JP2004008768A - Refracting power meter - Google Patents

Refracting power meter Download PDF

Info

Publication number
JP2004008768A
JP2004008768A JP2002204830A JP2002204830A JP2004008768A JP 2004008768 A JP2004008768 A JP 2004008768A JP 2002204830 A JP2002204830 A JP 2002204830A JP 2002204830 A JP2002204830 A JP 2002204830A JP 2004008768 A JP2004008768 A JP 2004008768A
Authority
JP
Japan
Prior art keywords
cornea
refractive power
eye
value
refracting power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002204830A
Other languages
Japanese (ja)
Inventor
Toshiyuki Suzuki
鈴木 敏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomey Corp
Original Assignee
Tomey Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomey Corp filed Critical Tomey Corp
Priority to JP2002204830A priority Critical patent/JP2004008768A/en
Publication of JP2004008768A publication Critical patent/JP2004008768A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method to calculate an eye axis length from values of a cornea curvature radius and refracting power obtained by a refracting power meter and to add new information on the eye axis length to the refracting power meter. <P>SOLUTION: This refracting power meter has a means to calculate the cornea curvature radius from a reflecting position of light flux irradiated to the cornea and a means to measure the refracting power from a reflecting position of light flux irradiated to the eyeground. The refracting power meter is further equipped with a means to calculate an eye axis length from the obtained values of the cornea curvature radius and refracting power using a formula of geometrical optics and a means to estimate an error from the distribution of the values and display an estimated value. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
白内障手術では、眼内レンズを挿入するため、人眼の眼軸長さを測定する必要がある。本発明は、眼科/眼鏡分野において、人眼の眼軸の長さを光学的に測定する装置に関するものである。
【0002】
【従来技術】
従来、人眼の眼軸長を測定する方法では、超音波を利用した装置があった。これは、超音波を発振する超音波プローブを被検者の角膜にあて、眼内の各部位からの媒質の違いによる超音波の反射エコーを検知しながら、その反射時間と音速との積和から被検者の眼軸長を計算するものであった。しかしながら、角膜に超音波のプローブを直接接触させるため、被検者に与える精神的そして肉体的苦痛が大きく、また装置が直接角膜に接触するため、衛生面において感染の危険性を内包するものであった。
【0003】
【発明が解決しようとする課題】
本発明は、眼軸長を測定する場合に、装置が被検者角膜に「接触」することをなくし非接触で光学的に測定し、それゆえに被検者の肉体的/精神的苦痛をなくし、また感染においても極めて安全な眼軸長測定を提供するものである。
【0004】
【課題を解決するための手段】
光束を角膜上に照射し、そこからの反射光を受光素子にて検知し、その位置情報から角膜の曲率半径を計算する手段と、光束を眼の網膜に照射し、眼底からの反射光を受光素子にて受光し、その検知情報から、人眼の屈折力を計算する手段とを備えた、屈折力測定装置において、得られた角膜の曲率半径の値と屈折力の値から、人眼の眼軸長さを計算する手段と、その確からしさを推定し表示する手段をもつ屈折力測定装置を提供する。これは眼軸長さが屈折力と角膜曲率半径と一定の関係を有していることを利用するのである。
【0005】
計算に用いる人眼の屈折率値は、人眼全体の代表的な値を使用するため、予め登録された値の他に適切値を外部から入力できる手段も有している。また、眼軸長さは、角膜測定点上でそれぞれ計算できることから、各測定点に応じた分布表示手段も有している。
【0006】
本発明による眼軸長さ測定は、測定値である角膜曲率半径と屈折力値から計算するため、それぞれの測定誤差を推定することで、結果としての眼軸長さに信頼性係数を計算し、表示する手段も有している。
【0007】
【作用】
本発明の作用を図を用いて説明する。図1は人眼の屈折力を求める原理の説明図で、1は人眼を、2はその角膜を表わしている。3は求める屈折力を測定する基点となる位置で、屈折力測定装置はこの位置に置かれた矯正眼鏡の屈折力として求めるのである。4は被検者の無緊張時の観察遠点を、5はその網膜上の結像点を示している。人眼の屈折力を求めることは、この図で示されたFの長さを測定することである。屈折力はこのFの逆数(D=1/F)で示される。この屈折力を求める方法は、多くが開示されているのでここでは詳説は省く。
【0008】
図2は角膜の曲率半径を測定する原理の説明図である。1の人眼に6の発光点から光を照射し、そこからの反射光の光軸への高さhを測定することで、角膜の曲率半径Rが求められる。これは、図に示したように発光点6が角膜前Xの位置でYの高さにあるとした時の角膜への入射角度2θとは以下の関係がある。
tan(2θ)=(Y−h)/X
このθを用いて角膜曲率半径Rは
R=h/sinθ
として求められる。この曲率半径を求める方法は多く開示されているのでここでは詳説を省く。
【0009】
図3は上記手段によって求められた、屈折力(D)と角膜の曲率半径(R)から、人眼の眼軸長さLを求める説明図である。つまり、LをDとRから計算するのである。
【0010】
図4は、図3をより詳しく説明した図で、4の遠点位置からの光が角膜上測定点7で屈折を受け眼底5に結像した状態を示している。図で示したような変数を決めると、以下の関係式が容易に得られる。
sin(θ)=h/R
tan(α)=h/(Δ+d+F)
Δ=R−√(R−h
