JP2004018912A - High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same - Google Patents

High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same Download PDF

Info

Publication number
JP2004018912A
JP2004018912A JP2002173669A JP2002173669A JP2004018912A JP 2004018912 A JP2004018912 A JP 2004018912A JP 2002173669 A JP2002173669 A JP 2002173669A JP 2002173669 A JP2002173669 A JP 2002173669A JP 2004018912 A JP2004018912 A JP 2004018912A
Authority
JP
Japan
Prior art keywords
steel sheet
less
stretch flangeability
cold
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002173669A
Other languages
Japanese (ja)
Other versions
JP4265153B2 (en
Inventor
Kohei Hasegawa
長谷川 浩平
Hiroshi Matsuda
松田 広志
Hideyuki Tsurumaru
鶴丸 英幸
Kenji Kawamura
河村 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002173669A priority Critical patent/JP4265153B2/en
Priority to EP08159197A priority patent/EP2017363A3/en
Priority to DE60335106T priority patent/DE60335106D1/en
Priority to EP03736017A priority patent/EP1514951B1/en
Priority to PCT/JP2003/007062 priority patent/WO2003106723A1/en
Priority to US10/485,780 priority patent/US20040238082A1/en
Publication of JP2004018912A publication Critical patent/JP2004018912A/en
Application granted granted Critical
Publication of JP4265153B2 publication Critical patent/JP4265153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a super-high tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property, and a method for manufacturing the same. <P>SOLUTION: The steel used has a composition consisting of, by mass, 0.070-0.10% C, 0.5-1.5% Si, 1.8-3% Mn, ≤ 0.02% P, ≤ 0.01% S, 0.01-0.1% Sol.Al, ≤ 0.005% N, and the balance Fe with inevitable impurities. A metal structure of the steel plate is a two-phase structure, and substantially contains the ferritic phase and the martensitic phase. The tensile strength is ≥ 980 MPa and < 1,180 MPa. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、引張強度980MPa以上を必要とされる自動車構造部材、補強部材、その他あらゆる機械構造部品等に使用可能な高張力冷延鋼板およびその製造方法に関する。
【0002】
【従来の技術】
例えば、自動車部品は、軽量化による燃費向上と乗員の保護という相反する特性を満足させるため、高強度化が要求されている。このような高強度化が要求される材料として高張力鋼板が用いられる。高張力鋼板は軟質鋼板と比較して比較的高強度であるが、伸びおよび伸びフランジ性が劣るため、プレス成形など成形加工が困難である。ここで、伸びフランジ性とは、薄板のプレス成形におけるブランク端面の割れ不良の起こりにくさを示す材料特性で、特に高張力鋼板のプレス成形では製品不良の原因となる場合が多い。また、伸びフランジ性は、鉄鋼連盟規格JFST1001−1996に定められた穴拡げ試験で評価される。
このような背景の中、従来から高張力鋼板の伸びフランジ性改善に関する研究はいくつか実施されている。
特公平7−59726号公報、特開2001−226741号公報、特開平10−60593号公報および特開平9−263838号公報には、例えば、特開平9−263838号公報では、冷延鋼板の焼鈍時に均熱温度から徐冷することにより、フェライト中に均一に分散した第2相組織を得て、その後に続く冷却速度とその停止温度および過時効温度を管理することにより、フェライト相と均一に分散したベイナイト相を主とする第2相を生成させ、高強度で伸びフランジ性に優れた冷延鋼板を得るといったように、鋼成分と製造条件を適正範囲とし、金属組織を規定することにより、伸びフランジ性に優れた高強度冷延鋼板及びその製造方法が開示されている。
特開2001−355044号公報には、フェライトの強度を高くすることにより異相間の強度差に起因する穴拡げ性の劣化を防止し、鋼組織中に所要量の残留オ−ステナイトを存在させることにより穴拡げ性と成形性を両立させる、残留オーステナイト2〜20%の金属組織からなる高強度鋼板が開示されている。
特開平11−350038号公報には、特定の鋼成分と製造条件の組み合わせにより、980MPa級高張力鋼板であって、且つ延性と伸びフランジ成形性がともに優れた複合組織型高張力鋼板を得る方法が開示されている。
特開平9−41040号公報には、冷間圧延をした後、焼鈍を2相域で行い、650℃からパ−ライト変態の停止温度までの範囲の温度で10秒以上滞在するように冷却すると共に、上記パ−ライト変態の停止温度から450℃までの範囲の温度での滞在時間を5秒以下となるように冷却することによって、伸びフランジ性に優れる高強度冷延鋼板を得る方法が開示されている。
以上は、高張力鋼板の伸びフランジ性改善に関する従来技術である。他に、伸びフランジ性に関しては明示されていないが、成形性などの向上を目的とした高強度鋼板またはその製造技術がいくつか開示されている。次に、これらの技術を説明する。
特公昭58−55219号公報及び特許2545316号公報には、化学成分範囲のより厳格な規定と特定の水焼入焼戻(特公昭58−55219号公報)あるいは特定の熱延および冷延後の連続焼鈍(特許2545316号公報)とを併用することにより、高強度冷延鋼板を製造する方法が開示されている。
特公平7−68583号公報には、鋼のC、Si、Mnの含有量を制限するとともに、熱間圧延前の再加熱条件を限定し、さらに冷間圧延後の焼鈍を特定の均熱条件および雰囲気での連続焼鈍とすることにより、機械的特性、スポット溶接性および化成処理性の優れた2相組織鋼の高張力冷延鋼板を製造する方法が開示されている。
特公平8−30212号公報には、特性成分の鋼を熱延板において組織を均一微細化し、かつバンド組織をなくし、続く連続焼鈍でフェライトとマルテンサイトが均一微細に分布した組織とすることにより、高延性とともに良好な曲げ性を有する超高強度冷延鋼板を製造する方法が開示されている。
特公平5−57332号公報には、比較的多量のMnを含有し且つSiを含む鋼をAc3点以上のオ−ステナイト単相域で加熱し、その冷却過程でフェライトとマルテンサイトなどの低温変態相を生成させ複合組織を得ることによって表面性状と曲げ加工性に優れ降伏比が0.65以下の低降伏比型冷延高張力鋼板を製造する方法が開示されている。
特公平1−35051号公報及び特公平1−35052号公報には、水焼入れ開始温度及び過時効処理温度を制御・調整すると共に、再結晶加熱温度を制御し、再加熱時のオ−ステナイト相体積率を所定の範囲に規制することにより、延性の優れた高強度の冷延鋼板を製造する方法が開示されている。
特公平7−74412号公報及び特公平3−68927号公報では、例えば、特公平7−74412号公報には、通常の冷間圧延後、焼鈍工程における高温域での焼鈍を行うことによって、C量の濃化を少なくして、オ−ステナイトとして残る量を5%以下にすることにより、加工性(曲げ性)、絞り加工性および耐置き割れ性の優れた高強度薄鋼板を製造するといったように、製造条件を制限することにより加工性に優れた高強度冷延鋼板を製造する方法が開示されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来技術には以下の問題点がある。
【0004】
特公平7−59726号公報の技術では、350℃以上の高温での過時効処理が必須のため、この過時効処理により不可避的に発生する材料の引張強度の低下を補償するため、強化元素であるCを多量に添加(実施例では、引張強度980MPa以上の特性を出すためにはC0.17%以上添加、実施例表1発明鋼9、10、13)しなければならない。そのため、自動車用鋼板は、ほとんどの場合、プレス成形などで成形後スポット溶接により組み立てられるため、鋼中C量が多い上記鋼板を用いた場合、スポット溶接部の靭性が劣化し、接合強度が低下してしまう。また、過時効処理温度が高いため、製造におけるエネルギーコストおよび生産性が低下する。さらに、例えば、実施例では、得られている伸びフランジ性の達成レベルは、引張強度980MPa以上の時、穴拡げ率が56%(実施例第1表発明鋼9)と低く、伸びフランジ性は不充分である。
【0005】
特開2001−226741号公報の技術は、ベイナイトを主相とした金属組織であり、このベイナイト相を生成するには、連続焼鈍工程で均熱保持後にオ−ステンパ−熱処理が必須である。しかし上記熱処理は、温度履歴により鋼板特性がばらつきやすいという工業的な問題がある。また、Si量が0.05〜0.50%のため、延性が不充分である。
【0006】
特開2001−355044号公報の技術は、残留オーステナイトを2〜20%含む金属組織である。オーステナイトを残留させるためには、ベイナイト生成が必須であり、ベイナイト生成により強度が低下する。実施例に示されている鋼板の強度も600〜800MPaと強度レベルは低く、引張強度は不充分である。さらに、強度を上げるためには、C、Si、Mn量を多量に添加する必要があるが、C、Si、Mn量を多量に添加することにより、溶接性などが劣化する。
【0007】
特開平11−350038号公報の技術では、C量が0.10〜0.15%と高いため、伸びフランジ性が劣る上に、スポット溶接部の靭性が劣化し、接合強度が低下してしまう。
【0008】
特開平9−41040号公報の技術は、金属組織がフェライト、パーライト相であるため、また、特開平9−263838号公報の技術は、金属組織がフェライト、ベイナイト相であるため、強度が低い。実施例に示されている鋼板の強度も45〜67kg/mm(特開平9−41040号公報)、431〜683MPa(特開平9−263838号公報)と強度レベルは低く、引張強度は不充分である。さらに、強度を上げるためには、C、Si、Mn量を多量に添加する必要があるが、C、Si、Mn量を多量に添加することにより、溶接性などが劣化する。。
【0009】
