JP2004035964A - Vapor deposition apparatus - Google Patents

Vapor deposition apparatus Download PDF

Info

Publication number
JP2004035964A
JP2004035964A JP2002196348A JP2002196348A JP2004035964A JP 2004035964 A JP2004035964 A JP 2004035964A JP 2002196348 A JP2002196348 A JP 2002196348A JP 2002196348 A JP2002196348 A JP 2002196348A JP 2004035964 A JP2004035964 A JP 2004035964A
Authority
JP
Japan
Prior art keywords
vapor deposition
source
substrate
moving mechanism
deposition source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002196348A
Other languages
Japanese (ja)
Other versions
JP2004035964A5 (en
JP4286496B2 (en
Inventor
Mikio Asada
浅田 幹夫
Keiji Uchida
内田 敬自
Teiji Takahashi
高橋 悌二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokki Corp filed Critical Tokki Corp
Priority to JP2002196348A priority Critical patent/JP4286496B2/en
Priority to KR1020020070268A priority patent/KR100934073B1/en
Publication of JP2004035964A publication Critical patent/JP2004035964A/en
Publication of JP2004035964A5 publication Critical patent/JP2004035964A5/ja
Application granted granted Critical
Publication of JP4286496B2 publication Critical patent/JP4286496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vapor deposition apparatus for obtaining a uniform film thickness distribution, reducing the amount of a material sputtered on other portions than a substrate and improving the usage efficiency of the material by providing a vapor deposition source moving mechanism to move a vapor deposition source in a plurality of directions, such as an X, Y drive mechanism, an X-θ drive mechanism or an X-Z drive mechanism in a vacuum vessel, and performing vapor deposition by moving the vapor deposition source along a substrate surface, for example, in X-direction and Y-direction even when the distance between the vapor deposition source and the substrate is decreased. <P>SOLUTION: In a vapor deposition apparatus, a substrate 3 is fixed to a fixing unit 4 provided in a vapor deposition chamber 1 in an reduced pressure atmosphere, and a film deposition material vaporizing from a vapor deposition source 7 is deposited on the substrate 3 to form a thin film. A vapor deposition source moving mechanism 8 to move the vapor deposition source 7 in a plurality of different directions such as X, Y, Z and θ directions, or in a direction synthesized from these directions is provided in the vapor deposition apparatus, and the vapor deposition source 7 is moved with respect to the substrate 3 by the vapor deposition source moving mechanism 8 during the vapor deposition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば基板にEL材料を蒸着して成膜しEL表示装置を作製する蒸着装置に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
例えば有機ELを作製する際、真空化した蒸着室(真空槽)内でEL材料をガラス基板に蒸着する場合には、従来は低位置に置かれた点蒸発源(蒸着源)から材料を蒸発させて基板上に堆積させ薄膜を形成させるが、膜厚分布を一定にするために、蒸発源と基板との距離は長くせざるをえない。従って、蒸着源はこのように基板の中心から離れた位置に置かれているためガラス基板以外に材料が飛ぶ量が多く、材料の使用効率が悪い。
【0003】
本発明は、真空槽の中にX,Y駆動機構あるいはX−θ駆動機構あるいはX−Z駆動機構など複数方向に蒸着源を移動する蒸着源移動機構を設け、蒸着源と基板との距離を近くしても、蒸発源を基板面に沿って、例えばX方向Y方向に移動させて蒸着することで膜厚分布を一定とすることができると共に、基板以外に材料が飛ぶ量を少なくし材料の使用効率を向上できる画期的な蒸着装置を提供することを目的としている。
【0004】
【課題を解決するための手段】
添付図面を参照して本発明の要旨を説明する。
【0005】
減圧雰囲気とする蒸着室1内に設けた固定部4に基板3を固定し、蒸着源7より発生する成膜材料が基板3上に堆積して薄膜が形成されるように構成した蒸着装置において、前記蒸着源7をX,Y,Z,θ方向などの異なる複数方向に若しくはこれら複数方向の合成方向に移動させる蒸着源移動機構8を設けて、この蒸着源移動機構8により蒸着時に前記蒸着源7を前記基板3に対して移動させるように構成したことを特徴とする蒸着装置に係るものである。
【0006】
また、前記蒸着源移動機構8は、固定側に対して移動側がガイド部と駆動部との組み合わせにより前記所定方向に駆動移動するように構成し、この移動側に前記蒸着源7を固定して、蒸着源7を前記所定方向に移動制御するように構成したことを特徴とする請求項1記載の蒸着装置に係るものである。
【0007】
また、前記蒸着源7を前記所定方向に移動する前記蒸着源移動機構8の駆動部を制御して、前記蒸着源7の移動速度を制御し得るように構成したことを特徴とする請求項1,2のいずれか1項に記載の蒸着装置に係るものである。
【0008】
また、前記蒸着源7は取付傾斜角度を調整自在に構成し、この蒸着源7の蒸発中心が前記基板3上の一点に合うように調整固定し得るように構成したことを特徴とする請求項1〜3のいずれか1項に記載の蒸着装置に係るものである。
【0009】
また、前記蒸着源7に膜厚センサー若しくはモニター5を配設して、前記蒸着源移動機構8により前記蒸着源7と共に移動して常に膜厚レートを測定若しくはモニターして蒸着状況を把握できるように構成したことを特徴とする請求項1〜4のいずれか1項に記載の蒸着装置に係るものである。
【0010】
また、前記蒸着源移動機構8の移動側に複数の前記蒸着源7を設けて、二元蒸着若しくは多元蒸着し得るように構成したことを特徴とする請求項1〜5のいずれか1項に記載の蒸着装置に係るものである。
【0011】
また、少なくとも前記基板3の面方向に対する前記蒸着源移動機構8による前記蒸着源7の移動距離を、前記基板3の寸法より大きく設定したことを特徴とする請求項1〜6のいずれか1項に記載の蒸着装置に係るものである。
【0012】
また、前記蒸着源移動機構8に前記基板3と前記蒸着源7との距離を調整する蒸着距離調整機構6を設けたことを特徴とする請求項1〜7のいずれか1項に記載の蒸着装置に係るものである。
【0013】
【発明の実施の形態】
好適と考える本発明の実施の形態(発明をどのように実施するか)を、図面に基づいてその作用効果を示して簡単に説明する。
【0014】
例えば、真空化する蒸着室1内の固定部4(ホルダー)に基板3を固定し、蒸着源7から発生する成膜材料が基板3上に堆積して薄膜を形成する。
【0015】
この際、蒸着源7は、固定されているのではなく、蒸着時には蒸着源移動機構8により前記基板3に対して移動する。即ち、蒸着源7は蒸着源移動機構8により基板3に沿ってくまなく移動しながら成膜材料を蒸発させ、基板3上に薄膜を形成する。
【0016】
この蒸着源移動機構8は、蒸着源7を設ける移動側を固定側に対してX,Y,Z,θ方向などの異なる複数方向に移動自在に設け、順次これら複数方向へ移動させるか、これらの合成方向に移動させることで、基板3に沿ってくまなく移動するように移動制御(移動ルートを設定)することで、基板3との距離が短くても均一に薄膜を形成できることとなる。
【0017】
従って、例えば基板3の板面を水平面方向とし、これの二軸方向となるX,Y方向、あるいは回転方向となるθ方向、又は基板3を水平配置せずに垂直配置とした際、この面方向の二軸となるX,ZあるいはY,Z方向あるいは回転方向となるθ方向に移動自在に設け、前記板面に沿って移動側を移動制御して蒸着源7を移動しながら蒸着を行なうことで、たとえ基板3と蒸着源7との距離を短くしても、基板3に対して蒸着源7をくまなく移動させながら蒸着することができるため、膜厚が片寄らず均一な膜を形成することができ、また基板3外へ無駄に材料が飛ぶ量を少なくでき、よって膜厚を一定にでき、且つ材料の使用効率を向上させることができることとなる。
【0018】
また、蒸着源7の移動速度を制御することで精度の良い膜厚分布を実現でき、また蒸着源7の取付角度を調整して蒸着源7の蒸発中心を基板3上の一点に合うようにセットすることで、一層前記作用・効果を良好に発揮させることができる。
【0019】
また、蒸着源7に膜厚センサーやモニター5を配設すれば、蒸着源移動機構8により蒸着源7と共にこの膜厚センサーやモニター5を常に一緒に移動制御でき、常に各カ所での膜厚レートを測定あるいは蒸着状況を把握できるため、一層膜厚の均一化を図れ、移動制御の精度も向上できる。
【0020】
また、複数の蒸着源7を蒸着源移動機構8により一緒に移動するように構成することも容易で、この場合には例えばホスト蒸着源7とドーパント蒸着源7を並べて移動することで精度の高い二元蒸着やその他同様にして多元蒸着も可能となる。
【0021】
また、蒸着距離調整機構6により適切な距離に基板3と蒸着源7を調整設定できるようにすれば、状況に応じてできるだけ基板3と蒸着源7との距離を短くして、均一化と材料使用効率の向上を一層図れることとなる。
【0022】
【実施例】
本発明の具体的な実施例について図面に基づいて説明する。
【0023】
図1に示すように、真空ポンプにより真空化する蒸着室1内に配設した固定部4にガラス基板3を固定する構成としている。この固定部4の下部に設けたホルダー4Aは、蒸着用開口部16を有する枠状構成とし、この蒸着用開口部16をおおうようにガラス基板3を位置決め載置し、この端部に設けた固定機構4Bによりガラス基板3を上方から押圧してホルダー4A上に押圧固定する構成としている。
【0024】
また、この蒸着室1内底部に設けた蒸着源7より発生する成膜材料が固定部4の蒸着用開口部16から露出している基板3上に堆積して薄膜が形成されるように構成している。
【0025】
本実施例では、前記蒸着源7をX,Y,Z,θ方向などの異なる複数方向に同時に移動させることでこれら複数方向の合成方向に移動できる蒸着源移動機構8を設けて、この蒸着源移動機構8により蒸着時に前記蒸着源7を前記基板3に対してこの基板面に沿って移動させるように構成している。
【0026】
本実施例では、基板3を固定部4により蒸着室1内に水平配置し、この下側の蒸着室1の底部側に4つの蒸着源7を設け、この蒸着源7を一斉に水平方向となる前記基板面に沿って蒸着源移動機構8により自動的にこの板面方向で移動するように構成している。
【0027】
即ち、水平方向の互いに直交する二軸となるX方向とY方向、又はこの双方若しくはその一方向と水平回転方向であるθ方向との二方向若しくは三方向に蒸着源7が移動自在となるように蒸着源移動機構8を構成するが、本実施例では、図4に示すようにX方向とY方向に移動自在となるように構成し、順次これら複数方向へ移動するように制御することで、X方向,Y方向の移動(平面より見て、たて,よこ,たて,よこの移動)を繰り返して、基板3の板面に沿ってジグザグに移動して、基板3の板面をくまなく移動するように構成している。
【0028】
具体的には、この蒸着源移動機構8は、図1,図2に示すように、固定側(蒸着室1に対して固定する部材)に対して移動側がガイド部と駆動部との組み合わせにより前記所定方向に駆動移動するように構成し、この移動側に前記蒸着源7を固定して、蒸着源7を前記所定方向に移動制御するように構成している。
【0029】
例えば、回転駆動源8Aによってボールネジ8Bを回転させ、LMガイド8Cに沿って移動体8Dをボールネジ8Bに沿って移動させるように構成し、この移動体8Dに前記ボールネジ8Bと直交する方向にボールネジ8B’を配設してこのボールネジ8B’を回転駆動源8A’によって駆動することでLMガイド8C’に沿って移動体8D’を移動させるように構成し、この移動体8D’を移動側として蒸着源7を設けることで、上下に配して互いに直交する方向のボールネジ8B,8B’をX,Y方向とし、各ボールネジ8B,8B’の回転量を順次制御することで、予め設定したX,Y方向に蒸着源7を移動するように構成している。尚、水平回動支点を設けてθ方向にロボットアームなどにより移動するように構成しても良い。
【0030】
また、蒸着室1に対して固定する固定板を固定側とし、この固定板に対して移動する移動テーブルを移動側とし、固定板と移動テーブルとの間にガイド部と駆動部とを有するモジュールを複数設け(θ方向に移動させる場合には、水平回動支点部を設け)、各モジュールを駆動制御することで移動テーブルがX,Y(及びθ)方向に移動制御される薄偏平形の移動機構を蒸着室1底部に構成し、このX,Y方向に移動する移動テーブルに蒸着源7を設けるように構成しても良い。
【0031】
また、基板3を垂直方向に配する場合には、この蒸着源移動機構8も同様に垂直方向で平面的に(X,ZあるいはY,Zあるいはθ方向との組み合わせにより)移動するように構成しても良い。
【0032】
また、本実施例では更にZ方向に移動自在として立体自由に移動させて基板3との距離も調整されるように構成している。
【0033】
具体的には、本実施例では立体的に移動制御はしないが、蒸着源移動機構8を昇降駆動源6Aと昇降ガイド6BとによってZ方向に昇降自在に設けて、前記蒸着距離調整機構6を構成し、基板3の大きさや蒸着材料あるいは蒸着状況に応じてこの蒸着距離調整機構6により基板3と蒸着源7との距離を調整設定し、できるだけ基板3と蒸着源7との距離を短くして、均一化と材料使用効率の向上を一層図れるように構成している。
【0034】
また、例えば、前述のようにX,Y方向の移動を組み合わせるのではなく、図5,図6に示すようにθ方向の組み合わせによる複合旋回方式に蒸着源移動機構8を構成しても良い。
【0035】
従って、予め蒸着距離調整機構6により基板3と蒸着源7とをできるだけ短い距離に設定し、また予めこの蒸着源移動機構8の駆動を制御する制御部の移動ルート設定により、蒸着源7はこの移動ルート通りに移動あるいは繰り返し移動させることができ、また基板3の変更や蒸着材料の変更、基板3と蒸着源7との距離の調整などによってこの移動ルートを変更設定できるようにしている。
【0036】
尚、蒸着室1底部外と蒸着源移動機構8の移動部分内部とを連通して大気とし、移動制御されてもこの連通状態が保持される移動連通保持機構9を備え、この移動連通保持機構9を介して、エア,水,電気などをフレキシブル配管などで蒸着源7に供給する構成としている。
【0037】
例えば、図5,図6に示すように駆動源8Eによって基板3と平行に水平回動方向(θ1方向)に駆動制御される水平アーム8Fに、駆動源8Gによって更に水平回動方向(θ2方向)に駆動制御される水平アーム8Hを枢着し、この水平アーム8Hに駆動源8Iによって水平回動方向(θ3)に駆動制御される水平板8Jを設け、この水平板8Jに蒸着源7を設け、この各水平アーム8F,8H,水平板8Jのθ1,θ2,θ3方向の複合回動制御によって、駆動源7が基板3の板面に沿ってくまなく所定ルートを移動するように構成しても良い。
【0038】
また、本実施例では前記基板3の板面方向に対する前記蒸着源移動機構8による前記蒸着源7の移動距離(範囲)を、前記基板3の寸法よりやや大きく設定している。
【0039】
これにより、基板3の端部での薄膜の均一化も図れ、できるだけ基板3外へ無駄に材料が飛ぶ量を少なくできる。
【0040】
また、前記蒸着源7を前記所定方向に移動する前記蒸着源移動機構8の駆動部を制御して、前記蒸着源7の移動速度を制御し得るように構成している。この速度制御は、各駆動部の出力調整や出力伝達機構の切り替えによって減速・増速できるようにしている。
【0041】
また、前記蒸着源7は、図3に示すように取付構造を介して着脱自在に設け、容易に取り替え可能とし、またこの取付構造による取付傾斜角度を調整自在に構成し、この各蒸着源7の蒸発中心が前記基板3上の一点に合うように調整固定できるように構成している。
【0042】
従って、たとえ複数の蒸着源7を配設しても、この各蒸着源7の蒸着中心が蒸発中心の移動ルートの一点上に合うようにセットできるため、常にバラツキなく一定の膜厚の蒸着が効率良く良好に行なうこととなる。
【0043】
また、前記蒸着源7に膜厚センサーあるいは蒸着監視用のモニター5を配設して、前記蒸着源移動機構8により前記蒸着源7と共に移動して常に膜厚レートを測定したり、蒸着状況を把握できるように構成している。
【0044】
また、前記蒸着源移動機構8の移動側に複数の前記蒸着源7を設けて、複数の蒸着源7がこの蒸着源移動機構8により常に一緒に同一ルートを移動できるように構成することが容易に実現できるため、二元蒸着や多元蒸着も良好に行なえることとなる。
【0045】
この際、各蒸着源7を前述のようにいずれも同様に角度調整設定し、共に蒸発中心を基板3上の一点に合うように取付固定できるようにしているため、一層良好に精度の高い二元蒸着や多元蒸着が行なえる。
【0046】
また、蒸着源7にモニター5を配設し、蒸着源7と共に移動するように構成し、このモニター5も蒸発中心が合う基板3上の一点を向くように取り付けるようにすることで、蒸着状況を常に監視しながら蒸着を行なえ、一層秀れた蒸着装置となる。
【0047】
従って、蒸着源移動機構8の移動側に複数の蒸着源7やセンサー,モニター5などを適宜適切な向きにして交換取付できる取付部2を設けることで極めて実用性に秀れた蒸着装置となる。
【0048】
尚、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。
【0049】
【発明の効果】
本発明は上述のように構成したから、蒸着室の中に例えばX,Y駆動機構あるいはX−θ駆動機構あるいはX−Z駆動機構など複数方向に蒸着源を移動する蒸着源移動機構を設け、蒸着源と基板との距離をたとえ近くしても、蒸発源を基板面に沿って、例えばX方向Y方向に移動させて蒸着することで膜厚分布を一定とすることができると共に、基板以外に材料が飛ぶ量を少なくし材料使用効率を向上できる画期的な蒸着装置となる。
【0050】
また、請求項2記載の発明においては、一層容易に実現でき、一層実用性に秀れた蒸着装置となる。
【0051】
また、請求項3記載の発明においては、蒸着源の移動速度を制御することで精度の良い膜厚分布を実現できることとなる。
【0052】
また、請求項4記載の発明においては、蒸着源の取付角度を調整して蒸着源の蒸発中心を基板上の一点に合うようにセットすることで、一層前記作用・効果を良好に発揮させることとなる。
【0053】
また、請求項5記載の発明においては、蒸着源に膜厚センサーやモニターを配設すれば、蒸着源移動機構により蒸着源と共にこの膜厚センサーやモニターを常に一緒に移動制御でき、常に各カ所での膜厚レート測定あるいは蒸着状況を把握できるため、一層膜厚の均一化を図れ、移動制御の精度も向上できることとなる。
【0054】
また、請求項6記載の発明においては、複数の蒸着源を蒸着源移動機構により一緒に移動するように構成することも容易で、この場合には例えばホスト蒸着源とドーパント蒸着源を並べて移動することで精度の高い二元蒸着やその他同様にして多元蒸着も可能となることとなる。
【0055】
また、請求項7記載の発明においては、基板の端部での薄膜の均一化も図れ、できるだけ基板外へ無駄に材料が飛ぶ量を少なくできることとなる。
【0056】
また、請求項8記載の発明においては、適切な距離に基板と蒸着源を調整設定でき、できるだけ基板と蒸着源との距離を短くして、均一化と材料使用効率の向上を一層図れることになる一層秀れた蒸着装置となる。
【図面の簡単な説明】
【図1】本実施例の概略構成説明正面図である。
【図2】本実施例の概略構成説明平面図である。
【図3】本実施例の蒸着源7の取付部を示す拡大説明正面図である。
【図4】本実施例の蒸着時の移動ルートの一例を示す説明図である。
【図5】本実施例の蒸着源移動機構8の別例を示す概略構成説明正断面図である。
【図6】本実施例の蒸着源移動機構8の別例を示す概略構成説明平面図である。
【符号の説明】
1 蒸着室
3 基板
4 固定部
5 モニター
6 蒸着距離機構
7 蒸着源
8 蒸着源移動機構
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vapor deposition apparatus for producing an EL display device by depositing an EL material on a substrate to form a film, for example.
[0002]
Problems to be solved by the prior art and the invention
For example, when manufacturing an organic EL, when an EL material is deposited on a glass substrate in a vacuum deposition chamber (vacuum chamber), the material is conventionally evaporated from a point evaporation source (evaporation source) placed at a low position. Then, a thin film is formed by depositing the film on the substrate, but in order to keep the film thickness distribution constant, the distance between the evaporation source and the substrate must be increased. Therefore, since the evaporation source is located at a position distant from the center of the substrate in this manner, a large amount of material is scattered in addition to the glass substrate, and the use efficiency of the material is low.
[0003]
According to the present invention, an evaporation source moving mechanism for moving an evaporation source in a plurality of directions, such as an X, Y driving mechanism, an X-θ driving mechanism, or an XZ driving mechanism, is provided in a vacuum chamber, and the distance between the evaporation source and the substrate is reduced. Even if it is close, the evaporation source can be moved along the substrate surface, for example, in the X direction and the Y direction, and the film thickness can be made constant by vapor deposition. It is an object of the present invention to provide an epoch-making vapor deposition device capable of improving the use efficiency of the device.
[0004]
[Means for Solving the Problems]
The gist of the present invention will be described with reference to the accompanying drawings.
[0005]
In a vapor deposition apparatus in which the substrate 3 is fixed to a fixing portion 4 provided in the vapor deposition chamber 1 in a reduced-pressure atmosphere, and a thin film is formed by depositing a film-forming material generated from a vapor deposition source 7 on the substrate 3. A vapor deposition source moving mechanism 8 for moving the vapor deposition source 7 in a plurality of different directions such as X, Y, Z, and θ directions or in a synthetic direction of the plurality of directions. The present invention relates to a vapor deposition apparatus, wherein a source 7 is moved with respect to the substrate 3.
[0006]
Further, the evaporation source moving mechanism 8 is configured such that the moving side is driven and moved in the predetermined direction by a combination of a guide unit and a driving unit with respect to a fixed side, and the evaporation source 7 is fixed to the moving side. 2. A vapor deposition apparatus according to claim 1, wherein said vapor deposition source is controlled to move in said predetermined direction.
[0007]
2. The apparatus according to claim 1, wherein a driving unit of the vapor deposition source moving mechanism for moving the vapor deposition source in the predetermined direction is controlled to control a moving speed of the vapor deposition source. , 2, according to the vapor deposition apparatus.
[0008]
Further, the vapor deposition source 7 is configured so that the mounting inclination angle can be adjusted, and the vapor deposition source 7 can be adjusted and fixed so that the evaporation center of the vapor deposition source 7 matches one point on the substrate 3. The present invention relates to the vapor deposition device described in any one of the above items 1-3.
[0009]
In addition, a film thickness sensor or monitor 5 is provided in the vapor deposition source 7, and is moved together with the vapor deposition source 7 by the vapor deposition source moving mechanism 8 to constantly measure or monitor the film thickness rate so that the vapor deposition state can be grasped. A vapor deposition apparatus according to any one of claims 1 to 4, wherein the vapor deposition apparatus is configured as follows.
[0010]
The method according to any one of claims 1 to 5, wherein a plurality of the vapor deposition sources 7 are provided on a moving side of the vapor deposition source moving mechanism 8 so as to be capable of performing a binary vapor deposition or a multiple vapor deposition. The present invention relates to the vapor deposition apparatus described above.
[0011]
The moving distance of the vapor deposition source 7 by the vapor deposition source moving mechanism 8 at least in the plane direction of the substrate 3 is set to be larger than the dimension of the substrate 3. The present invention relates to the vapor deposition device described in 1.
[0012]
The vapor deposition according to any one of claims 1 to 7, wherein the vapor deposition source moving mechanism (8) is provided with a vapor deposition distance adjusting mechanism (6) for adjusting a distance between the substrate (3) and the vapor deposition source (7). It concerns the device.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention (how to implement the invention) will be briefly described with reference to the drawings, showing the operational effects thereof.
[0014]
For example, the substrate 3 is fixed to a fixing portion 4 (holder) in the evaporation chamber 1 to be evacuated, and a film-forming material generated from the evaporation source 7 is deposited on the substrate 3 to form a thin film.
[0015]
At this time, the evaporation source 7 is not fixed, but is moved with respect to the substrate 3 by the evaporation source moving mechanism 8 during evaporation. That is, the evaporation source 7 evaporates the film-forming material while moving along the substrate 3 by the evaporation source moving mechanism 8 to form a thin film on the substrate 3.
[0016]
The vapor deposition source moving mechanism 8 is provided with a movable side on which the vapor deposition source 7 is provided movably in a plurality of different directions such as X, Y, Z, and θ directions with respect to a fixed side, and sequentially moves in the plurality of directions. By performing movement control (moving route setting) so as to move all over the substrate 3 by moving in the synthesis direction of, the thin film can be formed uniformly even if the distance to the substrate 3 is short.
[0017]
Therefore, for example, when the plate surface of the substrate 3 is a horizontal plane direction and the X and Y directions that are the two axial directions thereof, the θ direction that is the rotation direction, or when the substrate 3 is vertically arranged instead of being horizontally arranged, It is provided so as to be movable in the X, Z or Y, Z directions, which are two axes of directions, or in the θ direction, which is a rotation direction, and performs vapor deposition while moving the vapor deposition source 7 by controlling the movement side along the plate surface. Thus, even if the distance between the substrate 3 and the deposition source 7 is shortened, the deposition can be performed while moving the deposition source 7 with respect to the substrate 3, so that a uniform film having a uniform thickness can be formed. In addition, the amount of wasteful material flying out of the substrate 3 can be reduced, so that the film thickness can be made constant and the material use efficiency can be improved.