n・sin(θ−β)=sin(θ+α)
これらから、L=h/sin(β)+Δとして、眼軸長さ(L)が計算できるのである。近似的には、つまり光軸上では以下の式で示される。
L=R・(d+F)/((n−1)・(d+F)−R)
【0011】
得られた値がどの位の信頼度を持つかは、測定値DとRの誤差量が眼軸長Lに対しどの位の影響を及ぼすかを計算すればよく、これは数学的に以下のような関係式が成り立つ。ここに、ΔD,ΔR、ΔLは微小な誤差量を表わす。
ΔL=(−R/T)・ΔD
ΔL=(n−1)・(1−d・D)/T・ΔR
ここに、T=(D・R+(n−1)・(1−d・D))となる値である。
この値は、例えば角膜R8、屈折力−5Dの被検者を測定時に、測定誤差ΔLがRの1mmの変化で約3.75mm、Dで1Dの変化で約0.63mmと推定できる。(ただし、n=1.3375とする)。
【0012】
また、眼軸長がどの程度の長さかをmm単位ではなく、例えば「長」、「中」、「短」といったランクで表わすことも可能である。このランクにより被検眼の大きさがどのくらいかが推測できるのである。
【0013】
【実施例】
図5は本発明の眼軸長さ測定機能が組込まれた屈折力測定装置の外観図であり、被検者顔を固定するあご台11とヘッド部12、本体部13、ベース部14の4つの部分から構成され、このヘッド部の測定窓に角膜の曲率半径を計測するための光照射部15が設けられている。図6は、本体部にある表示部を示し、この表示部で、検者がアライメントの状態を確認すると同時に、測定値の表示を行う。図示された実施例では、角膜の曲率半径K1,K2とその平均値Kが左側に、屈折力値がS値(球面屈折力)、C値(柱面屈折力)、A値(軸角度)が右側に表示された例を表わし、本発明の眼軸長値は、その上に場所に、AL値(眼軸長値)とLL値(信頼係数)が表示されている。また人眼の屈折率の初期登録値は1.3375としている。
【0014】
同じく実施例として、人眼の屈折率値を予め登録された値以外にも、検者の経験値を外部入力できることも可能な設定モードを有することもできる。また、予めR、D、Lの既知量の複数データから、最適な合致曲線を計算する修正モードを有することもできる。
【0015】
【発明の効果】
従来型の角膜の曲率半径の測定機能を有した屈折力測定装置に、本発明の眼軸長さの計算手段と表示手段を組込むことにより、超音波機器では不可避であった角膜への接触がなく、眼軸長を測定できる機器を提供できるのである。これにより、接触による危険(感染、苦痛等)が大きく軽減されるのである。また、設定モードの屈折率の外部入力手段を利用すること、あるいは、修正モードの最適化を使うことで、今までの測定データを生かすこともできるのである。
【図面の簡単な説明】
【図1】屈折力測定の概略説明図
【図2】角膜曲率半径測定の原理図
【図3】眼軸長測定の概略説明図
【図4】眼軸長測定の詳細説明図
【図5】本発明の実施例
【図6】測定結果の表示例
1    人眼
2    角膜
3    眼鏡設置面
4    遠点
5    眼底像点
6    発光点
7    角膜上の測定位置のひとつ
11   あご台
12   ヘッド部
13   本体部
14   ベース部
15   光照射部
[0001]
[Industrial applications]
In cataract surgery, it is necessary to measure the axial length of the human eye in order to insert an intraocular lens. The present invention relates to an apparatus for optically measuring the length of the axial axis of the human eye in the field of ophthalmology / eyeglasses.
[0002]
[Prior art]
Conventionally, there has been an apparatus using ultrasonic waves in a method for measuring the axial length of the human eye. In this method, an ultrasonic probe that oscillates an ultrasonic wave is applied to the cornea of a subject, and while detecting a reflected echo of the ultrasonic wave due to the difference in the medium from each part in the eye, the product sum of the reflection time and the sound velocity is detected. Was used to calculate the eye axis length of the subject. However, since the ultrasonic probe is brought into direct contact with the cornea, the mental and physical pain given to the subject is large, and since the device comes into direct contact with the cornea, there is a risk of infection in hygiene. there were.
[0003]
[Problems to be solved by the invention]
The present invention eliminates the need for the device to "contact" the subject's cornea and measure it optically without contact when measuring the axial length, thus eliminating the physical / mental distress of the subject. It also provides an extremely safe measurement of the axial length in infection.
[0004]
[Means for Solving the Problems]
A means for irradiating a light beam on the cornea, detecting reflected light from the light receiving element, calculating a radius of curvature of the cornea from the positional information, and irradiating the light beam to the retina of the eye, and reflecting the light reflected from the fundus. Means for calculating the refractive power of the human eye from the light-receiving element, based on the detection information, the refractive power measurement device, the human eye from the obtained value of the radius of curvature and refractive power of the cornea And a means for calculating the axial length of the eye, and a means for estimating and displaying the likelihood thereof. This utilizes the fact that the axial length of the eye has a fixed relationship between the refractive power and the radius of curvature of the cornea.
