JP2004016972A - Method and apparatus for crushing lump raw material - Google Patents

Method and apparatus for crushing lump raw material Download PDF

Info

Publication number
JP2004016972A
JP2004016972A JP2002177451A JP2002177451A JP2004016972A JP 2004016972 A JP2004016972 A JP 2004016972A JP 2002177451 A JP2002177451 A JP 2002177451A JP 2002177451 A JP2002177451 A JP 2002177451A JP 2004016972 A JP2004016972 A JP 2004016972A
Authority
JP
Japan
Prior art keywords
striking
raw material
rotating shaft
vertical
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002177451A
Other languages
Japanese (ja)
Inventor
Haruyuki Takeshita
竹下 治之
Seiya Sawara
佐原 晴也
Tadashi Yamauchi
山内 匡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JDC Corp
Original Assignee
JDC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JDC Corp filed Critical JDC Corp
Priority to JP2002177451A priority Critical patent/JP2004016972A/en
Publication of JP2004016972A publication Critical patent/JP2004016972A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/26Details
    • B02C13/28Shape or construction of beater elements
    • B02C2013/2816Shape or construction of beater elements of chain, rope or cable type

Landscapes

  • Crushing And Pulverization Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for crushing lump raw material which enables the production of a high quality, inexpensive crushed product stably and efficiently, and an apparatus for the method. <P>SOLUTION: In the method and the apparatus for crushing the lump raw material X1 falling in a treatment container 21 by upper and lower sets of blow means (blow members 33 rotating horizontally), the falling of the crushed raw material X2 by the blow means while spreading radially is suppressed and between the vertically adjacent blow means, the blow energy of the lower blow means is made lower than that of the upper blow means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明は塊状物を細粒化するのための技術分野に属するもので塊状原材料破砕方法と塊状原材料破砕装置に関する。
【0002】
【従来の技術】塊状物を細粒化することは各種の技術分野で行われている。ちなみに土木・建築・農林などの分野で用いられる骨材は細粒化技術を利用してつくることができる。
【0003】骨材についていうと、かつては河川から採取した砂利や砂が主流であった。けれどもこの種の河川系資源は、枯渇化に対する配慮からすでに多くの地域で採取が禁止されている。これに代わるのが人工骨材や海砂である。しかしながら人工骨材も、岩石を砕いてつくる粗骨材・粗目細骨材・細目細骨材などは採掘可能な原石山が減少してきているし、海から採取する周知の海砂も近い将来採取禁止になることが確実視されている。
【0004】一方で、多くのコンクリート構造物が永年使用で更新期を迎えようとしている。これについては今後、多量のコンクリート廃棄物が出現するという危惧がある。その対策としてコンクリート廃棄物を骨材資源に再利用する提案がある。一部ではその具体化も進んでいる。こうしたコンクリート廃棄物から実用可能な骨材が得られるのであれば、資源枯渇化の影響を緩和したり廃棄物処理の負担を軽減したりすることができる。加えて骨材のコストダウンも期待できる。
【0005】
【発明が解決しようとする課題】コンクリート廃棄物は不定形な塊状をしている。かかる塊状物から骨材をつくるというとき、クラッシュ法・加熱式モルタル分離法・擂りもみ式モルタル分離法などが採用されている。しかしこれらの方法にはつぎに述べるような課題が残されている。
【0006】クラッシュ法の場合はジョークラッシャやインパクトクラッシャでコンクリート廃棄物を破砕し骨材を製造する。この方法でつくられた骨材は角張っていたりポーラス(多孔質)な表面を有していたりする。角張りのある骨材は未硬化コンクリートにおいて流動性がきわめて低いから、これを用いたコンクリートではセメントや水分を増量しないかぎり必要なワーカビリティが得られない。それに破砕による骨材は、強度劣化をきたすポーラスな旧モルタルが表面に多く付着しているため、硬化前後においてコンクリートの品質を大きく低下させる。このようなことから、クラッシュ法によるコンクリート廃棄物の破砕物は骨材として活用されることがほとんどなく、地盤改良材や路盤材など骨材以外で利用されているにすぎない。
【0007】加熱式モルタル分離法によるときは、コンクリート廃棄物を高温に熱して元の骨材とモルタルとを分離させる。この方法は生産性が低く製品のコストアップも避けられない。
【0008】擂りもみ式モルタル分離法では、コンクリート廃棄物を小割りした後、それらを偏心ロータで擂りもみ処理して元の骨材とモルタルとを分離させる。この方法でつくられた骨材も表面にモルタルが残存付着しているので骨材としての品質が劣る。それに生産効率やコスト面にも問題がある。
【0009】
【発明の目的】本発明はこのような技術上の課題に鑑み、高品質で低廉な破砕物を安定して効率よく生産することのできる塊状原材料破砕方法と塊状原材料破砕装置を提供しようとするものである。
【0010】
【課題を解決するための手段】本発明の請求項1に係る塊状原材料破砕方法は所期の目的を達成するために下記の課題解決手段を特徴とする。すなわち請求項1に記載された発明は、縦型の処理容器内にある縦型の回転軸に放射状に取り付けられて水平回転することのできる複数本の長い打撃部材を一組の打撃手段とした場合に複数組の打撃手段が上下関係を保持して回転軸に装備されている装置を用い、かつ、当該装置の処理容器内を落下する塊状の原材料を上下複数組の水平回転している打撃手段で打撃して原形よりも小さく破砕するための方法において、打撃手段による原材料の破砕物が径方向に広がりながら落下するのを抑制すること、上下に隣接する打撃手段相互において下位の打撃手段の打撃エネルギを上位の打撃手段の打撃エネルギよりも小さくすること、これら二つのうちの一つ以上を行うことを特徴とする。
【0011】本発明の請求項2に係る塊状原材料破砕装置は所期の目的を達成するために下記の課題解決手段を特徴とする。すなわち請求項2に記載された発明は、縦型の回転軸に放射状に取り付けられたものであって水平回転することのできる複数本の長い打撃部材が複数組上下関係を保持して回転軸に装備されており、これら打撃部材を装備した回転軸が縦型の処理容器内に回転自在に配置されている塊状原材料破砕装置において、原材料の破砕物が径方向に広がりながら落下するのを抑制するための手段として、上下に隣接する打撃部材の間に狭い落下通路が設けられていることを特徴とする。
【0012】本発明の請求項3に係る塊状原材料破砕装置は所期の目的を達成するために下記の課題解決手段を特徴とする。すなわち請求項3に記載された発明は、縦型の回転軸に放射状に取り付けられたものであって水平回転することのできる複数本の長い打撃部材が複数組上下関係を保持して回転軸に装備されており、これら打撃部材を装備した回転軸が縦型の処理容器内に回転自在に配置されている塊状原材料破砕装置において、相対的に下位の打撃部材が相対的に上位の打撃部材よりも小さい回転打撃エネルギを発生させるもので構成されていることを特徴とする。
