JP2004047760A - Light emitting diode and epitaxial wafer therefor - Google Patents

Light emitting diode and epitaxial wafer therefor Download PDF

Info

Publication number
JP2004047760A
JP2004047760A JP2002203672A JP2002203672A JP2004047760A JP 2004047760 A JP2004047760 A JP 2004047760A JP 2002203672 A JP2002203672 A JP 2002203672A JP 2002203672 A JP2002203672 A JP 2002203672A JP 2004047760 A JP2004047760 A JP 2004047760A
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting diode
electrode
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002203672A
Other languages
Japanese (ja)
Inventor
Manabu Kako
加古 学
Kenji Shibata
柴田 憲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2002203672A priority Critical patent/JP2004047760A/en
Publication of JP2004047760A publication Critical patent/JP2004047760A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an epitaxial wafer for high-luminant light-emitting diodes and a light emitting diode structure suitable for mass production by enabling easy formation of current blocking layers. <P>SOLUTION: A first conductivity-type cladding layer 6, an active layer 5, a second conductivity-type cladding layer 4, and a second conductivity-type current diffusing layer 2 are epitaxially grown in this order on a first conductivity-type substrate 8. A circular or near-circular surface-side electrode 1 is arranged cyclically on the surface of the second conductivity-type current diffusing layer 2, and a rear-side electrode 9 occupying the entire rear surface or a part of the rear surface of the first conductivity type substrate 8 is cyclically arranged. A second conductivity-type or insulator-type current blocking region 7 or 10 is arranged with its center in alignment with the center of the surface-side electrode 1 in between the substrate 8 and the rear-surface electrode 9, so that power currents spread as far as the neighborhood of the chip. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高輝度を得ることのできる発光ダイオード用エピタキシャルウェハ及び発光ダイオードの構造に関するものである。
【0002】
【従来の技術】
発光ダイオード(LED)は、その半導体の種類を選択することによりいろいろな色の光を発光することができることから、産業用や民生用の表示素子として広く用いられている。従来、高輝度のLEDとしては、AlGaAsの赤色LEDがあった。これに対し、赤色より短波長のLEDとしては、GaAsPとGaPのLEDがあったが、輝度の低いものしか得られなかった。最近、MOVPE法(有機金属気相成長法)によりAlGaInPやGaNの良質なエピタキシャル層の成長が可能となったことから、橙色より短波長側でも高輝度のLEDが開発され、販売されるようになってきた。
【0003】
図3に発光波長590nmのAlGaInP系発光ダイオードチップの典型的な断面構造を示す。
【0004】
図3に示すように、従来のAlGaInP系発光ダイオードは、n型GaAs基板28上に、アンドープAlGaInP活性層25を、セレン又はシリコンをドープしたn型AlGaInP下部クラッド層26と、亜鉛をドープしたp型AlGaInP上部クラッド層24とで挟んだダブルヘテロ構造の発光領域層(発光部)23を設け、この発光領域層23上に、亜鉛をドープしたp型AlGaInP電流分散層22(「ウインドウ層」と呼ばれる場合もある。)を積層し、p型電流分散層22の表面の一部(通常、表面中央)に円形の表面側電極21を設け、n型基板28の裏面全面に裏面側電極29を設けた構造となっている。
【0005】
この発光ダイオードチップの構造において、円形の表面側電極21から注入されたキャリアは、活性層25に注入され発光する。その際に、表面側電極21と活性層25の間に存在するエピタキシャル層の抵抗が高い場合には、キャリアが電極直下の部分の活性層に注入されるようになってしまう。すなわち、上部クラッド層24における電流の拡がりが小さく、電極21の直下のみが発光領域となる。そうすると、その部分で発光した光は、電極に遮られて、チップから出て来なくなり、結果として発光効率を高めることができない。
【0006】
そこで、図3に示した従来のLEDでは、電流分散層22として、活性層25及び上部クラッド層24よりもバンドギャップエネルギーが大きなGaAlAs層を採用し、これを上部クラッド層24上に設けている。これにより、発光面側の電極21から注入された電流は、活性層25へ到達する前に、発光面側の電流分散層22内で拡散されることになる。
【0007】
【発明が解決しようとする課題】
しかしながら、高輝度を得るために、電流分散層の膜厚を厚く成長させようとすると、LED用エピタキシャルウェハのコストが高くなるという問題がある。
【0008】
詳述するに、電流が活性層全面に均一に分散するようにするためには、表面側電極21と活性層25の間のエピタキシャル層の抵抗を低くするか、そのエピタキシャル層の膜厚を厚くして電流の拡散を広げることが必要である。しかし、AlGaInPのクラッド層またはウィンドウ層では、抵抗の低いエピタキシャル層が得られないことから、GaPやAlGaAsなどの他の半導体材料がウインドウ層(電流分散層22)として用いられてきた。かかる構造の場合、活性層25の電流を分散させることはできるが、それでも均一に分散させるためには、エピタキシャル層を厚く成長させる必要があり、コスト高の問題があった。また、電流分散するといっても、表面側電極21直下の電流密度が最も高く、その部分で発光した光を取り出すことができなかったため、効率低下の原因となっていた。
【0009】
そこで、電流分散層を薄くしたままで、電極直下の発光を抑止して高輝度を得る方法として、図4に示すように、電流分散層22内に電流阻止領域27(電流阻止部)を挿入する方法(特開平4−229665号公報)や、図5に示すように、エピタキシャル層と基板の間に電流阻止領域27を挿入する方法(特許第1950123号)が提案されている。
【0010】
しかし、これらの方法では電極直下での発光を抑止できるものの、電流阻止領域をプロセス加工することにより逆メサ部ができてしまったり、表面が酸化して、その後のエピタキシャル成長が難しくなるなどの問題があった。
【0011】
そこで、本発明の目的は、上記課題を解決し、電流阻止領域をより簡単に形成し、量産に適する高輝度の発光ダイオード用エピタキシャルウェハ及び発光ダイオードの構造を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明は、次のように構成したものである。
【0013】
請求項1の発明に係る発光ダイオード用エピタキシャルウェハは、第一導電型の基板上に、第一導電型クラッド層、活性層、第二導電型クラッド層、第二導電型電流分散層を順次エピタキシャル成長し、その表面側に円形又はそれに近い形状の表面側電極を、また裏面側に全面または部分電極から成る裏面側電極を、それぞれ周期的に配設した発光ダイオード用エピタキシャルウェハにおいて、上記基板と上記裏面側電極との間に、上記の表面側電極と中心を一致させた第二導電型の電流阻止領域を配設したことを特徴とする。
【0014】
請求項2の発明に係る発光ダイオード用エピタキシャルウェハは、第一導電型の基板上に、第一導電型クラッド層、活性層、第二導電型クラッド層、第二導電型電流分散層を順次エピタキシャル成長し、その表面側に円形又はそれに近い形状の表面側電極を、また裏面側に全面または部分電極から成る裏面側電極を、それぞれ周期的に配設した発光ダイオード用エピタキシャルウェハにおいて、上記基板と上記裏面側電極との間に、上記の表面電極と中心を一致させた絶縁性の電流阻止領域を配設したことを特徴とする。
【0015】
請求項3の発明は、請求項1又は2に記載の発光ダイオード用エピタキシャルウェハにおいて、上記基板がGaAsであり、発光部を構成する上記第一導電型クラッド層、活性層及び第二導電型クラッド層が、AlGaInPまたはGaInPから成ることを特徴とする。上記電流拡散層は例えばGaP又はAlGaAsから成ることができる。
【0016】
請求項4の発明に係る発光ダイオードは、請求項1〜3のいずれかに記載の発光ダイオード用エピタキシャルウェハを用いて製作したことを特徴とする。
【0017】
<発明の要点>
本発明の要点は、上記目的を達するために、基板とは異なる導電型の電流阻止領域(pn反転層)又は絶縁性の電流阻止領域(高抵抗層)を基板と裏面側電極との間に挿入し、それによってチップ周辺部まで電流が広がるようにして、発光ダイオードの輝度を向上させる構造としたことにある。基板とは異なる導電型の電流阻止領域の代表例はAlGaAs層であり、これは例えば液相エピタキシャル成長により簡単に設けることができる。また、絶縁性の電流阻止領域の代表例はSiO膜であり、これは例えばプラズマCVD法により形成し、そのSiO膜をフォトリソプロセス工程で選択エッチングすることにより簡単に設けることができる。よって量産に適する。
【0018】
【発明の実施の形態】
以下、本発明の実施形態を図示の実施例を中心に説明する。
【0019】
<実施例その1>
本発明の第一の実施例を説明するための発光ダイオード(LED)の構造を図1に示す。
【0020】
MOVPE法によりn型GaAs基板8上に、厚さが0.5μmでキャリア濃度が1×1018cm−3のn型AlGaInP下部クラッド層6、厚さが0.5μmのアンドープAlGaInP活性層5、厚さが0.5μmでキャリア濃度が5×1017cm−3のp型AlGaInP上部クラッド層4、厚さが5μmでキャリア濃度が2×1018cm−3のp型AlGaAs電流分散層2を順次成長した。
【0021】
これは、n型GaAs基板8上に、アンドープAlGaInP活性層5を、n型AlGaInP下部クラッド層6と、p型AlGaInP上部クラッド層4とで挟んだダブルヘテロ構造の発光領域層13(発光部)を設け、この発光領域層13上にp型AlGaAs電流分散層2を積層したAlGaInP系発光ダイオード構造となる。
【0022】
その後、裏面側に、基板8とは異なる導電型つまりpn反転層によるp型の電流阻止領域7を、表面側電極1と中心が一致するように周期的に形成した。すなわち、基板裏面側に液相エピタキシャル成長により、キャリア濃度が1×1018cm−3で、厚さが0.1μmのp型AlGaAs層を形成し、フォトリソプロセス工程により、厚さ0.1μmで直径がφ200μmのp型電流阻止領域7を周期的に形成した。
【0023】
このエピタキシャルウェハに金属電極を周期的に形成した。正確には、ウェハの表面側に、円形又はそれに近い形状の表面側電極1を周期的に配設すると共に、裏面側に全面または部分電極から成る裏面側電極9を周期的に配設した。
【0024】