[0005]
As the refractive index value of the human eye used for the calculation uses a representative value of the entire human eye, it has a means for externally inputting an appropriate value in addition to the value registered in advance. Further, since the axial length can be calculated on each of the corneal measurement points, a distribution display means corresponding to each measurement point is also provided.
[0006]
The axial length measurement according to the present invention calculates the reliability coefficient for the resulting axial length by estimating each measurement error to calculate from the measured values of the corneal curvature radius and the refractive power value. , Display means.
[0007]
[Action]
The operation of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of the principle for determining the refractive power of the human eye, where 1 indicates the human eye and 2 indicates the cornea. Reference numeral 3 denotes a position serving as a base point for measuring the refractive power to be obtained. Reference numeral 4 denotes an observation far point when the subject is not strained, and reference numeral 5 denotes an image point on the retina. To determine the refractive power of the human eye is to measure the length of F shown in this figure. The refractive power is represented by the reciprocal of this F (D = 1 / F). Since many methods for obtaining this refractive power have been disclosed, a detailed description thereof will be omitted here.
[0008]
FIG. 2 is an explanatory diagram of the principle of measuring the radius of curvature of the cornea. By irradiating one human eye with light from the six light-emitting points and measuring the height h of the reflected light from the six light-emitting points to the optical axis, the radius of curvature R of the cornea can be obtained. This has the following relationship with the incident angle 2θ to the cornea when the light emitting point 6 is at the position of X in front of the cornea and at the height of Y as shown in the figure.
tan (2θ) = (Y−h) / X
Using this θ, the corneal curvature radius R is R = h / sin θ
Is required. Since many methods for calculating the radius of curvature have been disclosed, a detailed description thereof will be omitted here.
[0009]
FIG. 3 is an explanatory diagram for obtaining the axial length L of the human eye from the refractive power (D) and the radius of curvature (R) of the cornea obtained by the above means. That is, L is calculated from D and R.
[0010]
FIG. 4 is a diagram illustrating FIG. 3 in more detail, and shows a state in which light from the far point position 4 is refracted at the measurement point 7 on the cornea and forms an image on the fundus 5. When the variables shown in the figure are determined, the following relational expressions can be easily obtained.
sin (θ) = h / R
tan (α) = h / (Δ + d + F)
Δ = R−√ (R 2 −h 2 )
n · sin (θ−β) = sin (θ + α)
From these, the axial length (L) can be calculated as L = h / sin (β) + Δ. Approximately, that is, on the optical axis, it is expressed by the following equation.
L = R · (d + F) / ((n−1) · (d + F) −R)
[0011]