【0013】本発明の請求項4に係る塊状原材料破砕装置は所期の目的を達成するために下記の課題解決手段を特徴とする。すなわち請求項4に記載された発明は、縦型の回転軸に放射状に取り付けられたものであって水平回転することのできる複数本の長い打撃部材が複数組上下関係を保持して回転軸に装備されており、これら打撃部材を装備した回転軸が縦型の処理容器内に回転自在に配置されている塊状原材料破砕装置において、原材料の破砕物が径方向に広がりながら落下するのを抑制するための手段として、上下に隣接する打撃部材の間に狭い落下通路が設けられていること、および、相対的に下位の打撃部材が相対的に上位の打撃部材よりも小さい回転打撃エネルギを発生させるもので構成されていることを特徴とする。
【0014】
【作用】本発明の方法や装置において、処理容器内を落下する塊状の原材料は上下複数組の水平回転している打撃手段により打撃されて原形よりも小さく破砕される。このような手段によるときは、塊状の原材料を連続的に重力落下させつつそれを水平回転中の打撃手段で打撃するだけでよいから、破砕物を連続的に効率よく生産することができる。しかも水平回転する打撃手段と垂直落下する原材料との衝突で生じる破砕作用はきわめて安定なものであり、その安定性に依存して破砕物も安定して製造することができる。
【0015】上述した上下複数組の打撃手段はそれぞれ回転軸に対し複数本の長い打撃部材が取り付けられて構成されるものである。これが水平回転しているときの打撃部材の打撃エネルギは先端部ほど大きい。すなわち打撃エネルギは打撃部材の先端部が最大で打撃部材の基端部(回転軸側)が最小というものである。こうした打撃部材の各部に破砕物が衝突するときは、エネルギ最大部で打撃破砕されたものとエネルギ最小部で打撃破砕されたものとで破砕物の粒度にかなりの不揃いが生じ、かかるバラツキが原因で破砕物の品質が大きく低下する。これに対し破砕物が打撃部材の特定部のみに衝突するケースのときは、破砕物全般に対する打撃エネルギがほぼ一定になるため破砕物粒度のバラツキが小さくなり、粒度のほぼ均一な破砕物が得られる。本発明の方法や装置では破砕物が径方向に広がりながら落下するのを抑制する。このようにすると、破砕物は打撃部材のどの箇所にも衝突するというのでなく、打撃部材の特定部にのみ衝突するようになる。すなわちこれは後者のケースに該当するということである。したがって粒度の均一な高品質の破砕物が得られる。
【0016】この種の破砕物は打撃エネルギの大きさや打撃回数で粒度が決まるから、打撃エネルギを大きくしたり打撃回数を多くしたりした場合に、より細粒化する。本発明の方法や装置も複数本の打撃部材を一組とする上下複数組の打撃手段が回転軸に装備されているから、塊状の原材料は落下する過程で各段の打撃手段により複数回打撃され、打撃されるにしたがい細かく砕けていく。ちなみに打撃手段が四組(上下四段)の場合は4回の破砕で原材料が骨材程度の大きさにまで細粒化される。この場合の各段の打撃エネルギがいずれも強大であったりすると、破砕物は強打の繰り返しで過剰に細粒化されたり角張った状態に仕上げられたりする。角張りの原因は砕けるたびに角が生じるからである。角張りのある破砕物についてはすでに指摘したとおり、これを骨材とする未硬化コンクリートの流動性が低下するので望ましくない。過剰な細粒化も有効利用できる破砕物の歩留まりを低下させるので望ましくない。その対策として本発明の方法や装置は、相対的下位にある打撃手段の打撃エネルギを相対的上位にある打撃手段の打撃エネルギよりも小さくする。たとえば打撃手段が既述の上下四段ならば、各段の打撃エネルギを最上段(1段目)>2段目>3段目>最下段(4段目)のごとく設定する。これで以下のように都合よくなる。はじめは打撃エネルギの最も大きい最上段の打撃手段で塊状原材料がかなり細粒化される。この初期破砕で生じた一次破砕物は原材料が細かく砕けたものであるため角張りが多い。けれども一次破砕物が2段目の打撃手段で破砕されるとき、最上段の打撃手段よりも打撃エネルギの小さい2段目の打撃手段では一次破砕物を四分五裂させるほどの破砕が起こらず、むしろ一次破砕物の角張りを取り除くようなことがよく起きる。これは2段目の打撃エネルギが小さいことや一次破砕物の角部(エッジ)が脆く壊れやすいことでそのようになる。つまり一次破砕物を破砕させるに至らない打撃エネルギも、破砕物の脆弱な角張り部を潰すぐらいの力はあるから、そのような打撃エネルギにより角張り部が潰されて一次破砕物に丸みが付される。この2回目の破砕や角張り除去を終えたものが二次破砕物となる。二次破砕物が3段目の打撃手段に至ったときも上記に準じた加工処理がなされる。すなわち2段目よりも打撃エネルギの小さい3段目の打撃手段が、二次破砕物に対する小規模の破砕と角張りの除去とを行う。この段階で生じる三次破砕物は角張りのより少ないもの(より丸みを帯びたもの)になる。その後三次破砕物は、3段目よりも打撃エネルギの小さい4段目の打撃手段で加工処理を受ける。この4段目の打撃手段によるときは、打撃エネルギの絶対値が小さいため三次破砕物の破砕がほとんど起こらず、当該破砕物の角張り除去が主体的に行われる。かくて得られた破砕物は、既成の破砕にくらべて角張りの少ない高品質のものとなる。また、下段の打撃手段に向かうにしたがい打撃エネルギを小さくしているため過剰な細粒化が起こらず、有効利用できる破砕物の歩留まりも向上する。
【0017】
【発明の実施の形態】本発明に係る塊状原材料破砕方法と同装置の実施形態について、添付の図面を参照して説明する。
【0018】図1〜図3に示された破砕装置の実施態様において、11は架台、21は処理容器、28は回転軸、29は通路形成部材、33は打撃部材、34は通路形成部材、41は電動機(モータ)、51は伝動系、61は原材料の供給系、71は撒水系、81は破砕物の搬送系、91は制御盤をそれぞれ示し、X1は塊状の原材料、X2は破砕物を示す。
【0019】図1の架台11は金属・木材・合成樹脂・複合材など周知の材料を適材適所で用いて構築されたものである。架台11は横枠部12と縦枠部13とを有する。
【0020】図1・図2に例示された処理容器21は縦型のもので円筒形の胴部を有する。処理容器21はこのほかに入口22や出口23も有するが、それらの開口箇所を除けば処理容器21の内部は外部と遮断されている。処理容器21としては耐衝撃性に優れるものが望ましい。ちなみに金属製(例:鋼製)のものは高度の耐衝撃性を有するから、処理容器21としてそのような材質のものがよく用いられる。入口22は処理容器21の上部一側が開口されて形成されたものである。入口22には原材料投入用のシュートと防塵用のフードとを兼ねたカバー構造物24が付設されている。出口23は処理容器21の下面中央にあって口径が小さい。この小口径と対応するように処理容器21の下部側は出口23に至るまでの部分が擂鉢状になっている。処理容器21の上面中央には上部軸受25があり、処理容器21内の下部中央には下部軸受26がある。
【0021】図1の両軸受25・26は縦型の回転軸28を支持するためのものであるから上下に対をなす。このうちの上部軸受25は処理容器21の上壁に取り付けられている。他方の下部軸受26はこれと処理容器21の内壁とにわたって取り付けられた複数本のステー27で所定位置に支持されている。回転軸28は処理容器21の軸心部に配置されて両軸受25・26で回転自在に支持されているが、これの上端部は処理容器21の上壁を貫通して外部上方へ突出している。
【0022】図1〜図3を参照して通路形成部材29は上下に長い円筒容器からなる。通路形成部材29は、また、上端部が円錐形状(または半球形状)であったり下端部が扁平形状であったりするものである。通路形成部材29は回転軸28と一体に組み合わされる。具体的には、両者28・29が同心関係を保持するように回転軸28の要部(処理容器21内に介在している部分)が通路形成部材29で覆われ、このような組み合わせで相互に固定される。通路形成部材29については、これが回転軸28と一体回転することから回転体ということができるし、回転軸28の外径を増幅していることから外径増幅部材ということもできる。
【0023】通路形成部材29について、より詳しくいうと、これの外周面に多数の取付部30が設けられている。とくに図3に明示されているように、各取付部30は通路形成部材29の表面(外周面)に設けられた上下一対の突出片31a・31bからなる。両突出片31a・31bの間には隙間がある。両突出片31a・31bには、また、ロックピン32を差し込むための孔がそれぞれ形成されている。この多数の取付部30は、平面からみたときに図2のごとく放射状に分布しており、正面などの立面からみたときに図1のごとく複数の縦列をなしている。
【0024】図1〜図3に例示された打撃部材33は、三つまたはそれ以上の金属製リングが鎖状に連結されたフレキシブル剛体からなる。フレキシブル剛体とは剛体部分とフレキシブル部分とを兼備したものをいい、図1〜図3の例では金属製リングそれぞれが剛体でリング相互の連結部が屈伸自在なフレキシブル部となる。フレキシブル剛体からなる打撃部材33は図3で明らかなように、一端のリングが上下一対の突出片31a・31b間に介在されるとともに当該打撃部材の一端部と両突出片とにわたり「かんぬき」式のロックピン32が挿入されて取付部30に取り付けられる。打撃部材33はすべての取付部30に対してこのようにして取り付けられる。したがって打撃部材33も多数本のものが放射状かつ上下多段に分布する。各打撃部材33は、これらが作動しないときに自重で垂れ下がるが、回転軸28や通路形成部材29に依存した高速回転時には遠心力で水平浮揚する。
