JP2004035277A - Process for manufacturing fertilizer - Google Patents

Process for manufacturing fertilizer Download PDF

Info

Publication number
JP2004035277A
JP2004035277A JP2002190379A JP2002190379A JP2004035277A JP 2004035277 A JP2004035277 A JP 2004035277A JP 2002190379 A JP2002190379 A JP 2002190379A JP 2002190379 A JP2002190379 A JP 2002190379A JP 2004035277 A JP2004035277 A JP 2004035277A
Authority
JP
Japan
Prior art keywords
beer
fermentation
fertilizer
lees
livestock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002190379A
Other languages
Japanese (ja)
Inventor
Junichi Ishida
石田 順一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002190379A priority Critical patent/JP2004035277A/en
Publication of JP2004035277A publication Critical patent/JP2004035277A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for manufacturing a fertilizer which provides an organic fertilizer showing an excellent merchantability by performing a fermentation treatment of beer dregs and livestock manure, whose treatment was conventionally difficult, at a low cost within a short time without emitting any harmful substances and without using any special fermentative bacteria or apparatus. <P>SOLUTION: The process comprises steps wherein the beer dregs are dehydrated, the dehydrated beer dregs are mixed with the livestock manure and the mixture is fermented. Here, preliminarily dried poultry manure is used as the livestock manure. Preferably, the beer dregs and the livestock manure are mixed in a mass ratio (beer dregs):(livestock manure) of from 50:50 to 70:30 in terms of solid content. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、主に廃棄物として処理されているビール粕及び家畜糞の有効利用を図ることができる肥料の製造方法に関するものである。
【0002】
【従来の技術】
近年、ビール(発泡酒を含む)の消費量増加に伴い、その製造工程において麦汁を搾ったあとに残るビール粕(発泡酒粕を含む:以下同様である)の発生量も増加の一途を辿っている。従来、このビール粕は、そのまま、あるいは乾燥させて家畜の飼料に用いられることがあったが、ビール粕を与え過ぎると畜肉や鶏卵等に不快臭が付くので、飼料としての使用量は限られたものであった。また、乾燥させたビール粕を土壌改良剤やきのこ培地等に用いることもあったが、70〜80%もの水分を含むビール粕を乾燥させるためのコスト(燃料費等)が嵩むので、こうした用途での利用にも限度があった。
【0003】
さらに、ビール粕を自然発酵させて堆肥化する場合は、完熟させるまでに数ヶ月以上の長時間を要し、しかも極めて強い悪臭が発生するいう問題があった。そこで、発酵装置を用い、ビール粕を加熱したり通風したりすることで強制的に発酵させることも考えられたが、この場合は発酵装置のイニシャルコストやランニングコスト(燃料費・動力費等)が嵩み、採算性の面で問題が生じた。
さらにまた、ビール粕に特殊な発酵菌を添加して発酵させるという技術も従来提案されているが、発酵菌の購入費のためにコスト高となる等の問題があって、現実的ではなかった。
【0004】
以上のような理由から、従来、ビール粕の大半は産業廃棄物として焼却処理されているのが実情であった。しかしながら、前記のとおり水分含有率の高いビール粕を焼却するには燃料費が嵩み、しかも、焼却に伴い二酸化炭素や窒素酸化物等の、地球環境にとって有害な物質が放出されるという問題を避けることができなかった。
【0005】
他方、畜産業者,養鶏業者,農家等で発生する家畜糞も、その一部が乾燥・肥料化されている以外には、これといった利用価値がなく、大部分が野積状態で放置されたり焼却されたりしており、業者や地方自治体等では家畜糞の処理対策に苦慮しているのが実情であった。
【0006】
【発明が解決しようとする課題】
本発明は、以上のような事情に鑑みてなされたものであって、従来処理に困っていたビール粕及び家畜糞を、特殊な発酵菌及び発酵装置を使用せずに、低コストで、短時間のうちに、しかも有害物質の放出を伴わずに発酵処理して、商品性に優れた有機質肥料を得ることを可能とする、肥料の製造方法の提供を目的とするものである。
【0007】
【課題を解決するための手段】