特開平10−60593号公報、特公昭58−55219号公報、特公平7−68583号公報及び特許2545316号公報には、引張強度が371〜668MPa(特開平10−60593号公報)47〜66kg/mm(特公昭58−55219号公報)、48〜68kg/mm(特公平7−68583号公報)の鋼板が実施例に開示されているが、引張強度980MPa以上の鋼は示されておらず、目的とする引張強度のレベルが低く、引張強度が不充分である。
【0010】
特公平1−35051号公報、特公平1−35052号公報、特公平3−68927号公報、特公平8−30212号公報及び特公平7−74412号公報の技術では、製品特性として延性に着目しているが、例えば、実施例において、伸びフランジ性の評価結果については何ら示されていない等、伸びフランジ性に関しては全く考慮されていない。
【0011】
特公平5−57332号公報の技術では、伸びフランジ性に関しては全く考慮されていない。また、製造する材料の引張強度は60〜90kg/mmを目的としており、引張強度は不充分である。
【0012】
以上のように、従来技術の高張力鋼板は、伸びフランジ性が全く考慮されておらずその結果、伸びフランジ性が極めて劣る鋼板であるか、考慮されていたとしても、伸びフランジ性は十分でなく、またC含有量が高いためスポット溶接性の改善を必要とするなどの問題点があった。
【0013】
本発明はこのような事情に鑑みなされたものであり、引張強度が980MPa以上、1180MPa未満の伸びおよび伸びフランジ性に優れた超高張力冷延鋼板およびその製造方法を提供することを目的とする。特に伸びフランジ性に関しては、鉄連規格に定められた穴拡げ試験において60%以上の極めて高いレベルの材質を安定して達成することとする。
【0014】
【課題を解決するための手段】
まず、鋼板の金属組織としては、実質的にフェライト、マルテンサイト相の二相組織とする。上記二相組織を金属組織とした高張力鋼板は高強度であるが、従来は伸びフランジ性が低く、その改善が求められていた。
そこで、本発明者らはさらに鋭意研究した結果、スポット溶接性、化成処理性、コストを配慮した上で高強度を得るためには低合金設計とすること、かつC量を低くすることにより伸びフランジ性を高めることに着目し、上記二相組織を金属組織とした高張力鋼板の鋼中化学成分を特定の範囲に制御した。すなわち、C:0.070〜0.10%、Si:0.5〜1.5%、Mn:1.8〜3%、P:0.02%以下、S:0.01%以下、Sol.Al:0.01〜0.1%、N:0.005%以下を含有し、残部が鉄および不可避的不純物とし、引張強度を980MPa以上、1180MPa未満とすることで、極めて伸びおよび伸びフランジ性に優れた高張力冷延鋼板が得られることを見出した。さらに、Cr、Mo、Bから選択された元素を添加、あるいはTi、Nb、V、Zrから選択された元素を添加することにより、伸びおよび伸びフランジ性がより一層向上することを見出した。
また、上記化学成分を必須として、金属組織をマルテンサイト相の体積率:45〜60%で、残部が実質的にフェライト相とすることで、引張強度が980MPa以上、1180MPa未満で、さらに優れた伸びおよび伸びフランジ性を有する高張力冷延鋼板が得られることをも見出した。
【0015】
本発明は上記のような知見に基づいてなされたものであり、以下のような構成を有する。
【0016】
[1]mass%で、C:0.070〜0.10%、Si:0.5〜1.5%、Mn:1.8〜3%、P:0.02%以下、S:0.01%以下、Sol.Al:0.01〜0.1%、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなる成分組成を有し、鋼板の金属組織が、実質的にフェライト、マルテンサイト相の二相組織からなり、かつ引張強度:980MPa以上、1180MPa未満であることを特徴とする伸びおよび伸びフランジ性に優れた高張力冷延鋼板。
【0017】
[2] 上記[1]において、さらに、mass%で、Cr:0.01〜1.0%、Mo:0.01〜0.5%、B:0.0001〜0.0020%の1種または2種以上を含有することを特徴とする伸びおよび伸びフランジ性に優れた高張力冷延鋼板。
【0018】
[3] 上記[1]または[2]において、さらに、mass%で、Ti:0.001〜0.05%、Nb:0.001〜0.05%、V:0.001〜0.05%、Zr:0.001〜0.05%の1種または2種以上を含有することを特徴とする伸びおよび伸びフランジ性に優れた高張力冷延鋼板。
【0019】
[4] 上記[1]ないし[3]において、マルテンサイト相の体積率が45〜60%で、残部が実質的にフェライト相からなることを特徴とする伸びおよび伸びフランジ性に優れた高張力冷延鋼板。
【0020】
[5] 上記[1]ないし[3]のいずれかに記載の成分よりなる鋼を溶製し、熱間圧延、冷間圧延により所望の板厚のストリップとし、次いでこのストリップを750〜870℃に加熱し、この温度範囲で10sec以上保持した後、550〜750℃まで冷却し、引き続き、100℃/secを超える冷却速度で300℃以下まで冷却することにより引張強度:980MPa以上、1180MPa未満の鋼板を得ることを特徴とする伸びおよび伸びフランジ性に優れた高張力冷延鋼板の製造方法。
【0021】
[6] 上記[1]ないし[3]のいずれかに記載の成分よりなる鋼を溶製し、熱間圧延、冷間圧延により所望の板厚のストリップとし、このストリップを750〜870℃に加熱し、この温度範囲で10sec以上保持した後、550〜750℃の範囲内でかつオ−ステナイト相の体積率が45〜60%となる温度まで20℃/sec以下の冷却速度で冷却し、引き続き、100℃/secを超える冷却速度で300℃以下まで冷却することによりマルテンサイト相の体積率が45〜60%で残部が実質的にフェライト相からなる金属組織からなり、かつ引張強度が980MPa以上、1180MPa未満の鋼板を得ることを特徴とする伸びおよび伸びフランジ性に優れた高張力冷延鋼板の製造方法。
【0022】
なお、本明細書において、鋼の成分を示す%はすべてmass%である。
【0023】
【発明の実施の形態】
以下に本発明の詳細をその限定理由と合わせて説明する。
【0024】
まず、本発明鋼の化学成分の限定理由について説明する。
【0025】
C:0.070〜0.10%
Cは鋼板の引張強度を支配し、焼き入れ組織であるマルテンサイトを強化するために重要な元素である。C量が0.070%未満では本発明の目的とする引張強度上昇の効果が不十分となる。一方、C量が0.10%を超えると伸びフランジ性が著しく劣化し、スポット溶接における十字引張試験において溶接部が破断するため、接合強度が著しく低下する。
【0026】
Si:0.5〜1.5%
Siはフェライト、マルテンサイトの2相組織鋼の延性を高めるために有効である。Si量が0.5%未満ではその効果が十分でない。一方、Si量が1.5%を超えると熱延工程で鋼板表面にSi酸化物を多量に形成し、表面欠陥が発生するため、1.5%以下である必要がある。さらに、化成処理性の観点から、Si量は1.0%以下であることが望ましい。
【0027】
Mn:1.8〜3%
Mnは連続焼鈍の冷却工程でのフェライト生成を抑制するために重要な元素である。Mn量が1.8%未満ではその効果が十分でなく、3%を超えると例えば連続鋳造工程でスラブ割れが発生するため、Mn量は1.8〜3%とする。連続焼鈍工程における製造安定性を向上させるためには、Mn量は、2.0〜2.5%であることが望ましい。
【0028】
P:0.02%以下
Pは本発明鋼中では不純物であり、スポット溶接性を劣化させるためにできるだけ製鋼工程で除去することが望ましい。P量が0.02%を超えるとスポット溶接性の劣化が顕著となるため、P量は0.02%以下とする。
【0029】
S:0.01%以下
Sは本発明鋼中では不純物であり、スポット溶接性および曲げ加工性を劣化させるため、できるだけ製鋼工程で除去することが望ましい。S量が0.01%を超えるとスポット溶接性の劣化が顕著となるため、S量は0.01%以下とする。
【0030】
Sol.Al:0.01〜0.1%
Alは脱酸およびNをAlNとして析出させるために添加される。Sol.Al量が0.01%未満では脱酸及びAlN析出の効果が十分でない。一方、Sol.Al量が0.1%を超えるとAl添加の効果が飽和し不経済となる。
【0031】
N:0.005%以下
Nは鋼中に含有される不純物であり、鋼板の成形性を劣化させるので、可能な限り製鋼工程で除去、低減することが望ましい。しかしながら、Nを必要以上に低減すると精錬コストが上昇するので、N量は実質的に無害となる0.005%以下とする。
【0032】
次に選択添加元素について説明する。
【0033】
Cr:0.01〜1.0%、Mo:0.01〜0.5%、B:0.0001〜0.0020%の1種または2種以上
Cr、Mo、Bは、連続焼鈍工程における製造安定化のために有効な添加元素である。すなわち、これらの元素の添加により連続焼鈍工程における組織形態の調整が容易となる。それぞれ元素がCr:0.01、Mo:0.01%、B:0.0001%未満では製造安定化の効果が十分でない。一方、それぞれ、Cr:1.0%、Mo:0.5%、B:0.0020%を超えると延性が劣化する。以上より、Cr:0.01〜1.0%、Mo:0.01〜0.5%、B:0.0001〜0.0020%の1種または2種以上を添加することが好ましい。
【0034】
Ti:0.001〜0.05%、Nb:0.001〜0.05%、V:0.001〜0.05%、Zr:0.001〜0.05%の1種または2種以上
Ti、Nb、V、Zrは、鋳造、熱延工程で鋼中に炭化物、窒化物を形成し、結晶粒径の粗大化を抑制することで、伸びフランジ性を向上させる効果がある。いずれの添加元素も、0.001%未満では伸びフランジ性の向上効果が十分でない。一方、いずれの添加元素も、0.05%を超えると過度な析出強化によって延性が劣化する。以上より、Ti:0.001〜0.05%、Nb:0.001〜0.05%、V:0.001〜0.05%、Zr:0.001〜0.05%の1種または2種以上を添加することが好ましい。
【0035】
次に金属組織について説明する。
本発明は、鋼板の金属組織としては、実質的にフェライト、マルテンサイト相の二相組織とする。ただし、前記2相以外に、鉄を主構成元素とする相、すなわち、ベイナイト相、オーステナイト相は金属組織中に含まれないことが望ましいが、それぞれ体積率で2%未満であれば、実質的に無害であるので含まれてもよい。またFeを含有する化合物相、すなわち、セメンタイト相などはフェライト相中、マルテンサイト相中、フェライト相およびマルテンサイト相の界面に含まれてもよい。したがって、本発明において、実質的にフェライト、マルテンサイト相の二相組織とは、ベイナイト相、オーステナイト相が各々2%を未満であれば含まれていてもよく、また、セメンタイト相が各相の界面に含まれていてもよいという意味である。また、AlN、MnSなど添加元素、不純物元素に起因する化合物相は、添加元素、不純物元素が本発明の化学成分範囲であれば、実質的に無害であるので、金属組織中に含まれてもよいものとする。
【0036】
本発明において、さらに効果を出すためには、マルテンサイト相の体積率は45〜60%とするのが好ましい。マルテンサイト相の体積率が45%未満では、本発明の目的とする伸びフランジ性が劣化する。さらに曲げ性の効果を顕著とするために、マルテンサイト相の体積率は50%以上がさらに好ましい。一方、マルテンサイト相の体積率が60%超えでは伸びが低下する。また、本発明鋼は、所望の強度が達成される範囲で適宜マルテンサイト相の焼き戻し処理を行ってもよい。
次に製造条件について説明する。
【0037】
本発明においては、上記の成分よりなるスラブを溶製し、熱間圧延、冷間圧延により所望の板厚のストリップとし、次いでこのストリップを750〜870℃に加熱し、この温度範囲で10sec以上保持した後、550〜750℃まで冷却し、次いで、100℃/secを超える冷却速度で300℃以下まで冷却することにより、鋼板の金属組織が、実質的にフェライト、マルテンサイト相の二相組織からなり、かつ引張強度:980MPa以上、1180MPa未満である伸びおよび伸びフランジ性に優れた高張力冷延鋼板を製造することができる。