【0025】水平高速回転してるときの各打撃部材33には塊状物などを破砕することのできる打撃エネルギが発生する。かかる打撃エネルギについては打撃部材33が下段になるにしたがい小さくするのが望ましい。ちなみに図示のような上下四段であれば、▲1▼〔最上段>上2段目>上3段目>最下段〕▲2▼〔最上段=上2段目>上3段目>最下段〕▲3▼〔最上段=上2段目=上3段目>最下段〕▲4▼〔最上段=上2段目>上3段目=最下段〕▲5▼〔最上段>上2段目>上3段目=最下段〕▲6▼〔最上段>上2段目=上3段目=最下段〕など、これら▲1▼〜▲6▼に例示するような態様で各段の発生エネルギ(打撃エネルギ)に差異をもたせる。かかる発生エネルギの大小は、一つは打撃部材33のサイズで決めることができる。たとえば打撃部材33が既述のフレキシブル剛体からなるとき、金属製リングのリング径Dおよび/または金属製リングを形成している線材の径dおよび/または金属製リングの数で打撃エネルギを決めたりする。したがって上位の打撃部材33に対し相対的に打撃エネルギの小さい下位の打撃部材33は、図1や図2では明らかでないけれども、リング径Dと線材径dのうちのいずれか一方または両方が小さくなっている。金属製リングの数もこれに対応するように設定されている。他の一例としては、打撃部材33による打撃エネルギの大きさが単位時間あたりの回転数に比例することから、上記▲1▼〜▲6▼に準じ、各段の打撃部材33を下段になるにしたがい低速回転にすることもある。このような手段によるときも各打撃部材33による打撃エネルギ(発生エネルギ)は下段になるにしたがい小さくなる。後者の場合で各段の打撃部材33の回転数に差をもたせるときには、外径や長さに差のある棒軸(中心軸)と複数の管軸(外周軸)とを同心に組み合わせ、これらの各軸に対して直接または間接的に打撃部材33を取り付けるという具体例がある。もちろんこの場合の棒軸や管軸については、これらの回転数に差をもたせることができる。各段の打撃エネルギに関しては、打撃部材33のサイズと回転数との両方で設定してもよい。ちなみに打撃部材33が複数の金属製リングをつないだフレキシブル剛体からなるとき、その金属製リングの線材径(直径)dは26mm、22mm、19mm、16mmなどであり、下段のものほど金属製リングの線材径dが小さい。
【0026】図1・図2を参照して、他の一つの通路形成部材34は逆円錐筒形をしている。通路形成部材34については後述するとおり、飛散した破砕物を内周面で跳ね返して内部へ移動させるものであるため「返し羽根」ということもある。逆円錐筒形の通路形成部材34は複数のものが上下等間隔で配列されて処理容器21の胴部内面に取り付けられている。処理容器21内における各通路形成部材34の高さについて、これを取付部30との関係でいうと、これら通路形成部材34は図1のようにそれぞれ上下に隣接する両取付部30間に位置している。
【0027】上述した両通路形成部材29・34のうちで、一方の通路形成部材29は単一のもの、他方の通路形成部材34は上下に並んだ複数のものである。これらの通路形成部材29・34は処理容器21内において狭い落下通路35を形成している。
【0028】図1〜図3を参照して説明した構成部材のうちで、両通路形成部材29・34は処理容器21と同じく耐衝撃性を有する材料からなる。その他の構成部材で材料説明のないものは金属製であることが多い。軸受25・26のような周知のものは市販品であることが多い。
【0029】図1において、回転軸28用であるところの電動機41は架台11の縦枠部13に装備されている。電動機41の回転を回転軸28に伝えるための伝動系51は周知のプーリ52・53やベルト(例:Vベルト)54からなる。これらのうちでは、一方のプーリ52が電動機41の出力軸42端に取り付けられ、他方のプーリ53が回転軸28端に取り付けられ、かつ、ベルト54が両プーリ52・53にわたって掛け回される。
【0030】図1に例示された原材料の供給系61は動力伝達を受けてエンドレス回転する周知のベルトコンベアからなる。供給系61は供給方向に向けて登り勾配となるように傾斜配置されるもので、その上端部が処理容器21の入口22に接続されている。このようにして配置された供給系61の上部や両側部はカバー構造物24で覆われている。
【0031】図1の撒水系71は防塵と破砕効率向上のため、供給系61上の原材料に適度の水分を与えるというものである。撒水系71は図1において撒水ノズルを備えた先端部のみが示されているが、これにはバルブなどを有する配管も含まれており、その配管が給水源(図示せず)に接続されている。撒水系71はこれの先端部がカバー構造物24の天井壁に取り付けられ、その先端の撒水ノズルが下を向いて供給系61の上面と対応している。
【0032】図1の搬送系81も動力伝達を受けてエンドレス回転する周知のベルトコンベアからなる。搬送系81は架台11の横枠部12にあってこれの内外にわたるように水平配置されている。こうして配置された搬送系81は、その一端部が処理容器21の出口23下にあり、その他端部が横枠部12外に突出している。
【0033】図1の制御盤91は電動機41・供給系61・撒水系71・搬送系81などをオンオフしたり速度設定したりコントロールしたりするためのもので、各制御系統の操作部や計器類を有する。この制御盤91も架台11の縦枠部13に装備されている。
【0034】本発明の方法や装置で処理される塊状の原材料X1については代表的一例としてコンクリートの廃棄物をあげることができる。アスファルトの廃棄物も原材料X1として使用できる。このほか岩塊や採石もコンクリート用の砕石や砕砂を製造するための原材料X1になるが、なかでも不良岩塊や不良採石などの低級原料はこれを有効利用する観点から原材料X1として望ましい。もちろん、ここに記載された二つ以上の混合物も原材料X1として使用できる。破砕物X2は後述するとおり原材料X1が破砕されたものである。
【0035】図1〜図3に例示された装置を用いて本発明方法を実施するときは、当該装置の各部をつぎのような運転状態にする。すなわち電動機41の出力を伝動系51により回転軸28に伝達してこれを高速回転させたり、供給系61や搬送系81をそれぞれ図1の矢印方向へエンドレス回転させたり、撒水系71から供給系61のコンベアベルト上に撒水したりする。
【0036】上記において、供給系61により搬送される原材料X1は撒水系71からの撒水で湿潤されながら処理容器21の入口22に至り、ここから処理容器21内に投入される。処理容器21内では回転軸28やこれと一体の通路形成部材29が高速回転しており、さらに通路形成部材29に取り付けられた各打撃部材33も高速回転して遠心力で水平浮揚している。したがって処理容器21内に投入された原材料X1は、その落下過程で各段の打撃部材33により打撃されて細かく破砕される。より具体的にいうと、原材料X1はまず最上段の打撃部材33で打撃されて一次破砕される。一次破砕物は処理容器21内の各所へ飛散するが、かかる飛散が一時的なものであるためすぐに重力落下する。しかも落下の際、両通路形成部材29・34で収集されて落下通路35を通過する一次破砕物は、該通路幅で定まる範囲内において上から2段目の打撃部材33に衝突する。こうして打撃部材33(上2段目)の特定部に衝突する一次破砕物は、その打撃部材33からほぼ一定の打撃エネルギを受けて砕ける。さらにいうと、打撃エネルギに関して上2段目の打撃部材33が最上段のそれよりも小さいから、2回目の打撃を受ける一次破砕物は、初回のようには破砕されない。どちらかというと、2回目の打撃で一次破砕物の脆い角部(エッジ)などが壊されるため二次破砕物の角がとれていく。この二次破砕物も一時的に飛散してすぐに重力落下し、その際、両通路形成部材29・34により収集されて落下通路35を通過する。したがって二次破砕物も、上から3段目の打撃部材33に対しては該通路幅で定まる範囲内でこれと衝突し適当に破砕される。3回目の打撃を行う上3段目の打撃部材33も上2段目の打撃部材33に比して打撃エネルギが小さいから、初回や2回目を上回るほどの破砕が生ぜず、むしろ既述のように角がとれて三次破砕物に丸みが生じる。残る最下段の打撃部材33による四次破砕も上記に準じたものであり、かくて所定の破砕物X2が得られる。破砕物X2は角張りが少なく粒の揃ったものが多い。破砕物X2は図1において搬送系81のコンベアベルト上に落下し、その搬送系81を介して任意の場所へ搬出される。
【0037】図1〜図3に例示された本発明装置について、具体的な数値をあげてこれを説明すると以下のとおりである。
【0038】処理容器21については、これに限定されるものでないけれども直径(内径)=75〜150cm程度のものが適当である。代表的な処理容器21として直径100cmのものをあげることができる。
【0039】既述のように水平回転するときの打撃部材33(一本)についていうと、その一端から他端までの各点の運動エネルギは、[打撃部材33の重さ]×[回転軸28からの距離]×[回転速度]に比例して大きくなる。このような打撃部材33については、前述した原材料X1の大きさ応じて重量や回転速度を下記のように設定すればよい。ただし下記では、原材料X1の平均外径(平均直径)をX、打撃部材33の単位長さあたりの重量をG、打撃部材33の1分間あたり回転数(rpm)をRで示す。
【0040】X=75〜150mmのときはG=10〜50kg/m、R=300〜1500rpmとする。望ましくはG=15〜35kg/m、R=500〜1000rpmとする。
【0041】X=10〜75mmのときは、G=5〜30kg/m、R=500〜2000rpmとする。望ましくはG=7.5〜22.5kg/m、R=750〜1500rpmとする。
【0042】X=10mm未満のときは、G=1〜15kg/m、R=750〜3000rpmとする。望ましくはG=5〜15kg/m、R=1000〜2000rpmとする。
【0043】表1は上記の内容をまとめたものである。
【表1】

Figure 2004016972
【0044】原材料X1は打撃部材33の重量が大きいほど、また、打撃部材33の回転速度が速いほど細粒化される。このほか、処理容器21内における打撃部材33の段数が多くなるにしたがい原材料X1の細粒化傾向が増す。しかし打撃部材33の段数は、これに限定するわけではないが3〜4段もあれば十分である。
【0045】上記具体例の範囲内でスペックを定め、コンクリート廃棄物からなる原材料X1を処理した場合は、骨材たる破砕物X2として下記(1)〜(5)のような好結果が得られる。(1)破砕物X2はモルタル分が少なく、角張ったところも除去されて丸みを帯びる。(2)破砕物X2の密度や吸水率は元の骨材とほぼ同等になる。(3)単位容積重量や実績率は元の骨材よりもいくぶん大きく改善される。(4)破砕される原材料X1に撒水系71で適度の湿潤を与えれば破砕効率や防塵効果が高まる。(5)したがって、この再生骨材を用いたコンクリートの強度・乾燥収縮・凍結融解抵抗性・水密性なども、元の骨材を用いたコンクリートとほぼ同等の品質を有するようになる。
【0046】本発明に係る他の実施形態について、図4〜図6を参照して説明する。
【0047】図4に例示された実施形態では、処理容器21の胴部構成部材が通路形成部材34を兼ねており、それによって破砕物の跳ね返し面が形成されている。図4の実施形態におけるその他の事項は図1〜図3を参照して説明した事項と実質的に同じかそれに準ずる。したがって図4の実施形態においても既述と同様の破砕処理が行える。
【0048】図5例示された実施形態では、処理容器21の胴部が逆円錐形をしており、通路形成部材29の上部を除いた部分も逆円錐形をしている。この場合に処理容器21の胴部構成部材が通路形成部材34を兼ねており、それによって破砕物の跳ね返し面が形成されている。また、通路形成部材29に取り付けられた各段の打撃部材33は、下段に向かうにしたがい回転半径が小さくなっている。さらに出口23を含む処理容器21の底部はストレートな筒形をしている。図5の実施形態におけるその他の事項は図1〜図3を参照して説明した事項と実質的に同じかそれに準ずる。したがって図5実施形態においても既述と同様の破砕処理が行える。
【0049】図6に例示された実施形態では、筒形の通路形成部材29に代え、円錐形で笠状の通路形成部材29が複数用いられる。図6における複数の通路形成部材29はそれぞれ回転軸28に取り付けられているが、これらのうちで最上段のものを除く他の通路形成部材29は、上下に隣接する打撃部材33の段の間にあって通路形成部材34と対応して落下通路35を形成している。図6の実施形態におけるその他の事項は図1〜図3を参照して説明した事項と実質的に同じかそれに準ずる。したがって図6実施形態においても既述と同様の破砕処理が行える。
【0050】そのほか、打撃部材33が一つの金属製リングからなることもある。打撃部材33としては、また、金属ワイヤなど適当な長さを有するフレキシブルな金属条体に、ハンマー機能のある金属塊(剛体)が複数個点在して取り付けられたものも採用できる。さらに、落下通路35を形成するための両通路形成部材29・34については、これらのうちのいずれか一方が省略されることもある。
【0051】
【発明の効果】本発明に係る骨塊状原材料破砕方法と塊状原材料破砕装置は処理容器内を落下する塊状の原材料を上下複数組の水平回転している打撃手段で打撃して原形よりも小さく破砕するときに、打撃手段による原材料の破砕物が径方向に広がりながら落下するのを抑制したり、上下に隣接する打撃手段相互において下位の打撃手段の打撃エネルギを上位の打撃手段の打撃エネルギよりも小さくしたりするから、高品質で低廉な破砕物を安定して効率よく生産することができる。
【図面の簡単な説明】
【図1】本発明方法と本発明装置に係る一実施形態を略示した縦断正面図である。
【図2】図1の横断平面図である。
【図3】図1の一部拡大斜視図
【図4】本発明方法と本発明装置に係る他の一実施形態を略示した要部縦断正面図である。
【図5】本発明方法と本発明装置に係るさらに他の一実施形態を略示した要部縦断正面図である。
【図6】本発明方法と本発明装置について上記以外の一実施形態を略示した要部縦断正面図である。
【符号の説明】
21  処理容器
22  入口
23  出口
28  回転軸
29  通路形成部材
33  打撃部材
34  通路形成部材
35  落下通路
41  電動機
51  伝動系
61  原材料の供給系
81  破砕物の搬送系
X1  原材料
X2  破砕物[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention belongs to the technical field for refining a lump and relates to a method and a device for crushing a lump of raw material.
[0002]
2. Description of the Related Art Agglomeration of a lump is performed in various technical fields. By the way, aggregates used in the fields of civil engineering, construction, agriculture and forestry can be made using fine-graining technology.
[0003] When it comes to aggregate, gravel and sand collected from rivers used to be the mainstream. However, harvesting of this type of river resources has already been banned in many areas due to concerns about depletion. Alternatives to this are artificial aggregate and sea sand. However, as for artificial aggregates, coarse aggregates, coarse aggregates, and fine aggregates made by crushing rocks are decreasing in the amount of rough stones that can be mined, and well-known sea sand from the sea will be collected in the near future. It is certain that it will be banned.
On the other hand, many concrete structures are about to enter a renewal period after being used for many years. There is concern that a large amount of concrete waste will appear in the future. As a countermeasure, there is a proposal to reuse concrete waste as aggregate resources. In some cases, its implementation is progressing. If practical aggregates can be obtained from such concrete waste, the effects of resource depletion and the burden of waste disposal can be reduced. In addition, cost reduction of aggregate can be expected.
[0005]
SUMMARY OF THE INVENTION Concrete waste has an irregular mass. When an aggregate is formed from such a lump, a crush method, a heated mortar separation method, a mortar type mortar separation method, or the like is employed. However, these methods have the following problems.
In the case of the crash method, concrete waste is crushed by a jaw crusher or an impact crusher to produce an aggregate. Aggregates made by this method may be angular or have a porous surface. Since squaring aggregates have extremely low fluidity in unhardened concrete, concrete using such concrete does not provide the required workability unless cement or moisture is increased. In addition, the aggregate obtained by crushing has a large amount of old porous mortar, which causes deterioration in strength, which is greatly attached to the surface, so that the quality of concrete before and after hardening is greatly reduced. For this reason, the crushed concrete waste produced by the crash method is rarely used as aggregate, but is used only for non-aggregate materials such as ground improvement materials and roadbed materials.
In the case of the heating type mortar separation method, concrete waste is heated to a high temperature to separate the original aggregate and mortar. This method has low productivity and inevitably raises the cost of the product.
In the mortar-type mortar separation method, concrete waste is divided into small pieces and then crushed with an eccentric rotor to separate the original aggregate and mortar. Aggregate made by this method also has poor quality as aggregate because mortar remains on the surface. There are also problems with production efficiency and costs.
[0009]
SUMMARY OF THE INVENTION In view of the above technical problems, an object of the present invention is to provide a bulk raw material crushing method and a bulk raw material crushing apparatus capable of stably and efficiently producing high-quality, low-cost crushed materials. Things.
[0010]
Means for Solving the Problems The method for crushing bulk raw materials according to the first aspect of the present invention is characterized by the following means for achieving the intended object. That is, in the invention described in claim 1, a plurality of long striking members which are radially attached to a vertical rotating shaft in a vertical processing container and can rotate horizontally are set as a set of striking means. In this case, a plurality of sets of striking means use a device equipped on a rotating shaft while maintaining a vertical relationship, and a plurality of sets of upper and lower striking horizontally rotating mass materials falling in a processing container of the device. In the method for crushing smaller than the original form by hitting with a means, suppressing the crushed material of the raw material by the hitting means from falling while spreading in the radial direction, It is characterized in that the impact energy is made smaller than the impact energy of the upper impact means, and one or more of these two are performed.
[0011] The bulk raw material crushing apparatus according to claim 2 of the present invention is characterized by the following means for solving the problems in order to achieve the intended purpose. That is, the invention described in claim 2 is that a plurality of long striking members which are radially attached to a vertical rotating shaft and can rotate horizontally maintain a plurality of sets of vertical relations on the rotating shaft. In the bulk raw material crushing apparatus, in which a rotating shaft equipped with these impact members is rotatably arranged in a vertical processing container, the crushed raw material is prevented from falling while spreading in the radial direction. For this purpose, a narrow drop passage is provided between the vertically adjacent striking members.
The bulk raw material crushing apparatus according to claim 3 of the present invention is characterized by the following means for solving the problem in order to achieve the intended purpose. That is, according to the invention described in claim 3, a plurality of long striking members which are radially mounted on a vertical rotary shaft and can rotate horizontally maintain a plurality of sets of vertical relations on the rotary shaft. In the bulk raw material crushing apparatus in which the rotating shafts equipped with these impact members are rotatably arranged in a vertical processing container, the relatively lower impact member is relatively higher than the upper impact member. Are also configured to generate small rotational impact energy.
[0013] The bulk raw material crushing apparatus according to claim 4 of the present invention is characterized by the following means for solving the problem in order to achieve the intended object. In other words, the invention described in claim 4 is that a plurality of long striking members which are radially attached to a vertical rotating shaft and can rotate horizontally maintain a plurality of sets of vertical relations on the rotating shaft. In the bulk raw material crushing apparatus, in which a rotating shaft equipped with these impact members is rotatably arranged in a vertical processing container, the crushed raw material is prevented from falling while spreading in the radial direction. In order to achieve this, a narrow drop passage is provided between vertically adjacent striking members, and a relatively lower striking member generates a smaller rotational impact energy than a relatively higher striking member. It is characterized by being constituted by a thing.
[0014]
In the method and apparatus according to the present invention, a massive raw material falling in the processing vessel is hit by a plurality of upper and lower sets of horizontally rotating hitting means and is crushed to a size smaller than the original shape. With such means, it is only necessary to continuously drop the massive raw material by gravity while striking it with the striking means rotating horizontally, so that crushed material can be continuously and efficiently produced. Moreover, the crushing action caused by the collision between the horizontally rotating impacting means and the vertically falling raw material is extremely stable, and the crushed material can be stably produced depending on the stability.
Each of the plurality of sets of upper and lower striking means is constituted by attaching a plurality of long striking members to the rotating shaft. The impact energy of the impact member when it is horizontally rotating is greater at the tip. That is, the impact energy is such that the tip end of the striking member is maximum and the basal end (rotary shaft side) of the striking member is minimum. When a crushed object collides with each part of such a striking member, the particle size of the crushed object is considerably irregular between the one crushed and crushed at the maximum energy part and the one crushed and crushed at the minimum energy part, and such a variation is caused. The quality of the crushed material is greatly reduced. On the other hand, in the case where the crushed material collides only with a specific portion of the impact member, the impact energy for the whole crushed material becomes almost constant, so that the variation in the particle size of the crushed material becomes small, and the crushed material having a substantially uniform particle size is obtained. Can be In the method and apparatus of the present invention, the crushed material is prevented from falling while spreading in the radial direction. In this case, the crushed material does not collide with any part of the striking member, but collides only with a specific portion of the striking member. That is, this corresponds to the latter case. Therefore, a high-quality crushed product having a uniform particle size can be obtained.