前記目的を達成するため、本発明に係る肥料の製造方法は、ビール粕を脱水する工程と、この脱水されたビール粕と家畜糞とを混合する工程と、この混合物を発酵させる工程とを含んでなることを特徴とするものである。
【0008】
また、前記の製造方法において、家畜糞として、予め乾燥させた鶏糞を用いるものである。
【0009】
なお、本発明において「ビール粕」とは、大麦を発芽させた麦芽を糖化させたのち濾過し、麦汁を除いた残渣のことをいい、通常のビール製造の際に副生するものであればどのようなものでもよく、大麦の種類、副原料使用の有無・種類等により制限されるものではなく、また、麦芽の使用比率を低下させたいわゆる発泡酒の製造の際に同様に副生する麦汁を除いた残渣(すなわち発泡酒粕)も本発明のビール粕に含まれる。このようなビール粕は、麦汁を搾った際の残渣であって水に不溶の成分、例えば大麦の穀皮及び不溶性タンパク質(アミノ酸)、並びにホップ由来の不溶性物質等から構成されている。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
ビール粕と、その他のアルコール飲料粕(例えば酒粕,ワイン粕,焼酎粕等)とは、発酵済みか未発酵かという点で相違している。すなわち、例えば酒粕(日本酒のもの)は、酒母,麹,水を混合してなる水麹の中に蒸米を入れ、日本酒酵母の発酵作用によりアルコールを含む醪(もろみ)としたのち、この醪を搾り機にかけて酒粕と日本酒とに分けている。したがって、酒粕は発酵済みの搾り粕であると言える。これと同様にワイン粕も発酵済みの搾り粕であり、また、焼酎粕は発酵した醪の蒸留残渣である。それに対し、ビール粕は、ビール酵母を加えてアルコール発酵させる前にビール原料から分離されるものであるために、取り出された時点では未発酵であり、しかも麦芽糖やアミノ酸等の栄養分を豊富に含んでいるため、極めて発酵しやすい状態にある。
しかしながら、このビール粕の発酵能力は潜在的なものであって、ビール粕単独では発酵が弱く、発酵温度も充分に上昇しないが、ビール粕と有機物(家畜糞)とを併用し、且つ両者の水分含有率を調整することにより、発酵温度は発酵菌を添加しなくとも60℃程度まで上昇することが試験の結果確認できた。
【0011】
本発明においては、先ずビール(発泡酒)の製造工程から副生したビール粕を脱水する脱水工程を実施する。脱水には、公知の遠心脱水機,フィルタプレス,ローラー絞り機等を単独で又は適宜に組み合わせて用いることができる。また、どの程度の水分含有率まで脱水するかは特に限定されないが、元来70〜80%であるビール粕の水分含有率が25〜50%の範囲となるまで脱水するのが好ましい。水分含有率が25%未満となるまで脱水しても構わないが、それにより格別な効果が得られるわけではなく、反対に脱水に時間がかかり過ぎて処理効率が低下するという弊害が生じる。一方、脱水後の水分含有率が50%を超えていると、後述する発酵工程で悪臭が生じやすくなり、発酵が完了するまでに時間がかかる傾向が生じ、しかも発酵完了時点での水分含有率が高くなって、肥料の保存性を良くするための乾燥作業に手間とコストがかかることになる。
すなわち、ここでの脱水は、主として悪臭発生の防止、発酵時間の短縮、及び発酵完了時点における完熟発酵物の水分低減を目的としているので、その目的が達せられる程度に脱水すればよいのである。
【0012】
他方、家畜糞としては、例えば牛糞,豚糞,鶏糞等を用いることができる。ただし、それらの中では鶏糞を用いるのが特に好ましい。その理由として、牛糞や豚糞に比べて鶏糞は、肥効成分(特に窒素,リン酸,カリ)をバランス良く含んでいること、水分含有率が比較的低くて取り扱いが容易なこと、及び悪臭が比較的少ないこと、等が挙げられる。
【0013】
また、鶏糞は、予め乾燥させたものを用いるのが望ましい。ここでの乾燥は、鶏が排泄した鶏糞の水分含有率を30%前後まで低下させて、半乾燥状態とする程度で充分である。
すなわち、鶏糞の水分含有率が高すぎると、脱水済みのビール粕と混合したときに、混合物全体の水分含有率が上昇してしまうので、後の発酵工程で悪臭が生じる等の弊害を招くおそれがあり、水分含有率の高い鶏糞を用いて、且つ前記のような弊害を防ぐにはビール粕を水分含有率がかなり低くなるまで脱水しておく必要が生じ、脱水に手間とコストがかかることになる。
それに比べれば、鶏糞をある程度乾燥させておくことの方が容易であり、コスト的にも安上がりとなる。なお、鶏糞の乾燥は、例えば熱風乾燥や火力乾燥で行なうことも可能であるが、前記したように半乾燥状態とする程度でよいため、自然乾燥(天日干し等)で充分であり、また、より一層の低コスト化が図れ、有害物質を放出することがない等の理由からも自然乾燥の方が好ましい。
【0014】
次の混合工程では、前記工程で脱水したビール粕と、鶏糞等の家畜糞とを混合・攪拌して、均質な混合物を得る。ここでの混合には、ミキサー等の公知の混合装置を用いることができる。
ビール粕と家畜糞との好ましい混合比率は、それぞれの水分含有率によって変化するので一概に特定できないが、得られる混合物の水分含有率が25〜50%程度となるような混合比率とするのが良い。
また、後の発酵工程において発酵完了までに要する時間、及び発酵物として得られる肥料の肥効成分も、ビール粕と家畜糞との混合比率に影響されるので、この点も考慮して混合比率を決めるのが良い。すなわち、混合物中の全ての固形分のうちビール粕由来の固形分が50%を下回るような混合比率であると、発酵速度が遅くなる傾向が生じ、完熟(堆肥化)するまでに時間がかかりすぎたり、発酵が途中で止まってしまったりするおそれがある。反対に、混合物中の全ての固形分のうちビール粕由来の固形分が70%を超えるような混合比率であると、完熟発酵物(すなわち肥料)が肥効成分の乏しいものとなる傾向が生じる。したがって、ビール粕と家畜糞との質量比が固形分において(ビール粕):(家畜糞)=50:50〜70:30の範囲となるような混合比率とするのが望ましい。
【0015】
前記工程で得られたビール粕と家畜糞との混合物は、次の発酵工程において自然発酵させる。すなわち、ミキサー等の混合装置から取り出した混合物を適宜な容器(発酵槽)に入れるか、あるはコンクリート床等の上に積み上げた状態とする。そして、外気温とほぼ同じ温度条件下に放置する。すると、混合物は自然に発酵を開始し、発酵熱により約1日後には45〜50℃程度まで昇温し、その後さらに55〜60℃程度まで昇温するので、混合物の発酵温度を計測しつつ、温度低下が認められた場合は切り返し(攪拌)を行なって好気的条件を保持し、繰り返して発熱させる(切り返しは通常2〜3日に1回程度でよい)。