【0038】
上記製造方法においては、まず、上記の成分よりなるスラブを連続鋳造または造塊で溶製する。得られたスラブを冷却後再加熱するか、そのまま熱間圧延を行う。熱間圧延における最終圧延温度は、組織を微細化することによる伸びおよび伸びフランジ性を向上させるためAr3点以上870℃以下が望ましい。熱延板は冷却後巻き取る。巻き取り温度は組織を微細化することによる伸びおよび伸びフランジ性を向上させるため620℃以下が望ましい。次いで、冷間圧延し、所望の板厚とする。このときの冷間圧延率は組織微細化による伸びおよび伸びフランジ性の向上のため55%以上が望ましい。
次いで、上記により得られたストリップを連続焼鈍炉によって熱処理する。このときの加熱温度は750〜870℃とする。加熱温度が750℃未満では十分なオーステナイトが生成せず、強度が十分得られない。一方870℃を超えるとオーステナイト単相化し、組織が粗大化するため伸びおよび伸びフランジ性が劣化する。保持時間は10sec以上とする。10sec未満ではオーステナイトが十分生成せず、十分な強度が得られない。
均熱保持後、550〜750℃まで冷却する。均熱保持後550〜750℃まで冷却(徐冷)することにより、フェライトを適量生成して延性を向上させるとともに、強度の調整を行う。この時の冷却速度は、20℃/secを超えると製品の材質の安定性が劣化するため、20℃/sec以下であることが望ましい。この冷却終了温度が550℃未満ではフェライト体積率が高くなりすぎて強度が不足する。一方、冷却終了温度が750℃超えでは、次に行う急冷を750℃超えから行うことになり、750℃超えから急冷を行うと延性が劣化するばかりか、ストリップの平坦性が劣化する可能性があるため、冷却終了温度は750℃以下とする。また、マルテンサイト相の体積率が45〜60%で、残部が実質的にフェライト相からなる金属組織とするためには上記範囲において、成分系により、適宜調整する。特に、550〜750℃の範囲内でオ−ステナイト相の体積率が45〜60%となる温度まで20℃/sec以下の冷却速度で冷却することが望ましい。
次いで、100℃/secを超える冷却速度で300℃以下まで冷却する。この冷却は冷却速度が100℃/sec超えの急冷とする。冷却速度が100℃/sec以下では焼き入れが不十分となり、強度が不足する。さらに、製品材質安定化のためには、500℃/sec以上の速度で冷却することが望ましい。また、この時の冷却(急冷)終了温度は300℃以下とする。冷却終了温度が300℃を超えるとベイナイト相が生成するか、またはオーステナイトが残留し、伸びフランジ性を劣化させるためである。冷却停止温度は、製品材質を安定化させるために100℃以下とすることが望ましい。
次いで、再加熱を行わず5〜20分保持もしくは150〜390℃の温度範囲で再加熱行った後、5〜20分保持してもよい。この熱処理により、先の急冷で生成したマルテンサイトは焼き戻しされ、伸びおよび伸びフランジ性が向上する。なお、熱処理温度が150℃未満または熱処理時間が5分未満では、この効果が十分でない。一方、熱処理温度が390℃超えまたは熱処理時間が20分超えでは強度低下が顕著となり、980MPa以上の引張強度が得られないこともありうる。
【0039】
さらに調質圧延を圧延率0.1〜0.7%の範囲で行うことが望ましい。調質圧延を行うことにより、降伏伸びをなくすことが可能となる。
【0040】
なお、本発明鋼板は鋼板表面に電気めっき、溶融亜鉛めっきまたは固形潤滑材などを塗布してもよい。
【0041】
【実施例】
本発明の実施例について説明する。
【0042】
(実施例1)
表1の成分を有する供試鋼を溶製後、鋳造し、加熱温度:1250℃で板厚2.8mmまで熱間圧延を行った。熱間圧延における最終パス出側温度は約860℃であった。引き続き、約20℃/secで冷却後、600℃で巻き取りを模擬し、1時間保持後炉冷した。次いで冷間圧延を行い、板厚1.2mmとし、さらに連続焼鈍を模擬した熱処理を実施した。この連続焼鈍では、加熱速度は約20℃/secで830℃まで加熱し300sec保持した。次いで、約10℃/secで700℃まで冷却し、引き続き、水温20℃の噴流水中で、水温まで急冷した。このときの冷却速度は約2000℃/secであった。次いで、300℃で15分間の焼き戻し処理を行い、冷却後、0.3%の調質圧延を行い供試材を得た。
【0043】
【表1】

Figure 2004018912
【0044】
得られた供試材について、機械特性(引張特性)、伸びフランジ性を評価した。評価方法は以下の通りである。
【0045】
機械特性はJIS5号試験片(JISZ2201)を圧延方向と直角方向から採取し、JISZ2241に準拠して試験した。
【0046】
伸びフランジ性の評価方法として、鉄鋼連盟規格(JFST1001−1996)に準拠した穴拡げ試験を実施した。
【0047】
表2に評価結果を示す。
【0048】
【表2】
Figure 2004018912
【0049】
表2に示すように、本発明例においては、引張特性、伸びフランジ性が優れていることがわかる(1180MPa>引張強度≧980MPa、伸び≧18%、穴拡げ率≧60%)。
【0050】
一方、比較例はいずれかの特性が劣る。鋼番号1の比較例は、C量が低いため引張強度が低い。鋼番号4の比較例はC量が高いため、引張強度が高く、伸びが低い上に、伸びフランジ性も劣る。鋼番号5の比較例は、C量が高く、Mn量が低いため、引張強度は適性であるが、伸びフランジ性が著しく劣る。鋼番号6の比較例は、Si量が低いため、引張強度が低く、伸びフランジ性が劣る。鋼番号7の比較例は、C量が低く、Mn量が低いため、引張強度が低く、伸びフランジ性も劣る。鋼番号8の比較例は、Mn量が高いため、強度が高く、そのため、伸びが劣る。
【0051】
(実施例2)
表1に示す鋼2を用いて溶製後、鋳造し、加熱温度:1250℃で板厚2.8mmまで熱間圧延を行った。熱間圧延における最終パス出側温度は約860℃であった。引き続き、約20℃/secで冷却後、600℃で巻き取りを模擬し、1時間保持後炉冷した。次いで冷間圧延を行い、板厚1.2mmとし、さらに連続焼鈍を模擬した熱処理を実施した。連続焼鈍模擬熱処理は表3に示す条件で行った。次いで、冷却後、0.3%の調質圧延を行い供試材を得た。
【0052】
【表3】
Figure 2004018912
【0053】
得られた供試材について、機械特性(引張特性)、伸びフランジ性を実施例1と同様の方法で評価した。
表4に評価結果を示す。
【0054】
【表4】
Figure 2004018912
【0055】
表4に示すように、本発明例においては引張特性、伸びフランジ性が優れていることがわかる(1180MPa>引張強度≧980MPa、伸び≧18%、穴拡げ率≧60%)。
【0056】
一方、比較例はいずれかの特性が劣る。符号Aの比較例は、加熱温度が低すぎるため、引張強度が高く、伸びが劣る。符号Cの比較例は、加熱温度が高すぎるため、引張強度が低く、伸びフランジ性も劣る。これはマルテンサイトを主体とする金属組織が粗大化したためと考えられる。符号Dの比較例は、保持時間が短かすぎるため、引張強度が低く、伸びフランジ性も劣る。これは均熱保持中に十分オーステナイトが生成せず、焼き入れ後に十分なマルテンサイト量が得られなかったためと考えられる。符号Eの比較例は、急冷開始温度が高すぎるため、引張強度が高く、そのため伸びが低い。符号Fの比較例は、急冷開始温度が低すぎるため、引張強度が低く、伸びフランジ性も劣る。これは徐冷中にフェライトが生成し、焼き入れ後のマルテンサイトの体積率が減少したためと考えられる。符号Hの比較例は、急冷速度が低く急冷停止温度が高すぎるため、引張強度が低い上に、伸びフランジ性も劣る。
【0057】
【発明の効果】
以上述べたように、本発明によれば、伸びおよび伸びフランジ性に優れた高張力冷延鋼板を得ることができる。また、本発明により得られる高張力冷延鋼板は、引張強度が980MPa以上の成形性、すなわち伸び18%以上および伸びフランジ性(穴拡げ率60%以上)と、自動車構造部材、補強部材、その他あらゆる機械構造部品を製造するに際して最適な特性を持ち合わせており、自動車構造部材、補強部材、その他あらゆる機械構造部品として好適である。さらに、例えば、自動車用鋼板として必要な特性:溶接性、化成処理性などあらゆる特性に優れた超高強度冷延鋼板を低コストで安定して製造することができ、産業上極めて有益である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-tensile cold-rolled steel sheet that can be used for automobile structural members, reinforcing members, and all other mechanical structural parts that require a tensile strength of 980 MPa or more, and a method for producing the same.
[0002]
[Prior art]
For example, automobile parts are required to have high strength in order to satisfy the conflicting characteristics of fuel efficiency improvement by weight reduction and protection of occupants. A high-strength steel sheet is used as a material requiring such high strength. High-strength steel sheets have relatively high strength as compared with soft steel sheets, but are inferior in elongation and stretch flangeability, so that forming such as press forming is difficult. Here, the stretch flangeability is a material property that indicates the difficulty of cracking of the blank end face in the press forming of a thin plate, and often causes a product defect particularly in the press forming of a high-tensile steel sheet. In addition, the stretch flangeability is evaluated by a hole expansion test defined in the Iron and Steel Federation Standard JFST1001-1996.
Against this background, several studies have been conducted on improving the stretch flangeability of high-strength steel sheets.
