JP2004019837A - Engine mount - Google Patents

Engine mount Download PDF

Info

Publication number
JP2004019837A
JP2004019837A JP2002177740A JP2002177740A JP2004019837A JP 2004019837 A JP2004019837 A JP 2004019837A JP 2002177740 A JP2002177740 A JP 2002177740A JP 2002177740 A JP2002177740 A JP 2002177740A JP 2004019837 A JP2004019837 A JP 2004019837A
Authority
JP
Japan
Prior art keywords
rigidity
rib
engine
bracket
engine mount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002177740A
Other languages
Japanese (ja)
Other versions
JP4094350B2 (en
Inventor
Takeshi Kuniya
國谷 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamashita Rubber Co Ltd
Original Assignee
Yamashita Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamashita Rubber Co Ltd filed Critical Yamashita Rubber Co Ltd
Priority to JP2002177740A priority Critical patent/JP4094350B2/en
Publication of JP2004019837A publication Critical patent/JP2004019837A/en
Application granted granted Critical
Publication of JP4094350B2 publication Critical patent/JP4094350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily form a partially high strength part and an easily-breakable structure when an engine mount is requested to have the partially high strength part and the highly rigid and easily-breakable structure in an engine mount using the resin bracket. <P>SOLUTION: This engine mount 1 comprises a vibration isolation part 4 formed of an inner tube 2 and a vibration isolation rubber 3 and the resin bracket supporting the vibration isolation part 4. A part of the resin bracket is mounted, as a mounting flange 7, on a body F. In the bracket body part 6 of the resin bracket 5, the direction A side thereof through the vibration isolation rubber 3 is formed in the high strength part 18, and a metal stopper part 25 is inserted therein. The stopper part 25 is formed in a generally L-member formed integrally with a collar part 24, and the collar part 24 is inserted into a mount flange 7. The direction B side thereof from the vibration isolation rubber 3 is formed in the highly rigid and easily-breakable part 20, increased in rigidity by a rib 21, and formed easily-breakable by providing a weld line 22 and a slot hole 23 at the rib 21. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、樹脂ブラケットを備えたエンジンマウントに係り、特に衝撃時等の大変位に対処できるようにしたものに関する。ここで大変位とは、車体に大きな衝撃荷重がかかったときなどに、車体とエンジンが異常に大きな相対的変位をして、エンジン側の変位を防振ゴムの弾性変形だけでは停止できず、樹脂ブラケット側で直接受け止めなければならないような大きな変位をいう。
【0002】
【従来の技術】
樹脂ブラケットを備えるエンジンマウントは公知である。樹脂ブラケットは軽量化できる反面、強度及び剛性が不足しないように補強リブ形状等の追加が必要であり、また車体側との締結部についてはボルト弛みが発生しないように取付座にインサートを一体化している。
【0003】
【発明が解決しようとする課題】
ところで、大変位時には防振ゴムと一体の内筒が樹脂ブラケットへ突き当たってこれを破壊しそうになるため、これを阻止できる大強度構造を要求されることがある。一方、通常使用において十分な支持剛性を得るべくリブ等により高剛性化することがあり、このような高剛性部に対して上記大変位が生じたとき、割れやすくすることが求められる場合もある。この場合には高剛性かつ易破断構造が必要になる。
そこで本願発明は、樹脂ブラケットへ高剛性かつ易破断構造を形成することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するため本願発明に係るエンジンマウントは、樹脂ブラケットに設けた防振ゴムを介してエンジンを支持するエンジンマウントにおいて、前記樹脂ブラケットに剛性を高めるための高剛性構造を設けるとともに、この高剛性構造に前記エンジン側の大変位時に割れ起点となる弱体化構造を設けて、高剛性かつエンジン側の大変位によって割れ易くなるための高剛性易割れ部を形成したことを特徴とする。
【0005】
このとき、前記高剛性構造を剛性を高めるためのリブとし、前記弱体化構造を前記リブに形成され凹部もしくは前記リブを貫通する穴又は前記リブを横断するウエルドラインとすることができる。
【0006】
【発明の効果】
リブ等により樹脂ブラケットに高剛性構造を形成し、さらにこの高剛性構造部分に大変位時の割れ起点となる弱体化構造を設けて高剛性易割れ部を形成したので、高剛性にも関わらず、大変位によって割れることが必要な場合には弱体化構造を起点として容易に割れることができ、高剛性と大変位に対する割れ易さを両立できる。この弱体化構造は、リブに設けた凹部もしくはリブを貫通する穴又はリブを横断するウエルドラインにより容易に実現できる。
【0007】
【発明の実施の形態】
以下、図面に基づいて一実施例を説明する。図1は本実施例に係るエンジンマウントの平面図(図2の上方から示す図)、図2は図1の2−2線断面図、図3は図2の3−3線断面図、図4は図2の4−4線断面図。図5はストッパの斜視図である。
【0008】
これらの図において、エンジンマウント1は振動源であるエンジンEのハンガH(図3)に連結するための内筒2と、これを弾性支持する防振ゴム3と、防振ゴム3の外周部を支持する樹脂ブラケット5を備え、樹脂ブラケット5は防振ゴム3が設けられるブラケット本体部6と車体Fへ取付けるための取付フランジ7が一体に形成され、断面略L字形をなす(図3参照)。
【0009】
図3に示すように、取付フランジ7は振動受側である車体Fの支持部へ重なり、ボルト8及びナット9で固定されている。ブラケット本体部6は車体Fから張り出し、このブラケット本体部6に支持されている内筒2にはエンジンEのハンガHがボルトb及びナットnで固定される。エンジンマウント1は車体Fへ片持ち支持されてエンジンEを支持している。内筒2がエンジンEの支持部をなす。
【0010】
図1に示すように、取付フランジ7部6には、金属製のインサート10,11,12で補強された3ヶ所の取付座が設けられている。このうちインサート10は後述するストッパが一体化されたものであり、インサート11及び12は一般的なカラー構造になっている。
【0011】
防振ゴム3は公知のゴム材料からなり、内筒2を挟んで反対側へ延出する一対のゴム足4で内筒2と防振ゴム3のその外周部13とを連結している。以下の説明にて、ゴム足4は略V字形をなし、各ゴム足4,4と内筒2の中心を通る直線C1をY軸、これと同一平面内で直交しかつ内筒2の中心を通る直線C2をX軸、これらと直交する内筒2の中心軸線をZ軸とする。X・Y軸による平面はブラケット本体部6におけるエンジンEの支持面と平行であり、X軸方向は大変位時におけるエンジン支持部の移動方向にもなっている。
【0012】
外周部13は略四角形であり、ブラケット本体部6に形成された略四角形の取付穴14の周縁部へ一体化し、かつその縁部に盛り上がって形成されている。また外周部13のA,B方向側には内筒2側へ突出する突出部15,16が形成され、防振ゴム3の一部として内筒2の周囲に形成された厚肉部17と所定間隙を形成している。
【0013】
X軸上にはゴム足4が無いため、内筒2はX軸上の相反するA、B方向へ大きく相対移動可能になっている。X軸上で内筒2が樹脂ブラケット5に対してA、B方向へ相対移動するとき、ゴム足4,4の弾性変形又は厚肉部17が突出部15もしくは16へ当接して弾性体同士の接触により、移動を停止できるときは、このような移動を通常振動というものとする。これらの弾性部材による弾力だけでは停止できずブラケット本体部6が直接受け止めるような移動を大変位というものとする。なお、Y軸及びZ軸方向の移動はゴム足4,4の弾性変形により停止できるように設定されている。
【0014】
樹脂ブラケット5はナイロンなどの適宜樹脂材料よりなり、射出成形等の公知の方法により成形され、図1に示すように、X軸方向がY軸方向より長い横長に形成され、防振ゴム3よりもA方向側となる左半分側は、内筒2の上記大変位に耐える大強度部18をなし、B方向側となる右半分側は高剛性易割れ部20をなす。なお、レイアウト上の制約により、大強度部18側は高剛性易割れ部20側よりも小面積部分に形成されている。
【0015】
