JP2004056720A - Voltage controlled oscillator, high frequency receiver using the same, and high frequency transmitter - Google Patents

Voltage controlled oscillator, high frequency receiver using the same, and high frequency transmitter Download PDF

Info

Publication number
JP2004056720A
JP2004056720A JP2002215092A JP2002215092A JP2004056720A JP 2004056720 A JP2004056720 A JP 2004056720A JP 2002215092 A JP2002215092 A JP 2002215092A JP 2002215092 A JP2002215092 A JP 2002215092A JP 2004056720 A JP2004056720 A JP 2004056720A
Authority
JP
Japan
Prior art keywords
capacitance element
voltage
variable capacitance
controlled oscillator
control voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002215092A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Sakurai
櫻井 祥嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002215092A priority Critical patent/JP2004056720A/en
Publication of JP2004056720A publication Critical patent/JP2004056720A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Superheterodyne Receivers (AREA)
  • Transmitters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage controlled oscillator in which the movable range of an oscillation frequency is wide, circuit scale is reduced and phase noise characteristics are excellent. <P>SOLUTION: In the voltage controlled oscillator, a reference voltage to be applied to one terminal of each of variable capacitors Cv1 and Cv2 and a reference voltage to be applied to one terminal of each of variable capacitors Cv21 and Cv22 are made different. A control voltage V<SB>CTL</SB>is applied to the other terminal of each of the variable capacitors Cv1, Cv2, Cv21 and Cv22. One terminal of the variable capacitor Cv1 and one terminal of the variable capacitor Cv21 are connected via a fixed capacitor C21. One terminal of the variable capacitor Cv2 and one terminal of the variable capacitor Cv22 are connected via a fixed capacitor C22. The oscillation frequency is controlled in accordance with the control voltage V<SB>CTL</SB>. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、制御電圧に応じて発振周波数が可変する電圧制御発振器並びにそれを用いた高周波受信器及び高周波送信器に関するものである。
【0002】
【従来の技術】
従来の電圧制御発振器の一構成例を図6に示す。図6の電圧制御発振器は共振部部1と能動部2を有する。
【0003】
共振部1は、インダクタL1及びL2の直列回路と可変容量素子Cv1及びCv2の直列回路とが並列接続された回路である。また、インダクタL1と可変容量素子Cv1との接続ノードに出力端子T1が接続され、インダクタL2と可変容量素子Cv2との接続ノードに出力端子T2が接続される。さらに、可変容量素子Cv1とCv2との接続ノードに制御電圧端子T3が接続される。なお、可変容量素子とは、両端端子間の電位差に応じて両端端子間の容量が変化する素子である。
【0004】
インダクタL1とインダクタL2との接続ノードに定電圧VCCが印加され、制御電圧端子T3に制御電圧VCTLが印加される。したがって、可変容量素子Cv1及びCv2の容量は制御電圧端子T3に印加される制御電圧VCTLによって制御される。
【0005】
能動部2は、NPN型トランジスタQ1及びQ2と、バイアス抵抗R1及びR2と、信号レベル調整用の固定容量素子C1、C2、C11、及びC12と、直流電流源3とを備える。
【0006】
トランジスタQ1のコレクタが出力端子T1に接続され、トランジスタQ2のコレクタが出力端子T2に接続される。
【0007】
そして、トランジスタQ1のベースとトランジスタQ2のコレクタとが固定容量素子C1を介して接続され、トランジスタQ2のベースとトランジスタQ1のコレクタとが固定容量素子C2を介して接続される。
【0008】
また、トランジスタQ1のベースが、バイアス抵抗R1の一端及び固定容量素子C11の一端に接続される。バイアス抵抗R1の他端にバイアス電圧Vbiasが印加され、固定容量素子C11の他端は接地される。また、トランジスタQ2のベースが、バイアス抵抗R2の一端及び固定容量素子C12の一端に接続される。バイアス抵抗R2の他端にバイアス電圧Vbiasが印加され、固定容量素子C12の他端は接地される。
【0009】
さらに、トランジスタQ1のエミッタとトランジスタQ2のエミッタとが共通に接続され、直流電流源3を介して接地される。
【0010】
このような構成である図6の電圧制御発振器の動作について説明する。共振部1が共振周波数の信号を出力端子に出力する。能動部2の負性抵抗及び出力端子T1、T2間に接続される負荷抵抗とが相殺することによって、出力端子T1、T2間に出力される出力電圧Vが定常振動になる。そして、制御電圧VCTLに応じた任意の発振周波数の出力電圧Vを得ることが可能となる。
【0011】
可変容量素子は両端端子間の電位差が大きすぎても小さすぎても容量値が飽和してしまうので、図6の電圧制御発振器において制御電圧VCTLを変化させると、可変容量素子Cv1及びCv2の容量値はいずれも図7(a)に示すようにある特定の制御電圧範囲でのみ線形的に変化する。従って、図6の電圧制御発振器が出力する発振周波数は、制御電圧VCTLの変化に応じて図7(b)に示すようにある特定の制御電圧範囲でのみ線形的に変化する。
【0012】
ところで、近年電圧制御発振器から出力される発振周波数の広範化の要求が高まっている。発振周波数の可動範囲が広範な電圧制御発振器を実現するには、容量変化の大きい可変容量素子を用いたり、複数の可変容量素子を並列接続して用いるようにすればよい。
【0013】
【発明が解決しようとする課題】
しかしながら、可変容量素子の容量値が飽和しない制御電圧範囲は同一であるので、発振周波数の可動範囲を広範にすると、制御電圧VCTLの変化に対する発振周波数の変化の割合であるVCO感度が高くなる。そして、VCO感度が高いと制御電圧ラインに入り込む外乱により位相ノイズが増大するので、位相ノイズ特性が劣化するという問題があった。
【0014】
特開平7−22841号公報で開示されている電圧制御発振器は、制御電圧の分圧を可変容量ダイオードのアノードに印加することによって、可変容量ダイオードの両端電圧を制限する構成としているので、VCO感度を下げることが可能である。ただし、この電圧制御発振器は、制御電圧ラインから分割抵抗に常に電流が流れる構成であるため、熱雑音により位相ノイズの劣化が起こり、VCO感度を下げることによる位相ノイズの改善効果をうち消してしまっていた。
【0015】
また、図8(a)に示すように制御電圧の全ての変化範囲において容量値が線形的に変化する理想的な可変容量素子を電圧制御発振器に用いれば、発振周波数は図8(b)に示すように変化し、発振周波数の可動範囲を広範にしてもVCO感度を下げることが可能である。しかしながら、このような理想的な可変容量素子を実際に実現することはできない。
【0016】