The degree of reliability of the obtained value can be calculated by calculating how much the amount of error between the measured values D and R affects the axial length L. The following relational expression holds. Here, ΔD, ΔR, and ΔL represent minute error amounts.
ΔL = (− R 2 / T) · ΔD
ΔL = (n−1) · (1-d · D) 2 / T · ΔR
Here, T = (D · R + (n−1) · (1−d · D)) 2 .
For example, when measuring a subject having a cornea R8 and a refractive power of -5D, the measurement error ΔL can be estimated to be about 3.75 mm for a 1 mm change in R and about 0.63 mm for a 1D change in D. (However, n = 1.3753).
[0012]
Also, the length of the axial length can be represented by ranks such as “long”, “medium”, and “short” instead of the mm unit, for example. With this rank, the size of the eye to be examined can be estimated.
[0013]
【Example】
FIG. 5 is an external view of a refracting power measuring device incorporating the function of measuring the axial length of the present invention. A light irradiation unit 15 for measuring the radius of curvature of the cornea is provided in the measurement window of the head unit. FIG. 6 shows a display unit provided in the main body unit, on which the examiner confirms the alignment state and displays the measured values at the same time. In the illustrated embodiment, the corneal radii of curvature K1, K2 and their average value K are on the left, and the refractive power values are S value (spherical power), C value (columnar power), A value (axial angle). Represents an example in which is displayed on the right side, and the AL value (axial value) and the LL value (reliability coefficient) are displayed at positions above the axial value of the present invention. The initial registered value of the refractive index of the human eye is 1.3375.
[0014]
Similarly, as an example, a setting mode may be provided in which the experience value of the examiner can be externally input in addition to the value of the refractive index of the human eye registered in advance. Further, a correction mode for calculating an optimal matching curve from a plurality of data of known amounts of R, D, and L in advance may be provided.
[0015]
【The invention's effect】
By incorporating the calculation means and display means of the axial length of the present invention into a conventional refractive power measuring device having a function of measuring the radius of curvature of the cornea, contact with the cornea, which was inevitable in ultrasonic equipment, can be achieved. Instead, it is possible to provide a device that can measure the axial length of the eye. This greatly reduces the danger of contact (infection, pain, etc.). Further, by using the external input means of the refractive index in the setting mode, or by using the optimization in the correction mode, it is possible to make use of the measured data so far.
[Brief description of the drawings]
FIG. 1 is a schematic illustration of refractive power measurement. FIG. 2 is a principle diagram of corneal curvature radius measurement. FIG. 3 is a schematic illustration of eye axis length measurement. FIG. 4 is a detailed illustration of eye axis length measurement. Embodiment of the present invention [FIG. 6] Display example 1 of measurement results 1 human eye 2 cornea 3 eyeglass mounting surface 4 far point 5 fundus image point 6 light emitting point 7 one of measurement positions on cornea 11 chin base 12 head unit 13 main unit 14 Base unit 15 Light irradiation unit