高剛性易割れ部20には、リブ21が一体に形成され、部分的に厚肉構造をなすことによりエンジンEを支持するに十分な高剛性を得る高剛性構造になっている。さらにこのリブ21を横断するようにウエルドライン22が形成され、かつリブ21をZ軸方向へ貫通するスロット穴23が形成されている。スロット穴23は開口部がY軸方向へ長い長穴状をなしている。これらウエルドライン22及びスロット穴23はそれぞれ易破断構造としての弱体化構造をなし、前記大変位時における割れの起点となって高剛性易割れ部20を割れ易くしている。
【0016】
スロット穴23はウエルドライン22を挟んで非対称形状をなし、本実施例ではウエルドライン22よりも取付フランジ7側が比較的小さな開口をなし、反対側は拡大した開口をなしている。このようにすると、大きな開口側がより弱体化するので、割れをそちら側へ誘導できる。したがって開口の大きさや形状を調整することにより割れ方向を自在に設定できる。なお、スロット穴23は全体としてアール形状をなし、かつ図1に示すように中間部が防振ゴム3と反対側へ凸になるように湾曲している。
【0017】
ウエルドライン22は射出成形等において、金型内で分流して回り込んだ樹脂が会合する場所に形成され、成形品の強度を低下させ、大変位時における割れの起点となる弱体部となる。このウエルドライン22の位置は、射出ポート等の設定により任意の位置に形成させることができる。本実施例ではウエルドライン22が取付穴14の縁部からB方向側端部まで長く形成されている。
【0018】
インサート10は、図5に示すように、一端にカラー部24と、これから延出するストッパ部25を一体にした鉄や軽合金等の適宜金属からなる略L字形をなす部材であり、鋳・鍛造等により形成され、各部の断面係数等は大変位やエンジンの支持荷重に十分耐えうる強度が得られるようになっている。
【0019】
カラー部24には、ボルト8のための通し穴26が形成され、かつ図3における左右の座面27,28のうち、左側の座面27は取付フランジ7のブラケット本体部側側面(以下、内側面という)と面一である。略側の座面28は取付フランジ7の反対側面(以下、外側面という)より若干量hだけ車体側へ突出し、締結時における樹脂のへたりを防止している。カラー部24は通し穴27の中止軸線方向から見て略円形であり、カラー部24の外径は中間部30の幅よりも大きくなっている。
【0020】
ストッパ部25は中間部30から細くなって角形断面等をなし(図2)、外周部13のA側辺に沿ってY軸方向へ延びるとともに、その先端は内筒2よりも長くY軸方向へ延出している。但し、外周部13のA方向側辺の長さよりは若干短くなっている。取付フランジ7の車体側取付面を基準にしたストッパ25先端までの距離Dと内筒2のY軸方向かつ反取付フランジ7側の外周までの距離をdとすれば、D>dである。
【0021】
中間部30とストッパ部25は円弧部31により接続され、応力集中を緩和している。インサート10は図5の上から見ても、左右方向から見ても略L字形をなすことになる。また、ストッパ部25には貫通穴32、32が設けられ、樹脂成形時に樹脂がこれらの貫通穴32,33を通過してストッパ部25の前後を連続して繋ぐので、大強度部18との一体化を強化する結合強化構造になっている。
【0022】
ストッパ部25は大強度部18へインサートされ、中間部30は大強度部18及び取付フランジ7へインサートされ、カラー部24は取付フランジ7へインサートされている。したがってインサート10は図3に示すようにブラケット本体部6の大強度部18から取付フランジ7にまたがって略L字形にインサートされている。
【0023】
図4に示すように、リブ21はブラケット本体部6の図示状態下面側から取付フランジ7のブラケット本体部側となる側面にまたがって弧状輪郭をなして一体に形成されている。インサート11は、ボルトの通し穴34を形成した金属製等のカラーであり、図示状態左右の座面35,36を中間部37よりも小径にして抜け止めするとともに、中間部37を四角形等の非円形にして回り止めしてある。
【0024】
図示左側の座面35を取付フランジ7の内側面と面一にし、右側の座面36を取付フランジ7の外側面より若干量突出させ、車体F側へボルト等で締結することはインサート10と同様である。なお、インサート10は全体が略L字形をなす等、単体として構成された通常のインサートカラーとは大きく形状を異にする異形部材であるため、インサート11のような回り止め並びに抜け止めの配慮が不要である。また、インサート12はインサート11と同様構造である。
【0025】
図5に示すように、中間部30の側面には位置決め凹部35が形成されている。この位置決め凹部35は、樹脂成形時の位置決め構造をなし、樹脂が入り込んで埋まる。なお凹部38に代えて凸部としても同様に機能する。また、インサート10もカラーとして見れば、一般的な円筒部材に比べればL字形の異形部材となり、この形状自体も位置決め構造をなす。
【0026】
次に、本実施例の作用を説明する。図1において、X軸方向の一般的な振動は、防振ゴム3が弾性変形することにより吸収し、少し大きな振動は厚肉部17が突出部15又は16と突き当たってそれぞれの弾性変形により吸収する。
【0027】
車体へ大きな衝撃力が加わり、内筒2が樹脂ブラケット5に対して相対的に大きく移動することにより、ブラケット本体部6を破壊するような大変位をする場合、A方向の大変位時には、内筒2が取付穴14の縁部へ強く当たるが、この縁部近傍には、ストッパ部25がインサートされ、このような衝撃に対して十分に耐えるよう補強された大強度部18をなしているから、このような大変位に対する破壊を免れることができる。
【0028】
しかも、ストッパ部25はカラー部24と一体になってカラー部24で車体側へ取付けられているから、インサート10自体の強度も高くなっており、かつカラー部24とストッパ部25を兼用することにより部品点数を削減できる。そのうえ、リブを設けるにはレイアウト上の制約がある場所にもかかわらず十分に大強度を得ることができ、また大強度部を形成できる割には、インサート10を比較的小型化部品で済ますことができるので、樹脂ブラケット5をそれほど厚肉にしなくても済み、軽量化できる。
【0029】
逆に、反対側のB方向へ大変位すると、内筒2が突出部16を押しつぶして取付穴14へ当たる。このとき、高剛性易割れ部20は高剛性かつ割れ易い構造になっているので、このような大変位に対してはウエルドライン22及びスロット穴23からなる弱体化構造部分を起点として割れる。
【0030】
但し、高剛性易割れ部20はリブ21により強化されて高剛性をなすので、このような大変位の場合以外は、樹脂ブラケット5の剛性を高め、重量物であるエンジンEの安定支持に貢献している。しかもリブ21を形成することにより、高剛性易割れ部20全体の厚肉化を避けて全体の軽量化にも貢献している。
【0031】
なお、弱体化構造はウエルドライン22とスロット穴23の双方を同時に備えなくてもよいが、リブ21による高剛性構造の程度により、いずれか一方だけでも十分に高剛性部を割れ易くさせることができる。また、略L字形のインサート10を大強度部18と取付フランジ7の間及びリブ21を高剛性易割れ部20と取付フランジ7にそれぞれまたがって形成することにより、図3に示すように、ブラケット本体部6がZ軸方向の荷重を受けたとき、樹脂ブラケット5は取付フランジ7により片持ち支持されているにもかかわらず、この方向の荷重に対して十分な支持剛性を付与でき、取付フランジ7の締結点を支点とし、内筒2を作用点とする首振り運動に十分に耐えることができる。
【0032】
このように、一つの樹脂ブラケット5に対して、防振ゴム3を挟んでA方向側をインサート10により大強度部18とし、B方向側を高剛性易割れ部20にすることができる。なお、大強度部18を高剛性易割れ部20と一緒に一つの樹脂ブラケット5へ同時に設ける必要はなく、目的仕様によってはこれを省略してもよい。また、必ずしも樹脂ブラケット5をL字形にする必要はなく、ブラケット本体部6と取付フランジ7が同一平面をなすような平形であってもよい。
【0033】
また、樹脂ブラケット5のうち防振ゴム3を挟んで一方側に大強度部18を設け、他方側にリブ形状で補強された高剛性部20を設けるとともに、この高剛性部20の設けられている面積よりも小さな部分に大強度部18を設けたので、レイアウト上の規制により必要強度を得るために十分なリブ形状補強ができないような小さな面積部分に対しても十分に大きな強度を与えることができる。
【0034】
さらに、ブラケット本体部6と取付フランジ7とが一体になった略L字形をなす樹脂ブラケット5に、ストッパ25と取付座をなすカラー24が一体になった略L字形のインサート10を埋設一体化したので、エンジンを片持ち支持するにもかかわらず十分な支持剛性を付与でき、取付フランジ7の取付部を支点とし、ブラケット本体部6のエンジン連結部を作用点とする首振り運動に十分に耐えることができる。
【0035】
そのうえ、インサート10が樹脂成形時の位置決め構造として、それ自体のL字形異形形状及び状凹部38を有するので、樹脂成形後エンジンマウントとして使用するときに、位置決め構造によってストッパ機能を有効に発揮できる。
【0036】
また、インサート10が貫通穴32,33からなる樹脂との結合強化構造を有するので、樹脂成形時にインサート10と樹脂が強固に結合一体化して、強度や剛性をアップさせることができる。
【0037】
さらにリブ21による高剛性構造に対する弱体化構造は、必ずしも貫通するスロット穴である必要はなく、有底の凹部でもよい。要は大変位時の割れ起点となる弱体化構造をなすものであればよい。また高剛性構造もリブばかりでなく、単に他よりも厚肉にしただけの厚肉構造でもよい。
【図面の簡単な説明】
【図1】エンジンマウントの平面図
【図2】図1の2−2線断面図
【図3】図1の3−3線断面図
【図4】図1の4−4線断面図
【図5】ストッパの斜視図
【符号の説明】
1:エンジンマウント、2:内筒、3:防振ゴム、4:ゴム足、5:樹脂ブラケット、6:ブラケット本体部、7:取付フランジ、10:インサート、13:外周部、14:取付穴、15:突出部、16:突出部、17;厚肉部、18:大強度部、20:高剛性易割れ部、21:リブ、22:ウエルドライン、23:スロット穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an engine mount having a resin bracket, and more particularly to an engine mount capable of coping with a large displacement such as an impact. Here, large displacement means that when a large impact load is applied to the car body, the car body and the engine make an abnormally large relative displacement, and the displacement on the engine side cannot be stopped only by the elastic deformation of the vibration isolating rubber, A large displacement that must be received directly on the resin bracket side.
