JP2004063225A - Dislocation superconductivity tape unit and superconductive cable - Google Patents

Dislocation superconductivity tape unit and superconductive cable Download PDF

Info

Publication number
JP2004063225A
JP2004063225A JP2002218929A JP2002218929A JP2004063225A JP 2004063225 A JP2004063225 A JP 2004063225A JP 2002218929 A JP2002218929 A JP 2002218929A JP 2002218929 A JP2002218929 A JP 2002218929A JP 2004063225 A JP2004063225 A JP 2004063225A
Authority
JP
Japan
Prior art keywords
superconducting
tape
dislocation
tape unit
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002218929A
Other languages
Japanese (ja)
Inventor
Tomoshi Suzuki
鈴木 知史
Kenji Goto
後藤 謙次
Takashi Saito
斉藤 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002218929A priority Critical patent/JP2004063225A/en
Publication of JP2004063225A publication Critical patent/JP2004063225A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a dislocation superconductive tape unit in which the dislocation crossover part is not floated by being easily bent edgewise even if a base material having a high rigidity is used and, therefore, has a strength capable of enduring a great electromagnetic force impressed on the superconductive coil at generation of magnetic field, and a superconductive cable. <P>SOLUTION: The dislocation superconductive tape unit is formed by taping a plurality of superconductive element wires in which oxide superconductors are vapor deposited on a tape surface of stainless steel or Hastelloy alloy having a width (W) and a thickness (t) with a crossover length (L) and stranded in dislocation. In this case, the relationship of the crossover length (L) and the width (W) and the thickness (t) of the tape material is to be ( W<SP>2</SP>/ Lt )≤ 0.313. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、テープ状の超電導導体を複数本転位撚り合わせた転位超電導テープユニット及びこれを用いた超電導ケーブルの改良に係わり、さらに詳しくは十分な超電導特性を有する上、強度を向上させた転位超電導テープユニット及びこれを用いた交流電流通電時の偏流を抑制した超電導ケーブルに関するものである。
【0002】
【従来の技術】
超電導変圧器、超電導マグネット、超電導限流器等の超電導応用機器には、テープ状の超電導導体を用いた超電導ケーブルが使用されている。
従来の超電導ケーブルの例としては、ステンレス鋼などからなるパイプ状のフォーマ(管体)の周囲に超電導導体が螺旋状に巻回されて超電導導体層が複数層積層され、これら超電導導体層の間に層間絶縁層が介在されてなる超電導ケーブルが知られている。上記超電導導体は、超電導体からなるコア部の複数が銀などからなるシース材により覆われて形成されたものである。各超電導体導体層の超電導導体の巻回方向は、交互反対方向となっており、たとえばフォーマ側から第一層目の超電導体導体層の巻回方向がS巻(右巻)、第二層目の超電導導体層の巻回方向がZ巻(左巻)、第三層目の超電導導体層の巻回方向がS巻(右巻)、第四層目の超電導導体層の巻回方向がZ巻(左巻)となっている。
【0003】
上記コア部をなす材料としては、BiSrCaCu(Bi系2212相),BiSrCaCuOy(Bi系2223相),Bi1.6Pb0.4SrCaCu,TlBaCaCu 等の組成を持つ酸化物超電導物質が用いられている。そのうち、Bi系、特に、Bi系2223相酸化物超電導物質が、高い臨界温度を有し安定な物質としてコア部に利用されている。上記層間絶縁層は、ポリイミドテープなどの絶縁テープを巻回して構成されたものである。このような構成の超電導ケーブルの外周には、通常、保護層が形成されて用いられる(例えば特開平11−203959参照)。