【0016】
これにより、混合物は55〜60℃程度の高温発酵を8〜10日程度維持し、次いで40〜48℃程度の余熱発酵を4〜6日程度維持したのち、切り返しても発熱が生じない状態(すなわち完熟状態)となる。完熟状態となるまでに要する発酵時間は季節によって異なるが、概ね、春季及び秋季(気温11〜26℃)で2週間、夏季(気温15〜31℃)で1週間程度である。また、冬季(気温0〜15℃)であっても、混合物に保温シートを被せることにより、約2週間程度で発酵を完了させることができる。
【0017】
なお、水分70〜80%のビール粕をそのまま自然発酵させた場合には、極めて強い悪臭が発生するとともに、完熟状態となるまでに長い発酵時間を要し、さらに、得られる完熟発酵物の水分含有率が高いので、それを肥料として流通可能な程度まで乾燥させるのに多大なコストがかかる。また、ビール粕から得られる完熟発酵物のみでは肥効成分が偏り、他の肥料との併用が必要となる。
【0018】
これに対し、本発明方法では、先ず、発酵開始後5〜6日で薄茶色だった混合物がこげ茶色に変色し、この時点で臭みがなくなり、また、発酵熱による蒸発で水分含有率も低下して、サラサラした状態となる。これは、予めビール粕を脱水して混合物の水分含有率を低くしていることの効果であると思われる。
また、発酵装置を用いたり発酵菌を添加したりしていないにもかかわらず発酵温度が高く、完熟・堆肥化するまでの発酵時間は約2週間と短い。これは、脱水されたビール粕に適量の家畜糞を加えることにより混合物の成分が非常に発酵しやすい成分となること、混合物の水分含有率を予め調整していること、及び家畜糞に含まれる微生物が発酵を促進させること等の効果であると思われる。
さらに、本発明方法では、得られる完熟発酵物の水分含有率が13〜18%程度と低く、そのまま有機質肥料として施肥することも可能であるし、また、保存性を高めるために乾燥させる場合でも、その乾燥にかかるコストが僅かで済むことになる。
【0019】
そして、本発明方法で製造される肥料(すなわち完熟発酵物又はその乾燥物)は、肥効成分(特に肥料の3大要素と呼ばれる窒素,リン酸,カリ)をバランス良く豊富に含んでいる。また、分解されずに残っている大麦の穀皮やホップ由来の固形物(ホップ殻)等により、土壌を柔らかくし、通気性(水はけ)と保水性とをバランス良く保つ土壌改良効果が得られ、この効果は施肥後2年程度の期間にわたって維持される。さらに、製造直後に施肥しても二次発酵を起こすおそれがなく、且つ、多めに施肥しても肥やけを生じることがない。そのため、植物の根が良好に成長し、市販の配合肥料(鶏糞,油粕,骨粉等を配合した有機質肥料)を用いた場合と比べても植物自体の成育が数段良くなるというように、肥料としての効果が極めて優れたものである。また、肥料自体に臭みが少ないので、住宅に隣接した農地でも使用することができる。
【0020】
本発明によれば、以上のように商品性の高い有機質肥料が、ビール粕及び家畜糞という従来廃棄物として処理されていた材料から低コストで製造でき、その製造過程で二酸化炭素や窒素酸化物といった有害物質を放出することもないため、地球環境に優しいリサイクルができて、政府が推奨する循環型リサイクルシステムの構築を図ることも可能となる。
【0021】
また、ビール会社,畜産(養鶏)業者,肥料会社が協力して、次のような肥料の製造・流通システムを構築することが可能となる。
▲1▼ ビール会社は、ビール製造工程から副生したビール粕を直ちに脱水し、脱水済みのビール粕を酸素遮蔽性のある袋(容器)で脱気包装して、全国各地の畜産業者,養鶏業者に向けて発送する。なお、脱気包装により、ビール粕の腐敗が抑制されるとともに、一般の運送業者にも容易に取り扱えるようになる。
▲2▼ 畜産業者,養鶏業者は、ビール会社から脱水ビール粕を購入し、このビール粕と自社で発生した家畜糞とをマニュアル通りに混合して発酵させ、完熟発酵物(堆肥)としたのち、所定の容器に入れて、肥料会社に向けて発送する。
▲3▼ 肥料会社は、畜産業者,養鶏業者から完熟発酵物(堆肥)を買い受け、必要に応じて乾燥・粉砕したのち袋詰めし、肥料として販売する。
【0022】
以上のような製造・流通システムによれば、ビール会社が自らビール粕の処理施設を持たなくても、産業廃棄物を100%リサイクル利用することが可能となる。また、畜産業者や養鶏業者も、特別な発酵装置を設置したり燃料を消費したりすることなく、家畜糞を堆肥化して販売することができ、従来必要だった家畜糞の処理コストが不要となる。さらに、肥料会社も畜産業者,養鶏業者から購入した完熟発酵物(堆肥)を、商品性の高い有機質肥料として販売することで、適正な利益を得ることが可能となる。
【0023】
【実施例】
以下、本発明の一実施例を説明する。なお、この実施例が本発明の技術的範囲を限定する性格のものでないことは言うまでもない。
【0024】
養鶏業者から入手した鶏糞を天日干しして、水分含有率が約30%となるまで乾燥させた。
また、ビール会社から入手した水分含有率78%のビール粕を、水分含有率が約30%となるまで脱水した。
そして、脱水直後のビール粕30kgと、予め乾燥させてあった鶏糞30kgとをミキサーで充分に攪拌・混合したのち、その混合物を容量70リットルのプラスチック製の容器(上面が開口している)に移した。
【0025】
その後、毎日正午に混合物の温度を計測するとともに、温度が下降気味の場合は混合物を攪拌して、発酵を促した。
その結果、図1のグラフに示すように、容器に移して1日目に発酵温度は48℃となり、その後、最高58℃まで昇温した。そして、2日目から11日目までの9日間は48〜58℃の高温発酵が続き、その後の4日間は36〜45℃の余熱発酵が続いた。発酵開始から16日目に混合物の温度が30℃まで低下したので、発酵が完了したと見なして容器から取り出した。
なお、この16日間の気温は最低11℃,最高26℃であった。
また、混合物の臭いは、発酵開始当初は若干感じられたが、発酵が進むにつれて臭いが薄くなってゆき、容器から取り出す時点では殆ど臭みが感じられないようになっていた。
【0026】
容器から取り出した発酵物の質量は約50kgであった。この発酵物の一部を試料として農業試験場に持ち込み、成分を分析した。その結果を表1に示す。
【0027】
【表1】