Claims (5)

光束を角膜上に照射しそこからの反射光を受光素子にて検知しその位置情報から角膜の曲率半径を計算する手段と、光束を眼の網膜に照射し眼底からの反射光を受光素子にて受光しその検知情報から人眼の屈折力を計算する手段と、を備えた人眼の屈折力測定装置において、得られた角膜の曲率半径の値と屈折力の値から人眼の眼軸長さを計算する手段と、それを推定値として表示する手段をもつ眼屈折力測定装置。A means for irradiating a light beam on the cornea and detecting the reflected light from the light-receiving element and calculating the radius of curvature of the cornea from the positional information, and irradiating the light beam to the retina of the eye and reflecting the light from the fundus to the light-receiving element Means for calculating the refractive power of the human eye from the detection information thereof, and a human eye refractive power measuring device comprising: a corneal optical axis based on the obtained value of the radius of curvature of the cornea and the value of the refractive power. An eye-refractive-power measuring device having a means for calculating a length and a means for displaying the estimated value. 眼軸長さを計算する手段において、人眼の屈折率の値は登録値のほかに、外部から入力可能としたことを特長とする第1項記載の眼屈折力測定装置。2. The eye-refractive-power measuring apparatus according to claim 1, wherein in the means for calculating the axial length, the value of the refractive index of the human eye can be inputted from outside in addition to the registered value. 眼軸長さの表示は、角膜の各部位での、角膜曲率半径と屈折力とに対応した分布表示も可能であることを特長とした第1項記載の眼屈折力測定装置。2. The eye refractive power measuring apparatus according to claim 1, wherein the display of the axial length can also display a distribution corresponding to the corneal curvature radius and the refractive power at each part of the cornea. 眼軸長さを推定する手段は、角膜曲率半径と屈折力の大きさの誤差から、信頼性係数を計算し、表示することを特長とする第1項記載の眼屈折力測定装置。2. The eye refractive power measuring apparatus according to claim 1, wherein the means for estimating the axial length calculates and displays a reliability coefficient based on an error between the corneal curvature radius and the magnitude of the refractive power. 眼軸長さを表示する手段は、長さをランク別表示することを特長とする第1項記載の屈折力測定装置。2. The refractive power measuring device according to claim 1, wherein the means for displaying the axial length displays the length by rank.
JP2002204830A 2002-06-10 2002-06-10 Refracting power meter Pending JP2004008768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002204830A JP2004008768A (en) 2002-06-10 2002-06-10 Refracting power meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002204830A JP2004008768A (en) 2002-06-10 2002-06-10 Refracting power meter

Publications (1)

Publication Number Publication Date
JP2004008768A true JP2004008768A (en) 2004-01-15

Family

ID=30437405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002204830A Pending JP2004008768A (en) 2002-06-10 2002-06-10 Refracting power meter

Country Status (1)