また、発振周波数を広範にする一般的な方法として、電圧制御発振器自体のVCO感度は低いままで、発振周波数帯域の異なる電圧制御発振器を複数設ける構成や、共振部内の可変容量素子をスイッチにより切り替える構成が挙げられる。しかしながら、これらの構成の電圧制御発振器は、回路構成が複雑になり、そのうえ回路面積も増大するという問題があった。
【0017】
本発明は、上記の問題点に鑑み、発振周波数の可動範囲が広範であり、回路規模が小さく且つ位相ノイズ特性が良好な電圧制御発振器並びにそれを用いた高周波受信器及び高周波送信器を提供することを目的とする。
【0018】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る電圧制御発振器においては、共振部と、該共振部の振動が減衰しないように前記共振部に電力を供給する能動部と、を備え、制御電圧に応じて発振周波数を制御する電圧制御発振器であって、前記共振部が、固定容量素子、第1の可変容量素子、及び第2の可変容量素子を有し、前記第1の可変容量素子の一端に第1の基準電圧が印加され、前記第1の可変容量素子の他端に前記制御電圧が印加され、前記第2の可変容量素子の一端に第2の基準電圧が印加され、前記第2の可変容量素子の他端に前記制御電圧が印加され、前記第1の基準電圧が印加される前記第1の可変容量素子の一端と、前記第2の基準電圧が印加される前記第2の可変容量素子の一端とが前記固定容量素子を介して接続される構成とする。
【0019】
可変容量素子は両端端子間の電位差によって容量値が決まるため、電圧制御発振器を上記構成にすると、第1の可変容量素子と第2の可変容量素子において、制御電圧の変化に対して容量値が線形的に変化する制御電圧の範囲が互いに異なることになる。したがって、第1の可変容量素子、第2の可変容量素子、及び固定容量素子の合成容量が制御電圧の変化に対して線形的に変化する制御電圧の範囲を広範にすることができる。これにより、制御電圧に対する発振周波数の変化が緩やかになり電圧制御発振器のVCO感度を下げることができるため、発振周波数の可動範囲を広範にしても位相ノイズ特性を良好にすることができる。また、発振周波数帯域の異なる電圧制御発振器を複数設けたり、共振部内の可変容量素子を切り替えるスイッチを設けたりする必要がないので、回路規模を小さくすることができる。
【0020】
また、前記第1の可変容量素子、前記第2の可変容量素子、及び前記固定容量素子の合成容量値が前記制御電圧の変化に対して略直線的に変化するように、前記第1の可変容量素子の容量値、前記第2の可変容量素子の容量値、及び前記固定容量素子の容量値が設定されるようにしてもよい。
【0021】
これにより、制御電圧に対して共振部の容量値が略直線的に変化する領域が拡がり、制御電圧に対する発振周波数の変化が緩やかになり、電圧制御発振器のVCO感度を下げることができる。
【0022】
そして、前記第1の可変容量素子、前記第2の可変容量素子、及び前記固定容量素子の合成容量値が前記制御電圧の変化に対して略直線的に変化するように、前記第1の基準電圧及び前記第2の基準電圧を設定するとよい。
【0023】
第1の基準電圧と第2の基準電圧との差が、第1の可変容量素子の容量値が直線的に変化する制御電圧範囲と第2の可変容量素子の容量値が直線的に変化する制御電圧範囲との差であるので、第1の基準電圧と第2の基準電圧との差を最適値に設定することで、前記第1の可変容量素子、前記第2の可変容量素子、及び前記固定容量素子の合成容量値変化の直線性を増加させることができる。
【0024】
また、前記発振周波数が前記制御電圧の変化に対して略直線的に変化するように、前記第1の可変容量素子の容量値、前記第2の可変容量素子の容量値、及び前記固定容量素子の容量値が設定されるようにしてもよい。
【0025】
前記第1の可変容量素子、前記第2の可変容量素子、及び前記固定容量素子の合成容量値を前記制御電圧の変化に対して略直線的に変化させる場合と同様に、制御電圧に対する発振周波数の変化が緩やかになり、電圧制御発振器のVCO感度を下げることができる。その上、前記第1の可変容量素子、前記第2の可変容量素子、及び前記固定容量素子の合成容量値を前記制御電圧の変化に対して略直線的に変化させる場合に比べて発振周波数変化の直線性が向上する。ただし、共振部以外の回路部分の寄生容量等も考慮して容量値を決定する必要があるため容量値を決定するために行う計算が複雑になる。
【0026】
そして、前記発振周波数が前記制御電圧の変化に対して略直線的に変化するように、前記第1の基準電圧及び前記第2の基準電圧を設定するとよい。
【0027】
第1の基準電圧と第2の基準電圧との差を最適値に設定することで、発振周波数が制御電圧の変化に対して略直線的に変化するようにできる。
【0028】
また、全ての回路を単一の半導体チップ上に形成するようにしてもよい。
【0029】
上述したように本発明に係る電圧制御発振器は回路規模を小さくできるので、全ての回路を単一の半導体チップ上に形成することが容易である。全ての回路を単一の半導体チップ上に形成することによって、外付け部品点数を低減することができ、コストの削減を図ることができる。
【0030】
また、本発明に係る高周波送信器又は高周波受信器においては、上記いずれかの構成の電圧制御発振器を備えるようにする。
【0031】
このような構成にすることで、局部発振信号の位相ノイズが低くなる。したがって、優れた送信特性を有する高周波送信器又は優れた受信特性を有する高周波受信器を実現することができる。
【0032】
【発明の実施の形態】
以下に本発明の一実施形態について図面を参照して説明する。本発明に係る電圧制御発振器の構成を図1に示す。なお、図1において、図6と同一の部分には同一の符号を付し説明を省略する。
【0033】
図1の電圧制御発振器は、共振部部1’と能動部2を有しており、図6の電圧制御発振器に新たに可変容量素子Cv21及びCv22と、固定容量素子C21及びC22と、抵抗R11及びR12と、第2基準電圧端子T4とを加えた構成である。
【0034】
可変容量素子Cv21の一端及び可変容量素子Cv22の一端がそれぞれ制御電圧端子T3に接続される。可変容量素子Cv21の他端は固定容量素子C21を介して出力端子T1に接続され、可変容量素子Cv22の他端は固定容量素子C22を介して出力端子T2に接続される。また、可変容量素子Cv21と固定容量素子C21との接続ノードに抵抗R11の一端が接続され、可変容量素子Cv22と固定容量素子C22との接続ノードに抵抗R12の一端が接続される。抵抗R11の他端と抵抗R12の他端とが共通接続され、第2基準電圧端子T4に接続される。
【0035】
第2基準電圧端子T4に定電圧である第2基準電圧Vref2が印加される。したがって、可変容量素子Cv21及びCv22の容量は制御電圧端子T3に印加される制御電圧VCTLによって制御される。
【0036】
可変容量素子は両端端子間の電位差によって容量値が決まるため、基準電圧が異なり制御電圧が共通である可変容量素子Cv1及びCv21は、図2(a)に示すように制御電圧VCTLの変化に対して容量値が線形的に変化する制御電圧範囲が互いに異なることになる。なお、図2(a)において4は可変容量素子Cv1の容量値であり、5は可変容量素子Cv21の容量値を示している。
【0037】
ここで、図1の電圧制御発振器から可変容量素子Cv1及びCv21と、固定容量素子C21とからなる回路を抜き出すと図3に示すようになる。そして、図3の回路の合成容量値が図2(b)に示すように制御電圧VCTLに対して略直線的に変化するように、可変容量素子Cv1及びCv21の種類と、定電圧VCCの値と、第2基準電圧Vref2の値と、固定容量素子C21の容量値とを決定する。具体的には、可変容量素子Cv1の制御電圧VCTLに対する容量値の変化比と、可変容量素子Cv21及び固定容量素子C21の合成容量の制御電圧VCTLに対する容量値の変化比とが略同一になるように、可変容量素子Cv1及びCv21の種類と、定電圧VCCの値と、第2基準電圧Vref2の値と、固定容量素子C21の容量値とを決定する。
【0038】
また、可変容量素子Cv2を可変容量素子Cv1と同一のものとし、可変容量素子Cv22を可変容量素子Cv21と同一のものにする。
【0039】
これにより、共振部1’の容量値が制御電圧VCTLに対して略直線的に変化するようになる。図2から明らかなように共振部1’の容量値は、可変容量素子単体の容量値に比べて略直線的に変化する領域が拡がるので、図1の電圧制御発振器では、制御電圧VCTLに対する発振周波数の変化が緩やかになり、VCO感度を下げることができる。したがって、図1の電圧制御発振器は、発振周波数の可動範囲を広範にしても位相ノイズ特性を良好にすることができる。
【0040】
また、発振周波数帯域の異なる電圧制御発振器を複数設けたり、共振部内の可変容量素子を切り替えるスイッチを設けたりする必要がないので、回路規模を小さくすることができる。
【0041】
なお、共振部1’の容量値が制御電圧VCTLに対して略直線的に変化するように可変容量素子Cv1及びCv21の種類と、定電圧VCCの値と、第2基準電圧Vref2の値と、固定容量素子C21の容量値とを決定するのではなく、発振周波数が制御電圧VCTLの変化に対して略直線的に変化するように可変容量素子Cv1及びCv21の種類と、定電圧VCCの値と、第2基準電圧Vref2の値と、固定容量素子C21の容量値とを決定するようにしてもよい。
【0042】
この場合も制御電圧VCTLに対する発振周波数の変化が緩やかになり、電圧制御発振器のVCO感度を下げることができる。その上、共振部1’の容量値を前記制御電圧の変化に対して略直線的に変化させる場合に比べて発振周波数変化の直線性が向上する。ただし、共振部1’以外の回路部分の寄生容量等も考慮して可変容量素子Cv1及びCv21の種類と、定電圧VCCの値と、第2基準電圧Vref2の値と、固定容量素子C21の容量値を決定する必要があるためこれらを決定するために行う計算が複雑になる。
