JP2004045123A - Element analysis method and element analysis device - Google Patents

Element analysis method and element analysis device Download PDF

Info

Publication number
JP2004045123A
JP2004045123A JP2002200945A JP2002200945A JP2004045123A JP 2004045123 A JP2004045123 A JP 2004045123A JP 2002200945 A JP2002200945 A JP 2002200945A JP 2002200945 A JP2002200945 A JP 2002200945A JP 2004045123 A JP2004045123 A JP 2004045123A
Authority
JP
Japan
Prior art keywords
gas
hydride
reaction
liquid separation
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002200945A
Other languages
Japanese (ja)
Other versions
JP4095360B2 (en
Inventor
Yasushi Kawashima
川島 康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002200945A priority Critical patent/JP4095360B2/en
Publication of JP2004045123A publication Critical patent/JP2004045123A/en
Application granted granted Critical
Publication of JP4095360B2 publication Critical patent/JP4095360B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an element analysis method and an element analysis device capable of suppressing the generation of hydrogen in a gas-liquid separating tube and preventing the intermixture of hydrogen in leading a hydride into the analysis device. <P>SOLUTION: This element analysis device 10 is provided with a hydride generator 17 having a reaction part 7 generating the hydride from an analysis object element in a sample solution 1 by the reaction of an acid solution 2 and a hydrogenating agent 3, and the gas-liquid separating tube 8 for leading in the hydride and a reaction residual solution 12 from the reaction part 7 and separating the hydride. The gas-liquid separating tube 8 has a liquid feed pump 11 for supplying a hydrogen generation inhibitor 13. Water, a basic compound, a basic solution, or the like can be selected as the hydrogen generation inhibitor 13. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水素化物発生装置を用いる元素分析方法及び水素化物発生装置を備えた元素分析装置に関する。
【0002】
【従来の技術】
ICP発光分析装置等の元素分析装置では、試料溶液中の砒素(As)等を高感度に測定するため、分析対象元素を水素と反応させて、水素化物とする場合がある。
【0003】
分析対象元素を水素化物とする方法として、水素化ほう素ナトリウム溶液などの水素化剤と塩酸などの酸液との化学反応を利用するものがある。この方法によれば、水素化物を生成させるための水素を連続的に発生できる。
【0004】
実公昭62−37161号公報には、水素化物発生反応を生じさせる反応部とは別に、水素化物と反応残渣液とを分離する気液分離管を設けた水素化物発生装置が記載されている。
【0005】
また、実開平6−7055号公報には、反応部とは別に設けた気液分離槽中で反応残渣液を送液ポンプで強制排出するICP発光分光分析装置が記載されている。
【0006】
【発明が解決しようとする課題】
しかし、水素化剤を用いて分析対象元素を水素化物とする場合、反応残渣液中の余剰の水素化剤と酸液との反応により、水素が発生し続け、水素化物に混入してしまう。この水素は、水素化物とともに分析装置へ導入され、水素化物の導入率の変動や、プラズマ、フレーム又は加熱セルなどの温度の変動を引き起こす。このような水素化物の導入率や温度の変動により、測定感度、分析精度又は再現性の低下を招くことがあった。
【0007】
また、水素はプラズマの安定性を著しく損なうため、元素分析装置に導入される水素量が多すぎるとプラズマが消灯してしまい、測定自体が不可能になるという問題があった。
【0008】
更に、反応残渣液を送液ポンプで強制排出する装置では、気液分離槽に供給される反応残渣液中で多量の水素が発生するとそれにより気泡が発生するため、反応残渣液の排出の安定性が著しく低下し、元素分析装置への水素化物の供給が不安定になるという問題が生じていた。
【0009】
