, and a thermosetting resin such as a polyurethane resin. Adhesives and mixtures thereof can be used. Further, a heat-resistant film can be used as the base film 9, and the surface of the base film 9 is preferably subjected to a release treatment with, for example, silicone or the like.
[0029]
As the colorant contained in the resin used for the semiconductor element surface protection film 4, for example, pigments and dyes such as carbon black, graphite, titanium carbon, manganese dioxide, and phthalocyanine can be used. The content of the colorant contained in the semiconductor element surface protection film 4 is preferably from 0.1 to 10% by mass, and more preferably from 0.5 to 2.0% by mass. When the content of the colorant is 0.1% by mass or less, the film is not colored and visibility after laser marking is deteriorated. Conversely, when the content of the colorant is 10% by mass or more, ionic impurities This causes problems such as an increase in the film thickness, a decrease in the ductility of the film, and a decrease in the adhesive strength to the semiconductor element.
[0030]
Further, since a laser used for laser marking is often a YAG laser, it is preferable to use carbon black which is easily volatilized by the YAG laser as a coloring agent.
[0031]
Further, examples of the white filler contained in the resin used for the semiconductor element surface protection film 4 include crystalline silica, amorphous silica, aluminum oxide, calcium carbonate, magnesium carbonate, aluminum nitride, and boron nitride. . Further, the content of the white filler is preferably 1 to 70% by mass, and particularly preferably 5 to 50% by mass. When the content of the white filler is 1% by mass or less, the color of the semiconductor element surface protection film 4 does not become white after the colorant is volatilized by laser marking, and the visibility after the laser marking is deteriorated. If the content of the white filler is 70% by mass or more, the surface protection film 4 of the semiconductor element becomes brittle, the moldability is reduced, and problems such as a decrease in the adhesive strength to the silicon wafer occur.
[0032]
Further, the ratio between the colorant and the white filler in the resin of the semiconductor element surface protection film 4 can be appropriately adjusted. For example, when the marking is blurred, the content of the colorant may be increased, and when the contrast is insufficient, the content of the white filler may be increased. When soot is easily produced, laser marking can be performed by reducing the content of the coloring agent.
[0033]
The film having the three-layer structure is formed by, for example, applying a varnish of a material forming an adhesive film on a base film 9 made of a heat-resistant film, heating and drying, and then removing a solvent. The heating and drying conditions at this time vary depending on the components of the film to be used, the solvent of the varnish, and the like, but generally heating is performed at a temperature of 70 to 200 ° C. for 3 to 30 minutes.
[0034]
Further, when a film for protecting the surface of a semiconductor element is formed on the semiconductor element 3 using such an adhesive film, a load is not applied to the semiconductor element and the workability is excellent. Preferably, the possible temperature is 180 ° C. or lower, more preferably 140 ° C. or lower.
[0035]
Further, the thickness of the semiconductor element surface protecting film 4 of the present invention is preferably 25 to 200 μm, and more preferably 50 to 100 μm. If the thickness of the semiconductor element surface protection film 4 is 25 μm or less, the impact as a cause of chipping of the semiconductor element 3 cannot be completely absorbed, so that the characteristic as a protective film for protecting the semiconductor element 3 is deteriorated. This is because if the thickness of the semiconductor element surface protection film is 200 μm or more, the thickness of the entire package increases, which hinders the package design.
[0036]
The film 4 for semiconductor element surface protection of the present invention has an elastic modulus at 25 ° C. of preferably 20 to 2000 MPa, more preferably 50 to 1000 MPa. If the elastic modulus is 20 MPa or less, the tackiness remains on the semiconductor element surface protection film 4, and the films adhere to each other during transportation, or dust adheres to the film, leading to a decrease in workability and an increase in impurities. It is. On the other hand, when the elastic modulus is 2000 MPa or more, the semiconductor element surface warp occurs after the semiconductor element surface protection film 4 is formed and attached, which causes problems such as deterioration of package reliability and workability. Because it occurs.
[0037]
A procedure for manufacturing a semiconductor device using the semiconductor element surface protection film 4 included in the three-layer film will be described with reference to FIGS.
[0038]
First, the protective film 10 having a three-layer structure is peeled off, and as shown in FIG. 4, the semiconductor element surface protecting film 4 with the base film 9 is heat-pressed on a silicon wafer as the semiconductor element 3 by a laminator. The film 4 for semiconductor surface protection is formed by pressure bonding. Thereafter, the base film 9 is peeled off. Here, when the semiconductor element surface protection film 4 is a thermosetting resin, the film is cured as necessary. Then, after dicing the wafer as shown in FIG. 5, a TAB 12 is attached via an adhesive layer 11 made of an adhesive as shown in FIG. Further, as shown in FIG. 7, wire bonding and solder ball bonding are performed. Thereafter, as shown in FIG. 8, a YAG laser is irradiated from the side of the semiconductor element surface protection film 4 to display identification information for discriminating a product, and then, as shown in FIG. Thus, a semiconductor device is formed.
[0039]
Further, the method of forming the film 4 for semiconductor surface protection is not limited to the above-described method using film lamination or heat pressing, and a varnish obtained by dissolving the raw material of the film 4 for semiconductor surface protection in a solvent is placed on the wafer. Can be applied by a spin coater, a bar coater or the like, dried by heating, and the solvent is removed to form a film directly on siliconware. The spin coating conditions and the heating and drying conditions at this time vary depending on the film components used and the solvent of the varnish, but are generally 70 to 200 ° C. for 3 to 30 minutes. When the semiconductor surface protecting film 4 is formed on a wafer by a spin coater, even the resin having no adhesiveness among the aforementioned resins is peeled off when the semiconductor element 3 is exposed to a reflow temperature. It can be used as long as it has an adhesive force to the semiconductor element 3 which does not have any.
[0040]
As described above, the identification information is marked by irradiation with the YAG laser. However, in the present invention, since the semiconductor element surface protection film 4 which is colored by containing a coloring agent is used, the visual recognition after laser marking is performed. The properties are good. The visibility of the film was evaluated by quantifying the regular reflection light intensity of the marked portion and the non-marked portion into 256 levels using an image processing apparatus, and comparing the difference in the numerical values. Further, in order to obtain good visibility, the difference in reflected light intensity is required to be 40 or more, and particularly preferably 60 or more.
[0041]
Hereinafter, a more specific description will be given using Examples 1 to 8.
[0042]
Example 1
60 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 175, YD-8125 manufactured by Toto Kasei Co., Ltd.) and 5 parts by weight of a phenol novolak type epoxy resin (YDCN-703 manufactured by Toto Kasei Co., Ltd.) Part, 35 parts by weight of bisphenol A novolak resin (using LF-2882 manufactured by Dainippon Ink) as a curing agent, 30 parts by weight of silicon filler (using Admafine SO-C2 manufactured by Admatechs) as a white filler, coloring A varnish prepared by mixing 35 parts by weight of a resin-based pigment containing carbon black as an agent (CF black HGBK-02, a land color pigment) and 30 parts by weight of cyclohexanone as a solvent with a bead mill, and epoxy as an epoxy group-containing acrylic copolymer Group-containing acrylic rubber (molecular weight 100,000 parts by weight of HTR-860P-3 manufactured by Teikoku Chemical Industry Co., Ltd., and 0.5 parts by weight of 1-cyanoethyl-2-phenylimidazole (using Curezol 2PZ-CN) as a curing accelerator and a solvent And 1700 parts by weight of cyclohexanone were added and mixed by stirring to obtain a varnish for protecting the surface of the semiconductor element. (This is varnish A)
The obtained varnish A was applied on a base film with a release agent (Purex A31 manufactured by Teijin) in a thickness of 50 μm to obtain an adhesive film with a base film. This adhesive film was laminated on the back surface of the silicon wafer at 120 ° C. to obtain a film for protecting the surface of the semiconductor element formed on the silicon wafer.
[0043]
Example 2
In this example, the varnish shown in Example 1 was formed on the back surface of the silicon wafer by spin coating so that the thickness after drying was 45 to 55 μm, and then dried at 140 ° C. for 5 minutes to form a semiconductor on the silicon wafer. An element surface protection film was formed.
[0044]
Example 3
50 parts by weight of a bisphenol A type epoxy resin (epoxy equivalent: 175, YD-8125 manufactured by Toto Kasei Co., Ltd.) and 15 parts by weight of a phenol novolak type epoxy resin (YDCN-703 manufactured by Toto Kasei Co., Ltd.) Parts, 20 parts by weight of bisphenol A novolak resin (using LF-2882 manufactured by Dainippon Ink) as a curing agent, 15 parts by weight of bisphenol-type phenoxy resin (using YP-50 manufactured by Toto Kasei Co., Ltd.) as a phenoxy resin, coloring A varnish prepared by mixing 35 parts by weight of a resin-based pigment containing carbon black as an agent (CF black HGBK-02, a land color pigment) and 30 parts by weight of cyclohexanone as a solvent with a bead mill, and epoxy as an epoxy group-containing acrylic copolymer Group-containing acrylic rubber (molecular weight 1 230,000 parts by weight of HTR-860P-3 manufactured by Teikoku Chemical Industry Co., Ltd., 0.5 part by weight of 1-cyanoethyl-2-phenylimidazole (using Curezol 2PZ-CN) as a curing accelerator, and a solvent And 1700 parts by weight of cyclohexanone were added and mixed by stirring to obtain a varnish for protecting the surface of the semiconductor element. (This is varnish B)
This film did not contain a silicon filler because the resin itself was milky white. Otherwise, the same method as in Example 1 was used to form a semiconductor element surface protecting film.
[0045]
Example 4
A varnish was prepared by setting the content of the silicon filler to 80% by mass in the varnish composition shown in Example 1, and a film for protecting a semiconductor element surface was formed on a silicon wafer by using the same procedure as in Example 1 except for the above.
[0046]
Example 5
A varnish was prepared with the content of the resin-based processed pigment being 20% by mass in the varnish composition shown in Example 1, and a film for protecting the surface of a semiconductor element was formed on a silicon wafer by using the same procedure as in Example 1 except for the above.
[0047]
Example 6
A semiconductor element surface protection film was formed on a silicon wafer in the same manner as in Example 1, except that the thickness of the film was 15 μm.
[0048]
Example 7
In this example, the varnish composition shown in Example 1 did not contain a silicon filler. Otherwise, the same procedure as in Example 1 was used to form a semiconductor element surface protection film on a silicon wafer.
[0049]
Example 8
In this example, a varnish was prepared by setting the content of the resin-based processed pigment in the composition of the varnish shown in Example 1 to 0.05% by mass, and otherwise the same procedure as in Example 1 was used to protect the surface of the semiconductor element on the silicon wafer. Film was formed.
[0050]
The composition and characteristics of each film used in Examples 1 to 8 are shown.
[0051]
[Table 1]
Figure 2004063551
[0052]
After curing each of the obtained semiconductor element surface protective films, laser marking was performed with a YAG laser having an output of 5.0 J / pulse to confirm the visibility. The visibility is evaluated by taking an image of the film surface after laser marking with a scanner, and performing two gradations of the marking portion and the non-marking portion around the marking portion using image processing software (PHOTOSHOP manufactured by Adobe). By this operation, the image is divided into 256 levels of black and white according to the brightness. Next, the "threshold of the boundary for two-gradation" in which the marking part is displayed in white and the non-marking part is displayed in black, and the "two-gradation" in which the marking part is also displayed in black and the boundary of the marking / non-marking part disappears The threshold value of the boundary to be performed is determined, and if the difference is 40 or more, the visibility is good ((). If the difference is 30 or more and less than 40, the visibility is almost good. (Δ), and when the difference was less than 30, the visibility was evaluated as poor (×). Table 2 shows the evaluation results.
[0053]
Further, using the respective composition materials and the production methods of Examples 1 to 8 described above, film test pieces were produced. The size of each film test piece was 3 mm x 20 mm, and the elasticity of each film test piece was measured at a test rate of 2 ° C / min and a measurement temperature of 20 to 200 ° C. Table 2 shows the measurement results.
[0054]
[Table 2]
Figure 2004063551
[0055]
As shown in Table 2, Examples 1 to 3 were excellent in visibility and also excellent in characteristics as a chip protective film. Examples 4 to 6 were inferior to Examples 1 and 3 in film formability, adhesion to the element, and chip protection, respectively, but were excellent in laser marking visibility. In Example 7, since the white filler was not contained, the color of the original adhesive was nearly transparent, and even if the colorant near the surface was volatilized by performing laser marking, the color of the colorant present in the lower layer was changed to the surface of the film. , And even when laser marking was performed, no color difference occurred as a result, and visibility was reduced. In Example 8, since the content of the coloring agent was small, the contrast between the marking portion and the other portions was inferior to that of the above example, and the visibility was improved as compared with the case where the coloring agent was not contained, but was not sufficient. .
[0056]
In contrast, in Example 1, good visibility was obtained after laser marking by containing a colorant and a white silicon filler in the film. In addition, in Example 2, it was found that a film having good visibility after laser marking could be obtained also by a method of forming a film alone and attaching the film to a silicon wafer. Further, in Example 3, since the base resin was opaque milky white, the visibility was good even when no white filler was contained.
[0057]
According to the present embodiment, the visibility of the laser marking can be improved by coloring the film, the identification information can be easily displayed on the product, and the protection property of the surface of the semiconductor element can be obtained. This makes it possible to prevent chipping of the end of the semiconductor element at the time of manufacturing the package or transporting the package.
[0058]
【The invention's effect】
As described above, according to the semiconductor element surface protection film of the present invention, excellent protection properties of the semiconductor element surface and visibility by laser marking can be obtained, and as a result, manufacturing cost can be reduced. And provide high quality products.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a part of a semiconductor device to which a semiconductor element surface protection film is applied according to an embodiment.
FIG. 2 is a cross-sectional view illustrating a configuration of a semiconductor element unit.
FIG. 3 is a cross-sectional view showing a three-layer film including the semiconductor film of the present invention.
FIG. 4 is a view showing a part of a manufacturing process of the semiconductor device and showing a process when a semiconductor element surface protection film is formed on a silicon chip.
FIG. 5 is a view illustrating a part of the manufacturing process of the semiconductor device and illustrating a process of dicing a wafer.
FIG. 6 is a diagram illustrating a part of the manufacturing process of the semiconductor device and illustrating a process of attaching a TAB.
FIG. 7 is a diagram illustrating a part of the manufacturing process of the semiconductor device and illustrating a process of performing wire bonding and solder ball bonding.
FIG. 8 is a diagram illustrating a part of the manufacturing process of the semiconductor device and illustrating a process of displaying identification information by laser irradiation.
FIG. 9 is a diagram illustrating a part of the manufacturing process of the semiconductor device and illustrating a process of mounting the semiconductor device on a mounting board.
FIGS. 10A to 10C are views for explaining the principle of a method of laser marking a sealing material using a YAG laser, and FIGS. 10A to 10C are views showing cross sections of the sealing material.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor wiring board 2 Adhesive layer 3 Semiconductor element 4 Semiconductor element surface protection film 5 Connecting member 6 Sealing material 7 Wiring 8 External connection terminal 9 Base film 10 Protective film 11 Adhesive layer 12 TAB
13 Wire Bonding 14 Solder Ball 15 Mounting Board A Semiconductor Element Unit

Claims (8)

回路面が半導体配線基板側に向けて配置される半導体素子に使用され、かつ、当該半導体素子の回路面と対向する面側を保護するためのフィルムであって、不透明なフィルム中に当該フィルムとは色が異なる着色剤が含有されていることを特徴とする半導体素子表面保護用フィルム。A film used for a semiconductor element whose circuit surface is arranged toward the semiconductor wiring board side, and a film for protecting the surface side of the semiconductor element opposite to the circuit surface, wherein the film is included in an opaque film. Is a film for protecting the surface of a semiconductor element, which comprises a coloring agent having a different color. 前記着色剤の含有量が、フィルムに対して0.1〜10質量%であることを特徴とする請求項1記載の半導体素子表面保護用フィルム。2. The film for protecting a semiconductor element surface according to claim 1, wherein the content of the coloring agent is 0.1 to 10% by mass based on the film. 前記フィルムに白色のフィラーが含有されており、当該白色のフィラーの含有量が、1〜70質量%であることを特徴とする請求項1または2記載の半導体素子表面保護用フィルム。The film for protecting a semiconductor element surface according to claim 1, wherein the film contains a white filler, and the content of the white filler is 1 to 70% by mass. 前記着色剤は、カーボンフィラーであることを特徴とする請求項1または2記載の半導体素子表面保護用フィルム。3. The film according to claim 1, wherein the colorant is a carbon filler. 前記フィルムの25℃における弾性率が、20〜2000MPaであることを特徴とする請求項1から4までのいずれかに記載の半導体素子表面保護用フィルム。The film for protecting a surface of a semiconductor device according to any one of claims 1 to 4, wherein the film has an elastic modulus at 25 ° C of 20 to 2000 MPa. 前記フィルムの厚さが、25〜200μmであることを特徴とする請求項1から5までのいずれかに記載の半導体素子表面保護用フィルム。The film for protecting a semiconductor element surface according to any one of claims 1 to 5, wherein the film has a thickness of 25 to 200 µm. 回路面が半導体配線基板側に向けて配置される半導体素子と、当該半導体素子の回路面と対向する面側に形成され、不透明なフィルム中に当該フィルムとは色が異なる着色剤が含有された半導体素子表面保護用フィルムと、を備えることを特徴とする半導体素子ユニット。A semiconductor element whose circuit surface is arranged toward the semiconductor wiring substrate side, and a colorant having a color different from that of the film is contained in an opaque film formed on a surface side opposite to the circuit surface of the semiconductor element. A semiconductor element surface protection film. 前記半導体素子表面保護用フィルムが、請求項2から6までのいずれかに記載の半導体素子表面保護用フィルムであることを特徴とする半導体素子ユニット。A semiconductor element unit, wherein the semiconductor element surface protection film is the semiconductor element surface protection film according to any one of claims 2 to 6.
JP2002216391A 2002-07-25 2002-07-25 Semiconductor element surface protecting film and semiconductor element unit Pending JP2004063551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216391A JP2004063551A (en) 2002-07-25 2002-07-25 Semiconductor element surface protecting film and semiconductor element unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216391A JP2004063551A (en) 2002-07-25 2002-07-25 Semiconductor element surface protecting film and semiconductor element unit

Publications (1)

Publication Number Publication Date
JP2004063551A true JP2004063551A (en) 2004-02-26

Family

ID=31938167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216391A Pending JP2004063551A (en) 2002-07-25 2002-07-25 Semiconductor element surface protecting film and semiconductor element unit

Country Status (1)

Country Link
JP (1) JP2004063551A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007012756A (en) * 2005-06-29 2007-01-18 Rohm Co Ltd Semiconductor device
JP2007012755A (en) * 2005-06-29 2007-01-18 Rohm Co Ltd Semiconductor device and semiconductor device assembly
JP2007250970A (en) * 2006-03-17 2007-09-27 Hitachi Chem Co Ltd Film for protecting rear face of semiconductor element, semiconductor device using the same and manufacturing method thereof
JP2007266420A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
JP2009231295A (en) * 2008-03-19 2009-10-08 Powertech Technology Inc Semiconductor device, and manufacturing method thereof
KR20110116996A (en) 2010-04-19 2011-10-26 닛토덴코 가부시키가이샤 Dicing tape-integrated film for semiconductor back surface
JP2012028396A (en) * 2010-07-20 2012-02-09 Nitto Denko Corp Film for backside of flip-chip type semiconductor, film for backside of dicing tape integrated semiconductor, method of manufacturing semiconductor device, and flip-chip type semiconductor device
US8164201B2 (en) 2005-06-29 2012-04-24 Rohm Co., Ltd. Semiconductor device with front and back side resin layers having different thermal expansion coefficient and elasticity modulus
US8237294B2 (en) 2009-01-30 2012-08-07 Nitto Denko Corporation Dicing tape-integrated wafer back surface protective film
JP2013005099A (en) * 2011-06-14 2013-01-07 Nippon Dempa Kogyo Co Ltd Piezoelectric device and manufacturing method of the same
US8415201B2 (en) 2009-06-15 2013-04-09 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US8420509B2 (en) 2009-12-24 2013-04-16 Nitto Denko Corporation Film for flip chip type semiconductor back surface
US8450189B2 (en) 2010-07-28 2013-05-28 Nitto Denko Corporation Film for flip chip type semiconductor back surface
US8643194B2 (en) 2010-04-19 2014-02-04 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US8652938B2 (en) 2010-07-29 2014-02-18 Nitto Denko Corporation Thermally releasable sheet-integrated film for semiconductor back surface, method of collecting semiconductor element, and method of producing semiconductor device
US8692389B2 (en) 2009-12-24 2014-04-08 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US8704382B2 (en) 2009-12-24 2014-04-22 Nitto Denko Corporation Film for flip chip type semiconductor back surface
US8703584B2 (en) 2009-05-29 2014-04-22 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US8749044B2 (en) 2012-04-12 2014-06-10 Samsung Electronics Co., Ltd. Semiconductor memory modules and methods of fabricating the same
US8841757B2 (en) 2010-11-18 2014-09-23 Nitto Denko Corporation Film for the backside of flip-chip type semiconductor, dicing tape-integrated film for the backside of semiconductor, method of manufacturing film for the backside of flip-chip type semiconductor, and semiconductor device
US8986486B2 (en) 2010-07-28 2015-03-24 Nitto Denko Corporation Film for semiconductor device production, method for producing film for semiconductor device production, and method for semiconductor device production
US9035466B2 (en) 2009-12-24 2015-05-19 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US9074113B2 (en) 2010-07-20 2015-07-07 Nitto Denko Corporation Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device
KR20150123762A (en) 2010-07-20 2015-11-04 닛토덴코 가부시키가이샤 Dicing tape-integrated film for semiconductor back surface
US9196533B2 (en) 2010-04-20 2015-11-24 Nitto Denko Corporation Film for back surface of flip-chip semiconductor, dicing-tape-integrated film for back surface of semiconductor, process for producing semiconductor device, and flip-chip semiconductor device
US9293387B2 (en) 2010-07-28 2016-03-22 Nitto Denko Corporation Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device
US9911683B2 (en) 2010-04-19 2018-03-06 Nitto Denko Corporation Film for back surface of flip-chip semiconductor
US11521035B2 (en) 2014-11-03 2022-12-06 Composecure, Llc Ceramic-containing and ceramic composite transaction cards
US11853829B2 (en) 2014-05-22 2023-12-26 Composecure, Llc Transaction and ID cards having selected texture and coloring

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8164201B2 (en) 2005-06-29 2012-04-24 Rohm Co., Ltd. Semiconductor device with front and back side resin layers having different thermal expansion coefficient and elasticity modulus
JP2007012755A (en) * 2005-06-29 2007-01-18 Rohm Co Ltd Semiconductor device and semiconductor device assembly
US8664779B2 (en) 2005-06-29 2014-03-04 Rohm Co., Ltd. Semiconductor device with front and back side resin layers having different thermal expansion coefficient and elasticity modulus
JP2007012756A (en) * 2005-06-29 2007-01-18 Rohm Co Ltd Semiconductor device
US8723339B2 (en) 2005-06-29 2014-05-13 Rohm Co., Ltd. Semiconductor device with front and back side resin layers having different thermal expansion coefficient and elasticity modulus
JP2007250970A (en) * 2006-03-17 2007-09-27 Hitachi Chem Co Ltd Film for protecting rear face of semiconductor element, semiconductor device using the same and manufacturing method thereof
JP2007266420A (en) * 2006-03-29 2007-10-11 Sanyo Electric Co Ltd Manufacturing method of semiconductor device
JP2009231295A (en) * 2008-03-19 2009-10-08 Powertech Technology Inc Semiconductor device, and manufacturing method thereof
US8766462B2 (en) 2009-01-30 2014-07-01 Nitto Denko Corporation Dicing tape-integrated wafer back surface protective film
US8237294B2 (en) 2009-01-30 2012-08-07 Nitto Denko Corporation Dicing tape-integrated wafer back surface protective film
US8558397B2 (en) 2009-01-30 2013-10-15 Nitto Denko Corporation Dicing tape-integrated wafer back surface protective film
US8841780B2 (en) 2009-01-30 2014-09-23 Nitto Denko Corporation Dicing tape-integrated wafer back surface protective film
US8648476B2 (en) 2009-01-30 2014-02-11 Nitto Denko Corporation Dicing tape-integrated wafer back surface protective film
US8703584B2 (en) 2009-05-29 2014-04-22 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US8415201B2 (en) 2009-06-15 2013-04-09 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US8912665B2 (en) 2009-06-15 2014-12-16 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US9362156B2 (en) 2009-12-24 2016-06-07 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US8420509B2 (en) 2009-12-24 2013-04-16 Nitto Denko Corporation Film for flip chip type semiconductor back surface
US8692389B2 (en) 2009-12-24 2014-04-08 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US8704382B2 (en) 2009-12-24 2014-04-22 Nitto Denko Corporation Film for flip chip type semiconductor back surface
US9035466B2 (en) 2009-12-24 2015-05-19 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
KR20110116996A (en) 2010-04-19 2011-10-26 닛토덴코 가부시키가이샤 Dicing tape-integrated film for semiconductor back surface
US8643194B2 (en) 2010-04-19 2014-02-04 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US9478454B2 (en) 2010-04-19 2016-10-25 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US8722517B2 (en) 2010-04-19 2014-05-13 Nitto Denko Corporation Dicing tape-integrated film for semiconductor back surface
US9911683B2 (en) 2010-04-19 2018-03-06 Nitto Denko Corporation Film for back surface of flip-chip semiconductor
US9196533B2 (en) 2010-04-20 2015-11-24 Nitto Denko Corporation Film for back surface of flip-chip semiconductor, dicing-tape-integrated film for back surface of semiconductor, process for producing semiconductor device, and flip-chip semiconductor device
US9074113B2 (en) 2010-07-20 2015-07-07 Nitto Denko Corporation Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device
JP2012028396A (en) * 2010-07-20 2012-02-09 Nitto Denko Corp Film for backside of flip-chip type semiconductor, film for backside of dicing tape integrated semiconductor, method of manufacturing semiconductor device, and flip-chip type semiconductor device
CN102376616A (en) * 2010-07-20 2012-03-14 日东电工株式会社 Film for semiconductor back surface, dicing tape-integrated film for semiconductor back surface, method for producing semiconductor device, and flip chip type semiconductor device
US8492907B2 (en) 2010-07-20 2013-07-23 Nitto Denko Corporation Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device
KR20150118063A (en) 2010-07-20 2015-10-21 닛토덴코 가부시키가이샤 Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device
KR20150123762A (en) 2010-07-20 2015-11-04 닛토덴코 가부시키가이샤 Dicing tape-integrated film for semiconductor back surface
KR101606224B1 (en) 2010-07-20 2016-03-24 닛토덴코 가부시키가이샤 Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device
US9761475B2 (en) 2010-07-28 2017-09-12 Nitto Denko Corporation Film for semiconductor device production, method for producing film for semiconductor device production, and method for semiconductor device production
US8986486B2 (en) 2010-07-28 2015-03-24 Nitto Denko Corporation Film for semiconductor device production, method for producing film for semiconductor device production, and method for semiconductor device production
US9293387B2 (en) 2010-07-28 2016-03-22 Nitto Denko Corporation Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, process for producing semiconductor device, and flip chip type semiconductor device
US8450189B2 (en) 2010-07-28 2013-05-28 Nitto Denko Corporation Film for flip chip type semiconductor back surface
US8652938B2 (en) 2010-07-29 2014-02-18 Nitto Denko Corporation Thermally releasable sheet-integrated film for semiconductor back surface, method of collecting semiconductor element, and method of producing semiconductor device
US8841757B2 (en) 2010-11-18 2014-09-23 Nitto Denko Corporation Film for the backside of flip-chip type semiconductor, dicing tape-integrated film for the backside of semiconductor, method of manufacturing film for the backside of flip-chip type semiconductor, and semiconductor device
JP2013005099A (en) * 2011-06-14 2013-01-07 Nippon Dempa Kogyo Co Ltd Piezoelectric device and manufacturing method of the same
US8866295B2 (en) 2012-04-12 2014-10-21 Samsung Electronics Co., Ltd. Semiconductor memory modules and methods of fabricating the same
US8749044B2 (en) 2012-04-12 2014-06-10 Samsung Electronics Co., Ltd. Semiconductor memory modules and methods of fabricating the same
US11853829B2 (en) 2014-05-22 2023-12-26 Composecure, Llc Transaction and ID cards having selected texture and coloring
US11521035B2 (en) 2014-11-03 2022-12-06 Composecure, Llc Ceramic-containing and ceramic composite transaction cards

Similar Documents

Publication Publication Date Title
JP2004063551A (en) Semiconductor element surface protecting film and semiconductor element unit
JP4682796B2 (en) Sealing sheet
US6524881B1 (en) Method and apparatus for marking a bare semiconductor die
JP4225162B2 (en) Sealing film
US8017444B2 (en) Adhesive sheet, semiconductor device, and process for producing semiconductor device
JP2007250970A (en) Film for protecting rear face of semiconductor element, semiconductor device using the same and manufacturing method thereof
CN102376616B (en) Film for flip chip type semiconductor back surface, dicing tape-integrated film for semiconductor back surface, the production method of semiconductor devices and flip chip type semiconductor device
JP5174092B2 (en) Adhesive film with dicing sheet and method for producing the same
JP6216180B2 (en) Sealing sheet and semiconductor device manufacturing method using the sealing sheet
US20130026648A1 (en) Film for forming semiconductor protection film, and semiconductor device
JP2006183020A (en) Adhesive sheet, semiconductor device, and method for producing the semiconductor device
JP2004221169A (en) Semiconductor element protecting material and semiconductor device
JP2009130320A (en) Film for chip protection
CN107887320A (en) Film for flip chip type semiconductor back surface and dicing tape-integrated film for semiconductor back surface
CN105102566B (en) The manufacture method of the adhesive sheet, dicing tape integrated adhesive sheet, semiconductor device and the semiconductor device that are used in the manufacture of semiconductor device
JP2006261529A (en) Underfill tape for flip chip mount and manufacturing method of semiconductor device
JP2000040773A (en) Resin-sealed semiconductor device and manufacture thereof
JP2009010057A (en) Electron device mounting method
JP2012054293A (en) Method of manufacturing semiconductor device
KR101040439B1 (en) Dicing die adhesive film and method of packaging semi-conductor using the same
JP5811514B2 (en) Film adhesive
JP2017092333A (en) Laminate and method for manufacturing consolidation, semiconductor device
TWI646616B (en) Protective film for semiconductor, semiconductor device, and composite sheet
KR20160129756A (en) Back surface protective film, film, process for producing semiconductor device, and process for producing protection chip
JP2010265416A (en) Film adhesive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807