Since the size of the crushed material is determined by the magnitude of the impact energy and the number of impacts, the crushed material becomes finer when the impact energy is increased or the number of impacts is increased. Since the method and apparatus of the present invention are also provided with a plurality of sets of upper and lower striking means having a plurality of striking members as one set, the massive raw material is struck a plurality of times by the striking means at each stage in the process of falling. It is crushed as it is hit. By the way, in the case of four sets of impact means (upper and lower four stages), the raw material is reduced to the size of the aggregate by four times of crushing. In this case, if the impact energy of each stage is large, the crushed material is excessively finely divided or finished in an angular state by repeated impacts. The cause of the squaring is that each time it breaks, it forms a horn. As already pointed out, the crushed material having a square shape is not desirable because the fluidity of the unhardened concrete using the aggregate as the aggregate is reduced. Excessive refining is also undesirable because it reduces the yield of crushed material that can be used effectively. As a countermeasure, the method and the device of the present invention make the impact energy of the relatively lower striking means smaller than that of the relatively higher striking means. For example, if the striking means is the above-described upper and lower four stages, the striking energy of each stage is set as follows: top stage (first stage)> second stage> third stage> bottom stage (fourth stage). This is convenient as follows. At first, the massive raw material is considerably finely divided by the uppermost impact means having the greatest impact energy. The primary crushed material generated by this initial crushing has many corners because the raw materials are finely crushed. However, when the primary crushed material is crushed by the second-stage striking means, the second-stage striking means, which has a lower impact energy than the uppermost striking means, does not crush the primary crushed material by four-fifths. It often happens that the corners of the crushed material are removed. This is because the impact energy of the second stage is small and the corners (edges) of the primary crushed material are brittle and easily broken. In other words, the impact energy that does not lead to crushing the primary crushed material also has the power to crush the fragile cornered portion of the crushed material, so the angular portion is crushed by such impact energy and the primary crushed material becomes rounded Attached. After the second crushing and the removal of the squaring, the secondary crushed material is obtained. When the secondary crushed material reaches the third-stage striking means, the same processing as above is performed. That is, the third-stage striking means having a smaller impact energy than the second stage performs small-scale crushing of the secondary crushed material and removal of the squaring. The tertiary crush at this stage will be less square (more rounded). Thereafter, the tertiary crushed material is processed by the fourth-stage striking means having a lower impact energy than the third stage. When the fourth-stage striking means is used, since the absolute value of the striking energy is small, the crushed tertiary crushed material hardly occurs, and the crushed material is mainly squarely removed. The crushed material thus obtained is of high quality with less squareness than the existing crushed material. Further, since the impact energy is reduced toward the impact means at the lower stage, excessive atomization does not occur, and the yield of crushed materials that can be effectively used is improved.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a bulk material crushing method and apparatus according to the present invention will be described with reference to the accompanying drawings.
In the embodiment of the crushing apparatus shown in FIGS. 1 to 3, 11 is a gantry, 21 is a processing vessel, 28 is a rotating shaft, 29 is a passage forming member, 33 is a striking member, 34 is a passage forming member, 41 is an electric motor, 51 is a transmission system, 61 is a raw material supply system, 71 is a watering system, 81 is a crushed material transport system, 91 is a control panel, X1 is a bulk material, X2 is a crushed material. Is shown.
The gantry 11 shown in FIG. 1 is constructed by using well-known materials such as metal, wood, synthetic resin, and composite material at appropriate places. The gantry 11 has a horizontal frame portion 12 and a vertical frame portion 13.
The processing vessel 21 illustrated in FIGS. 1 and 2 is of a vertical type and has a cylindrical body. The processing container 21 also has an inlet 22 and an outlet 23 in addition to the above, but the inside of the processing container 21 is isolated from the outside except for the openings. It is desirable that the processing container 21 has excellent impact resistance. Incidentally, since a metal (for example, steel) material has a high degree of impact resistance, such a material is often used as the processing container 21. The inlet 22 is formed by opening one upper side of the processing container 21. The inlet 22 is provided with a cover structure 24 that also serves as a chute for charging raw materials and a hood for preventing dust. The outlet 23 has a small diameter at the center of the lower surface of the processing container 21. In order to correspond to this small diameter, the lower part of the processing vessel 21 has a mortar-shaped portion up to the outlet 23. An upper bearing 25 is provided at the center of the upper surface of the processing container 21, and a lower bearing 26 is provided at a lower center of the processing container 21.
Since the dual bearings 25 and 26 in FIG. 1 are for supporting the vertical rotary shaft 28, they are paired up and down. The upper bearing 25 is mounted on the upper wall of the processing container 21. The other lower bearing 26 is supported at a predetermined position by a plurality of stays 27 attached to the lower bearing 26 and the inner wall of the processing container 21. The rotating shaft 28 is disposed at the axis of the processing container 21 and is rotatably supported by the bearings 25 and 26. The upper end of the rotating shaft 28 penetrates the upper wall of the processing container 21 and protrudes upward. I have.
Referring to FIGS. 1 to 3, the passage forming member 29 is formed of a vertically long cylindrical container. The passage forming member 29 has a conical (or hemispherical) upper end or a flat lower end. The passage forming member 29 is combined with the rotating shaft 28 integrally. Specifically, a main part of the rotary shaft 28 (a part interposed in the processing container 21) is covered with the passage forming member 29 so that the two 28 and 29 maintain a concentric relationship. Fixed to The passage forming member 29 can be called a rotating body because it rotates integrally with the rotating shaft 28, and can also be called an outer diameter amplifying member because it amplifies the outer diameter of the rotating shaft 28.
More specifically, the passage forming member 29 is provided with a large number of mounting portions 30 on the outer peripheral surface thereof. As specifically shown in FIG. 3, each mounting portion 30 includes a pair of upper and lower projecting pieces 31a and 31b provided on the surface (outer peripheral surface) of the passage forming member 29. There is a gap between the two projecting pieces 31a and 31b. Holes for inserting the lock pins 32 are formed in the both protruding pieces 31a and 31b, respectively. The large number of mounting portions 30 are radially distributed as viewed in a plane as shown in FIG. 2, and formed in a plurality of columns as shown in FIG. 1 when viewed from an elevation such as a front surface.
The striking member 33 exemplified in FIGS. 1 to 3 is made of a flexible rigid body in which three or more metal rings are connected in a chain. The flexible rigid body refers to a body that has both a rigid body portion and a flexible portion. In the examples of FIGS. 1 to 3, each of the metal rings is a rigid body, and a connecting portion between the rings is a flexible portion that can be bent and stretched. As is apparent from FIG. 3, the striking member 33 made of a flexible rigid body has a ring at one end interposed between the pair of upper and lower projecting pieces 31a and 31b, and extends between one end of the striking member and the two projecting pieces. The lock pin 32 is inserted and attached to the attachment portion 30. The striking member 33 is attached to all the attachment portions 30 in this manner. Therefore, a large number of striking members 33 are distributed radially and vertically in multiple stages. Each of the impact members 33 hangs down by its own weight when they do not operate, but floats horizontally by centrifugal force during high-speed rotation depending on the rotating shaft 28 and the passage forming member 29.
Each of the striking members 33 at the time of horizontal high-speed rotation generates striking energy capable of crushing a lump or the like. It is desirable that the impact energy be reduced as the impact member 33 becomes lower. By the way, if it is the upper and lower four stages as shown in the figure, (1) [top stage> upper second stage> upper third stage> lower stage] [2] [top stage = upper second stage> upper third stage> upper [Lower tier] [3] [Top tier = Upper second tier = Upper third tier> Lower tier] [4] [Top tier = Upper second tier> Upper third tier = Bottom tier] [5] [Top tier> Upper 2nd stage> top 3rd stage = bottom stage] {6} [top stage> top 2nd stage = top third stage = bottom stage], etc. The difference in the energy generated at the step (strike energy). One of the magnitudes of the generated energy can be determined by the size of the striking member 33. For example, when the impact member 33 is made of the above-described flexible rigid body, the impact energy is determined by the ring diameter D of the metal ring and / or the diameter d of the wire forming the metal ring and / or the number of the metal rings. I do. Therefore, the lower striking member 33 having a smaller impact energy than the upper striking member 33 has one or both of the ring diameter D and the wire diameter d, although not clear in FIGS. 1 and 2. ing. The number of metal rings is also set to correspond to this. As another example, since the magnitude of the striking energy by the striking member 33 is proportional to the number of rotations per unit time, the striking member 33 of each stage is set to the lower stage according to the above (1) to (6). Therefore, the speed may be reduced to a low speed. Even with such means, the striking energy (generated energy) of each striking member 33 decreases as it goes down. In the latter case, when giving a difference in the number of revolutions of the striking member 33 in each stage, a rod shaft (center axis) having a difference in outer diameter and length and a plurality of tube axes (outer peripheral axis) are concentrically combined, and There is a specific example in which the impact member 33 is directly or indirectly attached to each shaft. Of course, in the case of the rod shaft and the tube shaft in this case, a difference can be made between these rotation speeds. The impact energy of each stage may be set based on both the size and the rotation speed of the impact member 33. Incidentally, when the striking member 33 is made of a flexible rigid body connected with a plurality of metal rings, the wire diameter (diameter) d of the metal ring is 26 mm, 22 mm, 19 mm, 16 mm, and the like. Wire diameter d is small.
Referring to FIGS. 1 and 2, another passage forming member 34 has an inverted conical cylindrical shape. As described later, the passage forming member 34 is also referred to as a "turning blade" because the scattered crushed material is repelled on the inner peripheral surface and moved inside. A plurality of inverted conical cylindrical passage forming members 34 are arranged at equal intervals in the vertical direction and are attached to the inner surface of the body of the processing container 21. Regarding the height of each passage forming member 34 in the processing container 21 in relation to the mounting portion 30, these passage forming members 34 are located between the vertically adjacent mounting portions 30 as shown in FIG. are doing.
Of the two passage forming members 29 and 34 described above, one passage forming member 29 is a single member and the other passage forming member 34 is a plurality of members arranged vertically. These passage forming members 29 and 34 form a narrow falling passage 35 in the processing container 21.
Of the constituent members described with reference to FIGS. 1 to 3, the two passage forming members 29 and 34 are made of a material having impact resistance, like the processing container 21. Other components without a material description are often made of metal. Known products such as the bearings 25 and 26 are often commercially available products.
In FIG. 1, an electric motor 41 for the rotary shaft 28 is mounted on the vertical frame 13 of the gantry 11. A transmission system 51 for transmitting the rotation of the electric motor 41 to the rotation shaft 28 includes well-known pulleys 52 and 53 and a belt (eg, a V-belt) 54. Among these, one pulley 52 is attached to the end of the output shaft 42 of the electric motor 41, the other pulley 53 is attached to the end of the rotating shaft 28, and the belt 54 is wound around the two pulleys 52 and 53.
The raw material supply system 61 illustrated in FIG. 1 comprises a well-known belt conveyor that receives power transmission and rotates endlessly. The supply system 61 is arranged so as to be inclined upward in the supply direction, and has an upper end connected to the inlet 22 of the processing container 21. The upper portion and both side portions of the supply system 61 thus arranged are covered with the cover structure 24.
The water sprinkling system 71 in FIG. 1 gives a suitable amount of water to the raw materials on the supply system 61 in order to prevent dust and improve the crushing efficiency. Although only the front end of the water spray system 71 provided with a water spray nozzle is shown in FIG. 1, this also includes a pipe having a valve or the like, and the pipe is connected to a water supply source (not shown). I have. The water sprinkling system 71 has its front end attached to the ceiling wall of the cover structure 24, and the water sprinkling nozzle at the front end thereof faces downward and corresponds to the upper surface of the supply system 61.
The transport system 81 in FIG. 1 also comprises a well-known belt conveyor that receives power transmission and rotates endlessly. The transport system 81 is located in the horizontal frame portion 12 of the gantry 11 and is horizontally arranged so as to extend inside and outside the horizontal frame portion 12. One end of the transport system 81 thus arranged is below the outlet 23 of the processing container 21, and the other end protrudes out of the horizontal frame 12.
The control panel 91 shown in FIG. 1 is for turning on / off the motor 41, the supply system 61, the water sprinkling system 71, the transport system 81, and the like, and setting and controlling the speed. Have a kind. The control panel 91 is also provided on the vertical frame 13 of the gantry 11.
As a typical example of the bulk raw material X1 to be treated by the method and apparatus of the present invention, concrete waste can be mentioned. Asphalt waste can also be used as the raw material X1. In addition, rock blocks and quarries are also raw materials X1 for producing crushed stones and crushed sand for concrete. Among them, low-grade raw materials such as defective rock blocks and defective quarries are desirable as raw materials X1 from the viewpoint of effectively utilizing them. Of course, a mixture of two or more described herein can also be used as the raw material X1. The crushed material X2 is obtained by crushing the raw material X1 as described later.
When the method of the present invention is carried out by using the apparatus illustrated in FIGS. 1 to 3, each part of the apparatus is operated as follows. That is, the output of the electric motor 41 is transmitted to the rotating shaft 28 by the transmission system 51 to rotate it at a high speed, the supply system 61 and the transport system 81 are rotated endlessly in the directions of arrows in FIG. Sprinkle water on the 61 conveyor belt.
In the above, the raw material X1 conveyed by the supply system 61 reaches the inlet 22 of the processing container 21 while being wet by the water spray from the water spray system 71, and is introduced into the processing container 21 from here. In the processing container 21, the rotating shaft 28 and the passage forming member 29 integral therewith are rotating at high speed, and the striking members 33 attached to the passage forming member 29 are also rotating at high speed and levitated horizontally by centrifugal force. . Therefore, the raw material X1 put into the processing container 21 is hit by the hitting members 33 of each stage in the dropping process and is finely crushed. More specifically, the raw material X1 is first struck by the striking member 33 at the uppermost stage and primary crushed. The primary crushed material scatters to various places in the processing container 21, but immediately falls due to gravity because the scatter is temporary. Moreover, at the time of falling, the primary crushed material collected by the two passage forming members 29 and 34 and passing through the falling passage 35 collides with the second-stage striking member 33 from the top within a range determined by the passage width. Thus, the primary crushed material colliding with the specific portion of the striking member 33 (upper second stage) receives the substantially constant striking energy from the striking member 33 and is crushed. Furthermore, since the impact member 33 in the upper second stage is smaller than that in the uppermost stage in terms of impact energy, the primary crushed material that is subjected to the second impact is not crushed as in the first time. If anything, the brittle corners (edges) and the like of the primary crushed material are broken by the second blow, so the corners of the secondary crushed material are removed. This secondary crushed material is also temporarily scattered and immediately falls by gravity. At this time, the secondary crushed material is collected by the two passage forming members 29 and 34 and passes through the falling passage 35. Therefore, the secondary crushed material also collides with the third-stage striking member 33 from the top within the range determined by the passage width and is appropriately crushed. Since the impact energy of the upper third-stage striking member 33 for performing the third impact is smaller than that of the upper second-stage striking member 33, the crushing does not occur more than the first and second striking members. Corners are rounded off and the tertiary crushed material is rounded. The fourth crushing by the remaining lowermost striking member 33 is in accordance with the above, and thus a predetermined crushed material X2 is obtained. Most of the crushed material X2 has little squareness and uniform grains. The crushed material X2 falls on the conveyor belt of the transport system 81 in FIG. 1 and is carried out to an arbitrary place via the transport system 81.
The apparatus of the present invention illustrated in FIGS. 1 to 3 will be described below with specific numerical values.
The processing vessel 21 is not limited to this, but is suitably one having a diameter (inner diameter) of about 75 to 150 cm. A typical processing vessel 21 may be one having a diameter of 100 cm.
As described above, the kinetic energy of each point from one end to the other end of the striking member 33 (one piece) during horizontal rotation is [weight of the striking member 33] × [rotation axis Distance from 28] 2 × [Rotation speed] 2 It increases in proportion to. With respect to such a striking member 33, the weight and the rotation speed may be set as follows according to the size of the raw material X1 described above. However, in the following, the average outer diameter (average diameter) of the raw material X1 is X D , The weight per unit length of the striking member 33 is denoted by G, and the number of revolutions per minute (rpm) of the striking member 33 is denoted by R.
X D = 75 to 150 mm, G = 10 to 50 kg / m, and R = 300 to 1500 rpm. Desirably, G = 15-35 kg / m and R = 500-1000 rpm.
X D = 10 to 75 mm, G = 5 to 30 kg / m and R = 500 to 2000 rpm. Desirably, G = 7.5 to 22.5 kg / m and R = 750 to 1500 rpm.
X D = 10 mm, G = 1 to 15 kg / m and R = 750 to 3000 rpm. Desirably, G is 5 to 15 kg / m and R is 1000 to 2000 rpm.
Table 1 summarizes the above contents.
[Table 1]
Figure 2004016972
The raw material X1 becomes finer as the weight of the striking member 33 increases and as the rotational speed of the striking member 33 increases. In addition, as the number of steps of the striking member 33 in the processing container 21 increases, the tendency of the raw material X1 to become finer increases. However, the number of stages of the striking member 33 is not limited to this, but three to four stages is sufficient.
When the specifications are determined within the range of the above specific example and the raw material X1 made of concrete waste is treated, good results such as the following (1) to (5) can be obtained as a crushed material X2 as an aggregate. . (1) The crushed material X2 has a small amount of mortar, and the corners are also removed and rounded. (2) The density and water absorption of the crushed material X2 are almost equal to those of the original aggregate. (3) The unit weight and performance rate are somewhat improved over the original aggregate. (4) The crushing efficiency and the dust-proofing effect are improved by giving the wetted material X1 an appropriate amount of wetness in the water spray system 71. (5) Therefore, the strength, drying shrinkage, freeze-thaw resistance, watertightness, etc. of the concrete using the recycled aggregate have almost the same quality as the concrete using the original aggregate.
Another embodiment according to the present invention will be described with reference to FIGS.
In the embodiment illustrated in FIG. 4, the body constituting member of the processing container 21 also serves as the passage forming member 34, thereby forming a rebound surface of the crushed material. Other items in the embodiment of FIG. 4 are substantially the same as or similar to the items described with reference to FIGS. Therefore, in the embodiment of FIG. 4, the same crushing processing as described above can be performed.
In the embodiment illustrated in FIG. 5, the body of the processing vessel 21 has an inverted conical shape, and the portion excluding the upper portion of the passage forming member 29 also has an inverted conical shape. In this case, the body constituent member of the processing container 21 also serves as the passage forming member 34, thereby forming a rebound surface of the crushed material. The radius of rotation of the striking member 33 of each stage attached to the passage forming member 29 is reduced toward the lower stage. Further, the bottom of the processing container 21 including the outlet 23 has a straight cylindrical shape. Other items in the embodiment of FIG. 5 are substantially the same as or similar to the items described with reference to FIGS. Therefore, also in the embodiment of FIG. 5, the same crushing processing as described above can be performed.
In the embodiment illustrated in FIG. 6, a plurality of conical, cap-shaped passage forming members 29 are used in place of the cylindrical passage forming members 29. The plurality of passage forming members 29 in FIG. 6 are respectively attached to the rotating shafts 28, and of these, the other passage forming members 29 except for the uppermost one are located between the stages of the striking members 33 adjacent vertically. Thus, a falling passage 35 is formed corresponding to the passage forming member 34. Other items in the embodiment of FIG. 6 are substantially the same as or similar to the items described with reference to FIGS. Therefore, also in the embodiment of FIG. 6, the same crushing processing as described above can be performed.
In addition, the striking member 33 may be formed of a single metal ring. As the impact member 33, a member in which a plurality of metal blocks (rigid bodies) having a hammer function are scattered and attached to a flexible metal strip having an appropriate length such as a metal wire can also be adopted. Further, as for the two passage forming members 29 and 34 for forming the falling passage 35, one of them may be omitted.
[0051]
EFFECTS OF THE INVENTION A method for crushing a bone mass raw material and a mass crushing device according to the present invention crush a mass raw material falling in a processing vessel with a plurality of upper and lower sets of horizontally rotating striking means to crush the raw material smaller than the original shape. In this case, it is possible to prevent the crushed material of the raw material by the striking means from dropping while spreading in the radial direction, or to lower the striking energy of the lower striking means between the striking means vertically adjacent to each other to be smaller than the striking energy of the striking means at the higher rank. Since the size is reduced, high-quality and inexpensive crushed material can be stably and efficiently produced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional front view schematically showing an embodiment of a method and a device of the present invention.
FIG. 2 is a cross-sectional plan view of FIG.
FIG. 3 is a partially enlarged perspective view of FIG. 1;
FIG. 4 is a vertical sectional front view of a main part schematically showing another embodiment of the method of the present invention and the apparatus of the present invention.
FIG. 5 is a vertical sectional front view of a main part schematically showing still another embodiment according to the method and the apparatus of the present invention.
FIG. 6 is a longitudinal sectional front view of a main part schematically showing another embodiment of the method and the apparatus of the present invention other than the above.
[Explanation of symbols]
21 Processing container
22 entrance
Exit 23
28 rotation axis
29 Passage forming member
33 Impact member
34 passage forming member
35 Fall passage
41 Electric motor
51 Transmission system
61 Raw material supply system
81 Transportation system for crushed materials
X1 Raw materials
X2 crushed material

Claims (4)

縦型の処理容器内にある縦型の回転軸に放射状に取り付けられて水平回転することのできる複数本の長い打撃部材を一組の打撃手段とした場合に複数組の打撃手段が上下関係を保持して回転軸に装備されている装置を用い、かつ、当該装置の処理容器内を落下する塊状の原材料を上下複数組の水平回転している打撃手段で打撃して原形よりも小さく破砕するための方法において、打撃手段による原材料の破砕物が径方向に広がりながら落下するのを抑制すること、上下に隣接する打撃手段相互において下位の打撃手段の打撃エネルギを上位の打撃手段の打撃エネルギよりも小さくすること、これら二つのうちの一つ以上を行うことを特徴とする塊状原材料破砕方法。When a plurality of long striking members which are radially attached to a vertical rotating shaft in a vertical processing container and can rotate horizontally are used as a set of striking means, a plurality of sets of striking means have a vertical relationship. Using a device that is held and mounted on a rotating shaft, and using a plurality of upper and lower sets of horizontally rotating impacting means to crush the raw material mass falling in the processing container of the device into smaller pieces than the original form The method for suppressing the falling of the crushed material of the raw material by the striking means while spreading in the radial direction, the striking energy of the lower striking means between the striking means vertically adjacent to each other is lower than the striking energy of the striking means at the upper rank A bulk raw material crushing method, characterized in that at least one of these two is performed. 縦型の回転軸に放射状に取り付けられたものであって水平回転することのできる複数本の長い打撃部材が複数組上下関係を保持して回転軸に装備されており、これら打撃部材を装備した回転軸が縦型の処理容器内に回転自在に配置されている塊状原材料破砕装置において、原材料の破砕物が径方向に広がりながら落下するのを抑制するための手段として、上下に隣接する打撃部材の間に狭い落下通路が設けられていることを特徴とする塊状原材料破砕装置。A plurality of long striking members radially attached to a vertical rotating shaft and capable of rotating horizontally are mounted on the rotating shaft while maintaining a plurality of sets of vertical relations, and equipped with these striking members. In a bulk raw material crushing device in which a rotating shaft is rotatably arranged in a vertical processing container, as a means for suppressing the crushed material of the raw material from falling while spreading in the radial direction, a striking member vertically adjacent thereto A massive raw material crushing device, characterized in that a narrow fall passage is provided between them. 縦型の回転軸に放射状に取り付けられたものであって水平回転することのできる複数本の長い打撃部材が複数組上下関係を保持して回転軸に装備されており、これら打撃部材を装備した回転軸が縦型の処理容器内に回転自在に配置されている塊状原材料破砕装置において、相対的に下位の打撃部材が相対的に上位の打撃部材よりも小さい回転打撃エネルギを発生させるもので構成されていることを特徴とする塊状原材料破砕装置。A plurality of long striking members radially attached to a vertical rotating shaft and capable of rotating horizontally are mounted on the rotating shaft while maintaining a plurality of sets of vertical relations, and equipped with these striking members. In a bulk raw material crushing device in which a rotating shaft is rotatably arranged in a vertical processing container, a relatively lower striking member generates a smaller rotational impact energy than a relatively higher striking member. A bulk raw material crushing apparatus, characterized in that the raw material is crushed. 縦型の回転軸に放射状に取り付けられたものであって水平回転することのできる複数本の長い打撃部材が複数組上下関係を保持して回転軸に装備されており、これら打撃部材を装備した回転軸が縦型の処理容器内に回転自在に配置されている塊状原材料破砕装置において、原材料の破砕物が径方向に広がりながら落下するのを抑制するための手段として、上下に隣接する打撃部材の間に狭い落下通路が設けられていること、および、相対的に下位の打撃部材が相対的に上位の打撃部材よりも小さい回転打撃エネルギを発生させるもので構成されていることを特徴とする塊状原材料破砕装置。A plurality of long striking members radially attached to a vertical rotating shaft and capable of rotating horizontally are mounted on the rotating shaft while maintaining a plurality of sets of vertical relations, and equipped with these striking members. In a bulk raw material crushing device in which a rotating shaft is rotatably arranged in a vertical processing container, as a means for suppressing the crushed material of the raw material from falling while spreading in the radial direction, a striking member vertically adjacent thereto And a relatively lower striking member is configured to generate a rotational impact energy smaller than that of a relatively higher striking member. Massive raw material crusher.
JP2002177451A 2002-06-18 2002-06-18 Method and apparatus for crushing lump raw material Pending JP2004016972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002177451A JP2004016972A (en) 2002-06-18 2002-06-18 Method and apparatus for crushing lump raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002177451A JP2004016972A (en) 2002-06-18 2002-06-18 Method and apparatus for crushing lump raw material

Publications (1)

Publication Number Publication Date
JP2004016972A true JP2004016972A (en) 2004-01-22

Family

ID=31175483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002177451A Pending JP2004016972A (en) 2002-06-18 2002-06-18 Method and apparatus for crushing lump raw material

Country Status (1)

Country Link
JP (1) JP2004016972A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036362A1 (en) * 2005-09-28 2007-04-05 Get Hamburg Gmbh Device for comminuting a heap of particulate material
JP2007130534A (en) * 2005-11-09 2007-05-31 Jdc Corp Treatment method of object to be treated and treatment apparatus
JP2007147251A (en) * 2005-03-25 2007-06-14 First American Scientific Corp Drying method and dryer
JP2008100870A (en) * 2006-10-18 2008-05-01 Chugoku Electric Power Co Inc:The Aggregate composition for spraying concrete and spraying concrete
KR100870986B1 (en) * 2007-03-12 2008-12-01 (주)금광 이 엔 지 The method and apparatus to seperate moltar and paste from intermediate materials of construction waste
CN116352925A (en) * 2023-03-31 2023-06-30 连云港富程塑料包装有限公司 Plastic woven bag recycling processing technology and processing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007147251A (en) * 2005-03-25 2007-06-14 First American Scientific Corp Drying method and dryer
JP4546409B2 (en) * 2005-03-25 2010-09-15 ファースト アメリカン サイエンティフィック コーポレーション Drying method and drying apparatus
WO2007036362A1 (en) * 2005-09-28 2007-04-05 Get Hamburg Gmbh Device for comminuting a heap of particulate material
DE102005046207A1 (en) * 2005-09-28 2007-04-12 Get Hamburg Gmbh Device for crushing debris
US7891593B2 (en) 2005-09-28 2011-02-22 Get Hamburg Gmbh Device for comminuting a heap of particulate material
DE102005046207B4 (en) * 2005-09-28 2014-12-24 Get Hamburg Gmbh Device for crushing debris
JP2007130534A (en) * 2005-11-09 2007-05-31 Jdc Corp Treatment method of object to be treated and treatment apparatus
JP2008100870A (en) * 2006-10-18 2008-05-01 Chugoku Electric Power Co Inc:The Aggregate composition for spraying concrete and spraying concrete
KR100870986B1 (en) * 2007-03-12 2008-12-01 (주)금광 이 엔 지 The method and apparatus to seperate moltar and paste from intermediate materials of construction waste
CN116352925A (en) * 2023-03-31 2023-06-30 连云港富程塑料包装有限公司 Plastic woven bag recycling processing technology and processing device
CN116352925B (en) * 2023-03-31 2023-10-20 连云港富程塑料包装有限公司 Plastic woven bag recycling processing technology and processing device

Similar Documents

Publication Publication Date Title
KR101682952B1 (en) Dual-crush-structured paste exfoliation apparatus and the manufacturing method of recycling aggregate
KR101107307B1 (en) impact type strained cone crusher having multi-stage mantle
JP5634198B2 (en) Crushed sand and crushed stone production system
JP2003190827A (en) Production method for regenerated aggregate
CN102764686B (en) Impact crusher capable of adjusting aggregate fineness modulus
CN209049527U (en) A kind of environmental protection building fine work Zhi Sha station system
CN209597398U (en) A kind of indoor design building castoff adulterant regeneration equipment
CN106269133A (en) Disintegrating machine, mineral production line and material breaking method
CN106944220A (en) The cement that a kind of band multistage breaks up mechanism is processed with efficient scattering and grading equipment
CN107051315A (en) Machine-made Sand continuous grading regulating system and its regulation technique
CN203494599U (en) Impact crusher
KR20080114459A (en) Apparatus for processing waste of construction
KR102054995B1 (en) Dry separator apparatus and method for separator foreign substance of aggregate
CN103433105B (en) A kind of impact crusher and breaking method thereof
JPH0630755B2 (en) Method and apparatus for recycling concrete waste
JP2004016972A (en) Method and apparatus for crushing lump raw material
GB1584238A (en) Method and apparatus for manufacturing crushed sand from melted slag from a ferrous blast furnace
KR101670448B1 (en) Aggregate and mineral crushing apparatus
CN103657774B (en) Inertial ball mill
CN104844042A (en) Concrete aggregate shaping method
CN205684174U (en) A kind of materials of man-made sand integrated production system
KR101309573B1 (en) Processing appratus for natural gravel
KR100773334B1 (en) Apparatus for processing waste of construction
KR100507705B1 (en) equipment for producing sand
KR100448651B1 (en) dry-typed sorting apparatus for construction wastes using a air blower