Japanese Patent Publication No. 7-59726, Japanese Patent Application Laid-Open No. 2001-226741, Japanese Patent Application Laid-Open No. Hei 10-60593 and Japanese Patent Application Laid-Open No. 9-263838 disclose, for example, annealing of a cold-rolled steel sheet in Japanese Patent Application Laid-Open No. 9-263838. Occasionally, by gradually cooling from the soaking temperature, a second phase structure uniformly dispersed in the ferrite is obtained, and by controlling the subsequent cooling rate and its stop temperature and overaging temperature, the ferrite phase is uniformly formed. By producing a second phase mainly composed of a dispersed bainite phase and obtaining a cold-rolled steel sheet having high strength and excellent stretch flangeability, the steel composition and production conditions are set within an appropriate range, and the metal structure is defined. A high-strength cold-rolled steel sheet excellent in stretch flangeability and a method for producing the same are disclosed.
Japanese Patent Application Laid-Open No. 2001-355044 discloses that by increasing the strength of ferrite, deterioration of hole expandability due to a difference in strength between different phases is prevented, and a required amount of retained austenite is present in a steel structure. Discloses a high-strength steel sheet having a metal structure of 2 to 20% of retained austenite, which achieves both hole expandability and formability.
Japanese Patent Application Laid-Open No. 11-350038 discloses a method for obtaining a 980 MPa class high-strength steel sheet and a composite structure type high-strength steel sheet excellent in both ductility and stretch flange formability by combining specific steel components and manufacturing conditions. Is disclosed.
Japanese Patent Application Laid-Open No. 9-41040 discloses that after cold rolling, annealing is performed in a two-phase region, and cooling is performed so as to stay at a temperature in the range from 650 ° C. to a stop temperature of pearlite transformation for 10 seconds or more. Also disclosed is a method for obtaining a high-strength cold-rolled steel sheet having excellent stretch flangeability by cooling so that the residence time at a temperature in the range from the pearlite transformation stop temperature to 450 ° C. is 5 seconds or less. Have been.
The above is the prior art relating to the improvement of stretch flangeability of a high strength steel sheet. In addition, although the stretch flangeability is not specified, some high-strength steel sheets for improving formability and the like or techniques for producing the same are disclosed. Next, these techniques will be described.
Japanese Patent Publication No. 58-55219 and Japanese Patent No. 2545316 disclose more strict rules for the range of chemical components and specific water quenching and tempering (Japanese Patent Publication No. 58-55219) or after specific hot rolling and cold rolling. A method of manufacturing a high-strength cold-rolled steel sheet by using continuous annealing (Japanese Patent No. 2545316) is disclosed.
In Japanese Patent Publication No. 7-65883, the contents of C, Si, and Mn in steel are limited, reheating conditions before hot rolling are limited, and annealing after cold rolling is performed under specific soaking conditions. And a method for producing a high-strength cold-rolled steel sheet of a two-phase structure steel having excellent mechanical properties, spot weldability and chemical conversion properties by continuous annealing in an atmosphere.
Japanese Patent Publication No. 8-302212 discloses that a steel having a characteristic component has a structure in which a ferrite and martensite are uniformly and finely distributed in a hot-rolled sheet by eliminating the band structure and then continuously annealing. A method for producing an ultra-high-strength cold-rolled steel sheet having high ductility and good bendability is disclosed.
Japanese Patent Publication No. Hei 5-57332 discloses that a steel containing a relatively large amount of Mn and containing Si is heated in an austenitic single phase region having an Ac temperature of 3 or more, and during the cooling process, low-temperature transformation of ferrite and martensite is performed. There is disclosed a method for producing a low-yield-ratio cold-rolled high-strength steel sheet having excellent surface properties and bendability and having a yield ratio of 0.65 or less by forming a phase to obtain a composite structure.
JP-B 1-35051 and JP-B 1-35052 describe that the water quenching start temperature and the overaging temperature are controlled and adjusted, the recrystallization heating temperature is controlled, and the austenite phase during reheating is controlled. A method for producing a high-strength cold-rolled steel sheet having excellent ductility by regulating the volume ratio to a predetermined range is disclosed.
In Japanese Patent Publication No. Hei 7-74412 and Japanese Patent Publication No. 3-68927, for example, Japanese Patent Publication No. Hei 7-74412 discloses that, after normal cold rolling, annealing is performed in a high temperature region in an annealing step. By reducing the amount of enrichment and reducing the amount remaining as austenite to 5% or less, it is possible to produce a high-strength thin steel sheet having excellent workability (bending property), drawability, and resistance to cracks during storage. As described above, a method of manufacturing a high-strength cold-rolled steel sheet having excellent workability by limiting the manufacturing conditions is disclosed.
[0003]
[Problems to be solved by the invention]
However, the above prior art has the following problems.