【0043】
次に、本発明に係る電圧制御発振器の他の構成を図4に示す。なお、図4において図1と同一の部分には同一の符号を付し説明を省略する。
【0044】
図4の電圧制御発振器は、共振部部1’’と能動部2を有しており、図1の電圧制御発振器に新たに可変容量素子Cv31及びCv32と、固定容量素子C31及びC32と、抵抗R21及びR22と、第3基準電圧端子T5とを加えた構成である。
【0045】
可変容量素子Cv31の一端及び可変容量素子Cv32の一端がそれぞれ制御電圧端子T3に接続される。可変容量素子Cv31の他端は固定容量素子C31を介して出力端子T1に接続され、可変容量素子Cv32の他端は固定容量素子C32を介して出力端子T2に接続される。また、可変容量素子Cv31と固定容量素子C31との接続ノードに抵抗R21の一端が接続され、可変容量素子Cv32と固定容量素子C32との接続ノードに抵抗R22の一端が接続される。抵抗R21の他端と抵抗R22の他端とが共通接続され、第3基準電圧端子T5に接続される。
【0046】
第3基準電圧端子T5に定電圧である第3基準電圧Vref3が印加される。したがって、可変容量素子Cv31及びCv32の容量は制御電圧端子T3に印加される制御電圧VCTLによって制御される。
【0047】
可変容量素子Cv31及びCv32と、固定容量素子C31及びC32と、抵抗R21及びR22と、第3基準電圧端子T5とを追加することによって、制御電圧VCTLに対して共振部の容量値が略直線的に変化する領域を図1の電圧制御発振器に比べてさらに拡げることができ、制御電圧VCTLに対する発振周波数の変化が図1の電圧制御発振器に比べてさらに緩やかになり、VCO感度を図1の電圧制御発振器に比べてさらに下げることができる。
【0048】
なお、図1及び図4の電圧制御発振器は回路規模が小さいため、全ての回路を単一の半導体チップに形成し、電圧制御発振器の低コスト化を図ることができる。この場合、インダクタL1及びL2はスパイラルインダクタにするとよい。
【0049】
次に、本発明に係る高周波送受信器について説明する。本発明に係る高周波送受信器の回路ブロック図を図5に示す。なお、電圧制御発振器21は上述した図4の電圧制御発振器であり、アンテナ10以外の回路は1チップの半導体集積回路装置に格納されている。
【0050】
まず受信側について説明する。アンテナ10によって受信されたRF信号がスイッチ11を介してローノイズアンプ12に入力され、ローノイズアンプ12で増幅されたのち、ミキサ13で局部発振信号とミキシングされ、IF信号にダウンコンバートされる。このIF信号は、バンドパスフィルタ14によって不要な周波数成分が除去されたのち復調部15に送られ、受信信号に復調される。
【0051】
続いて送信側について説明する。送信信号が変調器16によって変調され、バンドパスフィルタ17によって不要な周波数成分が除去されたのち、ミキサ18で局部発振信号とミキシングされ、RF信号にアップコンバートされる。このRF信号は、パワーアンプ19で電力増幅されたのち、スイッチ11を介してアンテナ10から出力される。
【0052】
局部発振信号は位相同期発振器20から出力される。位相同期発振器20は、分周器(図示せず)、水晶発振器(図示せず)、位相比較器(図示せず)、及び電圧制御発振器21を備えている。分周器は電圧制御発振器21の出力を水晶発振器の周波数まで分周する。位相比較器は、この分周した信号と水晶発振器からの信号とを位相比較して得られた誤差信号を電圧制御発振器21に負帰還して局部発振信号の周波数を安定させる。
【0053】
電圧制御発振器21を、位相ノイズ特性が良好である図4の電圧制御発振器にしているので、位相同期発振器20から出力される局部発振信号の位相ノイズが低くなる。したがって、図5の高周波送受信器は従来の高周波送受信器と比較して送受信特性が向上する。
【0054】
【発明の効果】
本発明によると、発振周波数の可動範囲が広範であり、回路規模が小さく且つ位相ノイズ特性が良好な電圧制御発振器並びにそれを用いた高周波受信器及び高周波送信器を実現することができる。
【図面の簡単な説明】
【図1】本発明に係る電圧制御発振器の構成を示す図である。
【図2】図1の電圧制御発振器に設けられる可変容量素子の容量値特性及び共振部の容量値特性を示す図である。
【図3】図1の電圧制御発振器に設けられる可変容量素子と固定容量素子とからなる回路の構成を示す図である。
【図4】本発明に係る電圧制御発振器の他の構成を示す図である。
【図5】本発明に係る高周波送受信器の構成を示す図である。
【図6】従来の電圧制御発振器の構成を示す図である。
【図7】実際の可変容量素子の容量値特性及び実際の可変容量素子を用いた場合の電圧制御発振器の発振周波数特性を示す図である。
【図8】理想的な可変容量素子の容量値特性及び理想的な可変容量素子を用いた場合の電圧制御発振器の発振周波数特性を示す図である。
【符号の説明】
1’、1’’  共振部
2  能動部
C21、C22、C31、C32  固定容量素子
Cv1、Cv2、Cv21、Cv22、Cv31、Cv32  可変容量素子
CC 定電圧
CTL  制御電圧
ref2  第2基準電圧
ref3  第3基準電圧
21  電圧制御発振器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a voltage-controlled oscillator whose oscillation frequency varies according to a control voltage, and a high-frequency receiver and a high-frequency transmitter using the same.
[0002]
[Prior art]
FIG. 6 shows a configuration example of a conventional voltage controlled oscillator. The voltage controlled oscillator of FIG. 6 has a resonance section 1 and an active section 2.
[0003]
The resonance unit 1 is a circuit in which a series circuit of inductors L1 and L2 and a series circuit of variable capacitance elements Cv1 and Cv2 are connected in parallel. The output terminal T1 is connected to a connection node between the inductor L1 and the variable capacitance element Cv1, and the output terminal T2 is connected to a connection node between the inductor L2 and the variable capacitance element Cv2. Further, a control voltage terminal T3 is connected to a connection node between the variable capacitance elements Cv1 and Cv2. Note that a variable capacitance element is an element whose capacitance between both terminals changes according to a potential difference between both terminals.
[0004]
The constant voltage V CC is applied to the connection node between the inductor L1 and the inductor L2, and the control voltage V CTL is applied to the control voltage terminal T3. Therefore, the capacitance of the variable capacitance element Cv1 and Cv2 are controlled by a control voltage V CTL applied to the control voltage terminal T3.
[0005]
The active unit 2 includes NPN transistors Q1 and Q2, bias resistors R1 and R2, fixed capacitance elements C1, C2, C11 and C12 for adjusting signal levels, and a DC current source 3.
[0006]
The collector of the transistor Q1 is connected to the output terminal T1, and the collector of the transistor Q2 is connected to the output terminal T2.
[0007]
Then, the base of transistor Q1 and the collector of transistor Q2 are connected via fixed capacitance element C1, and the base of transistor Q2 and the collector of transistor Q1 are connected via fixed capacitance element C2.
[0008]
Further, the base of the transistor Q1 is connected to one end of the bias resistor R1 and one end of the fixed capacitance element C11. A bias voltage V bias is applied to the other end of the bias resistor R1, and the other end of the fixed capacitance element C11 is grounded. Further, the base of the transistor Q2 is connected to one end of the bias resistor R2 and one end of the fixed capacitance element C12. A bias voltage V bias is applied to the other end of the bias resistor R2, and the other end of the fixed capacitance element C12 is grounded.
[0009]
Further, the emitter of the transistor Q1 and the emitter of the transistor Q2 are commonly connected, and are grounded via the DC current source 3.
[0010]
The operation of the voltage controlled oscillator of FIG. 6 having such a configuration will be described. The resonance unit 1 outputs a signal of a resonance frequency to an output terminal. By the load resistance is canceled out is connected between the negative resistance and the output terminals T1, T2 of the active portion 2, the output voltage V O to be output between the output terminals T1, T2 is a steady vibration. Then, it is possible to obtain an output voltage V O of any oscillation frequency corresponding to the control voltage V CTL.
[0011]
Since the variable capacitance element the capacitance value too large or too small potential difference across terminals is saturated, varying the control voltage V CTL in the voltage controlled oscillator of FIG. 6, the variable capacitance element Cv1 and Cv2 Each of the capacitance values changes linearly only in a specific control voltage range as shown in FIG. Accordingly, the oscillation frequency outputted by the voltage controlled oscillator of FIG. 6 varies linearly only in certain control voltage range which is as shown in FIG. 7 (b) in accordance with a change of the control voltage V CTL.
[0012]
In recent years, there has been an increasing demand for a wider oscillation frequency output from a voltage controlled oscillator. In order to realize a voltage controlled oscillator having a wide oscillation frequency movable range, a variable capacitance element having a large capacitance change may be used, or a plurality of variable capacitance elements may be connected in parallel.
[0013]
[Problems to be solved by the invention]
However, since the control voltage range in which the capacitance value of the variable capacitance element does not saturate is the same, if the movable range of the oscillation frequency is widened, the VCO sensitivity, which is the ratio of the change in the oscillation frequency to the change in the control voltage VCTL , increases. . Then, when the VCO sensitivity is high, the phase noise increases due to disturbance entering the control voltage line, so that there is a problem that the phase noise characteristic is deteriorated.
[0014]
The voltage-controlled oscillator disclosed in Japanese Patent Application Laid-Open No. 7-22841 is configured to limit the voltage across the variable capacitance diode by applying a divided voltage of the control voltage to the anode of the variable capacitance diode. It is possible to lower. However, since the voltage controlled oscillator has a configuration in which a current always flows from the control voltage line to the divided resistor, phase noise is deteriorated by thermal noise, and the effect of improving the phase noise by lowering the VCO sensitivity is eliminated. I was
[0015]
Further, as shown in FIG. 8A, if an ideal variable capacitance element whose capacitance value changes linearly in the entire change range of the control voltage is used for the voltage controlled oscillator, the oscillation frequency becomes as shown in FIG. As shown, the VCO sensitivity can be lowered even if the oscillation frequency movable range is widened. However, such an ideal variable capacitance element cannot be actually realized.
[0016]
As a general method for widening the oscillation frequency, a configuration in which a plurality of voltage-controlled oscillators having different oscillation frequency bands are provided while the VCO sensitivity of the voltage-controlled oscillator itself is kept low, or a variable capacitance element in the resonance unit is switched by a switch Configuration. However, the voltage controlled oscillators having these configurations have a problem that the circuit configuration is complicated and the circuit area is increased.
[0017]
In view of the above problems, the present invention provides a voltage-controlled oscillator having a wide oscillation frequency movable range, a small circuit scale, and good phase noise characteristics, and a high-frequency receiver and a high-frequency transmitter using the same. The purpose is to:
[0018]
[Means for Solving the Problems]
In order to achieve the above object, a voltage controlled oscillator according to the present invention includes a resonance unit, and an active unit that supplies power to the resonance unit so that vibration of the resonance unit is not attenuated. A voltage-controlled oscillator that controls an oscillation frequency in response to the resonance unit, wherein the resonance unit includes a fixed capacitance element, a first variable capacitance element, and a second variable capacitance element, and one end of the first variable capacitance element A first reference voltage is applied to the first variable capacitance element, the control voltage is applied to the other end of the first variable capacitance element, a second reference voltage is applied to one end of the second variable capacitance element, and the second reference voltage is applied to the second variable capacitance element. The control voltage is applied to the other end of the variable capacitance element, and one end of the first variable capacitance element to which the first reference voltage is applied, and the second voltage to which the second reference voltage is applied. One end of the variable capacitance element is connected via the fixed capacitance element And it formed.
[0019]
Since the capacitance value of the variable capacitance element is determined by the potential difference between both terminals, when the voltage-controlled oscillator is configured as described above, the capacitance value of the first variable capacitance element and the second variable capacitance element with respect to a change in the control voltage is increased. The range of the control voltage that changes linearly will be different from each other. Therefore, it is possible to widen the range of the control voltage in which the combined capacitance of the first variable capacitance element, the second variable capacitance element, and the fixed capacitance element changes linearly with the change of the control voltage. As a result, the change of the oscillation frequency with respect to the control voltage becomes gentle, and the VCO sensitivity of the voltage controlled oscillator can be reduced. Therefore, even if the movable range of the oscillation frequency is wide, the phase noise characteristics can be improved. Further, since it is not necessary to provide a plurality of voltage controlled oscillators having different oscillation frequency bands or to provide a switch for switching the variable capacitance element in the resonance unit, the circuit scale can be reduced.
[0020]
Further, the first variable capacitance element such that a combined capacitance value of the first variable capacitance element, the second variable capacitance element, and the fixed capacitance element changes substantially linearly with a change in the control voltage. The capacitance value of the capacitance element, the capacitance value of the second variable capacitance element, and the capacitance value of the fixed capacitance element may be set.
[0021]
As a result, the region where the capacitance value of the resonance unit changes substantially linearly with respect to the control voltage is expanded, the change in the oscillation frequency with respect to the control voltage becomes gentle, and the VCO sensitivity of the voltage controlled oscillator can be reduced.
[0022]
The first reference value is set such that a combined capacitance value of the first variable capacitance element, the second variable capacitance element, and the fixed capacitance element changes substantially linearly with a change in the control voltage. Preferably, a voltage and the second reference voltage are set.
[0023]
The difference between the first reference voltage and the second reference voltage is a control voltage range in which the capacitance value of the first variable capacitance element changes linearly, and the capacitance value of the second variable capacitance element changes linearly. Since the difference between the first reference voltage and the second reference voltage is set to an optimum value, the first variable capacitance element, the second variable capacitance element, The linearity of the change of the combined capacitance value of the fixed capacitance element can be increased.
[0024]
In addition, the capacitance value of the first variable capacitance element, the capacitance value of the second variable capacitance element, and the fixed capacitance element may be such that the oscillation frequency changes substantially linearly with the change of the control voltage. May be set.
[0025]
As in the case where the combined capacitance value of the first variable capacitance element, the second variable capacitance element, and the fixed capacitance element is changed substantially linearly with respect to the change of the control voltage, the oscillation frequency with respect to the control voltage is changed. Changes slowly, and the VCO sensitivity of the voltage controlled oscillator can be reduced. In addition, compared to the case where the combined capacitance value of the first variable capacitance element, the second variable capacitance element, and the fixed capacitance element is changed substantially linearly with respect to the change of the control voltage, the oscillation frequency changes. Is improved. However, it is necessary to determine the capacitance value in consideration of the parasitic capacitance and the like of the circuit portion other than the resonance part, and thus the calculation performed to determine the capacitance value becomes complicated.
[0026]
The first reference voltage and the second reference voltage may be set so that the oscillation frequency changes substantially linearly with the change in the control voltage.
[0027]
By setting the difference between the first reference voltage and the second reference voltage to an optimum value, the oscillation frequency can be changed substantially linearly with a change in the control voltage.
[0028]
Further, all circuits may be formed on a single semiconductor chip.
[0029]
As described above, the voltage-controlled oscillator according to the present invention can reduce the circuit scale, so that it is easy to form all circuits on a single semiconductor chip. By forming all circuits on a single semiconductor chip, the number of external components can be reduced, and cost can be reduced.
[0030]
Further, the high-frequency transmitter or high-frequency receiver according to the present invention includes the voltage-controlled oscillator having any one of the above-described configurations.
[0031]
With such a configuration, the phase noise of the local oscillation signal is reduced. Therefore, a high-frequency transmitter having excellent transmission characteristics or a high-frequency receiver having excellent reception characteristics can be realized.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of a voltage controlled oscillator according to the present invention. In FIG. 1, the same portions as those in FIG. 6 are denoted by the same reference numerals, and description thereof will be omitted.
[0033]
The voltage controlled oscillator of FIG. 1 includes a resonance section 1 ′ and an active section 2. The voltage controlled oscillator of FIG. 6 is newly provided with variable capacitance elements Cv21 and Cv22, fixed capacitance elements C21 and C22, and a resistor R11. , R12 and a second reference voltage terminal T4.
[0034]
One end of the variable capacitance element Cv21 and one end of the variable capacitance element Cv22 are respectively connected to the control voltage terminal T3. The other end of the variable capacitance element Cv21 is connected to the output terminal T1 via the fixed capacitance element C21, and the other end of the variable capacitance element Cv22 is connected to the output terminal T2 via the fixed capacitance element C22. One end of a resistor R11 is connected to a connection node between the variable capacitance element Cv21 and the fixed capacitance element C21, and one end of a resistor R12 is connected to a connection node between the variable capacitance element Cv22 and the fixed capacitance element C22. The other end of the resistor R11 and the other end of the resistor R12 are commonly connected, and are connected to a second reference voltage terminal T4.
[0035]
The second reference voltage V ref2 is a constant voltage is applied to the second reference voltage terminal T4. Therefore, the capacitance of the variable capacitance element Cv21 and Cv22 is controlled by a control voltage V CTL applied to the control voltage terminal T3.
[0036]
Since the variable capacitance element that determines the capacitance value by the potential difference across terminals, the variable capacitance element Cv1 and Cv21 the reference voltage is common different control voltage is the change of the control voltage V CTL as shown in FIG. 2 (a) In contrast, the control voltage ranges in which the capacitance value changes linearly are different from each other. In FIG. 2A, reference numeral 4 denotes a capacitance value of the variable capacitance element Cv1, and reference numeral 5 denotes a capacitance value of the variable capacitance element Cv21.
[0037]
Here, when a circuit including the variable capacitance elements Cv1 and Cv21 and the fixed capacitance element C21 is extracted from the voltage controlled oscillator of FIG. 1, the circuit becomes as shown in FIG. Then, the types of the variable capacitance elements Cv1 and Cv21 and the constant voltage V CC are set so that the combined capacitance value of the circuit of FIG. 3 changes substantially linearly with respect to the control voltage V CTL as shown in FIG. , The value of the second reference voltage Vref2 , and the capacitance value of the fixed capacitance element C21. Specifically, the variation ratio of the capacitance value with respect to the control voltage V CTL of the variable capacitor Cv1, the variable capacitance element Cv21 and substantially the same and the variation ratio of the capacitance value with respect to the control voltage V CTL composite capacitance of the fixed capacitance elements C21 so as to determine the type of the variable capacitance element Cv1 and Cv21, the value of the constant voltage V CC, the value of the second reference voltage V ref2, the capacitance of the fixed capacitance element C21.
[0038]
The variable capacitance element Cv2 is the same as the variable capacitance element Cv1, and the variable capacitance element Cv22 is the same as the variable capacitance element Cv21.
[0039]
As a result, the capacitance value of the resonance section 1 'changes substantially linearly with respect to the control voltage VCTL . The capacitance value of the apparent resonant portion 1 'from FIG. 2, since the region which varies substantially linearly as compared with the capacitance of the variable capacitance element alone expands, the voltage controlled oscillator of FIG. 1, with respect to the control voltage V CTL The change of the oscillation frequency becomes gentle, and the VCO sensitivity can be lowered. Therefore, the voltage controlled oscillator of FIG. 1 can improve the phase noise characteristic even when the movable range of the oscillation frequency is wide.
[0040]
Further, since it is not necessary to provide a plurality of voltage controlled oscillators having different oscillation frequency bands or to provide a switch for switching the variable capacitance element in the resonance unit, the circuit scale can be reduced.
[0041]
Note that the types of the variable capacitance elements Cv1 and Cv21, the value of the constant voltage V CC , and the value of the second reference voltage V ref2 are changed so that the capacitance value of the resonance section 1 ′ changes substantially linearly with respect to the control voltage V CTL . value and, instead of determining the capacitance of the fixed capacitance elements C21, the type of the variable capacitance element Cv1 and Cv21 so that the oscillation frequency varies substantially linearly with respect to changes in the control voltage V CTL, constant voltage the value of V CC, the value of the second reference voltage V ref2, may be determined and the capacitance value of the fixed capacitance element C21.
[0042]
Also in this case, the change in the oscillation frequency with respect to the control voltage VCTL becomes gentle, and the VCO sensitivity of the voltage controlled oscillator can be reduced. In addition, the linearity of the change of the oscillation frequency is improved as compared with the case where the capacitance value of the resonance unit 1 'is changed substantially linearly with the change of the control voltage. However, the type of the variable capacitance element Cv1 and Cv21 by considering parasitic capacitance of the circuit portions other than the resonator portion 1 ', the value of the constant voltage V CC, the value of the second reference voltage V ref2, fixed capacitance element C21 Since it is necessary to determine the capacitance values of the above, the calculations performed to determine these become complicated.
[0043]
Next, another configuration of the voltage controlled oscillator according to the present invention is shown in FIG. In FIG. 4, the same parts as those in FIG.
[0044]
The voltage controlled oscillator of FIG. 4 includes a resonance unit 1 ″ and an active unit 2. The voltage controlled oscillator of FIG. 1 is newly provided with variable capacitance elements Cv31 and Cv32, fixed capacitance elements C31 and C32, This is a configuration in which R21 and R22 and a third reference voltage terminal T5 are added.
[0045]
One end of the variable capacitance element Cv31 and one end of the variable capacitance element Cv32 are respectively connected to the control voltage terminal T3. The other end of the variable capacitance element Cv31 is connected to the output terminal T1 via the fixed capacitance element C31, and the other end of the variable capacitance element Cv32 is connected to the output terminal T2 via the fixed capacitance element C32. One end of a resistor R21 is connected to a connection node between the variable capacitance element Cv31 and the fixed capacitance element C31, and one end of a resistor R22 is connected to a connection node between the variable capacitance element Cv32 and the fixed capacitance element C32. The other end of the resistor R21 and the other end of the resistor R22 are commonly connected, and are connected to a third reference voltage terminal T5.
[0046]
A third reference voltage Vref3, which is a constant voltage, is applied to the third reference voltage terminal T5. Therefore, the capacitance of the variable capacitance element Cv31 and Cv32 is controlled by a control voltage V CTL applied to the control voltage terminal T3.
[0047]
A variable capacitance element Cv31 and CV32, and the fixed capacitance elements C31 and C32, and resistors R21 and R22, by adding a third reference voltage terminal T5, substantially linear capacitance value of the resonance portion with respect to the control voltage V CTL 1 can be further expanded as compared with the voltage controlled oscillator of FIG. 1, and the change of the oscillation frequency with respect to the control voltage V CTL becomes more gradual as compared with the voltage controlled oscillator of FIG. Can be further reduced as compared with the voltage-controlled oscillator of FIG.
[0048]
Note that since the voltage controlled oscillators in FIGS. 1 and 4 have a small circuit scale, all circuits can be formed on a single semiconductor chip, and the cost of the voltage controlled oscillator can be reduced. In this case, the inductors L1 and L2 may be spiral inductors.
[0049]
Next, the high-frequency transceiver according to the present invention will be described. FIG. 5 is a circuit block diagram of the high-frequency transceiver according to the present invention. The voltage-controlled oscillator 21 is the above-described voltage-controlled oscillator in FIG. 4, and the circuits other than the antenna 10 are stored in a one-chip semiconductor integrated circuit device.
[0050]
First, the receiving side will be described. The RF signal received by the antenna 10 is input to the low-noise amplifier 12 via the switch 11, amplified by the low-noise amplifier 12, mixed with the local oscillation signal by the mixer 13, and down-converted into an IF signal. This IF signal is sent to a demodulation unit 15 after unnecessary frequency components are removed by a band-pass filter 14, and is demodulated into a reception signal.
[0051]
Next, the transmitting side will be described. After the transmission signal is modulated by the modulator 16 and unnecessary frequency components are removed by the band-pass filter 17, it is mixed with the local oscillation signal by the mixer 18 and up-converted into an RF signal. This RF signal is power-amplified by the power amplifier 19 and then output from the antenna 10 via the switch 11.
[0052]
The local oscillation signal is output from the phase locked oscillator 20. The phase locked oscillator 20 includes a frequency divider (not shown), a crystal oscillator (not shown), a phase comparator (not shown), and a voltage controlled oscillator 21. The frequency divider divides the output of the voltage controlled oscillator 21 to the frequency of the crystal oscillator. The phase comparator negatively feeds back an error signal obtained by comparing the phase of the frequency-divided signal with the signal from the crystal oscillator to the voltage controlled oscillator 21 to stabilize the frequency of the local oscillation signal.
[0053]
Since the voltage controlled oscillator 21 is the voltage controlled oscillator of FIG. 4 having good phase noise characteristics, the phase noise of the local oscillation signal output from the phase locked oscillator 20 is reduced. Therefore, the high-frequency transceiver of FIG. 5 has improved transmission and reception characteristics as compared with the conventional high-frequency transceiver.
[0054]
【The invention's effect】
According to the present invention, it is possible to realize a voltage-controlled oscillator having a wide oscillation frequency movable range, a small circuit scale, and good phase noise characteristics, and a high-frequency receiver and a high-frequency transmitter using the same.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a voltage controlled oscillator according to the present invention.
FIG. 2 is a diagram illustrating a capacitance value characteristic of a variable capacitance element and a capacitance value characteristic of a resonance unit provided in the voltage controlled oscillator of FIG.
FIG. 3 is a diagram illustrating a configuration of a circuit including a variable capacitance element and a fixed capacitance element provided in the voltage controlled oscillator of FIG. 1;
FIG. 4 is a diagram showing another configuration of the voltage controlled oscillator according to the present invention.
FIG. 5 is a diagram showing a configuration of a high-frequency transceiver according to the present invention.
FIG. 6 is a diagram showing a configuration of a conventional voltage controlled oscillator.
FIG. 7 is a diagram showing the capacitance value characteristics of an actual variable capacitance element and the oscillation frequency characteristics of a voltage controlled oscillator when an actual variable capacitance element is used.
FIG. 8 is a diagram showing capacitance value characteristics of an ideal variable capacitance element and oscillation frequency characteristics of a voltage controlled oscillator when an ideal variable capacitance element is used.
[Explanation of symbols]
1 ′, 1 ″ Resonant part 2 Active parts C21, C22, C31, C32 Fixed capacitance elements Cv1, Cv2, Cv21, Cv22, Cv31, Cv32 Variable capacitance element V CC constant voltage V CTL control voltage V ref2 second reference voltage V ref3 third reference voltage 21 voltage-controlled oscillator

Claims (8)

共振部と、該共振部の振動が減衰しないように前記共振部に電力を供給する能動部と、を備え、制御電圧に応じて発振周波数を制御する電圧制御発振器において、
前記共振部が、固定容量素子、第1の可変容量素子、及び第2の可変容量素子を有し、
前記第1の可変容量素子の一端に第1の基準電圧が印加され、前記第1の可変容量素子の他端に前記制御電圧が印加され、前記第2の可変容量素子の一端に第2の基準電圧が印加され、前記第2の可変容量素子の他端に前記制御電圧が印加され、
前記第1の基準電圧が印加される前記第1の可変容量素子の一端と、前記第2の基準電圧が印加される前記第2の可変容量素子の一端とが前記固定容量素子を介して接続されることを特徴とする電圧制御発振器。
A voltage-controlled oscillator that includes a resonance unit and an active unit that supplies power to the resonance unit so that vibration of the resonance unit is not attenuated, and controls an oscillation frequency according to a control voltage;
The resonance unit includes a fixed capacitance element, a first variable capacitance element, and a second variable capacitance element;
A first reference voltage is applied to one end of the first variable capacitance element, the control voltage is applied to the other end of the first variable capacitance element, and a second voltage is applied to one end of the second variable capacitance element. A reference voltage is applied, the control voltage is applied to the other end of the second variable capacitance element,
One end of the first variable capacitance element to which the first reference voltage is applied is connected via the fixed capacitance element to one end of the second variable capacitance element to which the second reference voltage is applied. A voltage controlled oscillator characterized by being performed.
前記第1の可変容量素子、前記第2の可変容量素子、及び前記固定容量素子の合成容量値が前記制御電圧の変化に対して略直線的に変化するように、前記第1の可変容量素子の容量値、前記第2の可変容量素子の容量値、及び前記固定容量素子の容量値が設定される請求項1に記載の電圧制御発振器。The first variable capacitance element such that a combined capacitance value of the first variable capacitance element, the second variable capacitance element, and the fixed capacitance element changes substantially linearly with a change in the control voltage. The voltage controlled oscillator according to claim 1, wherein a capacitance value of the second variable capacitance element and a capacitance value of the fixed capacitance element are set. 前記第1の可変容量素子、前記第2の可変容量素子、及び前記固定容量素子の合成容量値が前記制御電圧の変化に対して略直線的に変化するように、前記第1の基準電圧及び前記第2の基準電圧が設定される請求項2に記載の電圧制御発振器。The first reference voltage and the first reference voltage so that a combined capacitance value of the first variable capacitance element, the second variable capacitance element, and the fixed capacitance element changes substantially linearly with a change in the control voltage. 3. The voltage controlled oscillator according to claim 2, wherein the second reference voltage is set. 前記発振周波数が前記制御電圧の変化に対して略直線的に変化するように、前記第1の可変容量素子の容量値、前記第2の可変容量素子の容量値、及び前記固定容量素子の容量値が設定される請求項1に記載の電圧制御発振器。The capacitance value of the first variable capacitance element, the capacitance value of the second variable capacitance element, and the capacitance of the fixed capacitance element so that the oscillation frequency changes substantially linearly with the change of the control voltage. The voltage controlled oscillator according to claim 1, wherein a value is set. 前記発振周波数が前記制御電圧の変化に対して略直線的に変化するように、前記第1の基準電圧及び前記第2の基準電圧が設定される請求項4に記載の電圧制御発振器。The voltage controlled oscillator according to claim 4, wherein the first reference voltage and the second reference voltage are set such that the oscillation frequency changes substantially linearly with a change in the control voltage. 全ての回路を単一の半導体チップ上に形成する請求項1〜5のいずれかに記載の電圧制御発振器。6. The voltage controlled oscillator according to claim 1, wherein all circuits are formed on a single semiconductor chip. 請求項1〜6のいずれかに記載の電圧制御発振器を備えることを特徴とする高周波受信器。A high-frequency receiver comprising the voltage-controlled oscillator according to claim 1. 請求項1〜6のいずれかに記載の電圧制御発振器を備えることを特徴とする高周波送信器。A high-frequency transmitter comprising the voltage-controlled oscillator according to claim 1.
JP2002215092A 2002-07-24 2002-07-24 Voltage controlled oscillator, high frequency receiver using the same, and high frequency transmitter Pending JP2004056720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002215092A JP2004056720A (en) 2002-07-24 2002-07-24 Voltage controlled oscillator, high frequency receiver using the same, and high frequency transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002215092A JP2004056720A (en) 2002-07-24 2002-07-24 Voltage controlled oscillator, high frequency receiver using the same, and high frequency transmitter

Publications (1)

Publication Number Publication Date
JP2004056720A true JP2004056720A (en) 2004-02-19

Family

ID=31937208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002215092A Pending JP2004056720A (en) 2002-07-24 2002-07-24 Voltage controlled oscillator, high frequency receiver using the same, and high frequency transmitter

Country Status (1)

Country Link
JP (1) JP2004056720A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531471A (en) * 2004-03-30 2007-11-01 クゥアルコム・インコーポレイテッド Temperature stabilized voltage controlled oscillator
US7301412B2 (en) 2005-03-29 2007-11-27 Fujitsu Limited Variable capacity circuit and control method of variable capacity circuit
KR100900351B1 (en) 2007-10-22 2009-06-02 한국정보통신대학교 산학협력단 Transformer-based LC tank with differential-turned structure and differential-tuned voltage controlled oscillator using the LC tank
JP2009200844A (en) * 2008-02-21 2009-09-03 Asahi Kasei Electronics Co Ltd Pll circuit using varactor for vco
KR100937402B1 (en) 2007-09-19 2010-01-18 한국전자통신연구원 A voltage-controlled oscillator with wide frequency range and linear relationship between control voltage and oscillation frequency
JPWO2008123016A1 (en) * 2007-03-09 2010-07-15 パナソニック株式会社 LOCAL OSCILLATOR, RECEPTION DEVICE USING THE SAME, AND ELECTRONIC DEVICE

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007531471A (en) * 2004-03-30 2007-11-01 クゥアルコム・インコーポレイテッド Temperature stabilized voltage controlled oscillator
JP2011010343A (en) * 2004-03-30 2011-01-13 Qualcomm Inc Temperature stabilized voltage-controlled oscillator
US7301412B2 (en) 2005-03-29 2007-11-27 Fujitsu Limited Variable capacity circuit and control method of variable capacity circuit
JPWO2008123016A1 (en) * 2007-03-09 2010-07-15 パナソニック株式会社 LOCAL OSCILLATOR, RECEPTION DEVICE USING THE SAME, AND ELECTRONIC DEVICE
US8165550B2 (en) 2007-03-09 2012-04-24 Panasonic Corporation Local oscillator, receiver, and electronic device
JP4992903B2 (en) * 2007-03-09 2012-08-08 パナソニック株式会社 LOCAL OSCILLATOR, RECEPTION DEVICE USING THE SAME, AND ELECTRONIC DEVICE
KR100937402B1 (en) 2007-09-19 2010-01-18 한국전자통신연구원 A voltage-controlled oscillator with wide frequency range and linear relationship between control voltage and oscillation frequency
KR100900351B1 (en) 2007-10-22 2009-06-02 한국정보통신대학교 산학협력단 Transformer-based LC tank with differential-turned structure and differential-tuned voltage controlled oscillator using the LC tank
JP2009200844A (en) * 2008-02-21 2009-09-03 Asahi Kasei Electronics Co Ltd Pll circuit using varactor for vco

Similar Documents

Publication Publication Date Title
US6731182B2 (en) Voltage-controlled oscillator and communication apparatus employing the same
US7170358B2 (en) Voltage controlled oscillator, and PLL circuit and wireless communication apparatus using the same
JP5036966B2 (en) LC oscillator with wide tuning range and low phase noise
US6833769B2 (en) Voltage controlled capacitive elements having a biasing network
US20020093385A1 (en) Oscillation circuit with voltage-controlled oscillators
JP2006033803A (en) Voltage-controlled oscillator, and pll circuit and wireless communications apparatus using the same
EP1223667A2 (en) Voltage controlled oscillator (VCO) in colpitts configuration
US8165550B2 (en) Local oscillator, receiver, and electronic device
JP3369557B2 (en) Oscillator with bias and buffer circuits formed inside die mounted with elements distributed over ceramic substrate
KR100938086B1 (en) Oscillator
JP2007013898A (en) Pll frequency synthesizer, integrated circuit and communication apparatus using the same
JP2004056720A (en) Voltage controlled oscillator, high frequency receiver using the same, and high frequency transmitter
JP4794790B2 (en) Variable frequency oscillator
JP2001320235A (en) Voltage controlled oscillator
JP2009278616A (en) Voltage controlled oscillator, and pll circuit, and radio communication device each including the same
CN101162889A (en) Voltage controlled oscillator and its control method
KR0137913B1 (en) Capacitor switching voltage controlled oscillator
US20020050866A1 (en) Voltage controlled oscillator and communication device using the same
US6624709B2 (en) Voltage-controlled oscillator and electronic device using the same
JPWO2006106860A1 (en) Television tuner
JP3893932B2 (en) Voltage controlled oscillator
US20130063661A1 (en) Phase synchronication circuit and television signal reception circuit
EP1111771A2 (en) A multi-band type voltage controlled oscillator
KR20020083709A (en) Multi-band voltage controlled oscillator circuit
JP2005197997A (en) Voltage controlled oscillator and high frequency receiver and high frequency transmitter using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110