かくして、基板8と裏面側電極9との間に、n型の基板8とは異なる導電型であるp型の電流阻止領域7を、表面側電極1と中心を一致させて周期的に配設した。
【0025】
かかる構造によれば、基板8と裏面側電極9との間に、部分的に、基板8とは異なる導電型の電流阻止領域7が挿入されているため、表面側電極1から裏面側電極9に向かう電流3は、図1中に示すように、この電流阻止領域7を避けるように流れることになり、それによってチップ周辺部まで電流が広がる結果、発光ダイオードの輝度が向上する。
【0026】
上記の金属電極を形成したエピタキシャルウェハから約300μm角のLEDチップを製作し、その特性評価を行った。本実施例のLEDチップは、電流阻止領域7を有しないLEDチップと比較して、発光出力が約2割アップの2.4mWとなり、Vfは変わらず1.9Vであった。
【0027】
<実施例その2>
本発明の第二の実施例を説明するための発光ダイオード(LED)の構造を図2に示す。
【0028】
MOVPE法によりn型GaAs基板8上に、厚さが0.5μmでキャリア濃度が1×1018cm−3のn型AlGaInP下部クラッド層6、厚さが0.5μmのアンドープAlGaInP活性層5、厚さが0.5μmでキャリア濃度が5×1017cm−3のp型AlGaInP上部クラッド層4、厚さが5μmでキャリア濃度が2×1018cm−3のp型AlGaAs電流分散層2を順次成長した。13は発光領域層の部分を示す。
【0029】
その後、裏面側に、表面側電極1と中心を一致させて絶縁性の電流阻止領域10を周期的に配設した。すなわち、基板裏面側に、プラズマCVD法により、厚さが0.1μmの絶縁性であるSiO膜の形成を行い、フォトリソプロセス工程により、厚さ0.1μmで直径がφ200μmの電流阻止領域10を周期的に形成した。
【0030】
このエピタキシャルウェハに金属電極を周期的に形成した。正確には、ウェハの表面側に、円形又はそれに近い形状の表面側電極1を周期的に配設すると共に、裏面側に全面または部分電極から成る裏面側電極9を周期的に配設した。
【0031】
かくして、基板8と裏面側電極9との間に、絶縁性の電流阻止領域10を、表面側電極1と中心を一致させて周期的に配設した。
【0032】
かかる構造によれば、基板8と裏面側電極9との間には、部分的に、絶縁性の電流阻止領域10が挿入されているため、表面側電極1から裏面側電極9に向かう電流3は、図2中に示すように、この電流阻止領域10を避けるように流れることになり、それによってチップ周辺部まで電流が広がる結果、発光ダイオードの輝度が向上する。
【0033】
上記のエピタキシャルウェハの表裏に金属電極を周期的に形成してから、約300μm角のLEDチップを製作し、特性評価を行った。本実施例のLEDチップは、電流阻止層を有しないLEDチップと比較して、発光出力が約2割アップの2.4mWとなり、Vfは変わらず1.9Vであった。
<他の実施例、変形例>
上記実施例1及び実施例2では、LEDエピタキシャル構造を作製してから、p型の電流阻止領域7であるAlGaAs層や、絶縁性の電流阻止領域10であるSiO膜を形成したが、AlGaAs層やSiO膜を形成してからLEDエピタキシャル構造を作製しても、同様の電流を阻止し拡散させる作用効果を得ることができる。
【0034】
上記実施例1では、p型の電流阻止領域7としてAlGaAs層を用いたが、他の材料系を用いても、基板とは導電性の異なる層であれば、同様の効果を得ることができる。
【0035】
上記実施例2では、絶縁性の電流阻止領域10としてSiO膜を用いたが、SiO膜に限られるものではなく、例えばSiN膜などの他の絶縁性の材料や、アンドープのAlGaAs層であっても、同様の効果を得ることができる。
【0036】
上記実施例1では、液相エピタキシャル成長によりp型の電流阻止領域7であるAlGaAs層を形成し、また上記実施例2では、プラズマCVD法により形成したSiO膜をフォトリソプロセス工程により選択エッチングすることにより、絶縁性の電流阻止領域10であるSiO膜を形成したが、これら以外の方法によって作製することもでき、これにより得られた電流阻止領域でも同様の効果を得ることができる。例えば、上記実施例1では、基板裏面側へのp型AlGaAs層を液相エピタキシャル成長により作製したが、イオンプランテーションなどの方法により、基板中に基板とは異なる導電性を示すドーパントを注入しても同様の効果が得られる。
【0037】
上記実施例の場合、電流阻止領域7又は10を裏面側電極9の厚み内に位置させているが、裏面側電極の基板側面上に位置させることもできる。
【0038】
【発明の効果】
以上説明したように、本発明による発光ダイオード用エピタキシャルウェハ及び発光ダイオードは、基板とは異なる導電型又は絶縁性の電流阻止領域を、基板と裏面側電極との間に挿入し、それによってチップ周辺部まで電流が広がるようにして、発光ダイオードの輝度を向上させたものである。
【0039】
従って、本発明の発光ダイオードによれば、従来のLEDエピタキシャル層内に電流阻止領域を設けた構造の発光ダイオードに比べ、以下の効果が得られる。
【0040】
電流阻止領域は、量産性の高い液相エピタキシャル成長やプラズマCVD法などによる成長が可能であるので、従来のLED構造と比較して、LED用エピタキシャルウエハ及びLEDの製造コストを大幅に下げることができる。
【0041】
また、基板裏面側に電流阻止領域を形成するため、従来のLED構造と比較して、容易に表面モホロジーが良いLED用エピタキシャルウエハを作製することができる。
【図面の簡単な説明】
【図1】本発明の実施例1に係る発光ダイオードの構造を示す断面図である。
【図2】本発明の実施例2に係る発光ダイオードの構造を示す断面図である。
【図3】従来の発光ダイオードチップの外観図である。
【図4】従来の発光ダイオードの構造を示す断面図である。
【図5】従来の発光ダイオードの他の構造を示す断面図である。
【符号の説明】
1 表面側電極
2 p型電流分散層
4 p型AlGaInP上部クラッド層
5 アンドープAlGaInP活性層
6 n型AlGaInP下部クラッド層
7 p型の電流阻止領域
8 n型GaAs基板
9 裏面側電極
10 絶縁性の電流阻止領域
13 発光領域層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light-emitting diode epitaxial wafer and a structure of a light-emitting diode capable of obtaining high luminance.
[0002]
[Prior art]
Light emitting diodes (LEDs) are widely used as industrial or consumer display elements because they can emit light of various colors by selecting the type of semiconductor. Conventionally, red LEDs of AlGaAs have been used as high-brightness LEDs. On the other hand, there were GaAsP and GaP LEDs as LEDs having a shorter wavelength than red, but only LEDs with low luminance were obtained. Recently, high-quality epitaxial layers of AlGaInP and GaN can be grown by MOVPE (organic metal vapor phase epitaxy). It has become.
[0003]
FIG. 3 shows a typical sectional structure of an AlGaInP-based light-emitting diode chip having a light emission wavelength of 590 nm.
[0004]
As shown in FIG. 3, in the conventional AlGaInP-based light emitting diode, an undoped AlGaInP active layer 25, an n-type AlGaInP lower cladding layer 26 doped with selenium or silicon, and a zinc-doped p-type A light emitting region layer (light emitting portion) 23 having a double hetero structure sandwiched between an upper cladding layer 24 of the AlGaInP type and a p-type AlGaInP current spreading layer 22 doped with zinc (a “window layer”) is formed on the light emitting region layer 23. ), A circular surface-side electrode 21 is provided on a part of the surface of the p-type current dispersion layer 22 (usually at the center of the surface), and a back-side electrode 29 is provided on the entire back surface of the n-type substrate 28. It has a structure provided.
[0005]
In this light emitting diode chip structure, the carriers injected from the circular surface side electrode 21 are injected into the active layer 25 to emit light. At this time, if the resistance of the epitaxial layer existing between the surface-side electrode 21 and the active layer 25 is high, carriers will be injected into the active layer in a portion directly below the electrode. That is, the spread of the current in the upper cladding layer 24 is small, and only the area directly below the electrode 21 is the light emitting area. Then, the light emitted at that portion is blocked by the electrodes and does not come out of the chip, and as a result, the luminous efficiency cannot be increased.
[0006]
Therefore, in the conventional LED shown in FIG. 3, a GaAlAs layer having a band gap energy larger than that of the active layer 25 and the upper cladding layer 24 is adopted as the current dispersion layer 22 and provided on the upper cladding layer 24. . Thereby, the current injected from the electrode 21 on the light emitting surface side is diffused in the current distribution layer 22 on the light emitting surface side before reaching the active layer 25.
[0007]
[Problems to be solved by the invention]
However, if an attempt is made to increase the thickness of the current dispersion layer in order to obtain high luminance, there is a problem that the cost of the LED epitaxial wafer increases.
[0008]
More specifically, in order to distribute the current uniformly over the entire surface of the active layer, the resistance of the epitaxial layer between the surface-side electrode 21 and the active layer 25 is reduced or the thickness of the epitaxial layer is increased. It is necessary to spread the current spreading. However, since an AlGaInP cladding layer or a window layer cannot provide an epitaxial layer with low resistance, another semiconductor material such as GaP or AlGaAs has been used as the window layer (current distribution layer 22). In the case of such a structure, although the current of the active layer 25 can be dispersed, it is still necessary to grow the epitaxial layer thickly in order to uniformly distribute the current. Even if the current is dispersed, the current density immediately below the surface-side electrode 21 is the highest, and the light emitted at that portion cannot be taken out, which causes a reduction in efficiency.
[0009]
Therefore, as a method of obtaining high luminance by suppressing light emission immediately below the electrodes while keeping the current spreading layer thin, a current blocking region 27 (current blocking portion) is inserted in the current spreading layer 22 as shown in FIG. (Japanese Patent Laid-Open No. Hei 4-229665) and a method of inserting a current blocking region 27 between an epitaxial layer and a substrate as shown in FIG. 5 (Japanese Patent No. 1950123).
[0010]
However, although these methods can suppress light emission immediately below the electrodes, there are problems such as the formation of a reverse mesa portion by processing the current blocking region and the oxidation of the surface, which makes subsequent epitaxial growth difficult. there were.
[0011]
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, to provide a structure of a light-emitting diode epitaxial wafer and a light-emitting diode having a high luminance suitable for mass production, in which a current blocking region is formed more easily.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0013]
The epitaxial wafer for a light-emitting diode according to the first aspect of the present invention comprises a first-conductivity-type substrate, a first-conductivity-type clad layer, an active layer, a second-conductivity-type clad layer, and a second-conductivity-type current-spreading layer, which are sequentially epitaxially grown on a first-conductivity-type substrate. In a light-emitting diode epitaxial wafer in which a circular or nearly circular front-side electrode is formed on the front side, and a back-side electrode made of a whole or partial electrode is periodically disposed on the back side, A current blocking region of the second conductivity type having a center aligned with the front electrode is disposed between the back electrode and the back electrode.
[0014]
In the epitaxial wafer for a light emitting diode according to the second aspect of the present invention, a first conductivity type clad layer, an active layer, a second conductivity type clad layer, and a second conductivity type current spreading layer are sequentially epitaxially grown on a first conductivity type substrate. In a light-emitting diode epitaxial wafer in which a circular or nearly circular front-side electrode is formed on the front side, and a back-side electrode made of a whole or partial electrode is periodically disposed on the back side, An insulating current blocking region having the same center as that of the front electrode is disposed between the back electrode and the back electrode.
[0015]
According to a third aspect of the present invention, in the epitaxial wafer for a light emitting diode according to the first or second aspect, the substrate is GaAs, and the first conductive type clad layer, the active layer, and the second conductive type clad forming a light emitting portion. The layer is made of AlGaInP or GaInP. The current spreading layer can be made of, for example, GaP or AlGaAs.
[0016]
A light-emitting diode according to a fourth aspect of the present invention is manufactured using the light-emitting diode epitaxial wafer according to any one of the first to third aspects.
[0017]
<The gist of the invention>
The gist of the present invention is that, in order to achieve the above object, a current blocking region (pn inversion layer) or an insulating current blocking region (high resistance layer) of a conductivity type different from that of the substrate is provided between the substrate and the back side electrode. The structure is such that the current is spread to the periphery of the chip by the insertion, thereby improving the brightness of the light emitting diode. A typical example of a current blocking region of a conductivity type different from that of the substrate is an AlGaAs layer, which can be easily provided by, for example, liquid phase epitaxial growth. A typical example of the insulating current blocking region is an SiO 2 film, which can be easily formed by, for example, forming the film by a plasma CVD method and selectively etching the SiO 2 film in a photolithography process. Therefore, it is suitable for mass production.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to examples shown in the drawings.
[0019]
<Example 1>
FIG. 1 shows a structure of a light emitting diode (LED) for explaining a first embodiment of the present invention.
[0020]
An n-type AlGaInP lower cladding layer 6 having a thickness of 0.5 μm and a carrier concentration of 1 × 10 18 cm −3 , an undoped AlGaInP active layer 5 having a thickness of 0.5 μm on an n-type GaAs substrate 8 by MOVPE; A p-type AlGaInP upper cladding layer 4 having a thickness of 0.5 μm and a carrier concentration of 5 × 10 17 cm −3 , and a p-type AlGaAs current dispersion layer 2 having a thickness of 5 μm and a carrier concentration of 2 × 10 18 cm −3. It grew sequentially.
[0021]
This is because a light emitting region layer 13 (light emitting portion) having a double hetero structure in which an undoped AlGaInP active layer 5 is sandwiched between an n-type AlGaInP lower cladding layer 6 and a p-type AlGaInP upper cladding layer 4 on an n-type GaAs substrate 8. And an AlGaInP-based light emitting diode structure in which the p-type AlGaAs current spreading layer 2 is stacked on the light emitting region layer 13.
[0022]
Thereafter, a p-type current blocking region 7 of a conductivity type different from that of the substrate 8, that is, a p-type inversion layer made of a pn inversion layer was periodically formed on the back surface so that the center of the p-type current blocking region 7 coincided with the center of the front surface electrode 1. That is, a p-type AlGaAs layer having a carrier concentration of 1 × 10 18 cm −3 and a thickness of 0.1 μm is formed on the back surface of the substrate by a liquid phase epitaxial growth. Formed the p-type current blocking region 7 having a diameter of 200 μm periodically.
[0023]
Metal electrodes were periodically formed on this epitaxial wafer. To be more precise, the front surface electrode 1 having a circular shape or a shape close thereto is periodically arranged on the front surface side of the wafer, and the back surface electrode 9 composed of the entire surface or a partial electrode is periodically arranged on the back surface side.
[0024]
Thus, a p-type current blocking region 7 of a conductivity type different from that of the n-type substrate 8 is periodically disposed between the substrate 8 and the back surface electrode 9 so that the center of the p-type current blocking region 7 coincides with the center of the front surface electrode 1. did.
[0025]
According to this structure, the current blocking region 7 of a conductivity type different from that of the substrate 8 is partially inserted between the substrate 8 and the back surface electrode 9, so that the surface side electrode 1 to the back surface electrode 9 As shown in FIG. 1, the current 3 flows so as to avoid the current blocking region 7, thereby spreading the current to the periphery of the chip, thereby improving the brightness of the light emitting diode.
[0026]
LED chips of about 300 μm square were manufactured from the epitaxial wafer on which the metal electrodes were formed, and their characteristics were evaluated. The LED chip of this example had an emission output of 2.4 mW, which was about 20% higher than that of the LED chip having no current blocking region 7, and Vf was 1.9 V without change.
[0027]
<Example 2>
FIG. 2 shows the structure of a light emitting diode (LED) for explaining a second embodiment of the present invention.
[0028]
An n-type AlGaInP lower cladding layer 6 having a thickness of 0.5 μm and a carrier concentration of 1 × 10 18 cm −3 , an undoped AlGaInP active layer 5 having a thickness of 0.5 μm on an n-type GaAs substrate 8 by MOVPE; A p-type AlGaInP upper cladding layer 4 having a thickness of 0.5 μm and a carrier concentration of 5 × 10 17 cm −3 , and a p-type AlGaAs current dispersion layer 2 having a thickness of 5 μm and a carrier concentration of 2 × 10 18 cm −3. It grew sequentially. Reference numeral 13 denotes a light emitting region layer.
[0029]
Thereafter, an insulating current blocking region 10 was periodically arranged on the back surface so that the center of the electrode 1 coincided with the center of the front electrode 1. That is, an insulating SiO 2 film having a thickness of 0.1 μm is formed on the back surface of the substrate by a plasma CVD method, and a current blocking region 10 having a diameter of 200 μm and a thickness of 0.1 μm is formed by a photolithography process. Was formed periodically.
[0030]
Metal electrodes were periodically formed on this epitaxial wafer. To be more precise, the front surface electrode 1 having a circular shape or a shape close thereto is periodically arranged on the front surface side of the wafer, and the back surface electrode 9 composed of the entire surface or a partial electrode is periodically arranged on the back surface side.
[0031]
Thus, the insulating current blocking region 10 was periodically arranged between the substrate 8 and the back surface electrode 9 so that the center of the insulating current blocking region 10 coincided with the center of the front surface electrode 1.
[0032]
According to this structure, since the insulating current blocking region 10 is partially inserted between the substrate 8 and the back surface electrode 9, the current 3 flowing from the front surface electrode 1 to the back surface electrode 9 is reduced. As shown in FIG. 2, the current flows so as to avoid the current blocking region 10, whereby the current spreads to the periphery of the chip, thereby improving the brightness of the light emitting diode.
[0033]
After metal electrodes were periodically formed on the front and back of the epitaxial wafer, LED chips of about 300 μm square were manufactured and evaluated for characteristics. The LED chip of this example had an emission output of 2.4 mW, about 20% higher than that of the LED chip having no current blocking layer, and Vf was 1.9 V without change.
<Other Embodiments and Modifications>
In the first and second embodiments, after forming the LED epitaxial structure, the AlGaAs layer as the p-type current blocking region 7 and the SiO 2 film as the insulating current blocking region 10 were formed. Even if the LED epitaxial structure is manufactured after forming the layer or the SiO 2 film, the same effect of blocking and diffusing the current can be obtained.
[0034]
In the first embodiment, the AlGaAs layer is used as the p-type current blocking region 7, but the same effect can be obtained even if another material is used as long as the layer has conductivity different from that of the substrate. .
[0035]
In the second embodiment, the SiO 2 film is used as the insulating current blocking region 10. However, the present invention is not limited to the SiO 2 film. For example, another insulating material such as a SiN film or an undoped AlGaAs layer may be used. Even so, the same effect can be obtained.
[0036]
In the first embodiment, an AlGaAs layer serving as a p-type current blocking region 7 is formed by liquid phase epitaxial growth. In the second embodiment, an SiO 2 film formed by a plasma CVD method is selectively etched by a photolithography process. Thus, the SiO 2 film serving as the insulating current blocking region 10 was formed, but it can also be manufactured by other methods, and the same effect can be obtained in the current blocking region obtained thereby. For example, in Example 1 described above, the p-type AlGaAs layer on the rear surface side of the substrate was formed by liquid phase epitaxial growth. However, a dopant having conductivity different from that of the substrate may be implanted into the substrate by a method such as ion plantation. Similar effects can be obtained.
[0037]
In the case of the above embodiment, the current blocking region 7 or 10 is located within the thickness of the back-side electrode 9, but may be located on the substrate side surface of the back-side electrode.
[0038]
【The invention's effect】
As described above, the epitaxial wafer for a light emitting diode and the light emitting diode according to the present invention include a current blocking region having a conductivity type different from that of the substrate or an insulating current blocking region inserted between the substrate and the back surface side electrode, thereby forming a chip periphery. The brightness of the light emitting diode is improved by spreading the current to the portion.
[0039]
Therefore, according to the light emitting diode of the present invention, the following effects can be obtained as compared with a conventional light emitting diode having a structure in which a current blocking region is provided in an LED epitaxial layer.
[0040]
Since the current blocking region can be grown by liquid phase epitaxial growth or plasma CVD with high productivity, the manufacturing cost of the LED epitaxial wafer and the LED can be significantly reduced as compared with the conventional LED structure. .
[0041]
Further, since the current blocking region is formed on the back surface side of the substrate, an epitaxial wafer for LED having good surface morphology can be easily manufactured as compared with the conventional LED structure.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a structure of a light emitting diode according to a first embodiment of the present invention.
FIG. 2 is a sectional view illustrating a structure of a light emitting diode according to a second embodiment of the present invention.
FIG. 3 is an external view of a conventional light emitting diode chip.
FIG. 4 is a cross-sectional view illustrating a structure of a conventional light emitting diode.
FIG. 5 is a sectional view showing another structure of a conventional light emitting diode.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 front-side electrode 2 p-type current dispersion layer 4 p-type AlGaInP upper cladding layer 5 undoped AlGaInP active layer 6 n-type AlGaInP lower cladding layer 7 p-type current blocking region 8 n-type GaAs substrate 9 backside electrode 10 insulating current Blocking region 13 Light emitting region layer

Claims (4)

第一導電型の基板上に、第一導電型クラッド層、活性層、第二導電型クラッド層、第二導電型電流分散層を順次エピタキシャル成長し、その表面側に円形又はそれに近い形状の表面側電極を、また裏面側に全面または部分電極から成る裏面側電極を、それぞれ周期的に配設した発光ダイオード用エピタキシャルウェハにおいて、
上記基板と上記裏面側電極との間に、上記の表面側電極と中心を一致させた第二導電型の電流阻止領域を配設したことを特徴とする発光ダイオード用エピタキシャルウェハ。
On the substrate of the first conductivity type, the first conductivity type clad layer, the active layer, the second conductivity type clad layer, the second conductivity type current dispersion layer is epitaxially grown sequentially, and the surface side of the surface side of a circle or a shape close to it is formed. In the epitaxial wafer for the light emitting diode, the electrode, and the back surface side electrode consisting of the entire surface or the partial electrode on the back side, respectively, are arranged periodically.
An epitaxial wafer for a light emitting diode, wherein a current blocking region of the second conductivity type having a center aligned with the front electrode is disposed between the substrate and the rear electrode.
第一導電型の基板上に、第一導電型クラッド層、活性層、第二導電型クラッド層、第二導電型電流分散層を順次エピタキシャル成長し、その表面側に円形又はそれに近い形状の表面側電極を、また裏面側に全面または部分電極から成る裏面側電極を、それぞれ周期的に配設した発光ダイオード用エピタキシャルウェハにおいて、
上記基板と上記裏面側電極との間に、上記の表面電極と中心を一致させた絶縁性の電流阻止領域を配設したことを特徴とする発光ダイオード用エピタキシャルウェハ。
On the substrate of the first conductivity type, the first conductivity type clad layer, the active layer, the second conductivity type clad layer, the second conductivity type current dispersion layer is epitaxially grown sequentially, and the surface side of the surface side of a circle or a shape close to it is formed. In the epitaxial wafer for the light emitting diode, the electrode, and the back surface side electrode consisting of the entire surface or the partial electrode on the back side, respectively, are arranged periodically.
An epitaxial wafer for a light-emitting diode, wherein an insulating current blocking region having a center aligned with the front electrode is disposed between the substrate and the rear electrode.
請求項1又は2に記載の発光ダイオード用エピタキシャルウェハにおいて、
上記基板がGaAsであり、発光部を構成する上記第一導電型クラッド層、活性層及び第二導電型クラッド層が、AlGaInPまたはGaInPから成ることを特徴とする発光ダイオード用エピタキシャルウェハ。
The epitaxial wafer for a light emitting diode according to claim 1 or 2,
An epitaxial wafer for a light emitting diode, wherein the substrate is GaAs, and the first conductivity type clad layer, the active layer, and the second conductivity type clad layer constituting the light emitting portion are made of AlGaInP or GaInP.
請求項1〜3のいずれかに記載の発光ダイオード用エピタキシャルウェハを用いて製作したことを特徴とする発光ダイオード。A light emitting diode manufactured using the light emitting diode epitaxial wafer according to claim 1.
JP2002203672A 2002-07-12 2002-07-12 Light emitting diode and epitaxial wafer therefor Withdrawn JP2004047760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203672A JP2004047760A (en) 2002-07-12 2002-07-12 Light emitting diode and epitaxial wafer therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203672A JP2004047760A (en) 2002-07-12 2002-07-12 Light emitting diode and epitaxial wafer therefor

Publications (1)

Publication Number Publication Date
JP2004047760A true JP2004047760A (en) 2004-02-12

Family

ID=31709480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203672A Withdrawn JP2004047760A (en) 2002-07-12 2002-07-12 Light emitting diode and epitaxial wafer therefor

Country Status (1)

Country Link
JP (1) JP2004047760A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088739A1 (en) * 2004-03-15 2005-09-22 Showa Denko K.K. Compound semiconductor light-emitting diode
WO2006080958A1 (en) * 2005-01-24 2006-08-03 Cree, Inc. Led with curent confinement structure and surface roughening
JP2007173530A (en) * 2005-12-22 2007-07-05 Hitachi Cable Ltd Semiconductor light-emitting device
KR100867529B1 (en) * 2006-11-14 2008-11-10 삼성전기주식회사 Vertical light emitting device
US7737459B2 (en) 2004-09-22 2010-06-15 Cree, Inc. High output group III nitride light emitting diodes
KR101024330B1 (en) * 2004-09-22 2011-03-23 크리 인코포레이티드 High efficiency group iii nitride led with lenticular surface
JP2011166139A (en) * 2010-02-09 2011-08-25 Shogen Koden Kofun Yugenkoshi Optoelectronic device, and manufacturing method thereof
JP2011187872A (en) * 2010-03-11 2011-09-22 Toshiba Corp Semiconductor light-emitting element
US8163577B2 (en) 2004-06-30 2012-04-24 Cree, Inc. Methods of forming light emitting devices having current reducing structures
US8288786B2 (en) 2008-11-24 2012-10-16 Lg Innotek Co., Ltd. Light emitting device and method for manufacturing the same
CN103296156A (en) * 2013-01-09 2013-09-11 长春理工大学 Novel ultraviolet light-emitting diode structure
JP2013258208A (en) * 2012-06-11 2013-12-26 Toshiba Corp Semiconductor light-emitting element
CN108538980A (en) * 2018-06-25 2018-09-14 山东浪潮华光光电子股份有限公司 A kind of LED chip and preparation method of back side current barrier layer
CN112289902A (en) * 2020-10-29 2021-01-29 錼创显示科技股份有限公司 Micro light-emitting diode
US11949043B2 (en) 2020-10-29 2024-04-02 PlayNitride Display Co., Ltd. Micro light-emitting diode

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7732830B2 (en) 2004-03-15 2010-06-08 Showa Denko K.K. Compound semiconductor light-emitting diode
WO2005088739A1 (en) * 2004-03-15 2005-09-22 Showa Denko K.K. Compound semiconductor light-emitting diode
KR100818457B1 (en) * 2004-03-15 2008-04-02 쇼와 덴코 가부시키가이샤 Compound semiconductor light-emitting diode
US8704240B2 (en) 2004-06-30 2014-04-22 Cree, Inc. Light emitting devices having current reducing structures
US8163577B2 (en) 2004-06-30 2012-04-24 Cree, Inc. Methods of forming light emitting devices having current reducing structures
US8692267B2 (en) 2004-09-22 2014-04-08 Cree, Inc. High efficiency Group III nitride LED with lenticular surface
US9905731B2 (en) 2004-09-22 2018-02-27 Cree, Inc. High output group III nitride light emitting diodes
US7737459B2 (en) 2004-09-22 2010-06-15 Cree, Inc. High output group III nitride light emitting diodes
US8183588B2 (en) 2004-09-22 2012-05-22 Cree, Inc. High efficiency group III nitride LED with lenticular surface
KR101024330B1 (en) * 2004-09-22 2011-03-23 크리 인코포레이티드 High efficiency group iii nitride led with lenticular surface
US8174037B2 (en) 2004-09-22 2012-05-08 Cree, Inc. High efficiency group III nitride LED with lenticular surface
US8154039B2 (en) 2004-09-22 2012-04-10 Cree, Inc. High efficiency group III nitride LED with lenticular surface
US8878209B2 (en) 2004-09-22 2014-11-04 Cree, Inc. High efficiency group III nitride LED with lenticular surface
JP2011160007A (en) * 2005-01-24 2011-08-18 Cree Inc Led with current confinement structure and surface roughening
US7335920B2 (en) 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
EP2267803A3 (en) * 2005-01-24 2011-02-23 Cree, Inc. LED with current confinement structure and surface roughening
US8772792B2 (en) 2005-01-24 2014-07-08 Cree, Inc. LED with surface roughening
WO2006080958A1 (en) * 2005-01-24 2006-08-03 Cree, Inc. Led with curent confinement structure and surface roughening
JP2007173530A (en) * 2005-12-22 2007-07-05 Hitachi Cable Ltd Semiconductor light-emitting device
JP4655920B2 (en) * 2005-12-22 2011-03-23 日立電線株式会社 Semiconductor light emitting device
KR100867529B1 (en) * 2006-11-14 2008-11-10 삼성전기주식회사 Vertical light emitting device
US8288786B2 (en) 2008-11-24 2012-10-16 Lg Innotek Co., Ltd. Light emitting device and method for manufacturing the same
US8569784B2 (en) 2008-11-24 2013-10-29 Lg Innotek Co., Ltd. Light emitting device and method for manufacturing the same
US20130009198A1 (en) * 2008-11-24 2013-01-10 Sung Min Hwang Light emitting device and method for manufacturing the same
JP2011166139A (en) * 2010-02-09 2011-08-25 Shogen Koden Kofun Yugenkoshi Optoelectronic device, and manufacturing method thereof
US8421085B2 (en) 2010-03-11 2013-04-16 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
JP2011187872A (en) * 2010-03-11 2011-09-22 Toshiba Corp Semiconductor light-emitting element
JP2013258208A (en) * 2012-06-11 2013-12-26 Toshiba Corp Semiconductor light-emitting element
CN103296156A (en) * 2013-01-09 2013-09-11 长春理工大学 Novel ultraviolet light-emitting diode structure
CN108538980A (en) * 2018-06-25 2018-09-14 山东浪潮华光光电子股份有限公司 A kind of LED chip and preparation method of back side current barrier layer
CN112289902A (en) * 2020-10-29 2021-01-29 錼创显示科技股份有限公司 Micro light-emitting diode
US11949043B2 (en) 2020-10-29 2024-04-02 PlayNitride Display Co., Ltd. Micro light-emitting diode

Similar Documents

Publication Publication Date Title
JP4135550B2 (en) Semiconductor light emitting device
KR19990037429A (en) Light emitting diode device and manufacturing method thereof
JP2004047760A (en) Light emitting diode and epitaxial wafer therefor
TW201145575A (en) Method of fabricating a vertical light emitting diode (LED)
JP2004266258A (en) Semiconductor light emitting device
JP2004064080A (en) Group iii nitride light emitting device having p type active layer
JP2012129281A (en) Light-emitting device
KR102135836B1 (en) Method of forming a P-type layer for a light emitting device
JP2001148511A (en) Semiconductor light-emitting diode
JP2005150664A (en) Light-emitting element and its manufacturing method
JP3934730B2 (en) Semiconductor light emitting device
JP4569858B2 (en) Method for manufacturing light emitting device
JP2003046119A (en) Light-emitting diode and method for manufacturing the same
JP2004186268A (en) Light emitting element
JP3674412B2 (en) AlGaInP light emitting diode and method for manufacturing the same
WO2005038936A1 (en) Light-emitting device and method for manufacturing same
JP2002151733A (en) Light emitting diode and method of manufacturing the same
JPH0682862B2 (en) Light emitting diode
JP2950316B2 (en) Gallium nitride based compound semiconductor light emitting device and method of manufacturing the same
KR100608919B1 (en) Light-emitting device and method of manufacturing the same
JPH07312445A (en) Iii group nitride semiconductor light emitting element
JP2005322945A (en) Semiconductor light-emitting device
KR20030066957A (en) Method for manufacturing a light emitting device made from Ⅲ-Ⅴgroup chemical compound semiconductor
JP3723314B2 (en) Semiconductor light emitting device
JP2002344017A (en) Semiconductor light-emitting element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051004