[0004]
In the technology of Japanese Patent Publication No. 7-59726, overaging treatment at a high temperature of 350 ° C. or higher is essential. To compensate for the decrease in tensile strength of the material inevitably generated by the overaging treatment, a reinforcing element is used. A certain amount of C must be added in a large amount (in the examples, 0.17% or more of C is added in order to obtain a property of tensile strength of 980 MPa or more, and inventive steels 9, 10, and 13 in Example 1). For this reason, steel sheets for automobiles are almost always assembled by spot welding after forming by press forming, etc., and when the above steel sheet having a large amount of C in steel is used, the toughness of the spot weld is deteriorated, and the joining strength is reduced. Resulting in. In addition, since the overaging temperature is high, the energy cost and productivity in manufacturing decrease. Further, for example, in the examples, the obtained achievement level of the stretch flangeability is as follows: when the tensile strength is 980 MPa or more, the hole expansion rate is as low as 56% (Example Table 1 Invention Steel 9), and the stretch flangeability is low. Insufficient.
[0005]
The technique disclosed in Japanese Patent Application Laid-Open No. 2001-226741 has a metal structure containing bainite as a main phase, and in order to generate the bainite phase, an austempering heat treatment is required after soaking in a continuous annealing step. However, the heat treatment has an industrial problem that the characteristics of the steel sheet tend to vary depending on the temperature history. Further, since the Si content is 0.05 to 0.50%, the ductility is insufficient.
[0006]
The technology disclosed in JP-A-2001-355044 is a metal structure containing 2 to 20% of retained austenite. In order to allow austenite to remain, bainite formation is essential, and the strength decreases due to bainite formation. The strength of the steel sheets shown in the examples is also low, such as 600 to 800 MPa, and the tensile strength is insufficient. Further, in order to increase the strength, it is necessary to add a large amount of C, Si, and Mn. However, adding a large amount of C, Si, and Mn deteriorates weldability and the like.
[0007]
In the technique of JP-A-11-350038, since the C content is as high as 0.10 to 0.15%, the stretch flangeability is inferior, and the toughness of the spot weld is deteriorated, and the joining strength is reduced. .
[0008]
The technique of Japanese Patent Application Laid-Open No. 9-41040 has a low strength because the metal structure is a ferrite or pearlite phase, and the technology of Japanese Patent Application Laid-Open No. 9-263838 has a low strength because the metal structure is a ferrite or bainite phase. The strength of the steel sheets shown in the examples is also low at 45 to 67 kg / mm 2 (Japanese Patent Application Laid-Open No. 9-41040) and 431 to 683 MPa (Japanese Patent Application Laid-Open No. 9-263838), and the tensile strength is insufficient. It is. Further, in order to increase the strength, it is necessary to add a large amount of C, Si, and Mn. However, adding a large amount of C, Si, and Mn deteriorates weldability and the like. .
[0009]
Japanese Patent Application Laid-Open No. 10-60593, Japanese Patent Publication No. 58-55219, Japanese Patent Publication No. 7-68383 and Japanese Patent No. 2545316 have a tensile strength of 371 to 668 MPa (Japanese Patent Application Laid-Open No. 10-60593) 47 to 66 kg /. Examples of steel sheets of mm 2 (Japanese Patent Publication No. 58-55219) and 48 to 68 kg / mm 2 (Japanese Patent Publication No. 7-65583) are disclosed in Examples, but steels having a tensile strength of 980 MPa or more are shown. The intended level of tensile strength is low and the tensile strength is insufficient.
[0010]
The technologies of Japanese Patent Publication Nos. 1-35051, 1-35052, 3-68927, 8-302212 and 7-74412 focus on ductility as a product characteristic. However, no consideration is given to stretch flangeability, for example, in the examples, the evaluation results of stretch flangeability are not shown at all.
[0011]
In the technology of Japanese Patent Publication No. 5-57332, stretch flangeability is not considered at all. Further, the tensile strength of the material to be manufactured is aimed at 60 to 90 kg / mm 2 , and the tensile strength is insufficient.
[0012]
As described above, the high-strength steel sheet of the prior art does not consider stretch flangeability at all, and as a result, is a steel sheet having extremely poor stretch flangeability, or even if it is considered, stretch flangeability is sufficient. However, there is a problem that the spot weldability needs to be improved due to the high C content.
[0013]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an ultra-high-tensile cold-rolled steel sheet having excellent tensile elongation and stretch flangeability of 980 MPa or more and less than 1180 MPa, and a method for producing the same. . In particular, regarding the stretch flangeability, an extremely high level material of 60% or more is stably achieved in a hole expanding test defined in the Iron and Steel Standard.
[0014]
[Means for Solving the Problems]
First, the metal structure of the steel sheet is substantially a two-phase structure of a ferrite and a martensite phase. A high-strength steel sheet having the above two-phase structure as a metal structure has high strength, but conventionally has low stretch flangeability, and its improvement has been demanded.
The inventors of the present invention have further conducted intensive research and have found that a low alloy design is used to obtain high strength in consideration of spot weldability, chemical conversion property, and cost, and that the C content is reduced to reduce the amount. Focusing on enhancing the flangeability, the chemical composition in the steel of a high-strength steel sheet having the above two-phase structure as a metal structure was controlled to a specific range. That is, C: 0.070 to 0.10%, Si: 0.5 to 1.5%, Mn: 1.8 to 3%, P: 0.02% or less, S: 0.01% or less, Sol . Al: 0.01 to 0.1%, N: 0.005% or less, with the balance being iron and inevitable impurities, and having a tensile strength of 980 MPa or more and less than 1180 MPa, thereby greatly expanding and stretching flangeability. It has been found that a high-tensile cold-rolled steel sheet excellent in quality can be obtained. Furthermore, it has been found that by adding an element selected from Cr, Mo, and B, or by adding an element selected from Ti, Nb, V, and Zr, elongation and stretch flangeability are further improved.
In addition, the above chemical components are indispensable, and the volume ratio of the martensite phase is 45 to 60%, and the balance is substantially a ferrite phase, so that the tensile strength is 980 MPa or more and less than 1180 MPa, which is more excellent. It has also been found that a high-tensile cold-rolled steel sheet having elongation and stretch flangeability can be obtained.
[0015]
The present invention has been made based on the above findings, and has the following configuration.
[0016]
[1] mass%, C: 0.070 to 0.10%, Si: 0.5 to 1.5%, Mn: 1.8 to 3%, P: 0.02% or less, S: 0. 01% or less, Sol. Al: 0.01 to 0.1%, N: 0.005% or less, the balance has a composition of iron and unavoidable impurities, and the metal structure of the steel sheet is substantially ferrite or martensite. A high-tensile cold-rolled steel sheet having excellent elongation and stretch flangeability, comprising a two-phase structure and a tensile strength of 980 MPa or more and less than 1180 MPa.
[0017]
[2] In the above item [1], one of the following mass%: Cr: 0.01 to 1.0%, Mo: 0.01 to 0.5%, B: 0.0001 to 0.0020%. Or a high-tensile cold-rolled steel sheet excellent in elongation and stretch flangeability, characterized by containing two or more types.
[0018]
[3] In the above [1] or [2], further, by mass%, Ti: 0.001 to 0.05%, Nb: 0.001 to 0.05%, V: 0.001 to 0.05 %, Zr: a high-tensile cold-rolled steel sheet excellent in elongation and stretch flangeability, comprising one or more of 0.001 to 0.05%.
[0019]
[4] In the above [1] to [3], the martensite phase has a volume fraction of 45 to 60%, and the balance substantially consists of a ferrite phase. Cold rolled steel sheet.
[0020]
[5] A steel comprising the component according to any one of the above [1] to [3] is melted, hot-rolled and cold-rolled into a strip having a desired thickness, and then the strip is heated to 750 to 870 ° C. And maintained at this temperature range for 10 sec or more, then cooled to 550 to 750 ° C., and subsequently cooled to 300 ° C. or less at a cooling rate exceeding 100 ° C./sec to obtain a tensile strength of 980 MPa or more and less than 1180 MPa. A method for producing a high-tensile cold-rolled steel sheet having excellent elongation and stretch flangeability, characterized by obtaining a steel sheet.
[0021]
[6] A steel comprising the component according to any one of the above [1] to [3] is melted, hot-rolled and cold-rolled into a strip having a desired thickness, and the strip is heated to 750 to 870 ° C. After heating and maintaining for 10 sec or more in this temperature range, the mixture is cooled at a cooling rate of 20 ° C./sec or less to a temperature within a range of 550 to 750 ° C. and a volume fraction of an austenite phase of 45 to 60%, Subsequently, by cooling to 300 ° C. or lower at a cooling rate exceeding 100 ° C./sec, the volume fraction of the martensite phase is 45 to 60%, and the balance is substantially composed of a ferrite phase, and the tensile strength is 980 MPa. As described above, a method for producing a high-tensile cold-rolled steel sheet having excellent elongation and stretch flangeability, characterized by obtaining a steel sheet of less than 1180 MPa.
[0022]
In this specification, all the percentages indicating the components of steel are mass%.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The details of the present invention will be described below together with the reasons for limitation.
[0024]
First, the reasons for limiting the chemical components of the steel of the present invention will be described.