[0002]
[Prior art]
Engine mounts with resin brackets are known. Although the resin bracket can be reduced in weight, it must be added with reinforcing ribs and the like so that strength and rigidity are not insufficient, and the insert is integrated with the mounting seat so that bolts do not loosen at the joints with the vehicle body. ing.
[0003]
[Problems to be solved by the invention]
By the way, at the time of large displacement, the inner cylinder integral with the vibration isolating rubber is likely to strike the resin bracket and break it, so that a large-strength structure capable of preventing this is sometimes required. On the other hand, in normal use, the rigidity may be increased by ribs or the like in order to obtain sufficient support rigidity. When the large displacement occurs in such a high rigidity portion, it may be required to be easily broken. . In this case, a highly rigid and easily breakable structure is required.
Therefore, an object of the present invention is to form a highly rigid and easily breakable structure on a resin bracket.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, an engine mount according to the present invention provides an engine mount that supports an engine via a vibration-isolating rubber provided on a resin bracket, while providing the resin bracket with a highly rigid structure for increasing rigidity. A high-rigidity structure is provided with a weakened structure that becomes a crack starting point at the time of the large displacement on the engine side to form a high-rigidity easily cracked portion that is easily broken by the large displacement on the engine side.
[0005]
At this time, the high rigidity structure may be a rib for increasing rigidity, and the weakened structure may be a recess formed in the rib, a hole passing through the rib, or a weld line crossing the rib.
[0006]
【The invention's effect】
A high-rigid structure is formed on the resin bracket with ribs, and a weakened structure is provided in this high-rigid structure to serve as a crack starting point when a large displacement occurs. When it is necessary to break due to a large displacement, it can be easily broken starting from the weakened structure, and both high rigidity and susceptibility to a large displacement can be achieved. This weakened structure can be easily realized by a concave portion provided in the rib, a hole passing through the rib, or a weld line crossing the rib.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment will be described with reference to the drawings. 1 is a plan view of the engine mount according to the present embodiment (a view from above in FIG. 2), FIG. 2 is a cross-sectional view taken along line 2-2 in FIG. 1, and FIG. 3 is a cross-sectional view taken along line 3-3 in FIG. 4 is a sectional view taken along line 4-4 in FIG. FIG. 5 is a perspective view of the stopper.
[0008]
In these figures, an engine mount 1 includes an inner cylinder 2 for connecting to a hanger H (FIG. 3) of an engine E, which is a vibration source, an anti-vibration rubber 3 for elastically supporting the inner cylinder 2, and an outer peripheral portion of the anti-vibration rubber 3. , Which is integrally formed with a bracket main body 6 on which the vibration isolating rubber 3 is provided and a mounting flange 7 for mounting to the vehicle body F (see FIG. 3). ).
[0009]
As shown in FIG. 3, the mounting flange 7 overlaps with a support portion of the vehicle body F on the vibration receiving side, and is fixed by bolts 8 and nuts 9. The bracket body 6 projects from the vehicle body F, and the hanger H of the engine E is fixed to the inner cylinder 2 supported by the bracket body 6 with bolts b and nuts n. The engine mount 1 is cantilevered by the vehicle body F and supports the engine E. The inner cylinder 2 forms a support for the engine E.
[0010]
As shown in FIG. 1, the mounting flange 7 is provided with three mounting seats reinforced by metal inserts 10, 11, and 12. Of these, the insert 10 has an integrated stopper described later, and the inserts 11 and 12 have a general collar structure.
[0011]
The anti-vibration rubber 3 is made of a known rubber material, and connects the inner cylinder 2 and the outer peripheral portion 13 of the anti-vibration rubber 3 with a pair of rubber feet 4 extending to the opposite side across the inner cylinder 2. In the following description, the rubber foot 4 has a substantially V-shape, and a straight line C1 passing through each rubber foot 4, 4 and the center of the inner cylinder 2 is a Y-axis. Is a X-axis, and a central axis of the inner cylinder 2 orthogonal to these is a Z-axis. The plane defined by the X and Y axes is parallel to the support surface of the engine E in the bracket body 6, and the X axis direction is also the direction of movement of the engine support during large displacement.