Figure 2004035277
【0028】
なお、水分含有率は105℃乾燥法で計測した。また、水分含有率以外の各項目は、水分含有率計測後の乾燥済みの試料における含有率を計測して質量%(乾物当たり)で示した。具体的には、T−N(窒素全量)及びT−C(炭素全量)はCNコーダー法で、T−P(リン酸全量)は硝酸・過塩素酸による湿式分解−比色法で、T−KO(カリ全量)は硝酸・過塩素酸による湿式分解−炎光分析法で、それぞれ計測した。
【0029】
前記表1からわかるように、この発酵物は肥料として必要な肥効成分(特に窒素,リン酸,カリ)を高濃度でバランス良く含有していた。また、C/N比や亜鉛含有量も、肥料として問題のない値であった。
【0030】
また、前記分析に供した残りの発酵物(実施例で得られた肥料)を、元肥として畑地10m当たり30kgの割合で施肥し、比較のため市販の配合肥料(鶏糞,油粕,骨粉等を配合した有機質肥料)も同じ割合で別の畑地に施肥し、それぞれの畑地にナス,キュウリ,トマト,ヤマイモ,シシトウ,ピーマンの苗を植えて、1ヶ月後の成育状況を観察した。その結果を表2に示す。
【0031】
【表2】
Figure 2004035277
【0032】
この表からわかるように、本実施例で得られた肥料を用いた場合は植物の成育が著しく良好であり、その成育の速さは市販配合肥料を用いた場合の2倍以上であることが確認された。
【0033】
【発明の効果】
以上説明したように、本発明に係る肥料の製造方法によれば、特殊な発酵菌を添加したり、発酵装置を用いたり、燃料を消費したりすることなく、ビール粕及び家畜糞を低コストで、短時間のうちに、二酸化炭素や窒素酸化物等の有害物質や悪臭を放出せずに発酵処理して、肥効成分を豊富に含む、商品性に優れた有機質肥料を得ることができる。したがって、廃棄物の処理と肥料の製造という2つの目的を同時に達成することができ、資源のリサイクル及び地球環境の保護に貢献することも可能となる。
【図面の簡単な説明】
【図1】本発明の一実施例における混合物の発酵温度の変化を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a fertilizer capable of effectively utilizing beer meal and livestock dung mainly treated as waste.
[0002]
[Prior art]
In recent years, with the increase in consumption of beer (including Happoshu), the amount of beer lees (including Happoshu lees: the same applies hereinafter) remaining after wort is squeezed in the production process has been steadily increasing. ing. Conventionally, this beer lees was used as it is or dried for animal feed.However, if too much beer lees was given, unpleasant odor was added to the meat, eggs, etc., so the amount used as feed was limited. It was. In addition, dried beer cake is sometimes used as a soil conditioner, a mushroom medium, or the like, but the cost (fuel cost, etc.) for drying beer cake containing as much as 70 to 80% of water is increased. There was a limit to the use of the service.
[0003]
Furthermore, when composting beer lees by natural fermentation, there is a problem that it takes a long time of several months or more until it is fully ripe, and an extremely strong odor is generated. Therefore, it has been considered that the fermentation apparatus is used to forcibly ferment the beer lees by heating or ventilating it, but in this case, the initial cost and running cost (fuel cost, power cost, etc.) of the fermentation apparatus are considered. However, there was a problem in terms of profitability.
Furthermore, a technique of adding a special fermentative bacterium to beer lees and fermenting it has also been conventionally proposed, but it is not realistic due to problems such as an increase in cost due to the purchase cost of the fermentative bacterium. .
[0004]
For the above reasons, most of the beer lees have conventionally been incinerated as industrial waste. However, as described above, incinerating beer cake having a high moisture content requires a high fuel cost, and in addition, the incineration releases substances harmful to the global environment, such as carbon dioxide and nitrogen oxides. I couldn't avoid it.
[0005]
On the other hand, livestock dung produced by livestock farmers, poultry farmers, farmers, etc. has no utility value except that part of it is dried and fertilized, and most of it is left in the open state or incinerated. The fact is that companies and local governments are struggling with measures to treat livestock dung.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and can reduce beer meal and livestock dung, which have been conventionally difficult to treat, at low cost and short time without using special fermentation bacteria and fermentation equipment. It is an object of the present invention to provide a fertilizer production method capable of obtaining an organic fertilizer excellent in commercial properties by fermenting in a short time and without releasing harmful substances.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing a fertilizer according to the present invention includes a step of dehydrating beer meal, a step of mixing the dehydrated beer meal and livestock dung, and a step of fermenting the mixture. It is characterized by the following.
[0008]
In the above-mentioned production method, chicken dung previously dried is used as livestock dung.
[0009]
In the present invention, `` beer meal '' refers to a residue obtained by filtering saccharified malt obtained by germinating barley and then removing wort, which is a by-product during normal beer production. Any type of barley may be used, and is not limited by the type of barley, the presence / absence of auxiliary materials, and the like. The residue excluding wort (ie, sparkling sake lees) is also included in the beer lees of the present invention. Such beer meal is a residue obtained when wort is squeezed and is composed of water-insoluble components such as barley husk and insoluble proteins (amino acids), hop-derived insoluble substances, and the like.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
Beer lees differ from other alcoholic beverage lees (eg, sake lees, wine lees, shochu lees, etc.) in that they are fermented or unfermented. That is, for example, sake lees (sake sake) is made by mixing steamed rice into water koji, which is a mixture of sake mother, koji, and water, and is made into a moromi containing alcohol by the fermentation action of sake yeast. It is divided into sake lees and sake by a squeezing machine. Therefore, it can be said that sake lees is fermented milk lees. Similarly, wine lees are fermented squeezed lees, and shochu lees are distillation residues of fermented moromi. In contrast, beer lees are unfermented at the time of removal because they are separated from beer raw materials before adding beer yeast and performing alcohol fermentation, and also contain rich nutrients such as maltose and amino acids. Therefore, it is in a state that is very easy to ferment.