Country Link
JP (1) JP2004008768A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256957A (en) * 2006-03-24 2007-10-04 Essilor Internatl (Co General D'optique) Method for determining progressive ophthalmic lens
WO2010097161A1 (en) * 2009-02-26 2010-09-02 Carl Zeiss Vision Gmbh Method and device for determining the location of the eye fulcrum
US10453210B2 (en) * 2016-01-08 2019-10-22 Samsung Electronics Co., Ltd. Method and apparatus for determining interpupillary distance (IPD)
JP7447619B2 (en) 2020-03-30 2024-03-12 株式会社ニデック ophthalmology equipment
JP7480552B2 (en) 2020-03-30 2024-05-10 株式会社ニデック Ophthalmic device and axial length calculation program
JP7480553B2 (en) 2020-03-30 2024-05-10 株式会社ニデック Ophthalmic Equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007256957A (en) * 2006-03-24 2007-10-04 Essilor Internatl (Co General D'optique) Method for determining progressive ophthalmic lens
US8303114B2 (en) 2006-03-24 2012-11-06 Essilor International (Compagnie Générale d'Optique) Method for the determination of a progressive ophthalmic lens
WO2010097161A1 (en) * 2009-02-26 2010-09-02 Carl Zeiss Vision Gmbh Method and device for determining the location of the eye fulcrum
CN102333476A (en) * 2009-02-26 2012-01-25 卡尔蔡斯视觉股份有限公司 Method and device for determining the location of the eye fulcrum
EP2471441A1 (en) * 2009-02-26 2012-07-04 Carl Zeiss Vision GmbH Device and method for determining the eye's centre of rotation
US8840247B2 (en) 2009-02-26 2014-09-23 Carl Zeiss Vision Gmbh Method and apparatus for determining the location of the ocular pivot point
US10433724B2 (en) 2009-02-26 2019-10-08 Carl Zeiss Vision Gmbh Method and apparatus for determining the location of the ocular pivot point
US10453210B2 (en) * 2016-01-08 2019-10-22 Samsung Electronics Co., Ltd. Method and apparatus for determining interpupillary distance (IPD)
JP7447619B2 (en) 2020-03-30 2024-03-12 株式会社ニデック ophthalmology equipment
JP7480552B2 (en) 2020-03-30 2024-05-10 株式会社ニデック Ophthalmic device and axial length calculation program
JP7480553B2 (en) 2020-03-30 2024-05-10 株式会社ニデック Ophthalmic Equipment

Similar Documents

Publication Publication Date Title
CN102333476B (en) Method and device for determining location of eye fulcrum
US20170188860A1 (en) Devices And Methods For Noninvasive Measurement Of Intracranial Pressure
JPH09509334A (en) Device for monitoring intraocular pressure and blood pressure
US10694937B2 (en) Hand-held autonomous visual acuity measurement apparatus and visual acuity measuring method
US20040257585A1 (en) Apparatus and method for aligning an eye with a device
JP2008503271A5 (en)
US20110118585A1 (en) Eyeball tissue characteristic frequency measurement device and non-contact tonometer utilizing the same
WO2004086962A1 (en) Refraction measuring instrument
EP3320830A1 (en) Technique for performing ophthalmic measurements on an eye
CA2520222A1 (en) Method and apparatus for eye alignment
TR201815339T4 (en) Systems and methods for ordering glasses.
CN104367347B (en) A kind of measurement intraocular pressure and the viscoelastic system and method for cornea
US7384147B1 (en) Apparatus and method for ophthalmometery
KR101784599B1 (en) (Eye Measuring System and Operation Method thereof
ES2209163T3 (en) METHOD AND APPARATUS FOR THE SURFACE PROFILE OF MATERIALS AND CALIBRATION OF LASER ABLATION.
CN109171639B (en) In-vivo cornea parameter measuring device and measuring method based on optical coherence tomography
JP2004008768A (en) Refracting power meter
Tennen et al. Comparison of three keratometry instruments
Ogbuehi et al. Repeatability and interobserver reproducibility of Artemis-2 high-frequency ultrasound in determination of human corneal thickness
JP5435417B2 (en) Tonometry device
COLEMAN Ophthalmic biometry using ultrasound
Osmers et al. Optical measurement of the corneal oscillation for the determination of the intraocular pressure
CN101248982A (en) Visual optics analysis system
CN114305318A (en) Numerical control eyeball protrusion measuring instrument and measuring method
EP3714765B1 (en) Device and method for obtaining mechanical, geometric, and dynamic measurements of optical surfaces