本発明は、上述のような従来技術の問題を鑑みてなされたもので、安定して水素化物を得ることができ、高精度かつ安定した分析を可能とするための元素分析方法及び元素分析装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明の元素分析方法は、反応部と気液分離部とを有する水素化物発生装置を用い、反応部において、分析対象元素を水素化剤と酸液との化学反応により水素化物とする第1の工程と、反応部より気液分離部へ、水素化物と化学反応による反応残渣液とを導入する第2の工程と、気液分離部において、水素化物と反応残渣液とを分離する第3の工程と、第3の工程で分離された水素化物を定性又は定量する第4の工程とを有し、少なくとも第3の工程より前に、気液分離部に水素発生抑制剤を供給する工程を有することを特徴とする。
【0011】
上記方法により、元素分析装置に導入される水素化物中への水素の混入を低減できる。したがって、元素分析装置のプラズマ、フレーム又は加熱セルなどの温度の変動を抑制でき、高精度かつ安定した元素分析を行うことが可能となる。
【0012】
また、気液分離部での水素の発生による反応残渣液の排出への影響を抑制でき、安定して水素化物を得られることにより、高精度かつ安定した元素分析を行うことが可能となる。
【0013】
水素発生抑制剤の供給は、一定時間内に行ってもよく、また、連続して行ってもよい。また、供給の回数は、一回でもよく複数回でもよい。
【0014】
本発明に用いる水素発生抑制剤は、気液分離部にある反応残渣液の酸性度を低下しうる物質である。反応残渣液の酸性度が低下することで、余剰の水素化剤と酸液との化学反応が抑制され、気液分離部での水素の発生量を低減できる。
【0015】
この水素発生抑制剤は、分析対象元素を含まない物質である。分析対象元素を含まなければ、気液分離部から水素発生抑制剤に由来する分析対象元素の水素化物が発生することはない。
【0016】
上記発明に用いられる水素発生抑制剤は、好ましくは、水、塩基性化合物、塩基性溶液を選択できる。
【0017】
水としては、例えば、超純水、純水、イオン交換水、蒸留水、逆浸透膜水、水道水などがあげられる。これらのうちのいずれかを供給することにより、反応残渣液が希釈され、酸性度が低下し、気液分離部における水素の発生量を低減させることができる。
【0018】
また、塩基性化合物としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、酸化ナトリウム、酸化カルシウムなどがあげられる。これらのうちのいずれかを供給することにより、反応残渣液中の酸液が中和され、酸性度が低下し、気液分離部における水素の発生量を低減させることができる。
【0019】
また、塩基性溶液としては、例えば、水酸化リチウム溶液、水酸化ナトリウム溶液、水酸化カリウム溶液、アンモニア溶液などがあげられる。これらのうちのいずれかを供給することにより、反応残渣液が希釈され、かつ反応残渣液中の酸液が中和され、反応残渣液の酸性度が低下し、気液分離部における水素の発生量を低減させることができる。
【0020】
気液分離部への水素発生抑制剤の供給手段は、水素発生抑制剤が液体の場合は、例えば、送液ポンプやシリンジを利用することができる。
【0021】
一方、水素発生抑制剤が固体の場合は、あらかじめ気液分離部に投入しておくか、適宜投入する。あらかじめペレット状に加工された水素発生抑制剤を気液分離部に投入しておいて、徐々に溶解するようにしてもよいし、容易に溶ける顆粒状の場合は、適宜添加してもよい。
【0022】
本発明は、水素化物発生装置を有する元素分析装置であればいずれにも適用でき、限定されない。
【0023】
また、上記目的を達成するための本発明の元素分析装置は、水素化物発生装置を備え、この水素化物発生装置は、分析対象元素を水素化剤と酸液との化学反応により水素化物とする反応部と、反応部より水素化物と化学反応による反応残渣液とを導入し、水素化物と反応残渣液とを分離する気液分離部とを有し、気液分離部には、水素発生抑制剤を供給する水素発生抑制剤供給部を有することを特徴とする。
【0024】
このような構成により、元素分析装置にキャリアガスとともに導入される水素化物中への水素の混入を低減でき、元素分析装置のプラズマ、フレーム又は加熱セルなどの温度の変動を抑制できる。したがって、高精度かつ安定した元素分析を行うことが可能となる元素分析装置を得ることができる。
【0025】
また、気液分離部での水素の発生による反応残渣液の排出への影響を抑制することができ、安定して水素化物を得ることができる。したがって、高精度かつ安定した元素分析を行うことが可能となる元素分析装置を得ることができる。
【0026】
本発明は、水素化物発生装置を備えた元素分析装置であればいずれにも適用でき、限定されない。元素分析装置としては、例えば、原子吸光分光光度計、ICP質量分析装置、ICP発光分析装置等があげられる。
【0027】
本発明に用いる水素発生抑制剤供給部には、例えば、送液ポンプを用いることができる。
【0028】
本発明は、例えば、気液分離部全体をU字管から構成する水素化物発生装置を備えた元素分析装置に適用することができる。反応部を経た反応残渣液は、U字管の一端より、U字管内に導入される。U字管の他端付近には、反応残渣液を外部に排出するためのドレインが設けられており、U字管内の反応残渣液が一定量を超えると、ドレインよりU字管外部に排出される。U字管の内径は、反応残渣液導入側とドレイン側とが等しくてもよく、ドレイン側が大きくてもよい。
【0029】
また、本発明は、例えば、気液分離部が気液分離槽と反応残渣液の強制排出用吸い込み管とから構成された水素化物発生装置に適用することもできる。上記強制排出用吸い込み管にはポンプ等の強制排出手段が設けられており、強制排出用吸い込み管の一端は、気液分離槽内に挿入されている。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態について、添付図面を参照しながら説明する。図1は、本発明の実施の形態における気液分離管8を有する水素化物発生装置17を備えた元素分析装置10の概略図である。図2は、同じく反応残渣液12の強制排出用吸い込み管14を有する水素化物発生装置17を備えた元素分析装置10の概略図である。図1に示す気液分離管8と、図2に示す気液分離槽16は、それぞれ元素分析装置10に接続されている。
【0031】