However, the fermentation ability of this beer lees is latent, and fermentation is weak and fermentation temperature does not rise sufficiently when beer lees alone are used. However, beer lees and organic matter (livestock dung) are used in combination. As a result of the test, it was confirmed that by adjusting the water content, the fermentation temperature was increased to about 60 ° C. without adding fermentative bacteria.
[0011]
In the present invention, first, a dehydration step of dehydrating beer lees produced as a by-product from the production process of beer (happoshu) is performed. For dehydration, a known centrifugal dehydrator, filter press, roller squeezing machine or the like can be used alone or in an appropriate combination. Further, the degree of water content to be dehydrated is not particularly limited, but it is preferable to be dehydrated until the water content of beer cake, which is originally 70 to 80%, is in the range of 25 to 50%. Although dehydration may be performed until the water content is less than 25%, a special effect is not obtained by the dehydration. On the contrary, there is a disadvantage that the dehydration takes too much time and the treatment efficiency is reduced. On the other hand, if the water content after dehydration is more than 50%, a malodor tends to be generated in the fermentation step described later, and it takes a long time to complete the fermentation. And the drying operation for improving the preservability of the fertilizer requires labor and cost.
That is, since the purpose of the dehydration here is mainly to prevent the generation of offensive odor, to shorten the fermentation time, and to reduce the water content of the mature fermented product at the time of completion of the fermentation, the dehydration may be performed to such an extent that the purpose is achieved.
[0012]
On the other hand, as livestock dung, for example, cow dung, pig dung, chicken dung and the like can be used. However, among them, it is particularly preferable to use chicken dung. The reason is that chicken dung compared with cow dung and pig dung contains fertilizing components (particularly nitrogen, phosphoric acid and potassium) in a well-balanced manner, has a relatively low water content and is easy to handle, and has a bad odor. Is relatively small.
[0013]
It is desirable to use chicken dung that has been dried in advance. Drying here is sufficient to reduce the water content of the chicken dung excreted by the chicken to about 30% to make it semi-dry.
That is, if the water content of the chicken dung is too high, when mixed with dehydrated beer lees, the water content of the entire mixture increases, which may cause adverse effects such as generation of offensive odor in the subsequent fermentation step. There is a need to use chicken dung with a high water content, and to prevent the above-mentioned adverse effects, it is necessary to dehydrate the beer lees until the water content becomes considerably low, and it takes time and effort to dewater. become.
In comparison, it is easier to dry chicken dung to some extent, and the cost is lower. In addition, the drying of chicken dung can be performed, for example, by hot air drying or heat drying. However, since it is sufficient to make the semi-dry state as described above, natural drying (sun drying, etc.) is sufficient. Natural drying is preferred from the viewpoint that the cost can be further reduced and no harmful substances are released.
[0014]
In the next mixing step, the beer cake dehydrated in the above step and livestock dung such as chicken dung are mixed and stirred to obtain a homogeneous mixture. A well-known mixing device such as a mixer can be used for the mixing here.
The preferable mixing ratio of beer meal and livestock dung cannot be specified unconditionally because it changes depending on the respective water content, but it is preferable to set the mixing ratio so that the water content of the obtained mixture is about 25 to 50%. good.
In addition, the time required for the fermentation to be completed in the subsequent fermentation process, and the fertilizer component of the fertilizer obtained as a fermented product are also affected by the mixing ratio of beer lees and livestock dung. It is good to decide. That is, if the mixing ratio is such that the solid content derived from beer cake is less than 50% of all the solid content in the mixture, the fermentation rate tends to be slow, and it takes time to mature (compost). Or the fermentation may stop halfway. Conversely, if the mixing ratio is such that the solid content derived from beer cake exceeds 70% of all the solid content in the mixture, the mature fermented product (that is, fertilizer) tends to be poor in fertilizer components. . Therefore, it is desirable to set the mixing ratio such that the mass ratio of beer meal and livestock dung in the solid content is (beer duck) :( livestock dung) = 50: 50 to 70:30.
[0015]