[0018]
In addition, by controlling the moving speed of the evaporation source 7, an accurate film thickness distribution can be realized, and the mounting angle of the evaporation source 7 is adjusted so that the evaporation center of the evaporation source 7 is aligned with one point on the substrate 3. By setting it, the above-mentioned action and effect can be exhibited more favorably.
[0019]
In addition, if a film thickness sensor or monitor 5 is provided in the vapor deposition source 7, the film thickness sensor or monitor 5 can be always moved together with the vapor deposition source 7 by the vapor deposition source moving mechanism 8, so that the film thickness at each location is always maintained. Since the rate can be measured or the deposition state can be grasped, the film thickness can be further uniformed, and the accuracy of the movement control can be improved.
[0020]
Further, it is easy to move the plurality of evaporation sources 7 together by the evaporation source moving mechanism 8, and in this case, for example, by moving the host evaporation source 7 and the dopant evaporation source 7 side by side, high accuracy is achieved. Multi-source deposition is also possible, as well as binary or otherwise.
[0021]
Further, if the substrate 3 and the vapor deposition source 7 can be adjusted and set to an appropriate distance by the vapor deposition distance adjusting mechanism 6, the distance between the substrate 3 and the vapor deposition source 7 can be shortened as much as possible according to the situation, so that uniformity and material The use efficiency can be further improved.
[0022]
【Example】
A specific embodiment of the present invention will be described with reference to the drawings.
[0023]
As shown in FIG. 1, a glass substrate 3 is fixed to a fixing part 4 provided in a vapor deposition chamber 1 to be evacuated by a vacuum pump. The holder 4A provided below the fixing portion 4 has a frame-like configuration having an opening 16 for vapor deposition, and the glass substrate 3 is positioned and mounted so as to cover the opening 16 for vapor deposition, and is provided at this end. The glass substrate 3 is pressed from above by the fixing mechanism 4B and pressed and fixed on the holder 4A.
[0024]
Further, a film forming material generated from a vapor deposition source 7 provided at the bottom of the vapor deposition chamber 1 is deposited on the substrate 3 exposed from the vapor deposition opening 16 of the fixing portion 4 to form a thin film. are doing.
[0025]
In this embodiment, an evaporation source moving mechanism 8 is provided which can move the evaporation source 7 in a plurality of different directions such as the X, Y, Z, and θ directions at the same time, thereby moving the evaporation source 7 in a combined direction of the plurality of directions. The vapor deposition source 7 is moved along the substrate surface with respect to the substrate 3 during vapor deposition by a moving mechanism 8.
[0026]
In the present embodiment, the substrate 3 is horizontally arranged in the vapor deposition chamber 1 by the fixing unit 4, and four vapor deposition sources 7 are provided on the bottom side of the lower vapor deposition chamber 1. It is configured to automatically move in the direction of the plate surface by the evaporation source moving mechanism 8 along the substrate surface.
[0027]
That is, the vapor deposition source 7 is movable in two or three directions of the X direction and the Y direction, which are two axes that are orthogonal to each other in the horizontal direction, or both or one of them and the θ direction that is the horizontal rotation direction. In the present embodiment, as shown in FIG. 4, the evaporation source moving mechanism 8 is configured to be movable in the X direction and the Y direction, and is controlled to sequentially move in these multiple directions. , X-direction, and Y-direction (vertical, horizontal, vertical, horizontal movements when viewed from a plane) are repeated, and zigzag along the board surface of the board 3 to move the board face of the board 3 It is configured to move all over.
[0028]
Specifically, as shown in FIG. 1 and FIG. 2, the evaporation source moving mechanism 8 is configured such that the moving side is a combination of a guide unit and a driving unit with respect to a fixed side (a member fixed to the evaporation chamber 1). The apparatus is configured so as to be driven and moved in the predetermined direction, and the vapor deposition source 7 is fixed to the moving side to control the movement of the vapor deposition source 7 in the predetermined direction.
[0029]
For example, the ball screw 8B is rotated by the rotation drive source 8A, and the moving body 8D is moved along the ball screw 8B along the LM guide 8C. The ball screw 8B is moved to the moving body 8D in a direction orthogonal to the ball screw 8B. The moving body 8D 'is moved along the LM guide 8C' by driving the ball screw 8B 'by the rotation driving source 8A', and the moving body 8D 'is used as a moving side. By providing the source 7, the ball screws 8B and 8B 'arranged vertically and in directions orthogonal to each other are set in the X and Y directions, and the amount of rotation of each of the ball screws 8B and 8B' is sequentially controlled, so that X, The evaporation source 7 is configured to move in the Y direction. It should be noted that a horizontal rotation fulcrum may be provided so as to move in a θ direction by a robot arm or the like.
[0030]
Further, a module having a fixed plate fixed to the vapor deposition chamber 1 as a fixed side, a moving table moving with respect to the fixed plate as a moving side, and a guide unit and a driving unit between the fixed plate and the moving table. (In the case of moving in the θ direction, a horizontal rotation fulcrum is provided), and by controlling the driving of each module, the moving table is controlled to move in the X, Y (and θ) directions. The moving mechanism may be configured at the bottom of the vapor deposition chamber 1 and the vapor source 7 may be provided on a moving table that moves in the X and Y directions.
[0031]
When the substrate 3 is arranged in the vertical direction, the evaporation source moving mechanism 8 is also configured to move in the vertical direction in a planar manner (in combination with the X, Z, Y, Z or θ directions). You may.
[0032]
Further, in the present embodiment, the distance from the substrate 3 is adjusted by freely moving three-dimensionally so as to be movable in the Z direction.
[0033]
Specifically, in the present embodiment, three-dimensional movement control is not performed, but the evaporation source moving mechanism 8 is provided so as to be able to move up and down in the Z direction by the lifting drive source 6A and the lifting guide 6B. The distance between the substrate 3 and the vapor deposition source 7 is adjusted and set by the vapor deposition distance adjusting mechanism 6 according to the size of the substrate 3, the vapor deposition material or the vapor deposition condition, and the distance between the substrate 3 and the vapor deposition source 7 is shortened as much as possible. Thus, the configuration is made such that uniformity and improvement in material use efficiency can be further achieved.
[0034]
Further, for example, instead of combining the movements in the X and Y directions as described above, the vapor deposition source moving mechanism 8 may be configured in a combined swiveling method by combining the movements in the θ direction as shown in FIGS.
[0035]
Therefore, the substrate 3 and the vapor deposition source 7 are previously set to a distance as short as possible by the vapor deposition distance adjusting mechanism 6, and the vapor deposition source 7 is set in advance by setting the movement route of the control unit that controls the driving of the vapor deposition source moving mechanism 8. The moving route can be moved or repeated according to the moving route, and the moving route can be changed and set by changing the substrate 3, changing the vapor deposition material, adjusting the distance between the substrate 3 and the vapor deposition source 7, and the like.
[0036]
In addition, the outside of the bottom of the vapor deposition chamber 1 and the inside of the moving part of the vapor deposition source moving mechanism 8 are communicated with each other to make the atmosphere, and a moving communication holding mechanism 9 is provided to maintain this communication state even if the movement is controlled. Air, water, electricity, and the like are supplied to the vapor deposition source 7 through a flexible pipe or the like via the pipe 9.
[0037]
For example, as shown in FIGS. 5 and 6, a horizontal arm 8F, which is driven and controlled in a horizontal rotation direction (θ1 direction) in parallel with the substrate 3 by a drive source 8E, is further moved in a horizontal rotation direction (θ2 direction) by a drive source 8G. ), A horizontal arm 8H whose drive is controlled is pivotally mounted, and a horizontal plate 8J whose drive is controlled in a horizontal rotation direction (θ3) by a drive source 8I is provided on the horizontal arm 8H, and the evaporation source 7 is mounted on the horizontal plate 8J. The drive source 7 is configured to move along a predetermined route along the plate surface of the substrate 3 by the combined rotation control of the horizontal arms 8F, 8H and the horizontal plate 8J in the θ1, θ2, θ3 directions. May be.
[0038]
In this embodiment, the moving distance (range) of the evaporation source 7 by the evaporation source moving mechanism 8 with respect to the plate surface direction of the substrate 3 is set to be slightly larger than the dimension of the substrate 3.
[0039]
As a result, the thin film at the end of the substrate 3 can be made uniform, and the amount of unnecessary material flying out of the substrate 3 can be reduced as much as possible.
[0040]
In addition, the controller is configured to control a driving unit of the evaporation source moving mechanism 8 that moves the evaporation source 7 in the predetermined direction, so that a moving speed of the evaporation source 7 can be controlled. In this speed control, the speed can be reduced / increased by adjusting the output of each drive unit or switching the output transmission mechanism.
[0041]
Further, as shown in FIG. 3, the vapor deposition source 7 is provided detachably via a mounting structure so that it can be easily replaced, and the mounting inclination angle by this mounting structure is configured to be adjustable. The evaporation center can be adjusted and fixed so as to match one point on the substrate 3.
[0042]
Therefore, even if a plurality of evaporation sources 7 are provided, the evaporation center of each of the evaporation sources 7 can be set so as to coincide with one point on the movement route of the evaporation center. It will be performed efficiently and well.
[0043]
Further, a film thickness sensor or a monitor 5 for monitoring the vapor deposition is provided in the vapor deposition source 7, and is moved together with the vapor deposition source 7 by the vapor deposition source moving mechanism 8 to constantly measure the film thickness rate or to monitor the vapor deposition status. It is configured so that it can be grasped.
[0044]
Further, it is easy to provide a plurality of the evaporation sources 7 on the moving side of the evaporation source moving mechanism 8 so that the plurality of evaporation sources 7 can always move along the same route together by the evaporation source moving mechanism 8. Therefore, binary vapor deposition and multiple vapor deposition can be performed favorably.
[0045]
At this time, as described above, the angle of each of the evaporation sources 7 is similarly adjusted and set so that the evaporation center can be attached and fixed so that the evaporation center coincides with one point on the substrate 3. Original vapor deposition and multi-source vapor deposition can be performed.
[0046]
Further, a monitor 5 is provided on the vapor deposition source 7 and is configured to move together with the vapor deposition source 7, and the monitor 5 is also attached so as to face one point on the substrate 3 where the evaporation center matches, so that the vapor deposition state The evaporation can be performed while constantly monitoring the results, making the equipment even more excellent.
[0047]
Therefore, by providing the mounting portion 2 on the moving side of the evaporation source moving mechanism 8 in which the plurality of evaporation sources 7, the sensors, the monitor 5, and the like can be exchanged and mounted in an appropriate direction, an extremely practical evaporation device can be obtained. .
[0048]
It should be noted that the present invention is not limited to the present embodiment, and a specific configuration of each component can be appropriately designed.
[0049]
【The invention's effect】
Since the present invention is configured as described above, an evaporation source moving mechanism for moving the evaporation source in a plurality of directions such as an X, Y driving mechanism, an X-θ driving mechanism, or an XZ driving mechanism is provided in the evaporation chamber, Even if the distance between the evaporation source and the substrate is short, the film thickness distribution can be made constant by moving the evaporation source along the substrate surface, for example, in the X direction and the Y direction, so that the film thickness distribution can be made constant. This is an epoch-making vapor deposition apparatus that can reduce the amount of material flying and improve the material use efficiency.
[0050]
According to the second aspect of the present invention, the vapor deposition apparatus can be realized more easily and is more practical.
[0051]
According to the third aspect of the present invention, it is possible to realize an accurate film thickness distribution by controlling the moving speed of the evaporation source.
[0052]
Further, in the invention according to claim 4, the operation and effect are further improved by adjusting the mounting angle of the evaporation source so as to set the evaporation center of the evaporation source to one point on the substrate. It becomes.
[0053]
In the invention according to claim 5, if a film thickness sensor or monitor is provided in the vapor deposition source, the film thickness sensor or monitor can be always moved together with the vapor deposition source by the vapor deposition source moving mechanism, so that the vapor deposition source can always be controlled at various locations. In this case, the film thickness rate can be measured or the deposition state can be grasped, so that the film thickness can be further uniformed and the accuracy of the movement control can be improved.
[0054]
In the invention according to claim 6, it is easy to move a plurality of evaporation sources together by an evaporation source moving mechanism. In this case, for example, a host evaporation source and a dopant evaporation source are arranged and moved. As a result, high-precision binary vapor deposition and other similar multiple vapor depositions can be performed.
[0055]
Further, according to the invention of claim 7, the thin film can be made uniform at the edge of the substrate, and the amount of unnecessary material flying out of the substrate can be reduced as much as possible.
[0056]
Further, in the invention according to claim 8, the substrate and the vapor deposition source can be adjusted and set to an appropriate distance, and the distance between the substrate and the vapor deposition source can be shortened as much as possible to further improve the uniformity and the material use efficiency. It becomes an even more excellent vapor deposition device.
[Brief description of the drawings]
FIG. 1 is a schematic configuration explanatory front view of the present embodiment.
FIG. 2 is a schematic configuration explanatory plan view of the present embodiment.
FIG. 3 is an enlarged explanatory front view showing a mounting portion of a vapor deposition source 7 of the present embodiment.
FIG. 4 is an explanatory diagram illustrating an example of a movement route at the time of vapor deposition in the present embodiment.
FIG. 5 is a schematic cross-sectional explanatory front view showing another example of the evaporation source moving mechanism 8 of the present embodiment.
FIG. 6 is a schematic configuration explanatory plan view showing another example of the evaporation source moving mechanism 8 of the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Deposition chamber 3 Substrate 4 Fixed part 5 Monitor 6 Deposition distance mechanism 7 Deposition source 8 Deposition source moving mechanism

Claims (8)

減圧雰囲気とする蒸着室内に設けた固定部に基板を固定し、蒸着源より発生する成膜材料が基板上に堆積して薄膜が形成されるように構成した蒸着装置において、前記蒸着源をX,Y,Z,θ方向などの異なる複数方向に若しくはこれら複数方向の合成方向に移動させる蒸着源移動機構を設けて、この蒸着源移動機構により蒸着時に前記蒸着源を前記基板に対して移動させるように構成したことを特徴とする蒸着装置。In a vapor deposition apparatus configured such that a substrate is fixed to a fixing portion provided in a vapor deposition chamber in a reduced-pressure atmosphere, and a film-forming material generated from the vapor deposition source is deposited on the substrate to form a thin film, , Y, Z, θ directions, etc., or an evaporation source moving mechanism for moving in a combined direction of the plurality of directions, and the evaporation source is moved with respect to the substrate during evaporation by the evaporation source moving mechanism. A vapor deposition apparatus characterized by having such a configuration. 前記蒸着源移動機構は、固定側に対して移動側がガイド部と駆動部との組み合わせにより前記所定方向に駆動移動するように構成し、この移動側に前記蒸着源を固定して、蒸着源を前記所定方向に移動制御するように構成したことを特徴とする請求項1記載の蒸着装置。The evaporation source moving mechanism is configured such that a moving side is driven and moved in the predetermined direction by a combination of a guide unit and a driving unit with respect to a fixed side. 2. The vapor deposition apparatus according to claim 1, wherein the movement is controlled in the predetermined direction. 前記蒸着源を前記所定方向に移動する前記蒸着源移動機構の駆動部を制御して、前記蒸着源の移動速度を制御し得るように構成したことを特徴とする請求項1,2のいずれか1項に記載の蒸着装置。The apparatus according to claim 1, wherein a driving unit of the evaporation source moving mechanism that moves the evaporation source in the predetermined direction is controlled to control a moving speed of the evaporation source. Item 2. The vapor deposition apparatus according to item 1. 前記蒸着源は取付傾斜角度を調整自在に構成し、この蒸着源の蒸発中心が前記基板上の一点に合うように調整固定し得るように構成したことを特徴とする請求項1〜3のいずれか1項に記載の蒸着装置。4. The vapor deposition source according to claim 1, wherein a mounting inclination angle is configured to be adjustable, and the vapor deposition center can be adjusted and fixed so that an evaporation center of the vapor deposition source matches one point on the substrate. The vapor deposition device according to claim 1. 前記蒸着源に膜厚センサー若しくはモニターを配設して、前記蒸着源移動機構により前記蒸着源と共に移動して常に膜厚レートを測定若しくはモニターして蒸着状況を把握できるように構成したことを特徴とする請求項1〜4のいずれか1項に記載の蒸着装置。A film thickness sensor or a monitor is provided at the vapor deposition source, and the film is moved along with the vapor deposition source by the vapor deposition source moving mechanism so that the film thickness rate can be constantly measured or monitored to grasp the vapor deposition state. The vapor deposition apparatus according to any one of claims 1 to 4, wherein 前記蒸着源移動機構の移動側に複数の前記蒸着源を設けて、二元蒸着若しくは多元蒸着し得るように構成したことを特徴とする請求項1〜5のいずれか1項に記載の蒸着装置。The vapor deposition apparatus according to any one of claims 1 to 5, wherein a plurality of the vapor deposition sources are provided on a moving side of the vapor deposition source moving mechanism so that binary vapor deposition or multiple vapor deposition can be performed. . 少なくとも前記基板の面方向に対する前記蒸着源移動機構による前記蒸着源の移動距離を、前記基板の寸法より大きく設定したことを特徴とする請求項1〜6のいずれか1項に記載の蒸着装置。The vapor deposition apparatus according to any one of claims 1 to 6, wherein a moving distance of the vapor deposition source by the vapor deposition source moving mechanism at least in a plane direction of the substrate is set to be larger than a dimension of the substrate. 前記蒸着源移動機構に前記基板と前記蒸着源との距離を調整する蒸着距離調整機構を設けたことを特徴とする請求項1〜7のいずれか1項に記載の蒸着装置。The said vapor deposition source moving mechanism was provided with the vapor deposition distance adjustment mechanism which adjusts the distance between the said substrate and the said vapor deposition source, The vapor deposition apparatus as described in any one of Claims 1-7 characterized by the above-mentioned.
JP2002196348A 2002-07-04 2002-07-04 Vapor deposition apparatus and thin film manufacturing method Expired - Lifetime JP4286496B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002196348A JP4286496B2 (en) 2002-07-04 2002-07-04 Vapor deposition apparatus and thin film manufacturing method
KR1020020070268A KR100934073B1 (en) 2002-07-04 2002-11-13 Deposition equipment and thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002196348A JP4286496B2 (en) 2002-07-04 2002-07-04 Vapor deposition apparatus and thin film manufacturing method

Publications (3)

Publication Number Publication Date
JP2004035964A true JP2004035964A (en) 2004-02-05
JP2004035964A5 JP2004035964A5 (en) 2005-10-20
JP4286496B2 JP4286496B2 (en) 2009-07-01

Family

ID=31704467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002196348A Expired - Lifetime JP4286496B2 (en) 2002-07-04 2002-07-04 Vapor deposition apparatus and thin film manufacturing method

Country Status (2)

Country Link
JP (1) JP4286496B2 (en)
KR (1) KR100934073B1 (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327272A (en) * 2003-04-25 2004-11-18 Semiconductor Energy Lab Co Ltd Manufacturing device and light emitting device
JP2005063952A (en) * 2003-07-25 2005-03-10 Semiconductor Energy Lab Co Ltd Formation method of light emitting device
JP2006063447A (en) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd Organic matter vapor deposition system
JP2006063446A (en) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd Vacuum deposition apparatus of organic substance
US7211461B2 (en) 2003-02-14 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
US7211454B2 (en) 2003-07-25 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a light emitting device including moving the source of the vapor deposition parallel to the substrate
KR100729096B1 (en) 2006-03-29 2007-06-14 삼성에스디아이 주식회사 Deposition method for vaporizing organic and the deposition apparatus for the same
US7378133B2 (en) 2002-08-30 2008-05-27 Semiconductor Energy Laboratory Co., Ltd. Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
US20080264342A1 (en) * 2007-04-26 2008-10-30 Sony Corporation Deposition apparatus
WO2009002019A2 (en) * 2007-06-27 2008-12-31 Doosan Mecatec Co., Ltd. Evaporation apparatus
JP2009114550A (en) * 2005-01-05 2009-05-28 Samsung Mobile Display Co Ltd Drive shaft of vapor deposition source for deposition system and deposition system having the same
JP2009299176A (en) * 2008-06-16 2009-12-24 Samsung Mobile Display Co Ltd Transfer apparatus and organic deposition device with the same
JP2010020210A (en) * 2008-07-14 2010-01-28 Seiko Epson Corp Manufacturing method and manufacture device of screen, and screen
JP2010037649A (en) * 2008-08-01 2010-02-18 Samsung Mobile Display Co Ltd Organic matter vapor deposition system
JP2010080230A (en) * 2008-09-25 2010-04-08 Hitachi High-Technologies Corp Organic el device manufacturing device, film forming device and vacuum inside wiring-piping mechanism
US7820231B2 (en) 2002-08-01 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
CN101892455A (en) * 2009-05-22 2010-11-24 三星移动显示器株式会社 Film deposition apparatus
US7959971B2 (en) 2006-03-31 2011-06-14 Canon Kabushiki Kaisha Film formation method with deposition source position control
KR101076227B1 (en) * 2008-12-23 2011-10-26 주식회사 테스 Vacuum evaporation apparatus
JP2012012626A (en) * 2010-06-29 2012-01-19 Hitachi High-Technologies Corp Assist mechanism and assist method for conveying heavy load, and device and method for film deposition
US8110509B2 (en) 2002-05-17 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light emitting devices
US8123862B2 (en) 2003-08-15 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Deposition apparatus and manufacturing apparatus
US8206507B2 (en) 2002-05-17 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Evaporation method, evaporation device and method of fabricating light emitting device
KR101208995B1 (en) * 2005-04-20 2012-12-06 주성엔지니어링(주) Evaporation equipment including deposits vessel
JP2013147743A (en) * 2011-12-22 2013-08-01 Semiconductor Energy Lab Co Ltd Film formation apparatus and film formation method
JP2013231238A (en) * 2009-05-22 2013-11-14 Samsung Display Co Ltd Thin film vapor deposition apparatus
US8833294B2 (en) 2010-07-30 2014-09-16 Samsung Display Co., Ltd. Thin film deposition apparatus including patterning slit sheet and method of manufacturing organic light-emitting display device with the same
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8882556B2 (en) 2010-02-01 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8882920B2 (en) 2009-06-05 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882921B2 (en) 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101462595B1 (en) * 2012-11-22 2014-11-18 주식회사 에스에프에이 Vaccum deposition apparatus
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8962360B2 (en) 2013-06-17 2015-02-24 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the organic layer deposition apparatus
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
WO2015086049A1 (en) * 2013-12-10 2015-06-18 Applied Materials, Inc. Evaporation source for organic material, apparatus having an evaporation source for organic material, system having an evaporation deposition apparatus with an evaporation source for organic materials, and method for operating an evaporation source for organic material
KR101530031B1 (en) * 2013-11-26 2015-06-19 주식회사 에스에프에이 Thin layers deposition apparatus and method of thin layers deposition
US9121095B2 (en) 2009-05-22 2015-09-01 Samsung Display Co., Ltd. Thin film deposition apparatus
US9136476B2 (en) 2013-03-20 2015-09-15 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus, and organic light-emitting display apparatus manufactured by the method
US9209427B2 (en) 2002-04-15 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9551063B2 (en) 2002-02-25 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and a fabrication method of a light emitting device
JP2017036512A (en) * 2016-11-07 2017-02-16 株式会社半導体エネルギー研究所 Deposition device
US9624580B2 (en) 2009-09-01 2017-04-18 Samsung Display Co., Ltd. Thin film deposition apparatus
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
TWI614903B (en) * 2007-07-26 2018-02-11 半導體能源研究所股份有限公司 Display device
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus
JP6713093B1 (en) * 2019-05-13 2020-06-24 株式会社アルバック Vapor deposition unit and vacuum vapor deposition apparatus including the vapor deposition unit
WO2020230359A1 (en) * 2019-05-13 2020-11-19 株式会社アルバック Deposition unit, and vacuum deposition device provided with said deposition unit
CN117089811A (en) * 2023-10-17 2023-11-21 焕澄(上海)新材料科技发展有限公司 Device for preparing optical coating film

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100646502B1 (en) * 2004-12-13 2006-11-15 삼성에스디아이 주식회사 Organic matter plating device
KR200449417Y1 (en) * 2009-12-31 2010-07-13 주식회사 나파스 traffic safety signboard for portable
KR101975020B1 (en) * 2012-04-24 2019-05-07 삼성디스플레이 주식회사 Organic light emitting diode display and manufacturing method thereof
KR102355870B1 (en) * 2020-07-30 2022-02-07 주식회사 선익시스템 Deposition device for controlling the location of deposition source

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415831U (en) * 1990-05-30 1992-02-07
KR19980073490A (en) * 1997-03-14 1998-11-05 김광호 Plasma Chamber for Semiconductor Manufacturing
KR100518147B1 (en) * 1998-06-01 2005-11-25 가부시키가이샤 아루박 Evaporation apparatus, organic material evaporation source, and method of manufacturing thin organic film
JP2000138095A (en) * 1998-08-26 2000-05-16 Toray Ind Inc Manufacture of light emitting device
KR100348970B1 (en) * 1998-12-31 2002-12-26 주식회사 머큐리 Fiber Optic Substrate Deposition Device
KR100329207B1 (en) * 1999-05-27 2002-03-22 방우영 A Large Area Deposition Method and A Deposition System Thereby
JP2001081558A (en) * 1999-09-13 2001-03-27 Asahi Optical Co Ltd Film deposition device and film deposition method
KR100375403B1 (en) * 2000-08-24 2003-03-08 (주)대진반도체 Vacuum coating apparatus incorporating coaters having general independent function

Cited By (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9551063B2 (en) 2002-02-25 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Fabrication system and a fabrication method of a light emitting device
US9209427B2 (en) 2002-04-15 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light-emitting device and apparatus for manufacturing light-emitting device
US8206507B2 (en) 2002-05-17 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Evaporation method, evaporation device and method of fabricating light emitting device
US8110509B2 (en) 2002-05-17 2012-02-07 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating light emitting devices
US7820231B2 (en) 2002-08-01 2010-10-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
US7378133B2 (en) 2002-08-30 2008-05-27 Semiconductor Energy Laboratory Co., Ltd. Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
US8747558B2 (en) 2003-02-14 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
US7211461B2 (en) 2003-02-14 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
US8034182B2 (en) 2003-04-25 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Apparatus for forming a film and an electroluminescence device
US8399362B2 (en) 2003-04-25 2013-03-19 Semiconductor Energy Laboratory Co., Ltd. Apparatus for forming a film and an electroluminescence device
JP2004327272A (en) * 2003-04-25 2004-11-18 Semiconductor Energy Lab Co Ltd Manufacturing device and light emitting device
US8778809B2 (en) 2003-04-25 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Apparatus for forming a film and an electroluminescence device
JP4493926B2 (en) * 2003-04-25 2010-06-30 株式会社半導体エネルギー研究所 Manufacturing equipment
US7211454B2 (en) 2003-07-25 2007-05-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a light emitting device including moving the source of the vapor deposition parallel to the substrate
JP4522777B2 (en) * 2003-07-25 2010-08-11 株式会社半導体エネルギー研究所 Method for manufacturing light emitting device
JP2005063952A (en) * 2003-07-25 2005-03-10 Semiconductor Energy Lab Co Ltd Formation method of light emitting device
US8524313B2 (en) 2003-08-15 2013-09-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a device
US8123862B2 (en) 2003-08-15 2012-02-28 Semiconductor Energy Laboratory Co., Ltd. Deposition apparatus and manufacturing apparatus
JP2006063446A (en) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd Vacuum deposition apparatus of organic substance
JP2006063447A (en) * 2004-08-25 2006-03-09 Samsung Sdi Co Ltd Organic matter vapor deposition system
JP4516499B2 (en) * 2004-08-25 2010-08-04 三星モバイルディスプレイ株式會社 Organic vapor deposition equipment
JP2009114549A (en) * 2005-01-05 2009-05-28 Samsung Mobile Display Co Ltd Drive shaft of vapor deposition source for deposition system, and deposition system having the same
JP2009114550A (en) * 2005-01-05 2009-05-28 Samsung Mobile Display Co Ltd Drive shaft of vapor deposition source for deposition system and deposition system having the same
US8366832B2 (en) 2005-01-05 2013-02-05 Samsung Displays Co., Ltd. Driving shaft of effusion cell for deposition system and deposition system having the same
KR101208995B1 (en) * 2005-04-20 2012-12-06 주성엔지니어링(주) Evaporation equipment including deposits vessel
KR100729096B1 (en) 2006-03-29 2007-06-14 삼성에스디아이 주식회사 Deposition method for vaporizing organic and the deposition apparatus for the same
US7959971B2 (en) 2006-03-31 2011-06-14 Canon Kabushiki Kaisha Film formation method with deposition source position control
US20080264342A1 (en) * 2007-04-26 2008-10-30 Sony Corporation Deposition apparatus
CN101743617B (en) * 2007-06-27 2012-05-23 圆益Ips股份有限公司 Evaporation apparatus
WO2009002019A3 (en) * 2007-06-27 2009-02-19 Doosan Mecatec Co Ltd Evaporation apparatus
WO2009002019A2 (en) * 2007-06-27 2008-12-31 Doosan Mecatec Co., Ltd. Evaporation apparatus
TWI614903B (en) * 2007-07-26 2018-02-11 半導體能源研究所股份有限公司 Display device
JP2009299176A (en) * 2008-06-16 2009-12-24 Samsung Mobile Display Co Ltd Transfer apparatus and organic deposition device with the same
JP2010020210A (en) * 2008-07-14 2010-01-28 Seiko Epson Corp Manufacturing method and manufacture device of screen, and screen
JP2010037649A (en) * 2008-08-01 2010-02-18 Samsung Mobile Display Co Ltd Organic matter vapor deposition system
JP2010080230A (en) * 2008-09-25 2010-04-08 Hitachi High-Technologies Corp Organic el device manufacturing device, film forming device and vacuum inside wiring-piping mechanism
KR101076227B1 (en) * 2008-12-23 2011-10-26 주식회사 테스 Vacuum evaporation apparatus
US9873937B2 (en) 2009-05-22 2018-01-23 Samsung Display Co., Ltd. Thin film deposition apparatus
JP2013231238A (en) * 2009-05-22 2013-11-14 Samsung Display Co Ltd Thin film vapor deposition apparatus
US10689746B2 (en) 2009-05-22 2020-06-23 Samsung Display Co., Ltd. Thin film deposition apparatus
US11624107B2 (en) 2009-05-22 2023-04-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US9121095B2 (en) 2009-05-22 2015-09-01 Samsung Display Co., Ltd. Thin film deposition apparatus
US11920233B2 (en) 2009-05-22 2024-03-05 Samsung Display Co., Ltd. Thin film deposition apparatus
CN101892455A (en) * 2009-05-22 2010-11-24 三星移动显示器株式会社 Film deposition apparatus
JP2010270397A (en) * 2009-05-22 2010-12-02 Samsung Mobile Display Co Ltd Thin film deposition apparatus
US8916237B2 (en) 2009-05-22 2014-12-23 Samsung Display Co., Ltd. Thin film deposition apparatus and method of depositing thin film
US8882920B2 (en) 2009-06-05 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882921B2 (en) 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8968829B2 (en) 2009-08-25 2015-03-03 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US9450140B2 (en) 2009-08-27 2016-09-20 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
US9624580B2 (en) 2009-09-01 2017-04-18 Samsung Display Co., Ltd. Thin film deposition apparatus
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
US9224591B2 (en) 2009-10-19 2015-12-29 Samsung Display Co., Ltd. Method of depositing a thin film
US10287671B2 (en) 2010-01-11 2019-05-14 Samsung Display Co., Ltd. Thin film deposition apparatus
US10246769B2 (en) 2010-01-11 2019-04-02 Samsung Display Co., Ltd. Thin film deposition apparatus
US8859325B2 (en) 2010-01-14 2014-10-14 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8882556B2 (en) 2010-02-01 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9453282B2 (en) 2010-03-11 2016-09-27 Samsung Display Co., Ltd. Thin film deposition apparatus
US8973525B2 (en) 2010-03-11 2015-03-10 Samsung Display Co., Ltd. Thin film deposition apparatus
US8865252B2 (en) 2010-04-06 2014-10-21 Samsung Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US9136310B2 (en) 2010-04-28 2015-09-15 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
JP2012012626A (en) * 2010-06-29 2012-01-19 Hitachi High-Technologies Corp Assist mechanism and assist method for conveying heavy load, and device and method for film deposition
US9279177B2 (en) 2010-07-07 2016-03-08 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
US8833294B2 (en) 2010-07-30 2014-09-16 Samsung Display Co., Ltd. Thin film deposition apparatus including patterning slit sheet and method of manufacturing organic light-emitting display device with the same
US8871542B2 (en) 2010-10-22 2014-10-28 Samsung Display Co., Ltd. Method of manufacturing organic light emitting display apparatus, and organic light emitting display apparatus manufactured by using the method
US9388488B2 (en) 2010-10-22 2016-07-12 Samsung Display Co., Ltd. Organic film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8882922B2 (en) 2010-11-01 2014-11-11 Samsung Display Co., Ltd. Organic layer deposition apparatus
US8852687B2 (en) 2010-12-13 2014-10-07 Samsung Display Co., Ltd. Organic layer deposition apparatus
US9748483B2 (en) 2011-01-12 2017-08-29 Samsung Display Co., Ltd. Deposition source and organic layer deposition apparatus including the same
US9249493B2 (en) 2011-05-25 2016-02-02 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display apparatus by using the same
US8859043B2 (en) 2011-05-25 2014-10-14 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8906731B2 (en) 2011-05-27 2014-12-09 Samsung Display Co., Ltd. Patterning slit sheet assembly, organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus, and the organic light-emitting display apparatus
US8951610B2 (en) 2011-07-04 2015-02-10 Samsung Display Co., Ltd. Organic layer deposition apparatus
JP2013147743A (en) * 2011-12-22 2013-08-01 Semiconductor Energy Lab Co Ltd Film formation apparatus and film formation method
KR101462595B1 (en) * 2012-11-22 2014-11-18 주식회사 에스에프에이 Vaccum deposition apparatus
US9136476B2 (en) 2013-03-20 2015-09-15 Samsung Display Co., Ltd. Method of manufacturing organic light-emitting display apparatus, and organic light-emitting display apparatus manufactured by the method
US8962360B2 (en) 2013-06-17 2015-02-24 Samsung Display Co., Ltd. Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the organic layer deposition apparatus
KR101530031B1 (en) * 2013-11-26 2015-06-19 주식회사 에스에프에이 Thin layers deposition apparatus and method of thin layers deposition
EP3187618A1 (en) * 2013-12-10 2017-07-05 Applied Materials, Inc. Evaporation source for organic material, deposition apparatus for depositing organic materials in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
CN105814231A (en) * 2013-12-10 2016-07-27 应用材料公司 Evaporation source for organic material, apparatus having an evaporation source for organic material, system having an evaporation deposition apparatus with an evaporation source for organic materials, and method for operating an evaporation source for organic material
WO2015086049A1 (en) * 2013-12-10 2015-06-18 Applied Materials, Inc. Evaporation source for organic material, apparatus having an evaporation source for organic material, system having an evaporation deposition apparatus with an evaporation source for organic materials, and method for operating an evaporation source for organic material
JP2017036512A (en) * 2016-11-07 2017-02-16 株式会社半導体エネルギー研究所 Deposition device
JP6713093B1 (en) * 2019-05-13 2020-06-24 株式会社アルバック Vapor deposition unit and vacuum vapor deposition apparatus including the vapor deposition unit
WO2020230359A1 (en) * 2019-05-13 2020-11-19 株式会社アルバック Deposition unit, and vacuum deposition device provided with said deposition unit
CN113574202A (en) * 2019-05-13 2021-10-29 株式会社爱发科 Evaporation unit and vacuum evaporation device with same
CN113574202B (en) * 2019-05-13 2022-12-02 株式会社爱发科 Evaporation unit and vacuum evaporation device with same
CN117089811A (en) * 2023-10-17 2023-11-21 焕澄(上海)新材料科技发展有限公司 Device for preparing optical coating film

Also Published As

Publication number Publication date
JP4286496B2 (en) 2009-07-01
KR100934073B1 (en) 2009-12-24
KR20040004755A (en) 2004-01-14

Similar Documents

Publication Publication Date Title
JP4286496B2 (en) Vapor deposition apparatus and thin film manufacturing method
WO2015165167A1 (en) Device and method for evaporating substrate
JP2004035964A5 (en)
JP6840232B2 (en) A device for aligning carriers in a vacuum chamber, a vacuum system, and a method for aligning carriers in a vacuum chamber.
JP2004063454A5 (en)
KR20070012314A (en) Organic material evaporation source and organic vapor deposition device
KR101108152B1 (en) Deposition source
KR20130010730A (en) Deposition source and deposition apparatus with the same
US7803229B2 (en) Apparatus and method for compensating uniformity of film thickness
KR102347636B1 (en) Sputter system for uniform sputtering
US8790498B2 (en) Method and device for ion beam processing of surfaces
WO2015100730A1 (en) Write-through vacuum evaporation system and a method therefor
CN112458407B (en) Crystal oscillator measurement system, crystal oscillator measurement method and crystal oscillator measurement device
KR101664187B1 (en) Sputtering method using sputtering apparatus
US20210328147A1 (en) Carrier for supporting a substrate or a mask
CN114045468B (en) Thin film deposition apparatus, physical vapor deposition device, and thin film deposition method
JP2014070240A (en) Vapor deposition apparatus, and vapor deposition control method
WO2019063061A1 (en) Material deposition arrangement, vacuum deposition system and methods therefor
CN103898451A (en) Automatic laser beam shift control device and operation method thereof
JP7220562B2 (en) Film forming apparatus, film forming method, and electronic device manufacturing method
KR102543415B1 (en) Substrate mounting apparatus with seesaw motion applied
CN108642453B (en) Vacuum evaporation chamber and vacuum evaporation equipment
TWI816883B (en) Deposition apparatus
JP5816606B2 (en) Film forming apparatus characterized by a stage on which a film-formed product is placed
US20220243326A1 (en) Apparatus and method for thin film deposition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4286496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250