本発明の実施の形態における元素分析の過程は、次の通りである。まず、送液ポンプ4により、分析対象元素Mがイオン化してMx+として存在する試料溶液1、酸液2(例えば、塩酸)、水素化剤3(例えば、水素化ほう素ナトリウム溶液)をクロスジョイント部5へ送り、混合した後に、混合液をキャリアガス6とともに反応部7へ送る。元素Mとしては、例えば砒素(As)、セレン(Se)、アンチモン(Sb)、ゲルマニウム(Ge)、錫(Sn)、テルル(Te)、鉛(Pb)、ビスマス(Bi)等が挙げられる。
【0032】
反応部7では、まず、酸液2と水素化剤3との反応により水素(H)が発生する。ここで発生する水素(H)は「初期発生型水素」と呼ばれるもので、反応性に富む。酸液として塩酸(HCl)、水素化剤3として水素化ほう素ナトリウム(NaBH)を採用した場合の反応を、式1に示す。
【0033】
NaBH+HCl+HO→HBO+NaCl+8H・・・式1
次に、式1で生じた水素(H)と、試料溶液中にイオンとして存在していた分析対象元素Mx+とが反応し、水素化物MHが生成される。水素(H)とMx+との反応を式2に示す。yは係数を表す。
【0034】
M+8H→MH↑+1/2(8−y)H↑・・・式2
式2で発生した水素化物MHは、反応残渣液12とともに、気液分離管8や気液分離槽16へと導入される。Mx+を水素化物MHとする反応は速いので、試料溶液1、酸液2、水素化剤3の大部分は、反応部7を通る間に反応を終えるが、余剰の酸液2、水素化剤3の一部は未反応のまま反応残渣液12中に存在し、気液分離管8や気液分離槽16へと導入される。
【0035】
気液分離管8や気液分離槽16では、キャリアガス6により、水素化物MHが元素分析装置10に導入され、定量又は定性される。一方、反応残渣液12は、気液分離管8や気液分離槽16に貯留される。したがって、気液分離管8や気液分離槽16に貯留されている反応残渣液12の液面レベルは、時間経過に伴って次第に上昇する。反応残渣液12が所定の貯留量を超えると、ドレイン9又は送液ポンプ15を設けた強制排出用吸い込み管14により、気液分離管8又は気液分離槽16外に排出される。
【0036】
気液分離管8や気液分離槽16の反応残渣液12中では、余剰の酸液2と水素化剤3とによる反応が進んでいる。そのため、反応残渣液12は外部に排出されるまで水素を発生しつづける。
【0037】
本発明の実施の形態では、気液分離管8や気液分離槽16に水素発生抑制剤13を送液ポンプ11により供給し、反応残渣液12を希釈あるいは中和することにより酸性度を低下させる。その結果、気液分離管8や気液分離槽16で発生する水素量を大幅に低減させることができる。水素発生抑制剤13の供給は、気液分離管で水素化物MHと反応残渣液12とを分離する前であれば、いつ開始してもよい。したがって、水素発生抑制剤13は、気液分離管8や気液分離槽16への反応残渣液12導入前にあらかじめ導入しておいてもよいし、気液分離管8や気液分離槽16への反応残渣液12導入と同時に供給してもよい。また、水素発生抑制剤13の供給は、一定時間に行ってもよく、連続して行ってもよい。
【0038】
気液分離部への水素発生抑制剤13の供給手段として、水素発生抑制剤13が液体の場合は、シリンジを利用することもできる。
【0039】
一方、水素発生抑制剤13が固体の場合は、あらかじめペレット状に加工された水素発生抑制剤13を気液分離管8や気液分離槽16に投入しておいてもよい。また、容易に溶ける顆粒状の場合は、気液分離管8のドレイン9側端部から適宜添加し、徐々に溶解するようにしてもよい。
【0040】
以上の構成により、気液分離管8や気液分離槽16での反応残渣液12からの水素の発生を抑制することができ、結果として元素分析装置10へ導入される水素化物MHへの水素の混入量を減少することができる。また、気液分離部が気液分離槽16と反応残渣液12の強制排出用吸い込み管14とから構成された水素化物発生装置17では、気液分離槽16での反応残渣液12中の気泡の発生を抑制することで、反応残渣液12の排出をスムーズに行うことができる。これらにより、気液分離槽12内の内圧変動を抑制し、元素分析装置10への安定した水素化物MHの供給が可能となるため、元素分析を高精度に行うことができる。
【0041】
なお、水素発生抑制剤13を気液分離管8や気液分離槽16に供給しても、気液分離部の液面レベルはドレイン9の高さ、又は強制排出用吸い込み管14の端部の高さで常に一定に保たれるため、その供給量に制限はなく、水素の発生量を効果的に抑制できる範囲とすることができる。
【0042】
【実施例】
次に、本発明を実施例1〜3及び比較例により更に説明する。水素発生抑制剤として、実施例1では超純水を、実施例2ではペレット状の水酸化ナトリウム(NaOH)を、実施例3ではNaOH水溶液を用い、砒素及びセレンの発光強度を測定した。比較例では、水素発生抑制剤を供給することなく、砒素及びセレンの発光強度を測定した。
【0043】
実施例と比較例の共通する測定条件は次の通りである。
試料溶液は、関東化学(株)製の1000mg/lの砒素標準原液及びセレン標準原液を超純水により希釈し、それぞれの濃度が50ng/mlになるように調整した。
【0044】
水素化物発生装置では、水素化剤として、10g/l水素化ほう素ナトリウム溶液を流量3.4ml/min、酸液として2.4M塩酸を流量3.4ml/min、試料溶液を流量3.4ml/minで、それぞれペリスタリックポンプにより反応部に供給した。更に、実施例1では、気液分離管に水素発生抑制剤として超純水を36ml/minで供給した。実施例2では、気液分離管にあらかじめペレット状の水酸化ナトリウム(NaOH)を投入しておいた。実施例3では、気液分離管に水素発生抑制剤として1mol/lのNaOH水溶液を36ml/minで供給した。
【0045】
元素分析装置は、島津製作所(株)製ICP発光分析装置「ICPS−8000」を用いた。元素分析装置では、プラズマトーチへの水素化物導入用キャリアガス0.7l/min、プラズマガス1.2l/min、冷却ガス14l/minのアルゴンガスを流し、高周波電源は、周波数27.12MHz、出力1.4kWとした。また、測定結果は、分光器の波長をそれぞれ193.696nm、196.026nmにセットし、それぞれの発光強度を5秒間積分することで得た。
【0046】
実施例及び比較例において、10回繰り返し測定した際の発光強度の平均値、標準偏差及び変動係数、そして定量下限の測定結果を表1に表す。左のブランク欄は、試料溶液を供給することなく上記の条件で測定を行った結果である。
【0047】
【表1】

Figure 2004045123
【0048】
表1における標準偏差及び変動係数は、測定結果のばらつきを表す。標準偏差又は変動係数が小さいほど、測定結果のばらつきが少なく、安定している。
【0049】
また、定量下限は、定量可能な分析対象元素の濃度の下限値を表す。定量下限が小さいほど、微量に存在する測定対象元素まで測定でき、精度の高い測定が可能である。
【0050】
測定結果を見ると、実施例1〜3では比較例に比べ、測定強度の標準偏差、変動係数及び定量下限値が小さくなっている。すなわち、実施例1〜3では、比較例に比べ測定結果が安定し、測定精度において大きな改善効果が得られたことが分かる。これは、気液分離部の反応残渣液に水素発生抑制剤を供給し、余剰水素の発生を抑えることで元素分析装置のプラズマへ導入される水素化物への水素の混入が低減し、分析装置のプラズマの温度が安定したためと考えられる。
【0051】
以上、本発明を実施の形態及び実施例により説明したが、本発明は、これらに限定されるものではなく、本発明の技術的思想の範囲内で各種の変形が可能である。
例えば、反応残渣液と水素発生抑制剤との反応性を上げるために、気液分離部に、マグネチックスターラーなどによる攪拌する機能や超音波を照射する機能があってもよい。
また、気液分離の効率を上げるために、気液分離部が2つ以上連結されていてもよい。
また、キャリアガスの供給は、反応部の前から行ってもよく、気液分離部に直接行ってもよい。その両方から供給してもよい。
また、試料溶液を酸液とあらかじめ混合させておいてもよく、水素化物の発生効率を高めるために、別途添加剤を加えるためのラインを増設してもよい。
【0052】
なお、本発明の水素発生抑制剤は、塩基性塩などの緩衝作用を有する物質や、希釈効果を有する有機系溶媒でもよい。更に、これらの混合物でもよい。すなわち、水素発生抑制剤は、水素の発生を抑制できる材料であればよい。
【0053】
【発明の効果】
本発明の元素分析方法、元素分析装置によれば、気液分離部での水素の発生を抑制することができ、高精度かつ安定した元素分析を行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態における、気液分離管を有する水素化物発生装置の概略図である。
【図2】本発明の実施の形態における、反応残渣液の強制排出用吸い込み管を有する水素化物発生装置の概略図である。
【符号の説明】
1  試料溶液
2  酸液
3  水素化剤
4  送液ポンプ
5  クロスジョイント部
6  キャリアガス
7  反応部
8  気液分離管
9  ドレイン
10 元素分析装置
11 送液ポンプ
12 反応残渣液
13 水素発生抑制剤
14 強制排出用吸い込み管
15 送液ポンプ
16 気液分離槽
17 水素化物発生装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an element analysis method using a hydride generator and an element analyzer provided with the hydride generator.
[0002]
[Prior art]
In an elemental analyzer such as an ICP emission analyzer, in order to measure arsenic (As) or the like in a sample solution with high sensitivity, an element to be analyzed may react with hydrogen to form a hydride.
[0003]
As a method for converting an element to be analyzed to a hydride, there is a method that utilizes a chemical reaction between a hydrogenating agent such as a sodium borohydride solution and an acid solution such as hydrochloric acid. According to this method, hydrogen for generating hydride can be continuously generated.
[0004]
Japanese Utility Model Publication No. Sho 62-37161 describes a hydride generator provided with a gas-liquid separation tube for separating a hydride and a reaction residue liquid, separately from a reaction section for causing a hydride generation reaction.
[0005]
Further, Japanese Utility Model Laid-Open No. 6-7055 discloses an ICP emission spectrometer in which a reaction residue is forcibly discharged by a liquid feed pump in a gas-liquid separation tank provided separately from a reaction section.
[0006]
[Problems to be solved by the invention]
However, when an element to be analyzed is converted into a hydride using a hydrogenating agent, the reaction between the surplus hydrogenating agent in the reaction residue and the acid solution continues to generate hydrogen, which is mixed into the hydride. This hydrogen is introduced into the analyzer together with the hydride, causing a change in the introduction rate of the hydride and a change in the temperature of the plasma, the flame, the heating cell, or the like. Such fluctuations in the introduction rate or temperature of the hydride may cause a decrease in measurement sensitivity, analysis accuracy, or reproducibility.
[0007]
In addition, since hydrogen greatly impairs the stability of plasma, if the amount of hydrogen introduced into the elemental analyzer is too large, the plasma is turned off, and the measurement itself becomes impossible.
[0008]
Furthermore, in a device that forcibly discharges the reaction residue with a liquid feed pump, if a large amount of hydrogen is generated in the reaction residue supplied to the gas-liquid separation tank, bubbles are generated due to this, so that the discharge of the reaction residue is stabilized. The reproducibility of the hydride has been remarkably reduced, and the supply of the hydride to the element analyzer has become unstable.
[0009]
The present invention has been made in view of the above-described problems of the related art, and provides an elemental analysis method and an elemental analysis apparatus capable of stably obtaining a hydride and enabling high-accuracy and stable analysis. The purpose is to provide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the element analysis method of the present invention uses a hydride generator having a reaction unit and a gas-liquid separation unit, and in the reaction unit, converts the element to be analyzed into a chemical reaction between a hydrogenating agent and an acid solution. A hydride and a reaction residue in the gas-liquid separation section; a second step of introducing the hydride and a reaction residue liquid from the reaction section to the gas-liquid separation section from the reaction section; A third step of separating the liquid from the liquid; and a fourth step of qualitatively or quantitatively determining the hydride separated in the third step. At least before the third step, hydrogen is added to the gas-liquid separator. It is characterized by having a step of supplying an occurrence inhibitor.
[0011]
According to the above method, the incorporation of hydrogen into the hydride introduced into the element analyzer can be reduced. Therefore, fluctuations in the temperature of the plasma, the frame, the heating cell, and the like of the element analyzer can be suppressed, and highly accurate and stable element analysis can be performed.
[0012]
In addition, it is possible to suppress the influence of the generation of hydrogen in the gas-liquid separation unit on the discharge of the reaction residue liquid, and to obtain a hydride in a stable manner, thereby performing highly accurate and stable elemental analysis.
[0013]
The supply of the hydrogen generation inhibitor may be performed within a fixed time or may be continuously performed. In addition, the number of times of supply may be once or plural times.
[0014]
The hydrogen generation inhibitor used in the present invention is a substance that can reduce the acidity of the reaction residue in the gas-liquid separation section. By reducing the acidity of the reaction residue liquid, a chemical reaction between the surplus hydrogenating agent and the acid liquid is suppressed, and the amount of hydrogen generated in the gas-liquid separation unit can be reduced.
[0015]
This hydrogen generation inhibitor is a substance that does not contain the element to be analyzed. If the analysis element is not included, no hydride of the analysis element derived from the hydrogen generation inhibitor is generated from the gas-liquid separation unit.
[0016]
As the hydrogen generation inhibitor used in the above invention, preferably, water, a basic compound, or a basic solution can be selected.
[0017]
Examples of the water include ultrapure water, pure water, ion exchange water, distilled water, reverse osmosis membrane water, tap water, and the like. By supplying any of these, the reaction residue liquid is diluted, the acidity is reduced, and the amount of hydrogen generated in the gas-liquid separation unit can be reduced.
[0018]
Examples of the basic compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, sodium oxide, calcium oxide and the like. By supplying any of these, the acid solution in the reaction residue solution is neutralized, the acidity is reduced, and the amount of hydrogen generated in the gas-liquid separation unit can be reduced.
[0019]
Examples of the basic solution include a lithium hydroxide solution, a sodium hydroxide solution, a potassium hydroxide solution, and an ammonia solution. By supplying any of these, the reaction residue liquid is diluted, the acid solution in the reaction residue liquid is neutralized, the acidity of the reaction residue liquid is reduced, and the generation of hydrogen in the gas-liquid separation section is performed. The amount can be reduced.
[0020]
When the hydrogen generation inhibitor is a liquid, for example, a liquid feed pump or a syringe can be used as a means for supplying the hydrogen generation inhibitor to the gas-liquid separation unit.
[0021]
On the other hand, when the hydrogen generation inhibitor is solid, it is charged in the gas-liquid separation unit in advance or charged as appropriate. The hydrogen generation inhibitor previously processed into a pellet form may be charged into the gas-liquid separation section, and may be gradually dissolved, or may be added as appropriate in the case of a readily soluble granular form.
[0022]
The present invention can be applied to any elemental analyzer having a hydride generator and is not limited.
[0023]
In order to achieve the above object, the element analyzer of the present invention includes a hydride generator, and the hydride generator converts an element to be analyzed into a hydride by a chemical reaction between a hydrogenating agent and an acid solution. It has a reaction section and a gas-liquid separation section that introduces a hydride and a reaction residue liquid from the reaction section from the reaction section and separates the hydride and the reaction residue liquid. A hydrogen generation inhibitor supplying section for supplying the agent.
[0024]
With such a configuration, the incorporation of hydrogen into the hydride introduced together with the carrier gas into the elemental analyzer can be reduced, and the temperature of plasma, a frame, a heating cell, or the like of the elemental analyzer can be suppressed. Therefore, it is possible to obtain an element analyzer capable of performing highly accurate and stable element analysis.
[0025]
Further, the influence of the generation of hydrogen in the gas-liquid separation section on the discharge of the reaction residue liquid can be suppressed, and a hydride can be stably obtained. Therefore, it is possible to obtain an element analyzer capable of performing highly accurate and stable element analysis.
[0026]
The present invention can be applied to any elemental analyzer provided with a hydride generator, and is not limited. Examples of the elemental analyzer include an atomic absorption spectrophotometer, an ICP mass analyzer, an ICP emission analyzer, and the like.
[0027]
For the hydrogen generation inhibitor supply unit used in the present invention, for example, a liquid feed pump can be used.
[0028]
The present invention can be applied to, for example, an element analyzer provided with a hydride generator in which the entire gas-liquid separation section is formed of a U-shaped tube. The reaction residue liquid that has passed through the reaction section is introduced into the U-shaped pipe from one end of the U-shaped pipe. In the vicinity of the other end of the U-shaped pipe, a drain for discharging the reaction residue liquid to the outside is provided. When the reaction residue liquid in the U-shaped pipe exceeds a certain amount, the reaction residue liquid is discharged from the drain to the outside of the U-shaped pipe. You. The inside diameter of the U-shaped tube may be equal on the reaction residue introduction side and on the drain side, or may be large on the drain side.
[0029]
Further, the present invention can also be applied to, for example, a hydride generator in which a gas-liquid separation unit includes a gas-liquid separation tank and a suction pipe for forcibly discharging a reaction residue. The suction pipe for forced discharge is provided with a forced discharge means such as a pump, and one end of the suction pipe for forced discharge is inserted into the gas-liquid separation tank.
[0030]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram of an element analyzer 10 including a hydride generator 17 having a gas-liquid separation tube 8 according to an embodiment of the present invention. FIG. 2 is a schematic view of an elemental analyzer 10 including a hydride generator 17 having a suction pipe 14 for forcedly discharging the reaction residue liquid 12. The gas-liquid separation tube 8 shown in FIG. 1 and the gas-liquid separation tank 16 shown in FIG.
[0031]
The process of elemental analysis according to the embodiment of the present invention is as follows. First, a sample solution 1, an acid solution 2 (for example, hydrochloric acid), and a hydrogenating agent 3 (for example, sodium borohydride solution) in which the element M to be analyzed is ionized and exists as Mx + are crossed by the liquid sending pump 4. After the mixture is sent to the joint section 5 and mixed, the mixture is sent to the reaction section 7 together with the carrier gas 6. Examples of the element M include arsenic (As), selenium (Se), antimony (Sb), germanium (Ge), tin (Sn), tellurium (Te), lead (Pb), and bismuth (Bi).
[0032]
In the reaction section 7, first, hydrogen (H) is generated by the reaction between the acid solution 2 and the hydrogenating agent 3. The hydrogen (H) generated here is called "initial generation hydrogen" and has high reactivity. Formula 1 shows the reaction in the case where hydrochloric acid (HCl) is used as the acid solution and sodium borohydride (NaBH 4 ) is used as the hydrogenating agent 3.
[0033]
NaBH 4 + HCl + H 2 O → H 3 BO 3 + NaCl + 8H Formula 1
Then, hydrogen produced by the formula 1 (H), the sample solution and existed which was analyzed element M x + as ions react to, hydrides MH y is generated. Equation 2 shows the reaction between hydrogen (H) and M x + . y represents a coefficient.
[0034]
M + 8H → MH y {+1/2 (8−y) H 2 } Equation 2
Hydrides MH y generated by Formula 2, with the reaction residue liquid 12, is introduced into the gas-liquid separation tube 8 and the gas-liquid separation tank 16. Since the reaction for converting M x + to the hydride MH y is fast, most of the sample solution 1, the acid solution 2, and the hydrogenating agent 3 finish the reaction while passing through the reaction section 7, but the excess acid solution 2, hydrogen Part of the agent 3 is present in the reaction residue liquid 12 without being reacted, and is introduced into the gas-liquid separation tube 8 and the gas-liquid separation tank 16.
[0035]
In the gas-liquid separation tube 8 and the gas-liquid separation tank 16, the carrier gas 6, hydrides MH y is introduced into elemental analyzer 10 is quantified or qualitative. On the other hand, the reaction residue liquid 12 is stored in the gas-liquid separation pipe 8 and the gas-liquid separation tank 16. Therefore, the liquid level of the reaction residue liquid 12 stored in the gas-liquid separation pipe 8 or the gas-liquid separation tank 16 gradually increases with time. When the reaction residue liquid 12 exceeds a predetermined storage amount, it is discharged out of the gas-liquid separation pipe 8 or the gas-liquid separation tank 16 by the drain 9 or the suction pipe 14 for forced discharge provided with the liquid feed pump 15.
[0036]
In the gas-liquid separation tube 8 and the reaction residue liquid 12 in the gas-liquid separation tank 16, the reaction between the excess acid solution 2 and the hydrogenating agent 3 is progressing. Therefore, the reaction residue liquid 12 continues to generate hydrogen until discharged to the outside.
[0037]
In the embodiment of the present invention, the hydrogen generation inhibitor 13 is supplied to the gas-liquid separation pipe 8 and the gas-liquid separation tank 16 by the liquid sending pump 11 to dilute or neutralize the reaction residue liquid 12 to lower the acidity. Let it. As a result, the amount of hydrogen generated in the gas-liquid separation pipe 8 and the gas-liquid separation tank 16 can be significantly reduced. Supply of hydrogen generation inhibitor 13, as long as before separating the hydride MH y and the reaction residue liquid 12 in the gas-liquid separation tube, always be initiated. Therefore, the hydrogen generation inhibitor 13 may be introduced before the reaction residue liquid 12 is introduced into the gas-liquid separation tube 8 or the gas-liquid separation tank 16, or may be introduced into the gas-liquid separation tube 8 or the gas-liquid separation tank 16. May be supplied at the same time as the introduction of the reaction residue 12 into the reactor. Further, the supply of the hydrogen generation inhibitor 13 may be performed for a fixed time or may be performed continuously.
[0038]
When the hydrogen generation inhibitor 13 is a liquid, a syringe can be used as a means for supplying the hydrogen generation inhibitor 13 to the gas-liquid separation unit.
[0039]
On the other hand, when the hydrogen generation suppressing agent 13 is solid, the hydrogen generation suppressing agent 13 previously processed into a pellet form may be charged into the gas-liquid separation pipe 8 or the gas-liquid separation tank 16. In the case of a granular material that can be easily dissolved, it may be added from the end of the gas-liquid separation tube 8 on the drain 9 side as appropriate, and gradually dissolved.
[0040]
With the above configuration, it is possible to suppress the generation of hydrogen from the reaction residue liquid 12 in the gas-liquid separation tube 8 and the gas-liquid separation tank 16, resulting in element analyzer to hydride MH y introduced into 10 The amount of mixed hydrogen can be reduced. Further, in the hydride generator 17 in which the gas-liquid separation unit is constituted by the gas-liquid separation tank 16 and the suction pipe 14 for forcedly discharging the reaction residue liquid 12, bubbles in the reaction residue liquid 12 in the gas-liquid separation tank 16 are formed. The generation of the reaction residue liquid 12 can be smoothly performed by suppressing the occurrence of the reaction residue liquid 12. These result, suppresses variation in the internal pressure of gas-liquid separation tank 12, the supply of stable hydrides MH y to elemental analyzer 10 is enabled, it is possible to perform the elemental analysis with high accuracy.
[0041]
Even if the hydrogen generation inhibitor 13 is supplied to the gas-liquid separation pipe 8 or the gas-liquid separation tank 16, the liquid level of the gas-liquid separation section is the height of the drain 9 or the end of the forced discharge suction pipe 14. Is always kept constant, the supply amount is not limited, and the hydrogen generation amount can be set within a range that can be effectively suppressed.
[0042]
【Example】
Next, the present invention will be further described with reference to Examples 1 to 3 and Comparative Examples. The emission intensity of arsenic and selenium was measured using ultrapure water in Example 1, pelletized sodium hydroxide (NaOH) in Example 2, and NaOH aqueous solution in Example 3 as a hydrogen generation inhibitor. In Comparative Examples, the emission intensities of arsenic and selenium were measured without supplying a hydrogen generation inhibitor.
[0043]
The measurement conditions common to the example and the comparative example are as follows.
The sample solution was prepared by diluting a 1000 mg / l arsenic standard stock solution and a selenium standard stock solution manufactured by Kanto Chemical Co., Ltd. with ultrapure water so that the respective concentrations became 50 ng / ml.
[0044]
In the hydride generator, a flow rate of 10 g / l sodium borohydride solution as a hydrogenating agent is 3.4 ml / min, a flow rate of 2.4 M hydrochloric acid as an acid solution is 3.4 ml / min, and a flow rate of the sample solution is 3.4 ml. / Min, each was supplied to the reaction section by a peristaltic pump. Further, in Example 1, ultrapure water was supplied to the gas-liquid separation tube at a rate of 36 ml / min as a hydrogen generation inhibitor. In Example 2, pelletized sodium hydroxide (NaOH) was previously charged into the gas-liquid separation tube. In Example 3, a 1 mol / l NaOH aqueous solution was supplied to the gas-liquid separation tube at a rate of 36 ml / min as a hydrogen generation inhibitor.
[0045]
As the elemental analyzer, an ICP emission analyzer “ICPS-8000” manufactured by Shimadzu Corporation was used. In the elemental analyzer, an argon gas of hydride introduction carrier gas 0.7 l / min, plasma gas 1.2 l / min, and cooling gas 14 l / min into the plasma torch is flown. It was set to 1.4 kW. The measurement results were obtained by setting the wavelengths of the spectroscopes to 193.696 nm and 196.026 nm, respectively, and integrating the emission intensities for 5 seconds.
[0046]
Table 1 shows the average value, the standard deviation, the coefficient of variation, and the measurement results of the lower limit of quantification in the Examples and Comparative Examples when the measurement was repeated 10 times. The blank column on the left shows the result of measurement under the above conditions without supplying the sample solution.
[0047]
[Table 1]
Figure 2004045123
[0048]
The standard deviation and the coefficient of variation in Table 1 represent variations in the measurement results. The smaller the standard deviation or the coefficient of variation, the smaller the variation in the measurement result and the more stable the result.
[0049]
The lower limit of quantification represents the lower limit of the concentration of the element to be analyzed that can be quantified. As the lower limit of quantification is smaller, even trace amounts of the element to be measured can be measured, and highly accurate measurement is possible.
[0050]
Looking at the measurement results, the standard deviation, the coefficient of variation, and the lower limit of quantification of the measured intensity are smaller in Examples 1 to 3 than in the comparative example. That is, it can be seen that in Examples 1 to 3, the measurement result was more stable than in the comparative example, and a great improvement effect in measurement accuracy was obtained. This is because a hydrogen generation inhibitor is supplied to the reaction residue liquid in the gas-liquid separation unit, and the generation of excess hydrogen is suppressed, thereby reducing the incorporation of hydrogen into hydrides introduced into the plasma of the elemental analysis device. It is considered that the temperature of the plasma became stable.
[0051]
As described above, the present invention has been described with reference to the embodiment and the examples. However, the present invention is not limited to these, and various modifications can be made within the technical idea of the present invention.
For example, the gas-liquid separation unit may have a function of stirring with a magnetic stirrer or the like and a function of irradiating ultrasonic waves in order to increase the reactivity between the reaction residue liquid and the hydrogen generation inhibitor.
Further, in order to increase the efficiency of gas-liquid separation, two or more gas-liquid separation units may be connected.
Further, the supply of the carrier gas may be performed from before the reaction unit, or may be directly performed to the gas-liquid separation unit. You may supply from both.
In addition, the sample solution may be mixed with the acid solution in advance, and a line for adding an additive may be additionally provided in order to increase the efficiency of hydride generation.
[0052]
The hydrogen generation inhibitor of the present invention may be a substance having a buffering action such as a basic salt or an organic solvent having a diluting effect. Further, a mixture thereof may be used. That is, the hydrogen generation inhibitor may be any material that can suppress the generation of hydrogen.
[0053]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the elemental analysis method and elemental analysis apparatus of this invention, generation | occurrence | production of hydrogen in a gas-liquid separation part can be suppressed, and highly accurate and stable elemental analysis can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a hydride generator having a gas-liquid separation tube according to an embodiment of the present invention.
FIG. 2 is a schematic view of a hydride generator having a suction pipe for forcibly discharging a reaction residue in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sample solution 2 Acid solution 3 Hydrogenating agent 4 Liquid sending pump 5 Cross joint part 6 Carrier gas 7 Reaction part 8 Gas-liquid separation tube 9 Drain 10 Elemental analyzer 11 Liquid sending pump 12 Reaction residue liquid 13 Hydrogen generation inhibitor 14 Mandatory Discharge suction pipe 15 Liquid feed pump 16 Gas-liquid separation tank 17 Hydride generator

Claims (8)

反応部と気液分離部とを有する水素化物発生装置を用いる元素分析方法であって、
前記反応部において、分析対象元素を水素化剤と酸液との化学反応により水素化物とする第1の工程と、
前記反応部より前記気液分離部へ、前記水素化物と前記化学反応による反応残渣液とを導入する第2の工程と、
前記気液分離部において、前記水素化物と前記反応残渣液とを分離する第3の工程と、
前記第3の工程で分離された前記水素化物を定性又は定量する第4の工程とを有し、
少なくとも第3の工程より前に、前記気液分離部に水素発生抑制剤を供給する工程を有することを特徴とする元素分析方法。
An element analysis method using a hydride generator having a reaction unit and a gas-liquid separation unit,
A first step of converting the element to be analyzed into a hydride by a chemical reaction between the hydrogenating agent and the acid solution in the reaction unit;
A second step of introducing the hydride and a reaction residue from the chemical reaction from the reaction section to the gas-liquid separation section;
A third step of separating the hydride and the reaction residue liquid in the gas-liquid separation unit;
A fourth step of qualitatively or quantitatively determining the hydride separated in the third step,
An elemental analysis method, comprising a step of supplying a hydrogen generation inhibitor to the gas-liquid separation section at least before the third step.
前記水素発生抑制剤が、水であることを特徴とする請求項1に記載の元素分析方法。The element analysis method according to claim 1, wherein the hydrogen generation inhibitor is water. 前記水素発生抑制剤が、塩基性化合物であることを特徴とする請求項1に記載の元素分析方法。The element analysis method according to claim 1, wherein the hydrogen generation inhibitor is a basic compound. 前記水素発生抑制剤が、塩基性溶液であることを特徴とする請求項1に記載の元素分析方法。The element analysis method according to claim 1, wherein the hydrogen generation inhibitor is a basic solution. 水素化物発生装置を備えた元素分析装置であって、
前記水素化物発生装置は、分析対象元素を水素化剤と酸液との化学反応により水素化物とする反応部と、
前記反応部より前記水素化物と前記化学反応による反応残渣液とを導入し、前記水素化物と前記反応残渣液とを分離する気液分離部とを有し、
前記気液分離部には、水素発生抑制剤を供給する水素発生抑制剤供給部を有することを特徴とする元素分析装置。
An elemental analyzer equipped with a hydride generator,
The hydride generator, a reaction unit to convert the element to be analyzed to a hydride by a chemical reaction between a hydrogenating agent and an acid solution,
A gas-liquid separation unit that introduces the hydride and a reaction residue liquid by the chemical reaction from the reaction unit, and separates the hydride and the reaction residue liquid,
The element analyzer according to claim 1, wherein the gas-liquid separation unit includes a hydrogen generation inhibitor supplying unit that supplies a hydrogen generation inhibitor.
前記水素発生抑制剤が、水であることを特徴とする請求項5に記載の元素分析装置。The element analyzer according to claim 5, wherein the hydrogen generation inhibitor is water. 前記水素発生抑制剤が、塩基性化合物であることを特徴とする請求項5に記載の元素分析装置。The element analysis device according to claim 5, wherein the hydrogen generation inhibitor is a basic compound. 前記水素発生抑制剤が、塩基性溶液であることを特徴とする請求項5に記載の元素分析装置。The element analyzer according to claim 5, wherein the hydrogen generation inhibitor is a basic solution.
JP2002200945A 2002-07-10 2002-07-10 Elemental analysis method and elemental analysis apparatus Expired - Lifetime JP4095360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002200945A JP4095360B2 (en) 2002-07-10 2002-07-10 Elemental analysis method and elemental analysis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002200945A JP4095360B2 (en) 2002-07-10 2002-07-10 Elemental analysis method and elemental analysis apparatus

Publications (2)

Publication Number Publication Date
JP2004045123A true JP2004045123A (en) 2004-02-12
JP4095360B2 JP4095360B2 (en) 2008-06-04

Family

ID=31707612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002200945A Expired - Lifetime JP4095360B2 (en) 2002-07-10 2002-07-10 Elemental analysis method and elemental analysis apparatus

Country Status (1)

Country Link
JP (1) JP4095360B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838270B2 (en) * 2005-02-28 2011-12-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Methods and systems for physicochemical analysis using laser pulse ablation
CN104028174A (en) * 2013-03-04 2014-09-10 北京普析通用仪器有限责任公司 Multi-element chemical steam generating device and method
CN104655597A (en) * 2013-11-25 2015-05-27 北京瑞利分析仪器有限公司 Hydride generation and sample introduction method of seleninic acid radical ions
CN108426873A (en) * 2018-03-09 2018-08-21 中国科学院海洋研究所 A kind of detection method and dedicated unit of hydride
CN109444325A (en) * 2018-12-25 2019-03-08 长沙开元仪器有限公司 A kind of steam jacket and elemental analyser
CN112903626A (en) * 2021-01-25 2021-06-04 山东省科学院海洋仪器仪表研究所 Modeling method and measuring method for measuring element morphology in soil/sediment by reflection spectroscopy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838270B2 (en) * 2005-02-28 2011-12-14 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Methods and systems for physicochemical analysis using laser pulse ablation
CN104028174A (en) * 2013-03-04 2014-09-10 北京普析通用仪器有限责任公司 Multi-element chemical steam generating device and method
CN104655597A (en) * 2013-11-25 2015-05-27 北京瑞利分析仪器有限公司 Hydride generation and sample introduction method of seleninic acid radical ions
CN108426873A (en) * 2018-03-09 2018-08-21 中国科学院海洋研究所 A kind of detection method and dedicated unit of hydride
CN109444325A (en) * 2018-12-25 2019-03-08 长沙开元仪器有限公司 A kind of steam jacket and elemental analyser
CN109444325B (en) * 2018-12-25 2024-04-05 长沙开元仪器有限公司 Steam sleeve and element analyzer
CN112903626A (en) * 2021-01-25 2021-06-04 山东省科学院海洋仪器仪表研究所 Modeling method and measuring method for measuring element morphology in soil/sediment by reflection spectroscopy

Also Published As

Publication number Publication date
JP4095360B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
Ding et al. Evaluation of electrochemical hydride generation for the determination of total antimony in natural waters by electrothermal atomic absorption spectrometry with in situ concentration
JP5169678B2 (en) High precision analysis of metal elements by inductively coupled plasma optical emission spectrometry
Ding et al. Evaluation of electrochemical hydride generation for the determination of arsenic and selenium in sea water by graphite furnace atomic absorption with in situ concentration
Bolea et al. Electrochemical hydride generation for the simultaneous determination of hydride forming elements by inductively coupled plasma-atomic emission spectrometry
US8021536B2 (en) Method and apparatus for achieving maximum yield in the electrolytic preparation of group IV and V hydrides
Rojas et al. Investigation of the direct hydride generation nebulizer for the determination of arsenic, antimony and selenium in inductively coupled plasma optical emission spectrometry
Chen et al. Combined generator/separator. Part 2. Stibine generation combined with flow injection for the determination of antimony in metal samples by atomic emission spectrometry
Matusiewicz et al. Determination of As, Sb, Se, Sn and Hg in beer and wort by direct hydride generation sample introduction− electrothermal AASPresented, in part, at the 1st International IUPAC Symposium on Trace Elements in Food, Warsaw, Poland, October 9–11, 2000.
Matusiewicz et al. Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra) trace speciation analysis
JP4095360B2 (en) Elemental analysis method and elemental analysis apparatus
Caiminagua et al. Electrochemical generation of arsenic volatile species using a gold/mercury amalgam cathode. Determination of arsenic by atomic absorption spectrometry
US20160061791A1 (en) Automatic Ammonium Analyzer
Arbab-Zavar et al. Evaluation of electrochemical generation of volatile zinc hydride by heated quartz tube atomizer atomic absorption spectrometry
JP2009030168A (en) Electrolyte solution for hydrogen generating apparatus and hydrogen generating apparatus using the same
Madrid et al. Evaluation of flow-injection in lead hydride generation-atomic absorption spectrometry
Rigby et al. Determination of arsenic, antimony, bismuth, germanium, tin, selenium and tellurium in 30% zinc sulfate solution by hydride generation inductively coupled plasma atomic emission spectrometry
JP5859287B2 (en) Method for measuring the concentration of trace hydrogen peroxide in ultrapure water
Ferreira et al. Critical study using experimental design of the determination of lead by high-resolution continuum source hydride generation atomic absorption spectrometry
US8420267B2 (en) Methods and systems for producing hydrogen and system for producing power
Bonilla et al. Determination of lead in biological materials by atomic absorption spectrometry sensitised with hydride generation
Matusiewicz et al. Determination of nickel by chemical vapor generation in situ trapping flame AAS
He et al. Vapor generation of mercury and methylmercury in aqueous microdroplets produced by pneumatic nebulization
JP2005043246A (en) Method of quantifying heavy metals in fluorocarbon resin
Pyen et al. System optimization for the automatic simultaneous determination of arsenic, selenium, and antimony, using hydride generation introduction to an inductively coupled plasma
Nakahara et al. Hydride generation inductively coupled plasma atomic emission spectrometry for the determination of germanium in iron meteorites

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050606

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A131 Notification of reasons for refusal

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080304

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20080307

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120314

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130314