[0025]
C: 0.070 to 0.10%
C controls the tensile strength of the steel sheet and is an important element for strengthening martensite, which is a quenched structure. When the C content is less than 0.070%, the effect of increasing the tensile strength, which is the object of the present invention, becomes insufficient. On the other hand, when the C content exceeds 0.10%, the stretch flangeability is significantly deteriorated, and the welded portion is broken in a cross tension test in spot welding, so that the joining strength is significantly reduced.
[0026]
Si: 0.5-1.5%
Si is effective for increasing the ductility of a two-phase structure steel of ferrite and martensite. If the amount of Si is less than 0.5%, the effect is not sufficient. On the other hand, if the Si content exceeds 1.5%, a large amount of Si oxide is formed on the surface of the steel sheet in the hot rolling process, and surface defects occur. Further, from the viewpoint of chemical conversion property, the amount of Si is desirably 1.0% or less.
[0027]
Mn: 1.8-3%
Mn is an important element for suppressing the formation of ferrite in the cooling step of continuous annealing. If the Mn content is less than 1.8%, the effect is not sufficient, and if it exceeds 3%, for example, slab cracks occur in the continuous casting process, so the Mn content is set to 1.8 to 3%. In order to improve the production stability in the continuous annealing step, the amount of Mn is desirably 2.0 to 2.5%.
[0028]
P: 0.02% or less P is an impurity in the steel of the present invention, and is desirably removed in the steel making process as much as possible in order to deteriorate spot weldability. If the P content exceeds 0.02%, spot weldability deteriorates significantly, so the P content is set to 0.02% or less.
[0029]
S: 0.01% or less S is an impurity in the steel of the present invention and degrades spot weldability and bending workability. Therefore, it is desirable that S be removed in the steel making process as much as possible. If the S content exceeds 0.01%, the spot weldability deteriorates significantly, so the S content is set to 0.01% or less.
[0030]
Sol. Al: 0.01 to 0.1%
Al is added to deoxidize and precipitate N as AlN. Sol. If the Al content is less than 0.01%, the effects of deoxidation and AlN precipitation are not sufficient. On the other hand, Sol. If the amount of Al exceeds 0.1%, the effect of the addition of Al will be saturated and uneconomical.
[0031]
N: 0.005% or less N is an impurity contained in steel and deteriorates the formability of the steel sheet. Therefore, it is desirable to remove and reduce N in the steel making process as much as possible. However, if N is reduced unnecessarily, the refining cost increases. Therefore, the N amount is set to 0.005% or less, which is substantially harmless.
[0032]
Next, the selective additive element will be described.
[0033]
One or more of Cr: 0.01 to 1.0%, Mo: 0.01 to 0.5%, and B: 0.0001 to 0.0020% Cr, Mo, and B are used in the continuous annealing process. It is an effective additive element for stabilizing production. That is, the addition of these elements facilitates adjustment of the structure morphology in the continuous annealing step. If the elements are less than Cr: 0.01, Mo: 0.01%, and B: 0.0001%, the effect of stabilizing the production is not sufficient. On the other hand, if the content exceeds 1.0% for Cr, 0.5% for Mo, and 0.0020% for B, the ductility deteriorates. From the above, it is preferable to add one or more of Cr: 0.01 to 1.0%, Mo: 0.01 to 0.5%, and B: 0.0001 to 0.0020%.
[0034]
One or more of Ti: 0.001 to 0.05%, Nb: 0.001 to 0.05%, V: 0.001 to 0.05%, Zr: 0.001 to 0.05% Ti, Nb, V, and Zr have an effect of improving the stretch flangeability by forming carbides and nitrides in the steel in the casting and hot rolling steps and suppressing the coarsening of the crystal grain size. If any of the additional elements is less than 0.001%, the effect of improving stretch flangeability is not sufficient. On the other hand, if any of the added elements exceeds 0.05%, ductility is deteriorated due to excessive precipitation strengthening. From the above, one of Ti: 0.001 to 0.05%, Nb: 0.001 to 0.05%, V: 0.001 to 0.05%, Zr: 0.001 to 0.05% or It is preferable to add two or more.
[0035]
Next, the metal structure will be described.
In the present invention, the metal structure of the steel sheet is substantially a two-phase structure of a ferrite and a martensite phase. However, in addition to the above two phases, it is desirable that a phase containing iron as a main constituent element, that is, a bainite phase and an austenite phase are not contained in the metal structure. It may be included because it is harmless. The Fe-containing compound phase, that is, the cementite phase, may be contained in the ferrite phase, the martensite phase, or the interface between the ferrite phase and the martensite phase. Therefore, in the present invention, the substantially two-phase structure of the ferrite and the martensite phases may include the bainite phase and the austenite phase as long as each content is less than 2%. It means that it may be contained in the interface. Further, the compound phase caused by the additional element and the impurity element such as AlN and MnS is substantially harmless as long as the additional element and the impurity element are within the chemical component range of the present invention. Shall be good.
[0036]
In the present invention, in order to obtain further effects, the volume ratio of the martensite phase is preferably set to 45 to 60%. When the volume fraction of the martensite phase is less than 45%, the stretch flangeability intended in the present invention is deteriorated. In order to make the effect of the bendability more remarkable, the volume ratio of the martensite phase is more preferably 50% or more. On the other hand, when the volume fraction of the martensite phase exceeds 60%, the elongation decreases. The steel of the present invention may be appropriately tempered with a martensite phase as long as the desired strength is achieved.
Next, the manufacturing conditions will be described.
[0037]
In the present invention, a slab composed of the above components is melted, hot-rolled, and cold-rolled into a strip having a desired thickness, and then the strip is heated to 750 to 870 ° C., and at this temperature range for 10 seconds or more. After holding, the steel sheet is cooled to 550 to 750 ° C., and then cooled to 300 ° C. or less at a cooling rate exceeding 100 ° C./sec. And a high-strength cold-rolled steel sheet excellent in elongation and stretch flangeability having a tensile strength of 980 MPa or more and less than 1180 MPa.
[0038]
In the above manufacturing method, first, a slab composed of the above components is melted by continuous casting or ingot making. The obtained slab is cooled and then reheated or hot rolled. The final rolling temperature in the hot rolling is desirably not less than the Ar 3 point and not more than 870 ° C. in order to improve elongation and stretch flangeability by making the structure finer. The hot rolled sheet is taken up after cooling. The winding temperature is desirably 620 ° C. or lower in order to improve elongation and stretch flangeability by making the structure finer. Next, cold rolling is performed to obtain a desired thickness. The cold rolling reduction at this time is desirably 55% or more in order to improve the elongation and stretch flangeability due to the refinement of the structure.
Next, the strip obtained above is heat-treated in a continuous annealing furnace. The heating temperature at this time is 750 to 870 ° C. If the heating temperature is lower than 750 ° C., sufficient austenite is not generated, and sufficient strength cannot be obtained. On the other hand, when the temperature exceeds 870 ° C., austenite becomes a single phase, and the structure becomes coarse, so that the elongation and stretch flangeability deteriorate. The holding time is 10 seconds or more. If it is less than 10 seconds, austenite is not sufficiently generated, and sufficient strength cannot be obtained.
After the soaking, the temperature is cooled to 550-750 ° C. By cooling (gradual cooling) to 550 to 750 ° C. after maintaining the soaking, an appropriate amount of ferrite is formed to improve ductility and adjust the strength. If the cooling rate at this time exceeds 20 ° C./sec, the stability of the material of the product is deteriorated. Therefore, it is desirable that the cooling rate is 20 ° C./sec or less. If the cooling end temperature is lower than 550 ° C., the volume ratio of ferrite becomes too high and the strength is insufficient. On the other hand, if the cooling end temperature exceeds 750 ° C., the next quenching will be performed from above 750 ° C. If quenching is performed from above 750 ° C., not only the ductility will deteriorate but also the flatness of the strip may deteriorate. Therefore, the cooling end temperature is set to 750 ° C. or lower. In order to obtain a metal structure in which the volume fraction of the martensite phase is 45 to 60% and the remainder substantially consists of a ferrite phase, the above range is appropriately adjusted depending on the component system. In particular, it is desirable to cool at a cooling rate of 20 ° C./sec or less to a temperature at which the volume fraction of the austenite phase becomes 45 to 60% within the range of 550 to 750 ° C.
Next, it is cooled to 300 ° C. or lower at a cooling rate exceeding 100 ° C./sec. This cooling is a rapid cooling at a cooling rate exceeding 100 ° C./sec. If the cooling rate is 100 ° C./sec or less, quenching becomes insufficient and strength becomes insufficient. Further, in order to stabilize product materials, it is desirable to cool at a rate of 500 ° C./sec or more. At this time, the cooling (rapid cooling) end temperature is set to 300 ° C. or less. If the cooling end temperature exceeds 300 ° C., a bainite phase is generated or austenite remains, thereby deteriorating stretch flangeability. The cooling stop temperature is desirably 100 ° C. or lower in order to stabilize the material of the product.
Next, after holding for 5 to 20 minutes without performing reheating or performing reheating in a temperature range of 150 to 390 ° C., the temperature may be held for 5 to 20 minutes. By this heat treatment, martensite generated by the rapid cooling is tempered, and the elongation and stretch flangeability are improved. If the heat treatment temperature is less than 150 ° C. or the heat treatment time is less than 5 minutes, this effect is not sufficient. On the other hand, when the heat treatment temperature exceeds 390 ° C. or the heat treatment time exceeds 20 minutes, the strength is significantly reduced, and a tensile strength of 980 MPa or more may not be obtained.
[0039]
Further, it is desirable to perform the temper rolling at a rolling reduction of 0.1 to 0.7%. By performing the temper rolling, it is possible to eliminate the yield elongation.
[0040]
In the steel sheet of the present invention, electroplating, hot-dip galvanizing, a solid lubricant or the like may be applied to the steel sheet surface.
[0041]
【Example】
An embodiment of the present invention will be described.
[0042]
(Example 1)
A test steel having the components shown in Table 1 was melted, cast, and hot-rolled to a sheet thickness of 2.8 mm at a heating temperature of 1250 ° C. The final pass exit temperature in hot rolling was about 860 ° C. Subsequently, after cooling at about 20 ° C./sec, winding was simulated at 600 ° C., and the furnace was cooled after holding for 1 hour. Next, cold rolling was performed to a sheet thickness of 1.2 mm, and a heat treatment simulating continuous annealing was performed. In this continuous annealing, the heating rate was about 20 ° C./sec to 830 ° C. and the temperature was maintained for 300 sec. Next, the mixture was cooled to 700 ° C. at about 10 ° C./sec, and then rapidly cooled to a water temperature in jet water having a water temperature of 20 ° C. The cooling rate at this time was about 2000 ° C./sec. Next, tempering treatment was performed at 300 ° C. for 15 minutes, and after cooling, temper rolling of 0.3% was performed to obtain a test material.
[0043]
[Table 1]
Figure 2004018912
[0044]
The obtained test materials were evaluated for mechanical properties (tensile properties) and stretch flangeability. The evaluation method is as follows.
[0045]
For mechanical properties, a JIS No. 5 test piece (JISZ2201) was sampled from a direction perpendicular to the rolling direction and tested according to JISZ2241.
[0046]
As an evaluation method of stretch flangeability, a hole expanding test based on the Iron and Steel Federation Standard (JFST1001-1996) was performed.
[0047]
Table 2 shows the evaluation results.
[0048]
[Table 2]
Figure 2004018912
[0049]
As shown in Table 2, in the examples of the present invention, it is understood that the tensile properties and the stretch flangeability are excellent (1180 MPa> tensile strength ≧ 980 MPa, elongation ≧ 18%, hole expansion rate ≧ 60%).
[0050]
On the other hand, the comparative example is inferior in either property. The comparative example of steel No. 1 has a low tensile strength due to a low C content. Since the comparative example of steel No. 4 has a high C content, the tensile strength is high, the elongation is low, and the stretch flangeability is inferior. The comparative example of steel No. 5 has a high C content and a low Mn content, so that the tensile strength is appropriate, but the stretch flangeability is extremely poor. Since the comparative example of steel No. 6 has a low Si content, the tensile strength is low and the stretch flangeability is inferior. The comparative example of steel No. 7 has a low C content and a low Mn content, and thus has a low tensile strength and poor stretch flangeability. The comparative example of steel No. 8 has a high strength because of a high Mn content, and therefore has poor elongation.
[0051]
(Example 2)
After melting using steel 2 shown in Table 1, it was cast, and hot-rolled to a sheet thickness of 2.8 mm at a heating temperature of 1250 ° C. The final pass exit temperature in hot rolling was about 860 ° C. Subsequently, after cooling at about 20 ° C./sec, winding was simulated at 600 ° C., and the furnace was cooled after holding for 1 hour. Next, cold rolling was performed to a sheet thickness of 1.2 mm, and a heat treatment simulating continuous annealing was performed. The continuous annealing simulation heat treatment was performed under the conditions shown in Table 3. Next, after cooling, temper rolling of 0.3% was performed to obtain a test material.
[0052]
[Table 3]
Figure 2004018912
[0053]
The obtained test materials were evaluated for mechanical properties (tensile properties) and stretch flangeability in the same manner as in Example 1.
Table 4 shows the evaluation results.
[0054]
[Table 4]
Figure 2004018912
[0055]
As shown in Table 4, in the examples of the present invention, it is found that the tensile properties and the stretch flangeability are excellent (1180 MPa> tensile strength ≧ 980 MPa, elongation ≧ 18%, hole expansion rate ≧ 60%).
[0056]
On the other hand, the comparative example is inferior in either property. In the comparative example with the symbol A, the heating temperature was too low, so that the tensile strength was high and the elongation was poor. In the comparative example denoted by reference symbol C, the heating temperature was too high, so that the tensile strength was low and the stretch flangeability was poor. This is probably because the metal structure mainly composed of martensite was coarsened. In the comparative example with the reference symbol D, the holding time was too short, so that the tensile strength was low and the stretch flangeability was poor. This is considered to be because sufficient austenite was not generated during the soaking, and a sufficient amount of martensite was not obtained after quenching. In the comparative example with reference symbol E, the quenching start temperature is too high, so that the tensile strength is high, and thus the elongation is low. In the comparative example denoted by reference F, the quenching start temperature is too low, so that the tensile strength is low and the stretch flangeability is poor. This is presumably because ferrite was formed during the slow cooling and the volume ratio of martensite after quenching was reduced. In the comparative example with the symbol H, the quenching speed is too low and the quenching stop temperature is too high, so that the tensile strength is low and the stretch flangeability is poor.
[0057]
【The invention's effect】
As described above, according to the present invention, a high-tensile cold-rolled steel sheet excellent in elongation and stretch flangeability can be obtained. The high-tensile cold-rolled steel sheet obtained by the present invention has formability with a tensile strength of 980 MPa or more, that is, elongation of 18% or more and stretch flangeability (hole expansion rate of 60% or more), automobile structural members, reinforcing members, and others. It has optimal characteristics in manufacturing all mechanical structural parts, and is suitable as an automobile structural member, a reinforcing member, and any other mechanical structural parts. Furthermore, for example, an ultra-high strength cold rolled steel sheet excellent in all properties required for a steel sheet for automobiles such as weldability and chemical conversion treatment can be stably manufactured at low cost, which is extremely useful in industry.

Claims (6)

mass%で、C:0.070〜0.10%、Si:0.5〜1.5%、Mn:1.8〜3%、P:0.02%以下、S:0.01%以下、Sol.Al:0.01〜0.1%、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなる成分組成を有し、鋼板の金属組織が、実質的にフェライト、マルテンサイト相の二相組織からなり、かつ引張強度:980MPa以上、1180MPa未満であることを特徴とする伸びおよび伸びフランジ性に優れた高張力冷延鋼板。Mass: C: 0.070 to 0.10%, Si: 0.5 to 1.5%, Mn: 1.8 to 3%, P: 0.02% or less, S: 0.01% or less , Sol. Al: 0.01 to 0.1%, N: 0.005% or less, the balance has a composition of iron and unavoidable impurities, and the metal structure of the steel sheet is substantially ferrite or martensite. A high-tensile cold-rolled steel sheet having excellent elongation and stretch flangeability, comprising a two-phase structure of phases and having a tensile strength of 980 MPa or more and less than 1180 MPa. さらに、mass%で、Cr:0.01〜1.0%、Mo:0.01〜0.5%、B:0.0001〜0.0020%の1種または2種以上を含有することを特徴とする請求項1に記載の伸びおよび伸びフランジ性に優れた高張力冷延鋼板。In addition, one or more of Cr: 0.01 to 1.0%, Mo: 0.01 to 0.5%, and B: 0.0001 to 0.0020% by mass% is contained. The high-tensile cold-rolled steel sheet according to claim 1, which is excellent in elongation and stretch flangeability. さらに、mass%で、Ti:0.001〜0.05%、Nb:0.001〜0.05%、V:0.001〜0.05%、Zr:0.001〜0.05%の1種または2種以上を含有することを特徴とする請求項1または2に記載の伸びおよび伸びフランジ性に優れた高張力冷延鋼板。Further, in mass%, Ti: 0.001 to 0.05%, Nb: 0.001 to 0.05%, V: 0.001 to 0.05%, Zr: 0.001 to 0.05% The high-tensile cold-rolled steel sheet having excellent elongation and stretch flangeability according to claim 1, wherein the steel sheet contains one or more kinds. マルテンサイト相の体積率が45〜60%で、残部が実質的にフェライト相からなることを特徴とする請求項1ないし3に記載の伸びおよび伸びフランジ性に優れた高張力冷延鋼板。The high-tensile cold-rolled steel sheet having excellent elongation and stretch flangeability according to claim 1, wherein the martensite phase has a volume fraction of 45 to 60% and the remainder substantially consists of a ferrite phase. 請求項1ないし3のいずれかに記載の成分よりなる鋼を溶製し、熱間圧延、冷間圧延により所望の板厚のストリップとし、次いでこのストリップを750〜870℃に加熱し、この温度範囲で10sec以上保持した後、550〜750℃まで冷却し、引き続き、100℃/secを超える冷却速度で300℃以下まで冷却することにより引張強度:980MPa以上、1180MPa未満の鋼板を得ることを特徴とする伸びおよび伸びフランジ性に優れた高張力冷延鋼板の製造方法。A steel comprising the component according to any one of claims 1 to 3 is melted, hot-rolled and cold-rolled into a strip having a desired thickness, and the strip is heated to 750 to 870 ° C. After holding for 10 sec or more in the range, the steel sheet is cooled to 550 to 750 ° C., and subsequently cooled to 300 ° C. or less at a cooling rate exceeding 100 ° C./sec to obtain a steel sheet having a tensile strength of 980 MPa or more and less than 1180 MPa. A method for producing a high-tensile cold-rolled steel sheet having excellent elongation and stretch flangeability. 請求項1ないし3のいずれかに記載の成分よりなる鋼を溶製し、熱間圧延、冷間圧延により所望の板厚のストリップとし、このストリップを750〜870℃に加熱し、この温度範囲で10sec以上保持した後、550〜750℃の範囲内でかつオ−ステナイト相の体積率が45〜60%となる温度まで20℃/sec以下の冷却速度で冷却し、引き続き、100℃/secを超える冷却速度で300℃以下まで冷却することによりマルテンサイト相の体積率が45〜60%で残部が実質的にフェライト相からなる金属組織からなり、かつ引張強度が980MPa以上、1180MPa未満の鋼板を得ることを特徴とする伸びおよび伸びフランジ性に優れた高張力冷延鋼板の製造方法。A steel comprising the component according to any one of claims 1 to 3, which is melted, hot-rolled and cold-rolled into a strip having a desired thickness, and the strip is heated to 750 to 870 ° C, and the temperature range is set. And then cooled to a temperature within the range of 550 to 750 ° C. and a volume fraction of the austenite phase of 45 to 60% at a cooling rate of 20 ° C./sec or less, and subsequently 100 ° C./sec. By cooling to a temperature of 300 ° C. or lower at a cooling rate exceeding 45%, the volume fraction of the martensite phase is 45 to 60%, the balance is substantially a ferrite phase, and the tensile strength is 980 MPa or more and less than 1180 MPa. A method for producing a high-strength cold-rolled steel sheet having excellent elongation and stretch flangeability, characterized by obtaining the following.
JP2002173669A 2002-06-14 2002-06-14 High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same Expired - Fee Related JP4265153B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002173669A JP4265153B2 (en) 2002-06-14 2002-06-14 High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
EP08159197A EP2017363A3 (en) 2002-06-14 2003-06-04 High strength cold-rolled steel sheet and method for manufacturing the same
DE60335106T DE60335106D1 (en) 2002-06-14 2003-06-04 HIGH-RESISTANT COLD-ROLLED STEEL PLATE AND MANUFACTURING METHOD THEREFOR
EP03736017A EP1514951B1 (en) 2002-06-14 2003-06-04 High strength cold rolled steel plate and method for production thereof
PCT/JP2003/007062 WO2003106723A1 (en) 2002-06-14 2003-06-04 High strength cold rolled steel plate and method for production thereof
US10/485,780 US20040238082A1 (en) 2002-06-14 2003-06-04 High strength cold rolled steel plate and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173669A JP4265153B2 (en) 2002-06-14 2002-06-14 High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004018912A true JP2004018912A (en) 2004-01-22
JP4265153B2 JP4265153B2 (en) 2009-05-20

Family

ID=31172833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173669A Expired - Fee Related JP4265153B2 (en) 2002-06-14 2002-06-14 High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4265153B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066734A1 (en) * 2007-11-22 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet
JP2009127089A (en) * 2007-11-22 2009-06-11 Kobe Steel Ltd High-strength cold rolled steel sheet with excellent isotropy, elongation and stretch-flangeability
JP2009144239A (en) * 2007-11-22 2009-07-02 Kobe Steel Ltd High-strength cold-rolled steel sheet with excellent elongation and stretch-flangeability
JP2010106314A (en) * 2008-10-30 2010-05-13 Jfe Steel Corp Method for manufacturing steel product
JP2010255050A (en) * 2009-04-24 2010-11-11 Kobe Steel Ltd High-strength cold-rolled steel sheet excellent in elongation and stretch-flanging property
CN104040007A (en) * 2012-01-13 2014-09-10 新日铁住金株式会社 Cold-rolled steel sheet and method for producing same
WO2016021169A1 (en) * 2014-08-08 2016-02-11 Jfeスチール株式会社 Cold-rolled steel sheet having excellent spot weldability, and manufacturing method therefor
US9725782B2 (en) 2012-01-13 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
CN111270151A (en) * 2020-03-30 2020-06-12 包头钢铁(集团)有限责任公司 Q345E steel plate and production method thereof
CN111334713A (en) * 2020-03-30 2020-06-26 包头钢铁(集团)有限责任公司 Q390D steel plate and production method thereof
CN111349870A (en) * 2020-03-30 2020-06-30 包头钢铁(集团)有限责任公司 Q345D steel plate and production method thereof
CN111440982A (en) * 2020-03-30 2020-07-24 包头钢铁(集团)有限责任公司 Q345B steel plate and production method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066734A1 (en) * 2007-11-22 2009-05-28 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet
JP2009127089A (en) * 2007-11-22 2009-06-11 Kobe Steel Ltd High-strength cold rolled steel sheet with excellent isotropy, elongation and stretch-flangeability
JP2009144239A (en) * 2007-11-22 2009-07-02 Kobe Steel Ltd High-strength cold-rolled steel sheet with excellent elongation and stretch-flangeability
US8679265B2 (en) 2007-11-22 2014-03-25 Kobe Steel, Ltd. High-strength cold-rolled steel sheet
JP2010106314A (en) * 2008-10-30 2010-05-13 Jfe Steel Corp Method for manufacturing steel product
JP2010255050A (en) * 2009-04-24 2010-11-11 Kobe Steel Ltd High-strength cold-rolled steel sheet excellent in elongation and stretch-flanging property
US9725782B2 (en) 2012-01-13 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Hot stamped steel and method for producing the same
CN104040007B (en) * 2012-01-13 2016-08-24 新日铁住金株式会社 Cold-rolled steel sheet and manufacture method thereof
US9605329B2 (en) 2012-01-13 2017-03-28 Nippon Steel & Sumitomo Metal Corporation Cold rolled steel sheet and manufacturing method thereof
CN104040007A (en) * 2012-01-13 2014-09-10 新日铁住金株式会社 Cold-rolled steel sheet and method for producing same
WO2016021169A1 (en) * 2014-08-08 2016-02-11 Jfeスチール株式会社 Cold-rolled steel sheet having excellent spot weldability, and manufacturing method therefor
JP2016037650A (en) * 2014-08-08 2016-03-22 Jfeスチール株式会社 Cold rolled steel sheet excellent in spot weldability and manufacturing method therefor
CN106661693A (en) * 2014-08-08 2017-05-10 杰富意钢铁株式会社 Cold-rolled steel sheet having excellent spot weldability, and manufacturing method therefor
CN111270151A (en) * 2020-03-30 2020-06-12 包头钢铁(集团)有限责任公司 Q345E steel plate and production method thereof
CN111334713A (en) * 2020-03-30 2020-06-26 包头钢铁(集团)有限责任公司 Q390D steel plate and production method thereof
CN111349870A (en) * 2020-03-30 2020-06-30 包头钢铁(集团)有限责任公司 Q345D steel plate and production method thereof
CN111440982A (en) * 2020-03-30 2020-07-24 包头钢铁(集团)有限责任公司 Q345B steel plate and production method thereof

Also Published As

Publication number Publication date
JP4265153B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
US8137487B2 (en) Method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability
JP4530606B2 (en) Manufacturing method of ultra-high strength cold-rolled steel sheet with excellent spot weldability
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
WO2003106723A1 (en) High strength cold rolled steel plate and method for production thereof
JP4457681B2 (en) High workability ultra-high strength cold-rolled steel sheet and manufacturing method thereof
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
JP3514158B2 (en) Manufacturing method of high tensile strength hot rolled steel sheet with excellent stretch flangeability and material stability
JP2007063604A (en) Hot-dip galvanized high strength steel sheet with excellent elongation and bore expandability, and its manufacturing method
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP5280795B2 (en) Method for producing high-strength cold-rolled steel sheet with excellent mechanical property stability
JP4306497B2 (en) High-strength cold-rolled steel sheet with excellent workability and post-coating corrosion resistance and method for producing the same
JP4492105B2 (en) Manufacturing method of high-strength cold-rolled steel sheet with excellent stretch flangeability
US20230265536A1 (en) Ultra high strength cold rolled steel sheet having excellent spot weldability and formability, ultra high strength plated steel sheet and manufacturing method therefor
JPH10237547A (en) Cold rolled steel sheet with high ductility and high strength, and its production
JP4692519B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP2007092154A (en) Method for manufacturing ultrahigh-strength cold-rolled steel sheet superior in formability
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP2007224408A (en) Hot-rolled steel sheet having excellent strain aging property and method for producing the same
RU2807157C1 (en) Ultra high strength cold rolled steel sheet with excellent spot welding and forming characteristics, ultra high strength plated steel sheet and method for their manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees