JP2004051717A - Biomass gasifier - Google Patents

Biomass gasifier Download PDF

Info

Publication number
JP2004051717A
JP2004051717A JP2002208963A JP2002208963A JP2004051717A JP 2004051717 A JP2004051717 A JP 2004051717A JP 2002208963 A JP2002208963 A JP 2002208963A JP 2002208963 A JP2002208963 A JP 2002208963A JP 2004051717 A JP2004051717 A JP 2004051717A
Authority
JP
Japan
Prior art keywords
biomass
gasification
space
reaction
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002208963A
Other languages
Japanese (ja)
Inventor
Kimiyo Tokuda
徳田 君代
Toshimitsu Ichinose
一ノ瀬 利光
Yoshinori Kobayashi
小林 由則
Masayasu Sakai
坂井 正康
Nobuaki Murakami
村上 信明
Toshiyuki Takegawa
竹川 敏之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nagasaki Institute of Applied Science
Original Assignee
Mitsubishi Heavy Industries Ltd
Nagasaki Institute of Applied Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nagasaki Institute of Applied Science filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002208963A priority Critical patent/JP2004051717A/en
Publication of JP2004051717A publication Critical patent/JP2004051717A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid-Fuel Combustion (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biomass gasifier, which may be a small-scale one, that produces a highly calorific clean fuel gas suited for a power generation gas engine in high yields from biomass resources. <P>SOLUTION: In the biomass gasifier wherein steam is fed into crushed biomass to cause a gasification reaction in a gasification space, the gasification space is isolated from external heating by a partition, and the gasification reaction of the steam with the biomass is caused by an endothermic reaction without actively feeding oxygen into the gasification space. The partition has a gasification space in its inside, the inner side space for gasification by the external heating has a tubular structure, and the gasification space has a spouted bed structure in which the fed biomass powder is fluidized with the fed steam. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術の分野】
本発明はバイオマスの有効利用に関し、詳しくは、バイオマスからクリーンな高カロリガスを生成させる装置に関する。更には、従来のバイオマスエネルギ利用形態では得られないシステム発電効率の高い、給電システムもしくは熱電併給システムのガスエンジンと組み合わせて用いる、バイオマスのガス化装置に関する。
【0002】
【従来の技術】
従来のバイオマスエネルギ利用装置システムのうち、電気エネルギもしくは熱電両エネルギに変換して行う利用システムでは、バイオマスをボイラ用燃料として直接燃焼して、高圧蒸気を生成させ、発電用タービンを回転させる方式が執られている。従って、少なくとも5000〜10000kWと設備規模が大きくなるので、バイオマス資源の大量集約的発生もしくは大量収集が必要である。加えて、多額な投下資本を必要とする。なによりも、その発電効率が5000kW規模の場合で10%台に留まっているため、小規模で効率の高いバイオマス資源の利用装置システムが望まれている。
【0003】
一方、ガスエンジン使用の発電では小規模でも高い発電効率が得られるので、我が国のようにバイオマス資源が分散的に発生する社会および自然環境ではバイオマスのガス化装置技術の必要性が高い。
【0004】
バイオマスのガス化装置技術については、従来より固定床、流動床型のガス化炉で、酸素もしくは空気を主たるガス化剤として、吸熱反応であるガス化の空間と燃焼による発熱空間を共通の空間に設定した、いわゆる内燃式のものが研究開発されてきたが、タール、煤が副生し、ガスエンジン用として品質が適合しない。加えて、空気を用いる場合には、生成ガス中に窒素が残留して、単位生成ガスの発熱量を低下させる。酸素を用いる場合には、空気分離工程が別に必要で、運転に要するエネルギ及び設備投資がエネルギ効率低下要因及びコストプッシュ要因となる。
【0005】
他に、臨界圧熱水によるガス化装置の研究が行われているが、超高温高圧装置上の問題を含み、実用化の域に達していない。
【0006】
【発明が解決しようとする課題】
本発明はかかる従来の問題点に鑑みてなされたもので、バイオマス資源から発電用ガスエンジンに適合する、高カロリで、クリーンな燃料ガスを、高収率で取得する、小規模でも可能なバイオマスのガス化装置を提供することを目的とする。加えて、バイオマス資源の総合的エネルギ転換効率を高め、第三の新エネルギとしての利用普及に寄与せんとするものである。
【0007】
【課題を解決するための手段】
本発明のバイオマスのガス化装置は、粉砕したバイオマスに、水蒸気を供給してガス化反応を生じせしめるガス化空間と該ガス化空間が隔壁を介して外部加熱と分離されており、該にガス化空間に積極的に酸素を供給することなく吸熱反応により水蒸気とバイオマスのガス化反応を生じせしめるバイオマスのガス化装置において、前記隔壁が内部にガス化空間を有し、外部加熱による内周側のガス化空間が管状体構造に形成され、前記ガス化空間が、供給するバイオマス粉体を、供給する水蒸気で流動化させる噴流床構造である事を特徴とする。
【0008】
バイオマスの分解に必要な熱を、ガス化空間には化学的に影響を及ぼさない反応管壁からの輻射により、別途用意した熱源で供給することに加えて、ガス化剤自身の水蒸気を流動媒体として使用し、酸化反応などによる局部過熱を避け、均一な噴流状のガス化雰囲気を作る事により、速やかで、副反応のないガス化が可能な構造とする。別途用意する熱源は、バイオマスを燃焼して熱ガスを発生する、熱ガス発生炉を配置して供給することが好ましい。この熱源用バイオマスはガス分解用の原料より低品位のバイオマスを使用することもできる。
【0009】
更に本発明のバイオマスのガス化装置は、粉砕したバイオマスに、水蒸気を供給してガス化反応を生じせしめるガス化空間と該ガス化空間が隔壁を介して外部加熱と分離されており、該にガス化空間に積極的に酸素を供給することなく吸熱反応により水蒸気とバイオマスのガス化反応を生じせしめるバイオマスのガス化装置において、前記隔壁が内部にガス化空間を有し、外部加熱による内周側のガス化空間が管状体構造に形成され、前記ガス化空間内で、水蒸気とバイオマスが向流若しくは水蒸気流れ方向と交差する方向に両者の流れ方向を設定するとともに、該接触域に絞り若しくは膨脹域(ディフューザ)が存在することを特徴とする。これにより、バイオマスが蒸気中に拡散し浮遊状態で、速やかにガス化する体制がつくられる。
【0010】
更に本発明のバイオマスのガス化装置は、粉砕したバイオマスに、水蒸気を供給してガス化反応を生じせしめるガス化空間と該ガス化空間が隔壁を介して外部加熱と分離されており、該にガス化空間に積極的に酸素を供給することなく吸熱反応により水蒸気とバイオマスのガス化反応を生じせしめるバイオマスのガス化装置において、高温ガスが流出入する加熱空間に、複数の自由端開口が外部に位置している曲管を送入し、加熱空間に曝されている曲管内で反応水蒸発部と水蒸気とバイオマスのガス化反応を行うガス化部が位置していることを特徴とする。
【0011】
更に本発明のバイオマスのガス化装置は、前記曲管内のガス化部通過直後の曲管をバイオマス供給側より分岐して、該分岐管を下向きから上向きに向けて曲管とするとともに、前記上向き自由端に燃料ガス出口部、一方下向きから上向きの底部変向部に、灰ドレンを設けたことを特徴とする。即ち本発明のガス化反応では、タール・煤のような遊離炭素は生成せず、唯一の固形不純物は無機物由来の灰である。蓄積する該不純物を集積して、除去する構造としてある。
【0012】
更に本発明のバイオマスのガス化装置は、前記曲管が多管状に加熱空間に挿入されるとともに、該多管部の反応水側の自由端に前記多管部同士を連結するヘッダを設け、該ヘッダに充てんした反応水により実質的シールを行うことを特徴とする。多管状にガス化空間を設けることにより、ガス化空間をコンパクトに増強することができる。
【0013】
更に本発明のバイオマスのガス化装置は、前記曲管が多管状に加熱空間に挿入されるとともに、該多管部のバイオマス側の自由端に前記多管部同士を連結するヘッダを設け、該ヘッダに充てんしたバイオマスにより実質的シールを行うことを特徴とする。
【0014】
更に本発明のバイオマスのガス化装置は、前記バイオマスを3mm以下、好ましくは1mm以下の微粒状にする粉砕手段を備え、微粒状にする粉砕手段は例えば、破砕機とインパクトミルを組み合わせた手段でよく、微粉砕困難なバイオマスは、適時に篩別して、ガス化空間加熱用の熱ガスを発生させる燃料として利用すればよい。
【0015】
【発明の実施の形態】
以下に本発明の実施の形態について図面を参照して詳しく説明する。但し本実施の形態に記載される製品の寸法、形状、材質、その相対配置等は特に特定的な記載がない限りは本発明の範囲をそれのみに限定する主旨ではなく、単なる説明例に過ぎない。
【0016】
(実施例1) 図1は本発明の浮遊・外熱式高カロリガスを生成するガス化反応設備を中心とするバイオエネルギ利用システムのフロー図である。ガス化反応設備101は後述する反応管306(図2、3参照)を備え、該反応管306は反応水115及びバイオマス微粉112を受け入れ、外部からバイオマス燃焼高温ガス114により加熱できるよう構成されている。粉砕設備102はバイオマス原料111を受け入れて平均粒径3mm以下、好ましくは1mm以下の微粉を生成可能な性能を有し、平均粒径3mm以下の微粉112と平均粒径3mmを超える粗粉113とを分別して、排出可能な構造を有している。本実施例では破砕機とインパクトミルを組み合わせて用いた。熱ガス発生炉103はバイオマス粗粉113を受け入れて空気などの支燃剤によりバイオマス粗粉113を燃焼して高温のバイオマス燃焼高温ガス114を生成する。脱水装置104は内部に冷却伝熱面を持ち、塔内に導入されたガス中の水分及び硫黄化合物など高沸点物を凝縮して除去可能な構造を有す。ガスタンク105は水封式のタンクで、生成ガス116を貯留可能な構造になっている。ガスエンジン106は本例における生成ガス116を燃焼して、発電機を運転可能な能力を有している。
【0017】
図1において、バイオマス原料111は粉砕設備102に供給され平均粒径3mm以下の微粉112と平均粒径3mmを超える粗粉113に分けられ、粗粉113は熱ガス発生炉103に送られ、微粉112はガス化反応設備101中の反応管306中に反応水115とともに導入される。熱ガス発生炉103ではバイオマス粗粉113を燃焼温度900〜1200℃で燃焼させ、発生するバイオマス燃焼高温ガス114でガス化反応設備101中の反応管306を外部から加熱し、管内の温度を800℃以上に保つ。反応管306内に導入された微粉112は導入反応水115によって発生した水蒸気気流中に浮遊し、ほぼ瞬時(0.2秒以下)にガス化する。含水生成ガス108を脱水装置104に導入し、水分と硫黄分(HS)、塩素分(HCl)を除去した後、生成ガス116とし、ガスタンク105に貯留する。生成ガス116は約20MJ/mのカロリを有し、ガスエンジン用燃料として適合する。本システムでバイオマス処理量1トン/日(50〜100kg/h)を処理して、30kWの発電機により電気エネルギに変換したときの、総合エネルギ効率は20%以上とすることができた。
【0018】
(実施例2) 図2は本発明のガス化反応設備101と1次ガス化部302詳細の一例の概要図である。図2において、ガス化反応設備101は、加熱チャンバ307内部に反応管306を有し、加熱チャンバ307はバイオマス燃焼高温ガス114の導入口と、排出口を備えている。反応管はU字、逆U字、U字の管を連結した曲管であり、右側より第一垂直部、第二垂直部、第三垂直部、第四垂直部がある。その右端の第一垂直部上部より反応水115を導入出来る開口端が、中途第二垂直部上部よりバイオマス微粉112が導入出来る開口端が、中途第二垂直部、第三垂直部とを連結するU字管底部よりガス化によって発生する灰117を取り出す開口端が、左端第四垂直部よりガス化反応で生成した含水生成ガス118を取り出す開口端が、夫々設けてある。
【0019】
ガス化反応設備101は不図示の熱ガス発生炉で生成した、バイオマス燃焼高温ガス114を前記加熱チャンバ307の導入口より導入して、反応管306を外部より加熱し、その内温を800℃以上の適切な温度に維持するよう、バイオマス燃焼高温ガス114(外部加熱ガス)の温度及び流量を調節する。反応水115は第一垂直部の反応水蒸発部301において外部加熱ガスで加熱され水蒸気となり、第二垂直部の1次ガス化部302で上部より導入された、バイオマス微粉112を浮遊させながらガス化させる。この時、水蒸気/バイオマスのモル比が0.4以上となるように反応水115、微粉112の投入量を加減する。ガス化した生成ガスはついで、第三垂直部及び第四垂直部で構成される2次ガス化部303に流れて、少量の副生したタール・煤を分解する。この部分で固形有機物及び炭素は全て分解して、ガス体となり、固体は無機物からなる灰分のみとなり、前記灰取り出し開口端より、灰117を取り出す。生成ガス118は未だ水分と少量のHSとHClを含んだ状態で前記左端第四垂直部開口端より取り出す。
【0020】
1次ガス化部302の詳細は図示の如く、反応管306の下部付近が、中央に開口部308を持つコニカル(逆円錐台)型整流板307が設けられ、該開口部308から高温蒸気が吹き込まれ、反応管306上部から投入されたバイオマス微粉112を浮遊させた状態でガス化する。1次ガス化即ち本発明の目的とするガス化は1次ガス化領域304で行われ、この領域を過ぎた第三垂直部の上部は2次ガス化領域305として機能し、前記で説明した2次ガス化部303と同様な役割を果たす。
【0021】