[0012]
The outer peripheral portion 13 is substantially rectangular, and is formed integrally with the peripheral portion of the substantially rectangular mounting hole 14 formed in the bracket main body 6 and is formed so as to protrude at the edge portion. Protrusions 15 and 16 protruding toward the inner cylinder 2 are formed on the sides A and B of the outer peripheral part 13, and a thick part 17 formed around the inner cylinder 2 as a part of the vibration-proof rubber 3 is provided. A predetermined gap is formed.
[0013]
Since there is no rubber foot 4 on the X axis, the inner cylinder 2 can be relatively moved relatively in the opposite A and B directions on the X axis. When the inner cylinder 2 moves relative to the resin bracket 5 in the directions A and B on the X axis, the elastic deformation of the rubber feet 4 or 4 or the thick portion 17 abuts on the protruding portion 15 or 16 and the elastic members are separated from each other. When the movement can be stopped by the contact of the object, such movement is referred to as normal vibration. A movement that cannot be stopped only by the elasticity of these elastic members and is directly received by the bracket body 6 is referred to as a large displacement. The movement in the Y-axis and Z-axis directions is set to be stopped by the elastic deformation of the rubber feet 4.
[0014]
The resin bracket 5 is made of a suitable resin material such as nylon, and is formed by a known method such as injection molding. As shown in FIG. 1, the X-axis direction is formed to be longer than the Y-axis direction. The left half side, which is also the A direction side, forms a high strength portion 18 that withstands the large displacement of the inner cylinder 2, and the right half side, which is the B direction side, forms a highly rigid easily cracked portion 20. Note that due to layout restrictions, the large strength portion 18 is formed in a smaller area than the high rigidity easily cracked portion 20 side.
[0015]
The high rigidity easily cracked portion 20 is integrally formed with a rib 21, and has a high rigidity structure in which a partially thick structure is provided to obtain high rigidity sufficient to support the engine E. Further, a weld line 22 is formed so as to cross the rib 21, and a slot hole 23 penetrating the rib 21 in the Z-axis direction is formed. The slot hole 23 has an elongated hole shape whose opening is long in the Y-axis direction. Each of the weld line 22 and the slot hole 23 has a weakened structure as an easily breakable structure, and serves as a starting point of a crack at the time of the large displacement to easily break the high rigidity easily cracked portion 20.
[0016]
The slot hole 23 has an asymmetric shape with the weld line 22 interposed therebetween. In this embodiment, the mounting flange 7 side has a relatively small opening than the weld line 22, and the opposite side has an enlarged opening. In this case, the large opening side is further weakened, so that the crack can be guided to that side. Therefore, the crack direction can be freely set by adjusting the size and shape of the opening. The slot hole 23 has a round shape as a whole, and is curved so that the intermediate portion is convex toward the side opposite to the rubber cushion 3 as shown in FIG.
[0017]
The weld line 22 is formed at a place where the resin diverted and sneak around in the mold in the injection molding or the like meets, and the strength of the molded product is reduced, and the weld line 22 becomes a weak portion serving as a starting point of a crack at the time of large displacement. The position of the weld line 22 can be formed at an arbitrary position by setting an injection port or the like. In this embodiment, the weld line 22 is formed to be long from the edge of the mounting hole 14 to the end in the B direction.
[0018]
As shown in FIG. 5, the insert 10 is a substantially L-shaped member made of a suitable metal such as iron or light alloy in which a collar portion 24 and a stopper portion 25 extending therefrom are integrated at one end. Formed by forging or the like, the section modulus and the like of each part are designed to provide strength sufficient to withstand large displacements and engine support loads.
[0019]
A through hole 26 for the bolt 8 is formed in the collar portion 24, and the left seat surface 27 of the left and right seat surfaces 27, 28 in FIG. Inner surface). The substantially seat surface 28 protrudes from the opposite side surface (hereinafter referred to as an outer surface) of the mounting flange 7 by a small amount h toward the vehicle body to prevent the resin from settling at the time of fastening. The collar portion 24 is substantially circular when viewed from the direction of the stop axis of the through hole 27, and the outer diameter of the collar portion 24 is larger than the width of the intermediate portion 30.
[0020]
The stopper portion 25 becomes thinner from the intermediate portion 30 to form a square cross section or the like (FIG. 2), extends in the Y-axis direction along the A side of the outer peripheral portion 13, and has a tip longer than the inner cylinder 2 in the Y-axis direction. Extending to However, the length of the outer peripheral portion 13 is slightly shorter than the length of the side in the direction A. Assuming that the distance D from the mounting surface of the mounting flange 7 to the tip of the stopper 25 with respect to the vehicle-body-side mounting surface and the distance from the inner cylinder 2 to the outer periphery of the inner cylinder 2 on the side opposite to the mounting flange 7 are d, D> d.
[0021]
The intermediate portion 30 and the stopper portion 25 are connected by an arc portion 31 to reduce stress concentration. The insert 10 has a substantially L-shape when viewed from above in FIG. Further, the stopper portion 25 is provided with through holes 32, 32, and the resin passes through the through holes 32, 33 and continuously connects the front and rear of the stopper portion 25 at the time of resin molding. It has a connection strengthening structure that strengthens integration.
[0022]
The stopper portion 25 is inserted into the large strength portion 18, the intermediate portion 30 is inserted into the large strength portion 18 and the mounting flange 7, and the collar portion 24 is inserted into the mounting flange 7. Therefore, the insert 10 is inserted in a substantially L-shape from the large strength portion 18 of the bracket main body 6 to the mounting flange 7 as shown in FIG.
[0023]
As shown in FIG. 4, the ribs 21 are formed integrally in an arcuate shape from the lower surface side of the bracket main body 6 in the illustrated state to the side surface of the mounting flange 7 on the bracket main body side. The insert 11 is a collar made of metal or the like in which a through hole 34 for a bolt is formed, and the left and right seating surfaces 35 and 36 are made smaller in diameter than the intermediate portion 37 to prevent them from falling off. Non-circular and detented.
[0024]
The left seat surface 35 in the figure is flush with the inner surface of the mounting flange 7, and the right seat surface 36 is slightly protruded from the outer surface of the mounting flange 7. The same is true. In addition, since the insert 10 is a deformed member having a substantially different shape from a normal insert collar configured as a single body, for example, the entire shape of the insert is substantially L-shaped. Not required. The insert 12 has the same structure as the insert 11.
[0025]
As shown in FIG. 5, a positioning recess 35 is formed on a side surface of the intermediate portion 30. The positioning recess 35 forms a positioning structure at the time of resin molding, and is filled with resin. In addition, it functions similarly as a convex part instead of the concave part 38. Also, when the insert 10 is viewed as a collar, it is an L-shaped deformed member as compared with a general cylindrical member, and this shape itself also forms a positioning structure.
[0026]
Next, the operation of the present embodiment will be described. In FIG. 1, general vibration in the X-axis direction is absorbed by elastically deforming the vibration isolating rubber 3, and slightly larger vibration is absorbed by the elastic deformation of the thick portion 17 colliding with the protrusion 15 or 16. I do.
[0027]
When a large impact force is applied to the vehicle body and the inner cylinder 2 moves relatively largely with respect to the resin bracket 5 to make a large displacement that destroys the bracket body 6, when the large displacement in the A direction occurs, The cylinder 2 strongly contacts the edge of the mounting hole 14, and a stopper 25 is inserted near this edge to form a large strength portion 18 reinforced to sufficiently withstand such an impact. Therefore, it is possible to avoid destruction due to such a large displacement.
[0028]
In addition, since the stopper portion 25 is integrated with the collar portion 24 and attached to the vehicle body with the collar portion 24, the strength of the insert 10 itself is increased, and the collar portion 24 and the stopper portion 25 can be used together. Thus, the number of parts can be reduced. In addition, it is possible to obtain a sufficiently large strength in spite of the location where the layout is restricted in order to provide the rib, and it is possible to form the high-strength portion. Therefore, the resin bracket 5 does not need to be so thick, and the weight can be reduced.
[0029]
Conversely, when a large displacement is made in the opposite direction B, the inner cylinder 2 crushes the protruding portion 16 and hits the mounting hole 14. At this time, since the high-rigidity easily cracked portion 20 has a structure with high rigidity and easy cracking, the large-rigidity portion is cracked with the weakened structure portion including the weld line 22 and the slot hole 23 as a starting point.
[0030]
However, since the high-rigidity easily cracked portion 20 is reinforced by the ribs 21 to provide high rigidity, except for such a large displacement, the rigidity of the resin bracket 5 is increased to contribute to the stable support of the heavy engine E. are doing. In addition, by forming the ribs 21, it is possible to avoid increasing the thickness of the high-rigidity easily cracked portion 20 as a whole and to contribute to a reduction in the overall weight.
[0031]
Although the weakened structure does not need to have both the weld line 22 and the slot hole 23 at the same time, depending on the degree of the high rigidity structure provided by the ribs 21, it is possible to make the high rigidity portion easily crack by only one of them. it can. Further, by forming the substantially L-shaped insert 10 between the large strength portion 18 and the mounting flange 7 and the rib 21 over the high rigidity easily cracked portion 20 and the mounting flange 7, respectively, as shown in FIG. When the main body 6 receives a load in the Z-axis direction, despite the fact that the resin bracket 5 is cantilevered by the mounting flange 7, sufficient support rigidity can be given to the load in this direction. The joint 7 can be used as a fulcrum, and can sufficiently withstand a swinging motion with the inner cylinder 2 as a point of action.
[0032]
As described above, with respect to one resin bracket 5, the high strength portion 18 can be formed by the insert 10 on the A direction side and the high rigidity easily cracked portion 20 can be formed on the B direction side by sandwiching the vibration isolating rubber 3. It is not necessary to provide the large-strength portion 18 together with the high-rigidity easily cracked portion 20 on one resin bracket 5, and this may be omitted depending on the purpose specification. Further, the resin bracket 5 does not necessarily have to be L-shaped, and may be a flat shape in which the bracket body 6 and the mounting flange 7 are on the same plane.
[0033]
In addition, a large-strength portion 18 is provided on one side of the resin bracket 5 with the anti-vibration rubber 3 therebetween, and a high-rigidity portion 20 reinforced with a rib is provided on the other side, and the high-rigidity portion 20 is provided. The large-strength portion 18 is provided in a portion smaller than the existing area, so that sufficient strength is given to a small-area portion where sufficient rib shape reinforcement cannot be obtained to obtain the required strength due to layout restrictions. Can be.
[0034]
Further, a substantially L-shaped insert 10 in which a stopper 25 and a collar 24 forming a mounting seat are integrated is embedded and integrated into a substantially L-shaped resin bracket 5 in which the bracket body 6 and the mounting flange 7 are integrated. As a result, sufficient support rigidity can be provided despite the cantilever support of the engine, and it is sufficient for swinging motion with the mounting portion of the mounting flange 7 as a fulcrum and the engine connecting portion of the bracket body 6 as an operation point. Can withstand.
[0035]
In addition, since the insert 10 has its own L-shaped irregular shape and concave portion 38 as a positioning structure at the time of resin molding, when used as an engine mount after resin molding, the positioning function can effectively exert a stopper function.
[0036]
In addition, since the insert 10 has a structure for strengthening the connection with the resin formed of the through holes 32 and 33, the insert 10 and the resin are firmly bonded and integrated at the time of resin molding, and the strength and rigidity can be increased.
[0037]
Further, the weakened structure with respect to the high rigidity structure by the rib 21 does not necessarily have to be a slot hole that penetrates, but may be a concave part with a bottom. In short, any material having a weakened structure serving as a crack starting point at the time of large displacement may be used. The high-rigidity structure is not limited to the ribs, but may be a thick-walled structure that is simply thicker than the others.
[Brief description of the drawings]
FIG. 1 is a plan view of an engine mount. FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1. FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 1. FIG. 5) Perspective view of stopper [Explanation of reference numerals]
1: engine mount, 2: inner cylinder, 3: anti-vibration rubber, 4: rubber feet, 5: resin bracket, 6: bracket body, 7: mounting flange, 10: insert, 13: outer peripheral, 14: mounting hole , 15: projecting portion, 16: projecting portion, 17: thick portion, 18: large strength portion, 20: high rigidity easily cracked portion, 21: rib, 22: weld line, 23: slot hole

Claims (3)

樹脂ブラケットに設けた防振ゴムを介してエンジンを支持するエンジンマウントにおいて、前記樹脂ブラケットに剛性を高めるための高剛性構造を設けるとともに、この高剛性構造に前記エンジン側の大変位時に割れ起点となる弱体化構造を設けて、高剛性かつエンジン側の大変位によって割れ易くなるための高剛性易割れ部を形成したことを特徴とするエンジンマウント。In an engine mount that supports an engine via a vibration-isolating rubber provided on a resin bracket, a high-rigidity structure for increasing rigidity is provided on the resin bracket, and the high-rigidity structure has a crack origin at a large displacement on the engine side. An engine mount characterized by having a weakened structure to form a high-rigidity easily cracked portion that is highly rigid and easily cracked by large displacement on the engine side. 前記高剛性構造が剛性を高めるためのリブであり、前記弱体化構造が前記リブに形成され凹部又は前記リブを貫通する穴であることを特徴とする請求項1のエンジンマウント。The engine mount according to claim 1, wherein the high-rigidity structure is a rib for increasing rigidity, and the weakened structure is a recess formed in the rib or a hole passing through the rib. 前記高剛性構造が剛性を高めるためのリブであり、前記弱体化構造が前記リブを横断するウエルドラインであることを特徴とする請求項1のエンジンマウント。The engine mount according to claim 1, wherein the high-rigidity structure is a rib for increasing rigidity, and the weakened structure is a weld line crossing the rib.
JP2002177740A 2002-06-18 2002-06-18 Engine mount Expired - Fee Related JP4094350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177740A JP4094350B2 (en) 2002-06-18 2002-06-18 Engine mount