【0004】
従来の超電導ケーブルにおいては、交流電流を通電した場合には各々の超電導導体において、これらに流れる交流電流による自己磁場の影響によって渦電流Fが発生する。このとき、シース材が電気抵抗率の低いAg(Agでは20℃において1.63μΩcm)等からなるために、渦電流が隣接する超電導導体のシース材に導通してしまう。その結果、超電導導体層の積層体に渦電流が横断して導通するために、超電導ケーブル全体として渦電流が支配的となり、交流損失が大きくなるという問題があった。また、上述のような構造の従来の超電導ケーブルにおいては、超電導導体層間のインダクタンスの違いにより、外側にある超電導導体層ほど電流が多く流れ、内側にある超電導導体層には電流が流れにくくなる偏流が起こるという問題があった。
【0005】
このため、交流通電時における交流損失を低減でき、しかも偏流を防止できる超電導ケーブルを提供するために、テープ状の超電導素線の外周に素線絶縁が施されてなるテープ状の超電導導体を複数本転位撚り合わせた転位超電導テープユニットを管体の周囲に巻回してなる超電導ケーブルが提案されている(例えば特開平11−203959参照)。上記テープ状の超電導素線は、超電導体からなるコア部または熱処理により超電導体となる材料を有するコア部が、シース材からなる基地の内部に備えられてなる超電導素線を捻ったツイスト超電導素線を平坦化したものである。
【0006】
しかしながら、従来の転位超電導テープユニットは主として銀シース材料を使用しているため、転位撚り合わせ加工は容易であるものの引張強度が弱く、300MPa程度で破断してしまう。
強磁場で使用する超電導マグネットは、磁場発生時において強大な電磁力が超電導巻線に加わる。このため超電導線材の強度向上を目的として、各種の開発が行われている。その一つに銀シースの高強度化が挙げられる。銀シースの高強度化は、シース材である銀に特定の元素を添加することにより行われる。この場合、如何に超電導特性を確保できるかが課題となり、未だ満足する結果が得られていない。
【0007】
また、強度が高く、剛性も高くするためにハステロイ等の材料を基材とする超電導テープにすると、転位撚り合わせ加工が困難になるという問題がある。そこで基材に適当な柔軟性を有する材質を選択して厚さを薄くし、ポリイミド樹脂等からなる固定用テープを部分的に巻回して、転位撚りした偶数本のテープ状の超電導導体の転位撚りが崩れないように固定する構造を採用する事が提案されている。
【0008】
【発明が解決しようとする課題】
ところで、強度が強く剛性の高い材料を転位撚り合わせ加工して転位渡り長さLで両端にテープ止部30を設けて拘束すると、図4に示すように転位渡り部31がエッジワイズ曲げされずにギャップgだけ浮き上がる場合がある。転位渡り部が浮き上がると導体等の作成途上で転位超電導テープユニットをドラムに巻いた場合、浮き上がった部分が無理にドラム面に押しつけられるためテープが折れ曲がり、破損することがある。
本発明の目的とするところは、剛性の高い基材を使用しても転位渡り部が容易にエッジワイズ曲げされて浮き上がることがなく、したがって磁場発生時において超電導巻線に加わる強大な電磁力にも耐える強度を有する超電導線材を得ることである。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明では厚さt(mm)、幅W(mm)のテープ状の超電導導体が複数本転位撚り合わさってなるテープユニットであって、テープ状の超電導導体の厚さt(mm)、幅W(mm)及び渡り長さL(mm)が下記(1)を満足する関係にある転位超電導テープユニットとした。
(W /Lt)≦0.313・・・・・・(1)
転位渡り部の構造を種々検討した結果、各部の寸法関係を(1)式のように設定すれば、転位渡り部が容易にエッジワイズ曲げされて浮き上がることがなくなることを見いだした。
【0010】
本発明においては、前記超電導導体としてステンレス鋼もしくはハステロイ合金の表面に超電導層を具備させたものを利用することができる。
また、前記超電導層として酸化物超電導体からなるものを利用することができる。
ステンレス鋼もしくはハステロイ合金を使用すれば、引張強度や剛性は格段に強化され、蒸着技術を利用して表面に高性能の酸化物超電導体層を形成することも容易だからである。
【0011】
また、本発明の超電導ケーブルは、上記本発明の転位超電導テープユニットを管体の周囲に巻回して形成したものである。
このような構造の超電導ケーブルとすれば、剛性の高い材料を基材とした素線を用いているため強度の向上が図られ、磁場発生時において超電導巻線に加わる強大な電磁力にも耐える強度を有する超電導ケーブルを得ることができる。
【0012】
【発明の実施の形態】
以下、本発明に係る転位超電導テープユニット及び超電導ケーブルを、図面に基づいて説明する。
図1は、本発明の超電導ケーブルの一実施形態を示す斜視図である。この超電導ケーブル10は、テープ状の超電導導体18を複数本転位撚り合わせした転位超電導テープユニット15が、パイプ状のフォーマ(管体)17の周囲に螺旋状に巻回されてなるものである。
【0013】
上記転位超電導テープユニット15は、図2に示すようにテープ状の超電導導体(超電導テープ)18を複数本(図面では12本)転位撚り合わせてなる長尺の帯状のものである。この転位超電導テープユニット15では、テープ状の超電導導体18の複数本を集合して撚り合わす際に、各テープ状の超電導導体18がその長尺方向において、順次その位置を代えて変位するように撚り合わされたものである。
また、上記の転位超電導テープユニット15では、ポリイミド樹脂等からなる固定用テープを巻回したテープ止め部30が、転位渡り部31の両端に形成されており、転位撚りした偶数本のテープ状の超電導導体18の転位撚りが崩れないように固定されている。
このような転位超電導テープユニット15の巻回方向は、S巻(右巻)の方向またはZ巻(左巻)の方向となっている。上記フォーマ17は、ステンレス鋼などからなるものである。このようなフォーマ17の表面は、該フォーマ17と転位超電導テープユニット15間の通電を抑制するために絶縁処理が施されている。このフォーマ17の内部は、液体窒素等の冷却媒体の流路とされ、テープ状の超電導導体18の冷却が行われる。
【0014】
上記テープ状の超電導導体18は、図3に示すようにテープ状の超電導素線19の外周に素線絶縁として絶縁層20が形成されてなるものである。この超電導導体18の横断面形状は、矩形状とすることが好ましい。この超電導導体18は、幅(W)が1.0mm〜5.0mm程度、厚さ(T)が0.1mm〜1.0mm程度の範囲とるのが好ましい。
そしてこの超電導素線19は、テープ状のステンレス鋼もしくはハステロイ合金からなる基材11の表面に超電導層12を形成したものを使用する。
上記絶縁層20をなす絶縁材料としては、ポリエステル、ポリエステルイミド、ポリエステルイミドヒダントイン、エナメルなどが用いられる。このような絶縁層20の厚みとしては、0.1〜100μm程度の範囲のものとされる。
【0015】
超電導層12となる材料としては、例えば、酸化物系超電導材料(Y123、Bi2223、Bi2212等の酸化物系材料)、金属系超電導導材料(NbSn、NbAl等のA15型材料)MgBなどで示される超電導材料のうちから選択された一種以上のものが用いられ、特に、ハステロイ等を基材としたY系酸化物超電導材料が好んで用いられる。
これら超電導材料をテープ状のステンレス鋼もしくはハステロイ合金の表面に形成するには、真空蒸着法、スパッタリング法、レーザ蒸着法、MBE(分子線エピタキシー)法、CVD(化学気相成長)法、IVD(イオン気相成長)法、等の方法が利用できるが、これらの各種形成方法において、均質で超導電特性の良好な酸化物超電導層を形成できる方法として、真空プロセスを使用し、ターゲットから発生させた粒子を対向基板上に堆積させるスパッタリング法あるいはレーザ蒸着法などの物理蒸着法が好んで用いられる。
【0016】
前記テープ状の超電導素線19は、ハステロイ基材上に中間層及びYBCO層を成膜したものである。このような超電導素線19の断面形状は矩形状とすることが好ましい。所定の転位渡り長さで捻って図2に示すような転位超電導テープユニット15を形成する。
【0017】
ここで転位渡り長さは、10mm〜1000mm程度の範囲内とされるが、使用する超電導素線のテープ状基材の幅と厚さによって決められる。
例えば、表1はテープ状基材として剛性の高いSUS304を用い、6本撚りの転位超電導テープユニットを作成して、テープ状基材の幅(W:mm)と厚さ(t:mm)及び転位渡り長さ(L:mm)を種々変化させた場合の転位渡り部の浮きの発生の有無を調べたものである。
【0018】
【表1】

Figure 2004063225
【0019】
ここで、断面のアスペクト比W/tが大きいほど同じ断面積でもエッジワイズ方向の断面二次モーメントが大きく、エッジワイズに曲がりにくい。また、同じテープ幅でもW/Lが大きい、つまりLがWに対して小さい方が同じ力でも小さいモーメントとなり、結局エッジワイズに曲がりにくい。つまり、これら2つのパラメーターW/LとW/tとの積 W /Lt はエッジワイズに曲がりにくさを表す指標となり、このW /Ltの値が有る値よりも小さいと、エッジワイズ曲げ可能であることを示している。
表1から(W /Lt)の値が0.313よりも小さいと、エッジワイズ曲げ可能であるといえる。すなわち、
(W /Lt)≦0.313・・・・・・(1)
が導かれる。
【0020】
超電導ケーブルは、このようにして得られた転位超電導テープユニットの複数組(例えば、24組)を、パイプ状のフォーマ(管体)の周囲に所定の螺旋ピッチでZ巻あるいはS巻で螺旋状に巻回して形成する。ここでの螺旋ピッチとしては、100〜2000mm程度の範囲内とするのが好ましい。
【0021】
【発明の効果】
本発明の超電導ケーブルは、捻られていない超電導素線からなるテープ状の超電導導体を用いる場合と比べて、交流通電時の交流損失を低減できる。また、超電導素線を平坦化したテープ状の超電導導体を複数本転位撚り合わせた転位渡り間で浮きの生じない転位超電導テープユニットを用いたことにより、この転位超電導テープユニットを構成する各テープ状の超電導導体がその長尺方向において順次その位置を代えて変位しており、すなわち各テープ状の超電導導体が転位超電導テープユニットの最内側(フォーマ側)位置から最外側位置まで繰り返して経由しながら超電導ケーブルの長さ方向に延在しているので、各テープ状の超電導導体を流れる電流の値と自己磁場から受ける影響との均等化を図ることができる。各テープ状の超電導導体18において流れる電流と自己磁場から受ける影響とが等しいため、交流通電時の偏流を防止でき、内側に位置するテープ状の超電導導体にも外側に位置するテープ状の超電導導体と略同量の電流を流すことができ、よって臨界電流密度を増大でき、超電導ケーブルの大容量化を図ることができる。
【図面の簡単な説明】
【図1】本発明の超電導ケーブルの一実施形態を示す斜視図である。
【図2】本発明の転位超電導テープユニットの一実施形態を示す斜視図である。
【図3】図2の線A−A’に沿った断面図である。
【図4】転位超電導テープユニットの浮き上がりの状態を説明する図である。
【符号の説明】
10・・・超電導ケーブル、11・・・基材、12・・・超電導層、15・・・転位超電導テープユニット、17・・・フォーマ(管体)、18・・・テープ状の超電導導体(超電導テープ)、19・・・テープ状の超電導素線、20・・・絶縁層、30・・・テープ止め部、31・・・転位渡り部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dislocation superconducting tape unit in which a plurality of tape-shaped superconducting conductors are twisted together and an improvement of a superconducting cable using the same, and more particularly, dislocation superconducting conductor having sufficient superconducting characteristics and improved strength. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tape unit and a superconducting cable using the same, which suppresses drift when an alternating current is supplied.
[0002]
[Prior art]
A superconducting cable using a tape-shaped superconducting conductor is used in superconducting applied devices such as a superconducting transformer, a superconducting magnet, and a superconducting current limiter.
As an example of a conventional superconducting cable, a superconducting conductor is spirally wound around a pipe-shaped former (tube body) made of stainless steel or the like, and a plurality of superconducting conductor layers are laminated. There is known a superconducting cable in which an interlayer insulating layer is interposed. The superconducting conductor is formed by covering a plurality of core portions made of a superconductor with a sheath material made of silver or the like. The winding directions of the superconducting conductors of the respective superconducting conductor layers are alternately opposite directions. For example, the winding direction of the first superconductor conductor layer from the former side is S winding (right-handed winding), The winding direction of the third superconducting conductor layer is Z winding (left winding), the winding direction of the third superconducting conductor layer is S winding (right winding), and the winding direction of the fourth superconducting conductor layer is It is Z-winding (left winding).
[0003]
The material used as the core portion, Bi 2 Sr 2 Ca 1 Cu 2 O x (Bi -based 2212 phase), Bi 2 Sr 2 Ca 2 Cu 3 Oy (Bi -based 2223 phase), Bi 1.6 Pb 0.4 An oxide superconducting material having a composition such as Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y is used. Among them, Bi-based, in particular, Bi-based 2223 phase oxide superconducting material is used for the core part as a stable material having a high critical temperature. The interlayer insulating layer is formed by winding an insulating tape such as a polyimide tape. Usually, a protective layer is formed and used on the outer periphery of the superconducting cable having such a configuration (see, for example, JP-A-11-203959).
[0004]
In a conventional superconducting cable, when an alternating current is supplied, an eddy current F is generated in each superconducting conductor due to the effect of a self-magnetic field due to the alternating current flowing through the superconducting conductors. At this time, since the sheath material is made of Ag having a low electric resistivity (1.63 μΩcm at 20 ° C. for Ag), the eddy current is conducted to the sheath material of the adjacent superconducting conductor. As a result, since the eddy current is conducted across the superconducting conductor layer laminate, the eddy current becomes dominant in the entire superconducting cable, and there is a problem that the AC loss increases. Further, in the conventional superconducting cable having the above-described structure, due to the difference in inductance between the superconducting conductor layers, the current flows more in the outer superconducting conductor layer, and the current hardly flows in the inner superconducting conductor layer. There was a problem that happened.
[0005]
For this reason, in order to provide a superconducting cable that can reduce AC loss when AC is applied and can prevent drift, a plurality of tape-shaped superconducting conductors in which elementary insulation is applied to the outer periphery of the tape-shaped superconducting elementary wire are provided. A superconducting cable in which a dislocation superconducting tape unit in which dislocations are twisted is wound around a tubular body has been proposed (see, for example, JP-A-11-203959). The tape-shaped superconducting element wire is a twisted superconducting element obtained by twisting a superconducting element wire provided with a core portion made of a superconductor or a core portion having a material that becomes a superconductor by heat treatment provided inside a base made of a sheath material. This is a flattened line.
[0006]
However, since the conventional dislocation superconducting tape unit mainly uses a silver sheath material, the dislocation twisting process is easy, but the tensile strength is weak, and it breaks at about 300 MPa.
In a superconducting magnet used in a strong magnetic field, a strong electromagnetic force is applied to the superconducting winding when a magnetic field is generated. For this reason, various developments have been made for the purpose of improving the strength of the superconducting wire. One of them is to increase the strength of the silver sheath. The strength of the silver sheath is increased by adding a specific element to silver as a sheath material. In this case, how to secure the superconducting characteristics becomes an issue, and a satisfactory result has not yet been obtained.
[0007]
In addition, if a superconducting tape is made of a material such as Hastelloy to increase strength and rigidity, dislocation twisting becomes difficult. Therefore, select a material having appropriate flexibility for the base material, reduce the thickness, partially wind a fixing tape made of polyimide resin, etc., and displace the dislocation twisted even number of tape-shaped superconducting conductors. It has been proposed to adopt a structure for fixing the twist so as not to break.
[0008]
[Problems to be solved by the invention]
By the way, when a dislocation twisting process is performed on a material having high strength and high rigidity and a tape stop portion 30 is provided at both ends with a dislocation transition length L and constrained, the dislocation transition portion 31 is not edgewise bent as shown in FIG. In some cases, only the gap g rises. When the dislocation crossover portion is raised, when the dislocation superconducting tape unit is wound around the drum while the conductor or the like is being formed, the raised portion is forcibly pressed against the drum surface, so that the tape may be bent or damaged.
The object of the present invention is that even when a rigid base material is used, the dislocation transition portion is not easily edgewise bent and lifted up, and therefore, the strong electromagnetic force applied to the superconducting winding when a magnetic field is generated is reduced. The purpose is to obtain a superconducting wire having a strength that can withstand the above.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, there is provided a tape unit in which a plurality of tape-shaped superconducting conductors having a thickness t (mm) and a width W (mm) are twisted together, and the thickness of the tape-shaped superconducting conductor is A dislocation superconducting tape unit having t (mm), width W (mm) and transition length L (mm) satisfying the following condition (1) was obtained.
(W 2 /Lt)≦0.313 (1)
As a result of various studies of the structure of the dislocation transition portion, it has been found that if the dimensional relationship of each portion is set as in the expression (1), the dislocation transition portion is not easily edgewise bent and does not float.
[0010]
In the present invention, a superconducting conductor having a superconducting layer on the surface of stainless steel or a Hastelloy alloy can be used.
Further, as the superconducting layer, a layer made of an oxide superconductor can be used.
If stainless steel or Hastelloy alloy is used, the tensile strength and rigidity are remarkably enhanced, and it is easy to form a high-performance oxide superconductor layer on the surface by using a vapor deposition technique.
[0011]
Further, a superconducting cable of the present invention is formed by winding the above-described dislocation superconducting tape unit of the present invention around a tubular body.
With a superconducting cable having such a structure, the strength is improved because a strand made of a highly rigid material is used as a base material, and the superconducting winding withstands the strong electromagnetic force applied to the superconducting winding when a magnetic field is generated A superconducting cable having strength can be obtained.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a dislocation superconducting tape unit and a superconducting cable according to the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing one embodiment of the superconducting cable of the present invention. The superconducting cable 10 is configured such that a dislocation superconducting tape unit 15 in which a plurality of tape-shaped superconducting conductors 18 are displaced and twisted is spirally wound around a pipe-shaped former (tube body) 17.
[0013]
As shown in FIG. 2, the dislocation superconducting tape unit 15 is a long belt-shaped superconducting tape (superconducting tape) 18 formed by twisting a plurality (12 in the drawing) of superconducting conductors. In the dislocation superconducting tape unit 15, when a plurality of tape-shaped superconducting conductors 18 are assembled and twisted, each tape-shaped superconducting conductor 18 is displaced in its longitudinal direction by sequentially changing its position. It is twisted.
In the dislocation superconducting tape unit 15 described above, the tape stoppers 30 each formed by winding a fixing tape made of a polyimide resin or the like are formed at both ends of the dislocation transition portion 31, and an even number of tape-shaped dislocation twists are formed. The superconducting conductor 18 is fixed so that the dislocation twist does not collapse.
The winding direction of such a dislocation superconducting tape unit 15 is a direction of S winding (right winding) or a direction of Z winding (left winding). The former 17 is made of stainless steel or the like. The surface of such a former 17 is subjected to an insulation treatment in order to suppress a current flow between the former 17 and the dislocation superconducting tape unit 15. The inside of the former 17 is used as a flow path of a cooling medium such as liquid nitrogen, and the tape-shaped superconducting conductor 18 is cooled.
[0014]
As shown in FIG. 3, the tape-shaped superconducting conductor 18 is formed by forming an insulating layer 20 on the outer periphery of a tape-shaped superconducting wire 19 as wire insulation. The cross-sectional shape of superconducting conductor 18 is preferably rectangular. The superconducting conductor 18 preferably has a width (W) in the range of about 1.0 mm to 5.0 mm and a thickness (T) in the range of about 0.1 mm to 1.0 mm.
The superconducting element wire 19 has a superconducting layer 12 formed on the surface of a base material 11 made of tape-shaped stainless steel or a Hastelloy alloy.
As an insulating material forming the insulating layer 20, polyester, polyesterimide, polyesterimide hydantoin, enamel, or the like is used. The thickness of the insulating layer 20 is in a range of about 0.1 to 100 μm.
[0015]
As the material becomes superconducting layer 12, for example, (oxide-based material such as Y123, Bi-2223-based, Bi2212) oxide superconductor material, a metal-based superconducting conductor material (Nb 3 Sn, A15-type material such as Nb 3 Al) MgB One or more superconducting materials selected from superconducting materials represented by 2 or the like are used. In particular, a Y-based oxide superconducting material based on Hastelloy or the like is preferably used.
In order to form these superconducting materials on the surface of a tape-shaped stainless steel or a Hastelloy alloy, a vacuum evaporation method, a sputtering method, a laser evaporation method, an MBE (molecular beam epitaxy) method, a CVD (chemical vapor deposition) method, an IVD ( (Vapor Ion Vapor Deposition) method can be used. In these various formation methods, a vacuum process is used to form a uniform oxide superconducting layer having good superconductivity from a target. A physical vapor deposition method such as a sputtering method or a laser vapor deposition method for depositing the deposited particles on a counter substrate is preferably used.
[0016]
The tape-shaped superconducting element wire 19 is obtained by forming an intermediate layer and a YBCO layer on a Hastelloy substrate. The cross-sectional shape of such a superconducting element wire 19 is preferably rectangular. The dislocation superconducting tape unit 15 as shown in FIG. 2 is formed by twisting at a predetermined dislocation transition length.
[0017]
Here, the dislocation transition length is in the range of about 10 mm to 1000 mm, and is determined by the width and thickness of the tape-shaped base material of the superconducting wire used.
For example, Table 1 shows that the SUS304 having high rigidity is used as the tape-shaped base material, a dislocation superconducting tape unit having six strands is formed, and the width (W: mm) and thickness (t: mm) of the tape-shaped base material and This is to examine whether or not floating of the dislocation transition portion occurs when the dislocation transition length (L: mm) is variously changed.
[0018]
[Table 1]
Figure 2004063225
[0019]
Here, as the aspect ratio W / t of the cross section increases, the second moment of area in the edgewise direction increases even with the same cross-sectional area, and it is difficult to bend edgewise. In addition, even when the tape width is the same, W / L is large, that is, when L is smaller than W, the moment becomes small even with the same force, and it is difficult to bend edgewise in the end. That is, the product W 2 / Lt of these two parameters W / L and W / t is an index indicating the difficulty of bending edgewise, and if the value of W 2 / Lt is smaller than a certain value, the edgewise bending is performed. Indicates that it is possible.
From Table 1, when the value of (W 2 / Lt) is smaller than 0.313, it can be said that edgewise bending is possible. That is,
(W 2 /Lt)≦0.313 (1)
Is led.
[0020]
In the superconducting cable, a plurality of sets (for example, 24 sets) of the dislocation superconducting tape units obtained in this manner are spirally wound around a pipe-shaped former (tube) at a predetermined spiral pitch in a Z or S winding. And formed. The helical pitch here is preferably in the range of about 100 to 2000 mm.
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION The superconducting cable of this invention can reduce the AC loss at the time of alternating current energization compared with the case where the tape-shaped superconducting conductor which consists of an untwisted superconducting wire is used. In addition, by using a dislocation superconducting tape unit that does not float between dislocation transitions in which a plurality of tape-shaped superconducting conductors with flattened superconducting wires are dislocation twisted, each tape forming this dislocation superconducting tape unit is used. Of the superconducting conductors are sequentially displaced in the longitudinal direction while changing their positions, that is, while each tape-shaped superconducting conductor repeatedly passes from the innermost (former side) position of the dislocation superconducting tape unit to the outermost position. Since the cable extends in the length direction of the superconducting cable, it is possible to equalize the value of the current flowing through each tape-shaped superconducting conductor and the effect of the self-magnetic field. Since the current flowing through each tape-shaped superconducting conductor 18 and the influence of the self-magnetic field are equal, it is possible to prevent drift when AC current is applied, and the tape-shaped superconducting conductor located on the inside and the tape-shaped superconducting conductor located on the outside And the critical current density can be increased, and the capacity of the superconducting cable can be increased.
[Brief description of the drawings]
FIG. 1 is a perspective view showing one embodiment of a superconducting cable of the present invention.
FIG. 2 is a perspective view showing one embodiment of a dislocation superconducting tape unit of the present invention.
FIG. 3 is a sectional view taken along line AA ′ of FIG. 2;
FIG. 4 is a diagram illustrating a state in which a dislocation superconducting tape unit is lifted.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... superconducting cable, 11 ... base material, 12 ... superconducting layer, 15 ... dislocation superconducting tape unit, 17 ... former (tubular body), 18 ... tape-shaped superconducting conductor ( Superconducting tape), 19: tape-shaped superconducting element wire, 20: insulating layer, 30: tape fixing part, 31: transposition transition part

Claims (4)

厚さt(mm)、幅W(mm)のテープ状の超電導導体が複数本転位撚り合わさってなるテープユニットであって、テープ状の超電導導体の厚さt(mm)、幅W(mm)及び渡り長さL(mm)が下記(1)を満足する関係にあることを特徴とする転位超電導テープユニット。
(W /Lt)≦0.313・・・・・・(1)
A tape unit in which a plurality of tape-shaped superconducting conductors having a thickness of t (mm) and a width of W (mm) are twisted together, and the tape-shaped superconducting conductor has a thickness of t (mm) and a width of W (mm) And a transition length L (mm) satisfying the following condition (1):
(W 2 /Lt)≦0.313 (1)
前記超電導導体がステンレス鋼もしくはハステロイ合金の表面に超電導層を具備したものであることを特徴とする請求項1に記載の転位超電導テープユニット。The dislocation superconducting tape unit according to claim 1, wherein the superconducting conductor has a superconducting layer on a surface of stainless steel or a Hastelloy alloy. 前記超電導層が酸化物超電導体からなることを特徴とする請求項2に記載の転位超電導テープユニット。The dislocation superconducting tape unit according to claim 2, wherein the superconducting layer is made of an oxide superconductor. 請求項1ないし請求項3に記載の転位超電導テープユニットが管体の周囲に巻回されてなることを特徴とする超電導ケーブル。4. A superconducting cable, wherein the transposed superconducting tape unit according to claim 1 is wound around a tubular body.
JP2002218929A 2002-07-26 2002-07-26 Dislocation superconductivity tape unit and superconductive cable Pending JP2004063225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218929A JP2004063225A (en) 2002-07-26 2002-07-26 Dislocation superconductivity tape unit and superconductive cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218929A JP2004063225A (en) 2002-07-26 2002-07-26 Dislocation superconductivity tape unit and superconductive cable

Publications (1)

Publication Number Publication Date
JP2004063225A true JP2004063225A (en) 2004-02-26

Family

ID=31939964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218929A Pending JP2004063225A (en) 2002-07-26 2002-07-26 Dislocation superconductivity tape unit and superconductive cable

Country Status (1)

Country Link
JP (1) JP2004063225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665670B1 (en) * 2005-09-12 2007-01-09 학교법인 한국산업기술대학 Manufacturing method for coated conductor
WO2011062344A1 (en) * 2009-11-20 2011-05-26 한국산업기술대학교산학협력단 Multiple transposition method for a superconducting wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665670B1 (en) * 2005-09-12 2007-01-09 학교법인 한국산업기술대학 Manufacturing method for coated conductor
WO2011062344A1 (en) * 2009-11-20 2011-05-26 한국산업기술대학교산학협력단 Multiple transposition method for a superconducting wire
KR101087808B1 (en) 2009-11-20 2011-11-29 우석대학교 산학협력단 Multiple transposition method for superconducting wire

Similar Documents

Publication Publication Date Title
RU2099806C1 (en) Superconductive cable wire
KR101152467B1 (en) High-current, compact flexible conductors containing high temperature superconducting tapes
US20080210454A1 (en) Composite Superconductor Cable Produced by Transposing Planar Subconductors
WO2000049626A1 (en) A cable, a method of constructing a cable, and use of a cable
KR101026336B1 (en) Superconducting cable
JP2960481B2 (en) Method for reducing eddy current in superconductor tape and superconductor device
US5929385A (en) AC oxide superconductor wire and cable
US20050103519A1 (en) Low loss superconducting cable in conduit conductor
JP5397994B2 (en) Superconducting cable
CN101361144B (en) Oxide superconducting wire rod, superconducting structure, method for manufacturing oxide superconducting wire rod, superconducting cable, superconducting magnet, and product comprising superconductin
JP2004063225A (en) Dislocation superconductivity tape unit and superconductive cable
JP5526629B2 (en) Superconducting coil body manufacturing method and superconducting coil body
JP4566576B2 (en) Dislocation segment conductor
JP4737094B2 (en) Oxide superconducting wire, superconducting structure, manufacturing method of oxide superconducting wire, superconducting cable, superconducting magnet, and product including superconducting magnet
JP2003115405A (en) Superconductive coil
JP5041414B2 (en) Superconducting wire and superconducting conductor
WO2022244409A1 (en) Superconducting conductor and winding
JP2005100853A (en) Superconductive cable and its manufacturing method
JP3529925B2 (en) Oxide superconducting cable conductor for AC
JP2008282566A (en) Bismuth oxide superconducting element wire, bismuth oxide superconductor, superconducting coil, and manufacturing method of them
JP4202173B2 (en) Dislocation segment, manufacturing method thereof, manufacturing apparatus thereof, and superconducting application equipment
JPH08167332A (en) Superconducting cable
JPH04132108A (en) Nb3al superconductor
JP2005116233A (en) Dislocation segment conductor
JP2004127764A (en) Transposed superconducting tape unit and superconductive application apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080507