The mixture of beer lees and livestock dung obtained in the above step is naturally fermented in the next fermentation step. That is, the mixture taken out from a mixing device such as a mixer is put in an appropriate container (fermenter) or is piled up on a concrete floor or the like. Then, it is left under the same temperature condition as the outside air temperature. Then, the mixture spontaneously starts fermentation, and after about one day, the temperature rises to about 45 to 50 ° C. due to the heat of fermentation, and further rises to about 55 to 60 ° C., so that the fermentation temperature of the mixture is measured If a decrease in temperature is observed, switching back (stirring) is performed to maintain the aerobic condition, and heat is generated repeatedly (returning is usually about once every two to three days).
[0016]
Thus, the mixture maintains the high temperature fermentation at about 55 to 60 ° C. for about 8 to 10 days, and then maintains the residual heat fermentation at about 40 to 48 ° C. for about 4 to 6 days, and then generates no heat even when the mixture is turned back ( That is, a fully ripe state). The fermentation time required to reach a fully ripe state varies depending on the season, but is generally about two weeks in spring and autumn (11 to 26 ° C) and about one week in summer (15 to 31 ° C). Also, even in the winter season (temperature 0 to 15 ° C.), the fermentation can be completed in about two weeks by covering the mixture with a heat retaining sheet.
[0017]
When beer lees having a water content of 70 to 80% are naturally fermented as it is, an extremely strong odor is generated, a long fermentation time is required until the ripe state is reached, and the moisture content of the obtained ripe fermented product is further increased. Due to the high content, it is costly to dry it to the extent that it can be distributed as fertilizer. In addition, only the mature fermented product obtained from beer lees has a biased fertilizing effect, and it is necessary to use it in combination with another fertilizer.
[0018]
On the other hand, in the method of the present invention, first, the mixture that was light brown 5 to 6 days after the start of fermentation turned dark brown, and at this time, the odor disappeared, and the moisture content also decreased due to evaporation by fermentation heat. Then, it will be in a smooth state. This seems to be the effect of previously dehydrating the beer lees to lower the water content of the mixture.
Moreover, the fermentation temperature is high even though no fermentation apparatus is used or no fermentation bacterium is added, and the fermentation time until ripeness and composting is as short as about 2 weeks. This means that by adding an appropriate amount of livestock dung to dehydrated beer lees, the components of the mixture become components that are very easily fermented, that the water content of the mixture has been adjusted in advance, and that it is included in the livestock dung This seems to be an effect such as promotion of fermentation by microorganisms.
Further, in the method of the present invention, the obtained mature fermented product has a low water content of about 13 to 18%, and can be fertilized as an organic fertilizer as it is, or even when dried to enhance preservability. However, the cost for drying is small.
[0019]
The fertilizer produced by the method of the present invention (that is, the fully fermented fermented product or its dried product) contains a good balance of fertilizer components (particularly, nitrogen, phosphoric acid, and potassium, which are called the three main components of fertilizer). The barley husks and hop-derived solids (hop shells) that remain undecomposed also soften the soil and provide a soil improvement effect that maintains a good balance between air permeability (drainage) and water retention. This effect is maintained for about two years after fertilization. Further, even if fertilization is performed immediately after production, there is no risk of causing secondary fermentation, and even if fertilization is excessive, fertilization does not occur. Therefore, the roots of the plants grow well, and the growth of the plants themselves is several orders of magnitude better than when using commercially available compound fertilizers (organic fertilizers containing chicken manure, oil cake, bone meal, etc.). The effect is extremely excellent. In addition, since the fertilizer itself has little odor, it can be used on farmland adjacent to houses.
[0020]
According to the present invention, organic fertilizers having high merchantability as described above can be produced at low cost from materials that have been conventionally treated as waste such as beer meal and livestock dung. Since no such harmful substances are released, recycling that is friendly to the global environment can be achieved, and it is possible to establish a recycling system that is recommended by the government.
[0021]
In addition, a beer company, a livestock (poultry raising) company, and a fertilizer company can cooperate to construct the following fertilizer production / distribution system.
(1) The beer company immediately dehydrates the beer lees produced as a by-product from the beer production process, degasses and packs the dehydrated beer lees in oxygen-shielding bags (containers), and provides livestock farmers and poultry farmers across the country. Ship to the dealer. In addition, by deaerated packaging, spoilage of beer lees is suppressed, and it can be easily handled by general carriers.
(2) Livestock industry and poultry farmers purchase dehydrated beer lees from a beer company, mix the beer lees with livestock dung produced in-house, and ferment them to form a fully-ripened fermented product (compost). , Placed in a designated container and shipped to the fertilizer company.
(3) The fertilizer company purchases mature fermented products (compost) from livestock farmers and poultry farmers, and after drying and crushing as necessary, packs them and sells them as fertilizer.
[0022]
According to the production / distribution system as described above, it is possible to recycle 100% of the industrial waste without the beer company having its own beer cake processing facility. In addition, livestock farmers and poultry farmers can compost and sell livestock manure without installing special fermentation equipment or consuming fuel, eliminating the need for conventionally required livestock manure processing costs. Become. Further, a fertilizer company can obtain an appropriate profit by selling a fully fermented fermented product (compost) purchased from a livestock breeder or a poultry farmer as an organic fertilizer having high merchantability.
[0023]
【Example】
Hereinafter, an embodiment of the present invention will be described. It goes without saying that this embodiment is not of a nature that limits the technical scope of the present invention.
[0024]
Chicken manure obtained from a poultry farmer was dried in the sun and dried until the water content became about 30%.
In addition, beer cake having a water content of 78% obtained from a beer company was dehydrated until the water content became about 30%.
Then, 30 kg of beer lees immediately after dehydration and 30 kg of chicken dung previously dried are sufficiently stirred and mixed by a mixer, and the mixture is placed in a 70-liter plastic container (opening at the top). Moved.
[0025]
Thereafter, the temperature of the mixture was measured at noon every day, and when the temperature was decreasing, the mixture was stirred to promote fermentation.
As a result, as shown in the graph of FIG. 1, the fermentation temperature was 48 ° C. on the first day after being transferred to the container, and then the temperature was raised to a maximum of 58 ° C. Then, high-temperature fermentation at 48 to 58 ° C continued for 9 days from day 2 to day 11, followed by residual heat fermentation at 36 to 45 ° C for the following 4 days. The temperature of the mixture dropped to 30 ° C. on the 16th day from the start of fermentation, so the fermentation was considered complete and removed from the container.
The temperature for the 16 days was 11 ° C. minimum and 26 ° C. maximum.
Further, although the smell of the mixture was slightly felt at the beginning of the fermentation, the smell became thinner as the fermentation progressed, and almost no smell was felt at the time of removal from the container.
[0026]
The mass of the fermented product removed from the container was about 50 kg. A part of the fermented product was taken as a sample to an agricultural experimental station and analyzed for components. Table 1 shows the results.
[0027]
[Table 1]
Figure 2004035277
[0028]
The water content was measured by a drying method at 105 ° C. For each item other than the moisture content, the content of the dried sample after the measurement of the moisture content was measured and shown in mass% (per dry matter). Specifically, TN (total amount of nitrogen) and TC (total amount of carbon) are determined by the CN coder method, and T-P 2 O 5 (total amount of phosphoric acid) is determined by wet decomposition with nitric acid / perchloric acid-colorimetric method. TK 2 O (total amount of potassium) was measured by wet decomposition with nitric acid / perchloric acid-flame spectrometry.
[0029]
As can be seen from Table 1, the fermented product contained high-concentration fertilizers (particularly nitrogen, phosphoric acid, and potassium) necessary as fertilizers in a high concentration. Further, the C / N ratio and the zinc content were also values that did not cause any problem as a fertilizer.
[0030]
Further, the remaining fermented material (the fertilizer obtained in the example) subjected to the above analysis was fertilized as an original manure at a rate of 30 kg per 10 m 2 of the field, and a commercially available compound fertilizer (chicken manure, oil cake, bone meal, etc.) was used for comparison. The compounded organic fertilizer) was also fertilized in another field at the same ratio, and eggplant, cucumber, tomato, yam, shishito, and pepper seedlings were planted in each field, and the growth status after one month was observed. Table 2 shows the results.
[0031]
[Table 2]
Figure 2004035277
[0032]
As can be seen from the table, when the fertilizer obtained in this example was used, the growth of the plant was remarkably good, and the growth speed was twice or more as high as that when the commercially available compound fertilizer was used. confirmed.
[0033]
【The invention's effect】
As described above, according to the method for producing a fertilizer according to the present invention, a special fermentation bacterium is added, a fermenter is used, or fuel is not consumed. In a short time, fermentation treatment without releasing harmful substances such as carbon dioxide and nitrogen oxides and offensive odors, it is possible to obtain an organic fertilizer which is rich in fertilizing ingredients and has excellent commercial properties. . Therefore, the two objectives of waste treatment and fertilizer production can be achieved at the same time, and it is also possible to contribute to resource recycling and protection of the global environment.
[Brief description of the drawings]
FIG. 1 is a graph showing a change in fermentation temperature of a mixture in one example of the present invention.

Claims (2)

ビール粕を脱水する工程と、この脱水されたビール粕と家畜糞とを混合する工程と、この混合物を発酵させる工程とを含んでなることを特徴とする肥料の製造方法。A method for producing a fertilizer, comprising: a step of dehydrating beer lees; a step of mixing the dehydrated beer lees with livestock dung; and a step of fermenting the mixture. 家畜糞として、予め乾燥させた鶏糞を用いる請求項1に記載の肥料の製造方法。The method for producing a fertilizer according to claim 1, wherein chicken dung dried in advance is used as livestock dung.
JP2002190379A 2002-06-28 2002-06-28 Process for manufacturing fertilizer Pending JP2004035277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190379A JP2004035277A (en) 2002-06-28 2002-06-28 Process for manufacturing fertilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190379A JP2004035277A (en) 2002-06-28 2002-06-28 Process for manufacturing fertilizer

Publications (1)

Publication Number Publication Date
JP2004035277A true JP2004035277A (en) 2004-02-05

Family

ID=31700312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190379A Pending JP2004035277A (en) 2002-06-28 2002-06-28 Process for manufacturing fertilizer

Country Status (1)

Country Link
JP (1) JP2004035277A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215476A (en) * 2009-03-18 2010-09-30 Menicon Co Ltd Method of manufacturing compost of high nitrogen content
JP2012101201A (en) * 2010-11-12 2012-05-31 Taisei Corp Purification promoting material and purification promoting method
KR101391065B1 (en) * 2012-04-24 2014-04-30 이창호 method for treatment organic waste using Effective Microorganisms
JP5617242B2 (en) * 2007-10-31 2014-11-05 住友大阪セメント株式会社 Organic waste desalting method, biomass manufacturing method, and biomass fuel
CN104151042A (en) * 2014-07-16 2014-11-19 贵州省烟草科学研究院 Distilled grain organic fertilizer and production method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617242B2 (en) * 2007-10-31 2014-11-05 住友大阪セメント株式会社 Organic waste desalting method, biomass manufacturing method, and biomass fuel
JP2010215476A (en) * 2009-03-18 2010-09-30 Menicon Co Ltd Method of manufacturing compost of high nitrogen content
JP2012101201A (en) * 2010-11-12 2012-05-31 Taisei Corp Purification promoting material and purification promoting method
KR101391065B1 (en) * 2012-04-24 2014-04-30 이창호 method for treatment organic waste using Effective Microorganisms
CN104151042A (en) * 2014-07-16 2014-11-19 贵州省烟草科学研究院 Distilled grain organic fertilizer and production method thereof

Similar Documents

Publication Publication Date Title
TWI410394B (en) Fermented Fertilizers Containing Bamboo Active Ingredients and Their Manufacturing Methods
CN108002954B (en) Anaerobic-aerobic balanced fermentation method for agricultural wastes
CN107445657A (en) A kind of method that organic fertilizer is prepared using vegetables waste dish
CN1680218B (en) Fermented fertilizer and its production
JP2011184267A (en) New method for producing high quality compost
KR20120104507A (en) Starter cultures for malodor elimination and composting by using livestock manure
CN104355696A (en) Method for preparing organic fertilizer by mixing and fermenting livestock manure and waste mushroom strain bag
CN108794113A (en) A kind of reed fermentation organic fertilizer and preparation method thereof
JP2018030777A (en) Method of producing fully mature fertilizer with high humic acid content
JP2003026491A (en) Method of manufacturing odorless organic fertilizer
JP3993070B2 (en) Method for producing lactic acid fermentation decomposition active enzyme composition and lactic acid fermentation decomposition active enzyme composition
CN104725087A (en) Environment-friendly and harmless novel technology for producing organic fertilizers by utilizing agricultural wastes
CN103964905A (en) Composting device and method
JP4868343B2 (en) Fertilizer or soil conditioner, method for producing the same, and method for producing cultured soil conditioner using the same
JP2004035277A (en) Process for manufacturing fertilizer
JP2008050248A (en) Grass-derived organic fermentation fertilizer and its manufacturing method
CN108395294A (en) A kind of agricultural waste fermentation at organic fertilizer application technology as the second resource
CN114539005A (en) Method for preparing organic fertilizer by using crop straws
JP2000203976A (en) Regeneration treatment of organic waste
KR20220102276A (en) Manufacturing method of organic fertilizer using organic sludge
JP2000327465A (en) Utilization method for water-nonutilizing fishery waste
JPS60137887A (en) Pulp sludge compost and manufacture
RU2815050C1 (en) Method of producing biologically active biohumus
JP2002060290A (en) Method of manufacturing compost
CN108586038A (en) A kind of long-acting organic fertilizer of aroma type based on sludge and lemon pomace

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322