(実施例3) 図3は本発明のガス化反応設備と1次ガス化部詳細の他の例の概要図である。ガス化反応設備の全体構成は実施例2と同様である。1次ガス化部401詳細の構成が図示のようになっている。即ち、図3右側の1次ガス化部401詳細において、反応管306中には分散管402が挿入されている。分散管402は微粉送入管より、底部逆コニカルの底面円周に向けて延在する曲面で構成される、内部中空の一端が逆コニカルで閉鎖された、筒体であり、該底部逆コニカルの底面円周に向けて延在する曲面上に複数の噴出口405を有している。
【0022】
前記反応管306に、該分散管402を挿入すると、分散管402の逆コニカル底面円周部付近と、反応管306内壁との間の距離が最も狭小となり、反応管306下部より蒸気など気体を流通させたとき、スロート部403となり、ここから上部に行くに従い、漸次管内壁と分散管402外壁との距離は拡大していくので、ディフューザ部404となる。従って、前記複数の噴出口405はこのスロート部403付近に設けることが好ましい。
【0023】
かくして、分散管402の微粉送入管よりバイオマス微粉112を送入すると、反応水115の蒸発によって生成した高温蒸気が下部より流れ込み、スロート部403で高速となって、ベンチュリー効果により分散管402内部の微粉112を吸い出してディフューザ部404に分散させる。該分散浮遊した微粉112はほとんど瞬時にガス化する。
【0024】
(実施例4) 図4は本発明の多管式ガス化部を有するガス化反応設備101の概要図である。図において、多管式反応管501は実施例2もしくは3の曲管が図右側のA−A’矢視図に示されるように垂直方向に5列並列に、加熱チャンバ307内に配置されており、バイオマス微粉投入口、灰取り出し口、反応水送入口、生成ガス(未脱水)取り出し口はそれぞれヘッダ502、503、504、505で5列が連結されている。これにより、処理空間容量が増加し、コンパクトに能力の増強が可能である。
【0025】
(実施例5) 図5は本発明の浮遊・外熱式高カロリガスを生成するガス化反応の温度条件とガス組成及び発熱量との関係を示すグラフである。図2に示す装置を用い本発明の浮遊・外熱式高カロリガス化の試験を、水蒸気/バイオマス重量比を2に固定して、各種温度で行い、生成ガスの組成を分析し、生成ガスの発熱量を測定して、反応のマテリアルバランスを求めた。その結果生成ガスは棒グラフに示すガス組成を与え、その発熱量を測定すると、折れ線グラフの熱量であった。
【0026】
上記で得られた反応のマテリアルバランスよりガス化反応の経験式を求めると、
1.30.9+0.4H
→0.8H+0.7CO+0.3CH+0.3CO+39.7kcal/mol
であることがわかった。
【0027】
【発明の効果】
以上詳しく説明したように、本発明によりタール、煤など遊離炭素の発生を伴わない、廃棄物は若干の灰分のみの、クリーンなH、CO、及びCHなどの炭化水素を主成分とする浮遊・外熱式高カロリガス(例えば20MJ/NM)が得られ、ガスエンジン発電と組合すことにより、総合エネルギ効率の高いシステムとすることができる。
【図面の簡単な説明】
【図1】本発明の浮遊・外熱式高カロリガスを生成するガス化反応設備を中心とする、バイオエネルギ利用システムのフロー図
送手段のフロー図
【図2】本発明のガス化反応設備と1次ガス化部詳細の一例の概要図
【図3】本発明のガス化反応設備と1次ガス化部詳細の他の例の概要図
【図4】本発明のガス化反応設備と多管式ガス化部の概要図
【図5】本発明の浮遊・外熱式高カロリガスを生成するガス化反応の温度条件とガス組成及び発熱量との関係を示すグラフである。
【符号の説明】
101…ガス化反応設備
102…粉砕設備
103…熱ガス発生炉
104…脱水装置
105…ガスタンク
106…ガスエンジン
111…バイオマス原料
112…微粉
113…粗分
114…バイオマス燃焼高温ガス
115…反応水
116…生成ガス
211…蒸気又は蒸気+少量空気
301…反応水蒸発部
302…1次ガス化部
303…2次ガス化部
304…1次ガス化域
305…2次ガス化域
306…反応管
307…加熱チャンバ
401…1次ガス化部
402…分散管
403…スロート部
404…ディフューザ部
501…多管式反応管
502…ヘッダ
503…ヘッダ
504…ヘッダ
505…ヘッダ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to effective use of biomass, and more particularly, to an apparatus for generating clean high-calorie gas from biomass. Further, the present invention relates to a biomass gasifier used in combination with a gas engine of a power supply system or a cogeneration system having high system power generation efficiency that cannot be obtained by a conventional biomass energy utilization mode.
[0002]
[Prior art]
Among the conventional biomass energy utilization system, in the utilization system that converts the energy into electric energy or thermoelectric energy, the system in which biomass is directly burned as boiler fuel, high-pressure steam is generated, and a power generation turbine is rotated. Have been taken. Therefore, since the equipment scale is increased to at least 5000 to 10000 kW, it is necessary to intensively generate or collect a large amount of biomass resources. In addition, it requires a large amount of invested capital. Above all, the power generation efficiency is only on the order of 10% in the case of a 5000 kW scale, and therefore a small-scale and efficient system for utilizing biomass resources is desired.
[0003]
On the other hand, in the case of power generation using a gas engine, a high power generation efficiency can be obtained even in a small scale. Therefore, in a society and natural environment where biomass resources are generated in a decentralized manner as in Japan, the need for biomass gasifier technology is high.
[0004]
Regarding biomass gasifier technology, conventionally, a fixed-bed or fluidized-bed type gasifier uses oxygen or air as the main gasifying agent to share the endothermic gasification space and combustion heat generation space. The so-called internal combustion type has been researched and developed, but tar and soot are by-produced, and the quality is not suitable for gas engines. In addition, when air is used, nitrogen remains in the product gas, reducing the calorific value of the unit product gas. In the case of using oxygen, an air separation step is required separately, and the energy required for operation and capital investment are factors for lowering energy efficiency and pushing costs.
[0005]
In addition, research on a gasifier using critical pressure hot water has been conducted, but it has not reached the level of practical use due to the problem of an ultra-high temperature and high pressure device.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such conventional problems, and obtains a high calorie, clean fuel gas from a biomass resource in a high yield, which is suitable for a gas engine for power generation. It is an object of the present invention to provide a gasifier. In addition, it aims to increase the overall energy conversion efficiency of biomass resources and contribute to the spread of use as third new energy.
[0007]
[Means for Solving the Problems]
The gasification apparatus for biomass of the present invention has a gasification space in which steam is supplied to a crushed biomass to cause a gasification reaction, and the gasification space is separated from external heating through a partition wall. In a biomass gasification apparatus in which a gasification reaction between water vapor and biomass is caused by an endothermic reaction without actively supplying oxygen to the gasification space, the partition has a gasification space inside, and an inner peripheral side by external heating. The gasification space is formed in a tubular structure, and the gasification space is a spouted bed structure in which the supplied biomass powder is fluidized with the supplied steam.
[0008]
In addition to supplying the heat required for biomass decomposition from the reaction tube wall, which does not chemically affect the gasification space, by using a separately prepared heat source, the steam of the gasifying agent itself is fluidized. , And avoiding local overheating due to oxidation reaction, etc., and creating a uniform gaseous atmosphere in the form of a jet, so that gasification can be performed quickly and without side reactions. It is preferable that the separately prepared heat source is provided with a hot gas generating furnace for burning biomass and generating hot gas. As the biomass for the heat source, biomass of lower grade than the raw material for gas decomposition can be used.
[0009]
Furthermore, the biomass gasification apparatus of the present invention is characterized in that the pulverized biomass is supplied with water vapor to cause a gasification reaction by supplying steam, and the gasification space is separated from external heating via a partition wall. In a biomass gasification apparatus in which a gasification reaction between water vapor and biomass is caused by an endothermic reaction without actively supplying oxygen to the gasification space, the partition has a gasification space inside, and the inner circumference is formed by external heating. The gasification space on the side is formed in a tubular structure, and in the gasification space, the flow direction of steam and biomass is set in a direction intersecting with the countercurrent or the flow direction of the steam, and the flow direction of the two is narrowed or narrowed to the contact area. It is characterized by the presence of an expansion zone (diffuser). As a result, a system is created in which biomass is diffused in steam and gasified promptly in a suspended state.
[0010]
Furthermore, the biomass gasification apparatus of the present invention is characterized in that the pulverized biomass is supplied with water vapor to cause a gasification reaction by supplying steam, and the gasification space is separated from external heating via a partition wall. In a biomass gasifier that generates a gasification reaction between water vapor and biomass by an endothermic reaction without actively supplying oxygen to the gasification space, a plurality of free end openings are provided outside the heating space where hot gas flows in and out. , And a gasification unit for performing a gasification reaction between the reaction water evaporation unit and water vapor and biomass is located in the bent tube exposed to the heating space.
[0011]
Further, the biomass gasifier of the present invention is characterized in that the bent pipe immediately after passing through the gasification section in the bent pipe is branched from the biomass supply side, and the branched pipe is turned upward from below to form a bent pipe. An ash drain is provided at a fuel gas outlet at a free end, and at a bottom turning portion from downward to upward. That is, in the gasification reaction of the present invention, free carbon such as tar and soot is not generated, and the only solid impurity is ash derived from an inorganic substance. The structure is such that the accumulated impurities are accumulated and removed.
[0012]
Further, in the biomass gasifier of the present invention, the bent pipe is inserted into the heating space in a multi-tubular form, and a header for connecting the multi-pipe sections to each other at a free end of the multi-pipe section on the reaction water side is provided. It is characterized in that the sealing is substantially performed by the reaction water filled in the header. By providing the gasification space in a multi-tubular shape, the gasification space can be compactly enhanced.
[0013]
Further, in the biomass gasifier of the present invention, the bent tube is inserted into the heating space in a multi-tubular manner, and a header for connecting the multi-tube portions is provided at a free end on the biomass side of the multi-tube portion. It is characterized in that substantial sealing is performed by the biomass filled in the header.
[0014]
Furthermore, the biomass gasifier of the present invention is provided with a crushing means for making the biomass into fine particles of 3 mm or less, preferably 1 mm or less, and the crushing means for making fine particles is, for example, a means combining a crusher and an impact mill. Biomass that is difficult to pulverize may be sieved in a timely manner and used as a fuel for generating hot gas for heating the gasification space.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, shapes, materials, relative arrangements, and the like of the products described in the present embodiment are not intended to limit the scope of the present invention to them unless otherwise specified, but are merely illustrative examples. Absent.
[0016]
(Example 1) FIG. 1 is a flow chart of a bioenergy utilizing system centered on a gasification reaction facility for generating a floating / externally heated high calorie gas of the present invention. The gasification reaction equipment 101 is provided with a reaction tube 306 (see FIGS. 2 and 3) described later. The reaction tube 306 receives the reaction water 115 and the biomass fine powder 112 and is configured to be heated by the biomass combustion high temperature gas 114 from outside. I have. The pulverizing equipment 102 has a performance capable of receiving the biomass raw material 111 and generating fine powder having an average particle size of 3 mm or less, preferably 1 mm or less, and a fine powder 112 having an average particle size of 3 mm or less and a coarse powder 113 having an average particle size exceeding 3 mm. Are separated and discharged. In this example, a crusher and an impact mill were used in combination. The hot gas generating furnace 103 receives the biomass coarse powder 113 and burns the biomass coarse powder 113 with a combustion support such as air to generate a high temperature biomass combustion high temperature gas 114. The dehydrator 104 has a cooling heat transfer surface inside, and has a structure capable of condensing and removing high-boiling substances such as moisture and sulfur compounds in the gas introduced into the tower. The gas tank 105 is a water-sealed tank and has a structure capable of storing the generated gas 116. The gas engine 106 has the ability to burn the generated gas 116 in this example and operate the generator.
[0017]
In FIG. 1, a biomass raw material 111 is supplied to a crushing facility 102 and divided into a fine powder 112 having an average particle size of 3 mm or less and a coarse powder 113 having an average particle size of more than 3 mm. 112 is introduced together with the reaction water 115 into a reaction tube 306 in the gasification reaction equipment 101. In the hot gas generating furnace 103, the biomass coarse powder 113 is burned at a combustion temperature of 900 to 1200 ° C., and the reaction tube 306 in the gasification reaction facility 101 is externally heated by the generated biomass burning high temperature gas 114, and the temperature in the tube is set to 800 Keep above ℃. The fine powder 112 introduced into the reaction tube 306 floats in the steam flow generated by the introduced reaction water 115 and gasifies almost instantaneously (0.2 seconds or less). The water-containing product gas 108 is introduced into the dehydrator 104 to remove water, sulfur (H 2 S), and chlorine (HCl), and then the product gas 116 is stored in the gas tank 105. Product gas 116 has about 20 MJ / m 3 calories and is suitable as a fuel for gas engines. When the biomass throughput of 1 ton / day (50 to 100 kg / h) was processed by this system and converted into electrical energy by a 30 kW generator, the overall energy efficiency could be 20% or more.
[0018]
(Example 2) FIG. 2 is a schematic diagram of an example of details of the gasification reaction equipment 101 and the primary gasification unit 302 of the present invention. In FIG. 2, the gasification reaction equipment 101 has a reaction tube 306 inside a heating chamber 307, and the heating chamber 307 has an inlet and an outlet for the biomass combustion high temperature gas 114. The reaction tube is a curved tube connecting U-shaped, inverted U-shaped, and U-shaped tubes, and has a first vertical portion, a second vertical portion, a third vertical portion, and a fourth vertical portion from the right side. The open end through which the reaction water 115 can be introduced from the upper part of the first vertical part at the right end, and the open end through which the biomass fine powder 112 can be introduced from the upper part of the intermediate vertical part connects the intermediate vertical part and the third vertical part. An open end for taking out the ash 117 generated by gasification from the bottom of the U-shaped pipe and an opening end for taking out the hydrated gas 118 generated by the gasification reaction from the fourth vertical portion on the left end are provided.
[0019]
The gasification reaction equipment 101 introduces the biomass combustion high-temperature gas 114 generated by a hot gas generating furnace (not shown) from the inlet of the heating chamber 307, heats the reaction tube 306 from the outside, and raises the internal temperature to 800 ° C. The temperature and the flow rate of the biomass combustion high-temperature gas 114 (external heating gas) are adjusted so as to maintain the above appropriate temperature. The reaction water 115 is heated by an external heating gas in the reaction water evaporating section 301 of the first vertical section to become steam, and the gas is introduced while floating the biomass fine powder 112 introduced from above in the primary gasification section 302 of the second vertical section. To make At this time, the input amounts of the reaction water 115 and the fine powder 112 are adjusted so that the molar ratio of steam / biomass becomes 0.4 or more. The gasified product gas then flows to a secondary gasification section 303 composed of a third vertical section and a fourth vertical section to decompose a small amount of by-product tar and soot. In this portion, the solid organic matter and carbon are all decomposed to form a gaseous substance, and the solid is only ash made of inorganic matter. Ash 117 is taken out from the ash take-out opening end. The generated gas 118 is still taken out from the opening end of the fourth vertical portion on the left end while still containing moisture and small amounts of H 2 S and HCl.
[0020]
As shown in the drawing, the primary gasification section 302 has a conical (reverse conical) current plate 307 having an opening 308 at the center near the lower portion of the reaction tube 306. The biomass fine powder 112 blown and injected from the upper part of the reaction tube 306 is gasified in a floating state. The primary gasification, ie, the gasification intended for the present invention, is performed in the primary gasification region 304, and the upper part of the third vertical portion passing through this region functions as the secondary gasification region 305, which has been described above. It plays a role similar to that of the secondary gasification unit 303.
[0021]
Example 3 FIG. 3 is a schematic diagram of another example of details of the gasification reaction equipment and the primary gasification section of the present invention. The entire configuration of the gasification reaction facility is the same as that of the second embodiment. The detailed configuration of the primary gasification section 401 is as shown in the figure. That is, in the details of the primary gasification unit 401 on the right side of FIG. 3, the dispersion tube 402 is inserted into the reaction tube 306. The dispersion pipe 402 is a cylindrical body having a curved surface extending from the fine powder feed pipe toward the bottom circumference of the bottom inverted conical, one end of which is internally hollow and closed with the reverse conical, and the bottom inverted conical. Have a plurality of ejection ports 405 on a curved surface extending toward the circumference of the bottom surface of.
[0022]
When the dispersion tube 402 is inserted into the reaction tube 306, the distance between the periphery of the reverse conical bottom surface of the dispersion tube 402 and the inner wall of the reaction tube 306 becomes the narrowest, and gas such as steam flows from the lower portion of the reaction tube 306. When it is distributed, it becomes the throat section 403, and the distance between the inner wall of the pipe and the outer wall of the dispersion pipe 402 gradually increases from here to the upper part, so that it becomes the diffuser section 404. Therefore, it is preferable that the plurality of ejection ports 405 be provided near the throat portion 403.
[0023]
Thus, when the biomass fine powder 112 is fed from the fine powder feed pipe of the dispersion pipe 402, the high-temperature steam generated by the evaporation of the reaction water 115 flows in from the lower part, and the speed becomes high in the throat section 403, and the inside of the dispersion pipe 402 is caused by the venturi effect. Of fine powder 112 is dispersed and diffused into the diffuser unit 404. The dispersed fine powder 112 is gasified almost instantaneously.
[0024]
(Example 4) FIG. 4 is a schematic diagram of a gasification reaction facility 101 having a multitubular gasification section of the present invention. In the figure, a multitubular reaction tube 501 is configured such that the curved tubes of the second or third embodiment are arranged in a heating chamber 307 in parallel in five rows in a vertical direction as shown in the AA ′ arrow on the right side of the figure. The five rows of headers 502, 503, 504, and 505 are connected to the biomass fine powder inlet, ash outlet, reaction water inlet, and product gas (non-dehydrated) outlet, respectively. As a result, the processing space capacity increases, and the capacity can be increased compactly.
[0025]
(Example 5) FIG. 5 is a graph showing a relationship between a temperature condition, a gas composition, and a calorific value of a gasification reaction for generating a floating / external heat high calorie gas of the present invention. Using the apparatus shown in FIG. 2, the floating / external heat type high calorific gasification test of the present invention is performed at various temperatures while the steam / biomass weight ratio is fixed at 2, and the composition of the produced gas is analyzed. The calorific value was measured to determine the material balance of the reaction. As a result, the resulting gas gave the gas composition shown in the bar graph, and when the calorific value was measured, it was the calorific value in the line graph.
[0026]
Obtaining the empirical formula for the gasification reaction from the material balance of the reaction obtained above,
C 1.3 H 2 O 0.9 + 0.4H 2 O
→ 0.8H 2 + 0.7CO + 0.3CH 4 + 0.3CO 2 +39.7 kcal / mol
It turned out to be.
[0027]
【The invention's effect】
As described in detail above, the present invention does not involve the generation of free carbon such as tar and soot, and the waste is mainly composed of hydrocarbons such as clean H 2 , CO, and CH 4 with only a small amount of ash. A floating / external heat type high calorie gas (for example, 20 MJ / NM 3 ) is obtained, and by combining with gas engine power generation, a system with high overall energy efficiency can be obtained.
[Brief description of the drawings]
FIG. 1 is a flow chart of a flow diagram of a bioenergy utilization system centering on a gasification reaction facility for generating a floating / external heat type high calorie gas of the present invention. FIG. 2 is a flow chart of a gasification reaction facility of the present invention. Schematic diagram of an example of details of the primary gasification section [FIG. 3] Schematic diagram of another example of the gasification reaction facility of the present invention and details of the primary gasification section [FIG. 4] Gasification reaction facility and multi-tube of the present invention FIG. 5 is a graph showing a relationship between a temperature condition, a gas composition, and a calorific value of a gasification reaction for generating a floating / external heat high calorie gas of the present invention.
[Explanation of symbols]
101 gasification reaction equipment 102 grinding equipment 103 hot gas generating furnace 104 dehydrator 105 gas tank 106 gas engine 111 biomass raw material 112 fine powder 113 coarse fraction 114 biomass combustion high temperature gas 115 reaction water 116 Generated gas 211 ... Steam or steam + a small amount of air 301 ... Reaction water evaporation section 302 ... Primary gasification section 303 ... Secondary gasification section 304 ... Primary gasification zone 305 ... Secondary gasification zone 306 ... Reaction tube 307 ... Heating chamber 401 Primary gasification unit 402 Dispersion tube 403 Throat unit 404 Diffuser unit 501 Multitubular reaction tube 502 Header 503 Header 504 Header 505 Header

Claims (6)

粉砕したバイオマスに、水蒸気を供給してガス化反応を生じせしめるガス化空間と該ガス化空間が隔壁を介して外部加熱と分離されており、該にガス化空間に積極的に酸素を供給することなく吸熱反応により水蒸気とバイオマスのガス化反応を生じせしめるバイオマスのガス化装置において、前記隔壁が内部にガス化空間を有し、外部加熱による内周側のガス化空間が管状体構造に形成され、前記ガス化空間が、供給するバイオマス粉体を、供給する水蒸気で流動化させる噴流床構造である事を特徴とするバイオマスのガス化装置。A gasification space for supplying steam to the pulverized biomass to cause a gasification reaction, and the gasification space is separated from external heating via a partition wall, and actively supplies oxygen to the gasification space. In a biomass gasifier that causes a gasification reaction between water vapor and biomass without an endothermic reaction, the partition has a gasification space inside, and a gasification space on the inner peripheral side by external heating is formed in a tubular structure. A biomass gasifier, wherein the gasification space has a spouted bed structure for fluidizing the supplied biomass powder with supplied steam. 粉砕したバイオマスに、水蒸気を供給してガス化反応を生じせしめるガス化空間と該ガス化空間が隔壁を介して外部加熱と分離されており、該にガス化空間に積極的に酸素を供給することなく吸熱反応により水蒸気とバイオマスのガス化反応を生じせしめるバイオマスのガス化装置において、前記隔壁が内部にガス化空間を有し、外部加熱による内周側のガス化空間が管状体構造に形成され、前記ガス化空間内で、水蒸気とバイオマスが向流若しくは水蒸気流れ方向と交差する方向に両者の流れ方向を設定するとともに、該接触域に絞り若しくは膨脹域(ディフューザ)が存在することを特徴とするバイオマスのガス化装置。A gasification space for supplying steam to the pulverized biomass to cause a gasification reaction, and the gasification space is separated from external heating via a partition wall, and actively supplies oxygen to the gasification space. In a biomass gasifier that causes a gasification reaction between water vapor and biomass without an endothermic reaction, the partition has a gasification space inside, and a gasification space on the inner peripheral side by external heating is formed in a tubular structure. In the gasification space, the flow direction of steam and biomass is set so as to be countercurrent or in a direction intersecting with the flow direction of steam, and a narrowing or expansion region (diffuser) is present in the contact region. Biomass gasifier. 粉砕したバイオマスに、水蒸気を供給してガス化反応を生じせしめるガス化空間と該ガス化空間が隔壁を介して外部加熱と分離されており、該にガス化空間に積極的に酸素を供給することなく吸熱反応により水蒸気とバイオマスのガス化反応を生じせしめるバイオマスのガス化装置において、高温ガスが流出入する加熱空間に、複数の自由端開口が外部に位置している曲管を挿入し、加熱空間に曝されている曲管内で反応水蒸発部と水蒸気とバイオマスのガス化反応を行うガス化部が位置していることを特徴とするバイオマスのガス化装置。A gasification space for supplying steam to the pulverized biomass to cause a gasification reaction, and the gasification space is separated from external heating via a partition wall, and actively supplies oxygen to the gasification space. In a biomass gasifier that causes a gasification reaction between water vapor and biomass by an endothermic reaction without inserting a curved tube in which a plurality of free end openings are located outside in a heating space into which hot gas flows in and out, A biomass gasifier, wherein a reaction water evaporator and a gasifier for performing a gasification reaction of steam and biomass are located in a curved tube exposed to a heating space. 前記曲管内の二次ガス化部通過直後の曲管をバイオマス供給側より分岐して、該分岐管を下向きから上向きに向けて曲管するとともに、前記上向き自由端に燃料ガス出口部、一方下向きから上向きの底部変向部に、灰ドレンを設けたことを特徴とする請求項3記載のバイオマスのガス化装置。The bent pipe immediately after passing through the secondary gasification section in the bent pipe is branched from the biomass supply side, and the branched pipe is bent from downward to upward, and the fuel gas outlet portion at the upward free end, one downward. The biomass gasifier according to claim 3, wherein an ash drain is provided in a bottom turning part upward from the bottom. 前記曲管が多管状に加熱空間に挿入されるとともに、該多管部の反応水側の自由端に前記多管部同士を連結するヘッダを設け、該ヘッダに充てんした反応水により実質的シールを行うことを特徴とする請求項3若しくは4記載のバイオマスのガス化装置。The bent tube is inserted into the heating space in a multi-tubular manner, and a header for connecting the multi-tube portions to each other is provided at a free end of the multi-tube portion on the side of the reaction water. The biomass gasifier according to claim 3 or 4, wherein: 前記曲管が多管状に加熱空間に挿入されるとともに、該多管部のバイオマス側の自由端に前記多管部同士を連結するヘッダを設け、該ヘッダに充てんしたバイオマスにより実質的シールを行うことを特徴とする請求項3若しくは4記載のバイオマスのガス化装置。The curved tube is inserted into the heating space in a multi-tubular form, and a header for connecting the multi-tube portions is provided at a free end of the multi-tube portion on the biomass side, and a substantial seal is provided by the biomass filled in the header. The biomass gasifier according to claim 3 or 4, wherein:
JP2002208963A 2002-07-17 2002-07-17 Biomass gasifier Withdrawn JP2004051717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002208963A JP2004051717A (en) 2002-07-17 2002-07-17 Biomass gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002208963A JP2004051717A (en) 2002-07-17 2002-07-17 Biomass gasifier

Publications (1)

Publication Number Publication Date
JP2004051717A true JP2004051717A (en) 2004-02-19

Family

ID=31932934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002208963A Withdrawn JP2004051717A (en) 2002-07-17 2002-07-17 Biomass gasifier

Country Status (1)

Country Link
JP (1) JP2004051717A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050727A1 (en) 2006-10-23 2008-05-02 Nagasaki Institute Of Applied Science Biomass gasification apparatus
JPWO2006077849A1 (en) * 2005-01-21 2008-08-07 株式会社ニコン Illumination optical device adjustment method, illumination optical device, exposure apparatus, and exposure method
JP2009007474A (en) * 2007-06-28 2009-01-15 Shimizu Corp Biomass gasifying apparatus and biomass gasifying method
JP2009007475A (en) * 2007-06-28 2009-01-15 Shimizu Corp Biomass gasification apparatus and biomass gasification method
JP2011506711A (en) * 2007-12-20 2011-03-03 エコループ ゲーエムベーハー Autothermal method for continuous gasification of carbon-rich materials
JP2012001441A (en) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd Method for producing ethanol and system for producing ethanol
WO2012176611A1 (en) * 2011-06-22 2012-12-27 学校法人長崎総合科学大学 Method for producing production gas and apparatus using same
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JPWO2006077849A1 (en) * 2005-01-21 2008-08-07 株式会社ニコン Illumination optical device adjustment method, illumination optical device, exposure apparatus, and exposure method
JP4986080B2 (en) * 2006-10-23 2012-07-25 学校法人長崎総合科学大学 Biomass gasifier
US8100992B2 (en) 2006-10-23 2012-01-24 Nagasaki Institute Of Applied Science Biomass gasification apparatus
WO2008050727A1 (en) 2006-10-23 2008-05-02 Nagasaki Institute Of Applied Science Biomass gasification apparatus
JPWO2008050727A1 (en) * 2006-10-23 2010-02-25 学校法人長崎総合科学大学 Biomass gasifier
JP2009007475A (en) * 2007-06-28 2009-01-15 Shimizu Corp Biomass gasification apparatus and biomass gasification method
JP2009007474A (en) * 2007-06-28 2009-01-15 Shimizu Corp Biomass gasifying apparatus and biomass gasifying method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP2011506711A (en) * 2007-12-20 2011-03-03 エコループ ゲーエムベーハー Autothermal method for continuous gasification of carbon-rich materials
JP2012001441A (en) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd Method for producing ethanol and system for producing ethanol
JP2013006914A (en) * 2011-06-22 2013-01-10 Nagasaki Institute Of Applied Science Method and apparatus for producing synthesis gas
WO2012176611A1 (en) * 2011-06-22 2012-12-27 学校法人長崎総合科学大学 Method for producing production gas and apparatus using same

Similar Documents

Publication Publication Date Title
JP5877237B2 (en) Method and apparatus for producing low tar synthesis gas from biomass
JP4986080B2 (en) Biomass gasifier
JP3933105B2 (en) Fluidized bed gasification system
JP5606624B2 (en) Low temperature biomass pyrolysis and high temperature biomass gasification method and apparatus
ES2312957T3 (en) PROCEDURE FOR THE PRODUCTION OF A SYNTHESIS GAS.
US9221681B2 (en) System and method for providing an integrated reactor
US20110035990A1 (en) Method and device for converting carbonaceous raw materials
JP4547244B2 (en) Organic gasifier
EP2799523A1 (en) Externally heated microwave plasma gasifier and synthesis gas production method
KR20070085039A (en) Process and apparatus for biomass gasification
RU2333929C1 (en) Method and device for hard fuel gasification
PL192012B1 (en) Apparatus for gasifying carbon-containing batch substances
KR101632147B1 (en) Power plant for generating electric power by biomass
KR101614644B1 (en) Gasification device
KR20120004979A (en) Two stage dry feed gasification system and process
JP2004051717A (en) Biomass gasifier
JP4227771B2 (en) Biomass gasification method
JP4665021B2 (en) Biomass gasification method
JP2004204106A (en) Gasifier of organic material
JP3559163B2 (en) Gasification method using biomass and fossil fuel
JP5527743B2 (en) Gasification apparatus, fuel generation system, gasification method, and fuel generation method
JP7291677B2 (en) Water gas generation system, biomass power generation system and biomass hydrogen supply system
CN106459788B (en) The gasifier and syngas cooler integrally combined
JP7118341B2 (en) Hydrogen production equipment
JP6590359B1 (en) Hydrogen production method using biomass as raw material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004