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177740A JP4094350B2 (en) 2002-06-18 2002-06-18 Engine mount

Publications (2)

Publication Number Publication Date
JP2004019837A true JP2004019837A (en) 2004-01-22
JP4094350B2 JP4094350B2 (en) 2008-06-04

Family

ID=31175687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177740A Expired - Fee Related JP4094350B2 (en) 2002-06-18 2002-06-18 Engine mount

Country Status (1)

Country Link
JP (1) JP4094350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8132640B2 (en) 2008-08-07 2012-03-13 Honda Motor Co., Ltd. Frangible mount for a vehicle differential

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8132640B2 (en) 2008-08-07 2012-03-13 Honda Motor Co., Ltd. Frangible mount for a vehicle differential

Also Published As

Publication number Publication date
JP4094350B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
US8132640B2 (en) Frangible mount for a vehicle differential
US10302166B2 (en) Vibration isolating device
US20100032256A1 (en) Oscillation damper, especially for mounting on a motor vehicle seat
JP6002607B2 (en) Vibration isolator
JP3509602B2 (en) Anti-vibration device
JP2006248514A (en) Wedge assembly
JP2010096277A (en) Anti-vibration connecting rod
CN109642636B (en) Torque rod
JP2004098798A (en) Vehicular engine mount structure
JP2004019838A (en) Engine mount
JP2004019837A (en) Engine mount
JP3164101B2 (en) Anti-vibration device
JP3542850B2 (en) Rear mounting structure of vehicle power unit
JP2007292150A (en) Rubber mount
US7458594B2 (en) Lower arm mounting structure of vehicle suspension
JPH11311280A (en) Vibration control device
JP4026372B2 (en) Vibration isolator for vehicle
KR101925134B1 (en) Motor mount bracket of plastic material
CN114008348A (en) Vibration isolation device
JP2006214138A (en) Fixed structure of tank for construction machinery
JP2004243952A (en) Torque rod
JP4036089B2 (en) Fuel tank mounting structure
JP2002333046A (en) Bush type mount
KR100411490B1 (en) Rear Trailing Arm Mounting Part
JP4262485B2 (en) Vehicle door structure

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040507

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4094350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees